JP2007286012A - Magnetic detecting element and magnetic identification sensor using it - Google Patents

Magnetic detecting element and magnetic identification sensor using it Download PDF

Info

Publication number
JP2007286012A
JP2007286012A JP2006116849A JP2006116849A JP2007286012A JP 2007286012 A JP2007286012 A JP 2007286012A JP 2006116849 A JP2006116849 A JP 2006116849A JP 2006116849 A JP2006116849 A JP 2006116849A JP 2007286012 A JP2007286012 A JP 2007286012A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
detection element
magnetic thin
parallel patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006116849A
Other languages
Japanese (ja)
Other versions
JP4818792B2 (en
JP2007286012A5 (en
Inventor
Masahiro Kawase
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2006116849A priority Critical patent/JP4818792B2/en
Publication of JP2007286012A publication Critical patent/JP2007286012A/en
Publication of JP2007286012A5 publication Critical patent/JP2007286012A5/ja
Application granted granted Critical
Publication of JP4818792B2 publication Critical patent/JP4818792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic detecting element and magnetic identification sensor that can freely respond to the detection width of milli order, have a high spacing characteristic, have resistance to a disturbance magnetic field, and can be sufficiently used as an alternative of a magnetic head. <P>SOLUTION: A magnetic thin film 12 is formed as a plurality of parallel patterns interconnected in series on one surface of a non-magnetic substrate 10. The ends of the plurality of parallel patterns are aligned so as to come into contact with or be close to one side of a substrate 10, and a magnetic detection section using the width of the plurality of parallel patterns as a detection width Tw. While, a plane coil 16 is arranged so that the central part thereof crosses the plurality of parallel patterns of the magnetic thin film 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非磁性基板上に磁性薄膜と平面コイルが積層された構造の磁気検出素子、特に、局所的な磁気を検出するのに好適な磁気検出素子及びそれを用いた磁気識別センサに関するものである。   The present invention relates to a magnetic detection element having a structure in which a magnetic thin film and a planar coil are laminated on a nonmagnetic substrate, and more particularly to a magnetic detection element suitable for detecting local magnetism and a magnetic identification sensor using the same. It is.

従来の磁気読み取り用センサには、主に磁気ヘッドが使われている。この磁気読み取りセンサは、例えば、自販機の紙幣識別、鉄道の自動改札での切符認識、ATMでのキャッシュカードの磁気認識、或いは小切手等の磁気文字(MICR文字)の認識等に使われている。   Conventional magnetic reading sensors mainly use magnetic heads. This magnetic reading sensor is used, for example, for bill recognition of vending machines, ticket recognition at automatic ticket gates of railways, magnetic recognition of cash cards at ATMs, or recognition of magnetic characters (MICR characters) such as checks.

ところが、実用的には十分実績がある磁気ヘッドも、例えば、上述のような紙幣や切符等を低速で搬送する場合には、S/Nの悪化に伴うエラーのリスク対策が必要である。また、磁気ヘッドのギャップ部に付着したゴミ等によるエラーを回避するためにはメンテナンスの手間がかかり、潜在的な課題が存在する。   However, even for magnetic heads that have a sufficient track record in practical use, for example, when banknotes, tickets, and the like as described above are transported at a low speed, it is necessary to take measures against the risk of errors accompanying the deterioration of S / N. Further, in order to avoid an error due to dust or the like adhering to the gap portion of the magnetic head, it takes time for maintenance, and there is a potential problem.

即ち、磁気ヘッドは、コイルで磁性コアの磁束変化を検出する誘導出力の原理を使用しているために搬送速度が変わると感度が変化する。そのために、機種毎にしきい値やゲインを変更する必要が生じる。また、搬送速度が遅いと感度が下がるため、外乱に対するS/Nが低下することで、磁気シールドの強化や多重のローパスフィルターを使用する必要がある。   That is, since the magnetic head uses the principle of the induction output that detects the magnetic flux change of the magnetic core with the coil, the sensitivity changes when the conveyance speed changes. Therefore, it is necessary to change the threshold value and gain for each model. Further, since the sensitivity is lowered when the conveyance speed is low, the S / N with respect to the disturbance is reduced, so that it is necessary to strengthen the magnetic shield or use multiple low-pass filters.

更に、磁気ヘッドのギャップと媒体間の距離に対するスペーシング特性に対しても弱く、磁気回路的に外部の磁気をコアに引き込む必要から、距離による磁界の減衰だけでなく、ゴミの付着等に対して弱い。そのため、ギャップ部のクリーニングを頻繁に行う必要がある。   Furthermore, the spacing characteristics with respect to the distance between the magnetic head gap and the medium are weak, and it is necessary to draw external magnetism into the core in a magnetic circuit. And weak. Therefore, it is necessary to frequently clean the gap portion.

このような事情から、磁気ヘッドに代わるセンサとして磁気ヘッド並みの分解能を有し、速度依存性の無い、感度の良い磁気センサが望まれている。感度の良い磁気センサとしては、例えば、磁気抵抗素子(MR)、巨大磁気抵抗素子(GMR)、フラックスゲートセンサ等がある。   Under such circumstances, there is a demand for a highly sensitive magnetic sensor having a resolution equivalent to that of a magnetic head and having no speed dependency as a sensor replacing the magnetic head. Examples of magnetic sensors with good sensitivity include a magnetoresistive element (MR), a giant magnetoresistive element (GMR), a fluxgate sensor, and the like.

そのうち、磁気抵抗素子には、パーマロイ等による強磁性MRとIn−Sbの半導体MRがある。両者ともバイアス磁界を必要とするために媒体に磁気影響を与えるために使いづらい。   Among them, the magnetoresistive element includes a ferromagnetic MR such as permalloy and an In—Sb semiconductor MR. Both require a bias magnetic field and are difficult to use to magnetically affect the medium.

また、GMRはスピンバルブタイプではバイアスを必要としないが、ハードディスクドライブのような極めて微小な検知幅でミクロン以下の磁気検出には適しているものの、ミリ単位の検知幅を要する使い方では逆に扱いづらい。また、コストが極めて高くなるため実用的ではない。   In addition, GMR does not require a bias in the spin valve type, but it is suitable for magnetic detection of micron or less with a very small detection width like a hard disk drive, but it is treated in reverse for the usage that requires detection width of millimeter unit. It ’s hard. Moreover, it is not practical because the cost is extremely high.

一方、フラックスゲートセンサの場合には、直交フラックスゲートのタイプはバイアスが不要で、検知幅がミリオーダーに適している。本願発明者は、そのフラックゲートセンサに関する提案として、特開2003−163391号公報において直交フラックスゲートの動作ができ、上述のような磁気ヘッドの課題を解決することが可能な磁気検出素子を公開している(特許文献1)。
特開2003−163391号公報
On the other hand, in the case of a fluxgate sensor, the orthogonal fluxgate type does not require a bias, and the detection width is suitable for the millimeter order. The inventor of the present application, as a proposal regarding the flack gate sensor, disclosed a magnetic detection element capable of operating an orthogonal flux gate in Japanese Patent Laid-Open No. 2003-163391 and capable of solving the problems of the magnetic head as described above. (Patent Document 1).
JP 2003-163391 A

特許文献1の技術では、磁気ヘッドの用途に適合させるためには、更に構造上の工夫が必要で、以下の課題を解決することが必要となる。即ち、ミリオーダーの検知幅に自由に対応できること、スペーシング特性が良いこと、外乱磁界に強い構成であること等を解決する必要があった。   In the technique of Patent Document 1, in order to adapt to the use of the magnetic head, further structural ingenuity is required, and it is necessary to solve the following problems. In other words, it was necessary to solve the problem that the detection range of millimeter order can be freely accommodated, the spacing characteristics are good, and the structure is strong against disturbance magnetic fields.

本発明の目的は、磁気ヘッド並みの分解能を有しながらミリオーダーの検知幅に対応できると共に、スペーシング特性が良く、更に外乱磁界に強い磁気検出素子及びそれを用いた磁気識別センサを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic detection element that can cope with a detection width of the order of millimeters while having a resolution equivalent to that of a magnetic head, has good spacing characteristics, and is strong against a disturbance magnetic field, and a magnetic identification sensor using the same. There is.

本発明は、磁性薄膜として非磁性基板の一面に直列に接続された複数の並列パターンとして形成する。その際、複数の並列パターンの端部を基板の1つの辺に接して、又は近接して揃えることで、複数の並列パターンの幅を検知幅とする磁気検知部を形成する。一方、平面コイルは、その中心部が磁性薄膜の複数の並列パターンを横切るように配置する構成とする。   In the present invention, a magnetic thin film is formed as a plurality of parallel patterns connected in series on one surface of a nonmagnetic substrate. In that case, the magnetic detection part which makes the width | variety of a some parallel pattern the detection width is formed by aligning the edge part of a some parallel pattern in contact with one edge | side of a board | substrate, or adjoining. On the other hand, the planar coil has a configuration in which the central portion thereof is arranged so as to cross a plurality of parallel patterns of the magnetic thin film.

本発明によれば、速度依存性が無く、スペーシング特性が良く、更に外部磁界に対して強く、ミリオーダー検知幅にも自由に対応可能な磁気検出素子を実現できる。従って、磁気ヘッドの代替として十分使用可能となる。また、本発明の磁気検出素子を磁気識別センサに用いる場合には、媒体を磁化するための磁石の組み込みや検知幅に対しても自由度があり、生産性の高いセンサが実現可能となる。   According to the present invention, it is possible to realize a magnetic detection element that is not dependent on speed, has good spacing characteristics, is strong against an external magnetic field, and can freely correspond to a millimeter order detection width. Therefore, it can be sufficiently used as an alternative to the magnetic head. Further, when the magnetic detection element of the present invention is used for a magnetic identification sensor, there is a degree of freedom with respect to the incorporation and detection width of a magnet for magnetizing the medium, and a highly productive sensor can be realized.

次に、発明を実施するための最良の形態について図面を参照して詳細に説明する。図1は本発明に係る磁気検出素子の一実施形態を示す斜視図である。図中10はガラス又はセラミック等の非磁性材からなる直方体形状の基板である。基板10の一面にはパーマロイ、アモルファス、微結晶系薄膜等からなる高透磁率磁性薄膜12が細長い複数本の並列パターンとして形成されている。   Next, the best mode for carrying out the invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of a magnetic detection element according to the present invention. In the figure, reference numeral 10 denotes a rectangular parallelepiped substrate made of a nonmagnetic material such as glass or ceramic. On one surface of the substrate 10, a high permeability magnetic thin film 12 made of permalloy, amorphous, microcrystalline thin film or the like is formed as a plurality of elongated parallel patterns.

磁性薄膜12の磁化容易軸は、磁場中成膜又は磁場中熱処理によりパターンの長手方向に対して直交する面内の方向へ付けておくのが好ましい。また、磁性薄膜12の夫々のパターンは、つづら折れ状に直列接続されているが、端部の接続は図1に示す様に磁性薄膜12そのもので繋ぐ他に、導電性磁性薄膜で繋いでも良い。少なくとも電気的には直列に接続しておく。   The easy axis of magnetization of the magnetic thin film 12 is preferably attached in a direction in a plane perpendicular to the longitudinal direction of the pattern by film formation in a magnetic field or heat treatment in a magnetic field. Each pattern of the magnetic thin film 12 is connected in series in a zigzag manner, but the end portions may be connected by a conductive magnetic thin film in addition to the magnetic thin film 12 itself as shown in FIG. . At least electrically connected in series.

磁性薄膜12上には、絶縁膜14が形成され、その絶縁膜14上に銅やアルミ等の非磁性の導電膜を真空成膜後、所定のコイルパターンとなるようにドライエッチング等を施すことで平面コイル16が形成されている。   An insulating film 14 is formed on the magnetic thin film 12, and a nonmagnetic conductive film such as copper or aluminum is vacuum-deposited on the insulating film 14, followed by dry etching or the like so as to form a predetermined coil pattern. A planar coil 16 is formed.

平面コイル16の中心部は細長い形となるが、その下を磁性薄膜12の並列パターンが横切るように配置する。その後、平面コイル16上に絶縁膜18を乗せ、一箇所開けたスルーホール20から電極への引き出し線22と電極24a,24b,24c,24dを導電膜で形成する。   The central portion of the planar coil 16 has an elongated shape, but is arranged so that the parallel pattern of the magnetic thin film 12 crosses below. Thereafter, the insulating film 18 is placed on the planar coil 16, and the lead-out line 22 and the electrodes 24a, 24b, 24c, and 24d from the through hole 20 opened at one place to the electrode are formed of a conductive film.

引き出し線22は電極24aに接続され、平面コイル16の一方の端子となる。平面コイル16の他方側の引き出し線は電極24dに接続され、平面コイル16の他方側の端子となる。また、電極24bには磁性薄膜12の一端が接続され、電極24cには磁性薄膜12の他端が接続されている。   The lead wire 22 is connected to the electrode 24 a and serves as one terminal of the planar coil 16. The lead wire on the other side of the planar coil 16 is connected to the electrode 24d and serves as a terminal on the other side of the planar coil 16. One end of the magnetic thin film 12 is connected to the electrode 24b, and the other end of the magnetic thin film 12 is connected to the electrode 24c.

この磁気検出素子を磁気ヘッドのような使い方をする場合には、基板10の面10aが媒体当接面となり、媒体を面10bに対して垂直方向に搬送することになる。   When this magnetic detection element is used like a magnetic head, the surface 10a of the substrate 10 becomes a medium contact surface, and the medium is conveyed in a direction perpendicular to the surface 10b.

磁性薄膜12の複数本の並列パターンの先端は、10aの面に接する辺に接するか、極近接する形で、揃えている事が感度分布上好ましく、その幅は検知幅となり、図1に示すTwとなる。必要な検知幅Twより磁性薄膜パターンは本数を考慮し、等ピッチにレイアウトするのが好ましい。検知幅Twは自由に変えられ、ミリオーダーの検知幅に対して自由に対応可能である。   It is preferable in terms of sensitivity distribution that the tips of a plurality of parallel patterns of the magnetic thin film 12 are in contact with or in close proximity to the side in contact with the surface 10a, and the width is a detection width, which is shown in FIG. Tw. The number of magnetic thin film patterns is preferably laid out at an equal pitch in consideration of the required detection width Tw. The detection width Tw can be freely changed, and can be freely coped with a detection width of the millimeter order.

図2は図1のA−B線における断面図である。図2では磁性薄膜12の先端に微小な磁石30があると仮定する。   2 is a cross-sectional view taken along line AB in FIG. In FIG. 2, it is assumed that there is a minute magnet 30 at the tip of the magnetic thin film 12.

微小な磁石30のN極からの磁束は磁性薄膜12に吸い込まれ、途中漏れ出してS極に還流する。この磁束が図2に示すように磁性膜のフロント側で主体的であれば、磁性薄膜12への高周波電流印加により磁石30から引き込まれた磁性薄膜12内の磁束が同期して変化を起こす。そして、平面コイル16で誘導出力として検出され、センサ出力として取り出される。   The magnetic flux from the N pole of the minute magnet 30 is sucked into the magnetic thin film 12, leaks out, and returns to the S pole. If this magnetic flux is dominant on the front side of the magnetic film as shown in FIG. 2, the magnetic flux in the magnetic thin film 12 drawn from the magnet 30 by the application of a high-frequency current to the magnetic thin film 12 changes synchronously. Then, it is detected as an induction output by the planar coil 16 and taken out as a sensor output.

一方、リア側の磁性薄膜12は、地磁気や周囲の磁気で一様と見なされる磁界をキャンセルするものである。そのため、平面コイル16と磁性薄膜12の関係はリア側とフロント側とで逆相となり、平面コイル16上での誘導出力は加算となり、キャンセルされる関係となる。   On the other hand, the magnetic thin film 12 on the rear side cancels a magnetic field that is considered uniform by geomagnetism and surrounding magnetism. Therefore, the relationship between the planar coil 16 and the magnetic thin film 12 is opposite in phase between the rear side and the front side, and the induction output on the planar coil 16 is added and canceled.

本発明においては、磁性薄膜12が平面コイル16の中心部を境に辺の磁気検知部に引き出される部分が主の動作となり、反対側が外部磁界をキャンセルするための動作となる。従って、平面コイル16から見て逆相の加算となり、差動動作で外部磁界に対して強く、局所磁界に適したセンサが実現可能となる。また、本発明はフラックスゲートセンサであるため原理的に速度依存性はない。   In the present invention, the part where the magnetic thin film 12 is drawn out to the side magnetic detection part with the central part of the planar coil 16 as the boundary is the main operation, and the opposite side is the operation for canceling the external magnetic field. Accordingly, the addition is performed in the opposite phase as seen from the planar coil 16, and it is possible to realize a sensor suitable for a local magnetic field that is strong against an external magnetic field by differential operation. Further, since the present invention is a fluxgate sensor, there is no speed dependency in principle.

次に、センサの感度を上げるための工夫について説明する。図3はその場合の実施形態を示す。図3では図1と同一部分には同一符号を付している。   Next, a device for increasing the sensitivity of the sensor will be described. FIG. 3 shows an embodiment in that case. In FIG. 3, the same parts as those in FIG.

図2で説明したようにフロント側で引き込まれた磁束が、リア側に波及しない事が好ましく、NS間隔の比較的長い磁化を検知する場合には、磁性薄膜12を平面コイル中心部で分断してフロント側とリア側で分離し、導電膜32で電気的に接続する方法が更に好ましい。このように磁性薄膜12を平面コイル中心部で磁気的に分離することで、より差動の効果が上げられ、センサ感度を向上することが可能となる。   As described with reference to FIG. 2, it is preferable that the magnetic flux drawn on the front side does not spread to the rear side. When detecting relatively long NS intervals, the magnetic thin film 12 is divided at the center of the planar coil. More preferably, the front side and the rear side are separated and electrically connected by the conductive film 32. Thus, by magnetically separating the magnetic thin film 12 at the center of the planar coil, a more differential effect can be achieved and sensor sensitivity can be improved.

その場合、図3に示すように磁性薄膜12の並列パターンを直列に接続する導電膜34も同一の工程で形成できる。また、検知幅に対して並列パターンのピッチ間隔が広くなると磁性薄膜12に引き込む磁束の量も低下するために、先端部に向けて断面積が大きくなるようにパターンの幅を広げることも有効な手段である。   In that case, as shown in FIG. 3, the conductive film 34 connecting the parallel patterns of the magnetic thin film 12 in series can be formed in the same process. Further, since the amount of magnetic flux drawn into the magnetic thin film 12 is reduced when the pitch interval of the parallel pattern is increased with respect to the detection width, it is also effective to widen the pattern width so that the cross-sectional area increases toward the tip. Means.

図4は磁性薄膜12の先端部の例を示す。図4(a)は先端部の幅を広げていない場合の例を示す。これを、例えば、図4(b)に示すように単純に幅を広げた12aの他に、図4(c)に示すように先端を枝分かれさせてフォーク状にする12bでも良い。また、フロント側とリア側の感度バランスをできるだけ取るために、先端部を広げる処置はリア側も行う方が好ましい。   FIG. 4 shows an example of the tip of the magnetic thin film 12. FIG. 4A shows an example in which the width of the tip is not widened. For example, in addition to 12a simply widened as shown in FIG. 4B, 12b may be formed into a fork by branching the tip as shown in FIG. 4C. Further, in order to balance the sensitivity of the front side and the rear side as much as possible, it is preferable to perform the treatment for widening the tip part also on the rear side.

次に、実際に磁気検出素子を作製した実施例を説明する。ここでは図3の構成で磁気検出素子を作製した。まず、セラミックの基板10に磁性薄膜膜12としてFe−Ta−C系の薄膜(t=2μm)によりパターン幅12μmで12本並べ、ピッチを0.135mmとして検知幅を1.5mmとした。   Next, an example in which a magnetic detection element was actually manufactured will be described. Here, a magnetic detection element was fabricated with the configuration of FIG. First, 12 ceramics 10 were arranged with a pattern width of 12 μm using a Fe—Ta—C-based thin film (t = 2 μm) as the magnetic thin film 12, and the detection width was set to 1.5 mm.

また、磁性薄膜12の先端は36μm幅に広げて、先端部を研磨により媒体当接面(10a)で露出させた。磁性薄膜12のフロント側、リア側の長さをそれぞれ0.76mmとし、その上に積層した平面コイル16は銅膜で48Tとした。   The tip of the magnetic thin film 12 was expanded to a width of 36 μm, and the tip was exposed at the medium contact surface (10a) by polishing. The length of the front side and the rear side of the magnetic thin film 12 was 0.76 mm, respectively, and the planar coil 16 laminated thereon was a copper film of 48T.

磁性薄膜12の総抵抗値は510Ωで、平面コイル16の抵抗は210Ωであった。媒体には、磁性トナーにより線幅0.1mm,0.25mm,0.5mm,0.75mm,1mmの線を印字し、搬送方向に磁石で磁化を与えておき、この磁気検出素子の媒体当接面10aを当てて、走査し出力を測定した。   The total resistance value of the magnetic thin film 12 was 510Ω, and the resistance of the planar coil 16 was 210Ω. The medium is printed with lines having a line width of 0.1 mm, 0.25 mm, 0.5 mm, 0.75 mm, and 1 mm with magnetic toner, and magnetized by a magnet in the transport direction. The contact surface 10a was applied and scanned to measure the output.

図5は評価回路の一例を示す。なお、図5は磁気検出素子を用いてセンサ出力を取り出すセンサ回路を示す。まず、発振回路40で5MHzのパルスを発振させ、バッファー42により磁性薄膜12に電流を印加した。平面コイル16側ではパルスの立ち上がり、立ち下がりの容量結合によるピークが発生し、平面コイル16の誘導出力がそのピークをシフトさせる動作となるため、検波回路42によりピークのシフト量を検波し、増幅回路44によりセンサ出力を取り出した。   FIG. 5 shows an example of an evaluation circuit. FIG. 5 shows a sensor circuit that extracts a sensor output using a magnetic detection element. First, a 5 MHz pulse was oscillated by the oscillation circuit 40, and a current was applied to the magnetic thin film 12 by the buffer 42. On the planar coil 16 side, a peak due to the capacitive coupling of the rise and fall of the pulse occurs, and the induction output of the planar coil 16 shifts the peak. Therefore, the detection circuit 42 detects the peak shift amount and amplifies it. The sensor output was taken out by the circuit 44.

特性評価結果を図6に示す。なお、図6中にバーコード状に線幅0.1mm,0.25mm,0.5mm,0.75mm,1mmの線を示すが、これを上述のように本センサで読み取った場合の出力を示す。   The characteristic evaluation results are shown in FIG. In addition, in FIG. 6, lines with line widths of 0.1 mm, 0.25 mm, 0.5 mm, 0.75 mm, and 1 mm are shown in the form of a bar code, and the output when this is read with this sensor as described above is shown. Show.

また、図6(a)はスペーシング量(面10aと媒体との距離)0mm、図6(b)はスペーシング量0.3mmの場合の結果を示す。図6(a)、図6(b)に示すように線幅0.1mmであっても十分検知できており、スペーシングに対しても強い特性であることが分かる。   FIG. 6A shows the result when the spacing amount (distance between the surface 10a and the medium) is 0 mm, and FIG. 6B shows the result when the spacing amount is 0.3 mm. As shown in FIGS. 6A and 6B, even when the line width is 0.1 mm, sufficient detection is possible, and it can be seen that the characteristic is strong against spacing.

図7は本センサにおけるスペーシング量とセンサ出力値(相対値)との関係を示す。縦軸の相対値は、スペーシング量0mmを100とした場合の出力値をいう。図7では上述のような媒体の線幅0.1mm,0.25mm,0.5mm,0.75mm,1mmに対する結果を示す。   FIG. 7 shows the relationship between the amount of spacing and the sensor output value (relative value) in this sensor. The relative value on the vertical axis refers to the output value when the spacing amount is 0 mm. FIG. 7 shows the results for the medium line widths of 0.1 mm, 0.25 mm, 0.5 mm, 0.75 mm, and 1 mm as described above.

また、図7では従来の磁気ヘッドのスペーシング量0.25mmの場合の特性を併せて示す。図7に示すように、例えば、磁気ヘッドでは線幅0.25mmでスペーシング量が0.1mmあると出力は0.1倍になるのに対し、本センサでは同じ条件で0.43倍であり、明らかにスペーシング性能が良いことが分かる。   FIG. 7 also shows the characteristics of a conventional magnetic head when the spacing is 0.25 mm. As shown in FIG. 7, for example, when the line width is 0.25 mm and the spacing is 0.1 mm in the magnetic head, the output is 0.1 times, whereas in this sensor, the output is 0.43 times under the same conditions. There is clearly a good spacing performance.

これは、磁気ヘッドのようにコアの磁気回路による低下要因が無く、磁界の分布を素直に反映している結果である。また、上述のような磁気検出素子の差動の効果から外部磁界の影響で地磁気や電源からの磁界はほとんど影響していないことを確認でき、外部磁界に対して強いことが分かる。   This is a result of reflecting the distribution of the magnetic field in a straightforward manner without causing a decrease factor due to the magnetic circuit of the core unlike the magnetic head. Moreover, it can be confirmed from the differential effect of the magnetic detection element as described above that the geomagnetism and the magnetic field from the power source are hardly influenced by the influence of the external magnetic field, and it is understood that the magnetic detection element is strong against the external magnetic field.

次に、本発明の磁気検出素子を用いた磁気識別センサを説明する。例えば、紙幣用の磁気識別センサは磁性のインクのパターンを検知する。本センサは、磁性インクの残留磁化を検知するために、事前に着磁を行う必要がある。搬送経路に置いた永久磁石により磁化することも可能であるが、センサ本体48に組込む方が使い勝手は良い。そのためには工夫が必要となる。   Next, a magnetic identification sensor using the magnetic detection element of the present invention will be described. For example, a magnetic identification sensor for banknotes detects a magnetic ink pattern. This sensor needs to be magnetized in advance in order to detect the residual magnetization of the magnetic ink. Although it can be magnetized by a permanent magnet placed in the transport path, it is more convenient to incorporate it in the sensor body 48. In order to do so, a device is required.

図8は本発明の磁気検出素子を用いた磁気識別センサの一実施形態の構成を示す斜視図である。図8の基板10は図1、図3等の磁気検出素子の非磁性基板である。基板10の左側側面に磁性薄膜12や平面コイル16等が形成され、この磁気検出素子がセンサ本体48上に配置されている。   FIG. 8 is a perspective view showing a configuration of an embodiment of a magnetic identification sensor using the magnetic detection element of the present invention. A substrate 10 in FIG. 8 is a nonmagnetic substrate of the magnetic detection element in FIGS. A magnetic thin film 12, a planar coil 16, and the like are formed on the left side surface of the substrate 10, and this magnetic detection element is disposed on the sensor body 48.

また、磁気検出素子の媒体搬送方向に対して前後の位置に磁石50、52を配置している。媒体はセンサ摺動面10aに当接しながら搬送方向に搬送される。その際、磁石からの磁界が磁界検知方向から磁性薄膜12へ飛び込んでくるため、図8に示すように磁石50と磁石52を互いに逆方向のN−S方向の極性となるように配置し、磁気検出素子に磁界が掛かるのをキャンセルさせている。磁石50、52のNS方向は媒体に対して垂直である。できるだけ両磁石50、52の大きさと磁気検出素子との距離は等しくしておくのが望ましい。   In addition, magnets 50 and 52 are arranged at front and rear positions with respect to the medium conveyance direction of the magnetic detection element. The medium is transported in the transport direction while contacting the sensor sliding surface 10a. At that time, since the magnetic field from the magnet jumps into the magnetic thin film 12 from the magnetic field detection direction, the magnet 50 and the magnet 52 are arranged so as to have opposite polarities in the NS direction as shown in FIG. The application of a magnetic field to the magnetic detection element is canceled. The NS direction of the magnets 50 and 52 is perpendicular to the medium. It is desirable to make the size of both magnets 50 and 52 and the distance between the magnetic detection elements as equal as possible.

また、磁石位置のばらつきから完全には磁気検出素子にかかる磁界をキャンセルできない場合には、図8に示すように磁気検出素子をシールド部材54で囲む必要があるが、磁性薄膜12の長さに合わせてシールド部材54の高さを選択して位置合わせする。その際、磁気検出素子の磁性薄膜12でフロント側とリア側の差動特性のバランスを崩さないことが重要である。   If the magnetic field applied to the magnetic detection element cannot be completely canceled due to variations in the magnet position, it is necessary to surround the magnetic detection element with the shield member 54 as shown in FIG. In addition, the height of the shield member 54 is selected and aligned. At that time, it is important not to break the balance of the differential characteristics of the front side and the rear side with the magnetic thin film 12 of the magnetic detection element.

磁気識別センサには、様々な検知幅のセンサがあるが、その検知幅が10mmを越えるようになると、磁気検出素子のピッチが拡がることによる磁束の引き込み低下が生じる場合がある。また、磁気検出素子の抵抗が大きくなりすぎて駆動電流の減少による感度の低下が問題となる場合がある。   There are various detection widths of the magnetic identification sensor. When the detection width exceeds 10 mm, there is a case where the pull-in of the magnetic flux is reduced due to the increase in the pitch of the magnetic detection elements. In addition, the resistance of the magnetic detection element may become too large, and a decrease in sensitivity due to a decrease in drive current may be a problem.

そのためには、図9に示すように磁性薄膜12を分割し、夫々の磁性薄膜に所定の電流を流すことで解決できる。回路的には、図5に示すセンサ回路のバッファー部42を必要な数だけ追加し、各バッファー部42からそれぞれの磁性薄膜12に高周波電流を印加すれば良い。   This can be solved by dividing the magnetic thin film 12 as shown in FIG. 9 and flowing a predetermined current through each magnetic thin film. In terms of circuit, a necessary number of buffer portions 42 of the sensor circuit shown in FIG. 5 may be added and a high-frequency current may be applied from each buffer portion 42 to each magnetic thin film 12.

なお、図9では図1、図3と同一部分には同一符号を付している。図9の実施形態は磁性薄膜を3つに分割した例を示す。図9の電極24e、24f、24g、24h、24i、24jは各磁性薄膜の電極を示す。   In FIG. 9, the same parts as those in FIGS. 1 and 3 are denoted by the same reference numerals. The embodiment of FIG. 9 shows an example in which the magnetic thin film is divided into three. Electrodes 24e, 24f, 24g, 24h, 24i, and 24j in FIG. 9 indicate the magnetic thin film electrodes.

このように検知媒体の搬送方向に対して磁気検出素子の前後の位置に磁石を配置し、磁石のNS方向が媒体に対して垂直で、互いに逆極性となるように配置することで、小型のセンサとして構成する事が可能となる。   In this way, the magnets are arranged at positions before and after the magnetic detection element with respect to the conveyance direction of the detection medium, and the NS direction of the magnet is perpendicular to the medium and opposite in polarity to each other. It can be configured as a sensor.

本発明に係る磁気検出素子の一実施形態の構成を示す斜視図である。It is a perspective view which shows the structure of one Embodiment of the magnetic detection element which concerns on this invention. 図1のA−B線における断面図である。It is sectional drawing in the AB line of FIG. 本発明の他の実施形態を示す平面図である。It is a top view which shows other embodiment of this invention. 磁性薄膜の並列パターンを先端部に向けて断面積を大きくする例を示す図である。It is a figure which shows the example which enlarges a cross-sectional area toward the front-end | tip part in the parallel pattern of a magnetic thin film. 磁気検出素子の評価回路の一例を示す回路図である。It is a circuit diagram which shows an example of the evaluation circuit of a magnetic detection element. 本発明の磁気検出素子の評価結果を示す図である。It is a figure which shows the evaluation result of the magnetic detection element of this invention. 本発明の磁気検出素子と従来の磁気ヘッドの特性を比較して示す図である。It is a figure which compares and shows the characteristic of the magnetic detection element of this invention, and the conventional magnetic head. 本発明の磁気検出素子を用いた磁気識別センサの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the magnetic identification sensor using the magnetic detection element of this invention. 本発明の磁気検出素子の更に他の実施形態を示す平面図である。It is a top view which shows other embodiment of the magnetic detection element of this invention.

符号の説明Explanation of symbols

10 基板
10a、10b 面
12 磁性薄膜
14 絶縁層
16 平面コイル
18 絶縁層
20 スルーホール
22 引き出し線
24a〜24i 電極
30 磁石
32、34 導電膜
40 発振回路
42 バッファー
44 検波回路
46 増幅回路
48 センサ本体
50、52 磁石
54 シールド部材
DESCRIPTION OF SYMBOLS 10 Board | substrate 10a, 10b surface 12 Magnetic thin film 14 Insulating layer 16 Planar coil 18 Insulating layer 20 Through hole 22 Lead wire 24a-24i Electrode 30 Magnet 32, 34 Conductive film 40 Oscillation circuit 42 Buffer 44 Detection circuit 46 Amplification circuit 48 Sensor main body 50 , 52 Magnet 54 Shield member

Claims (5)

磁性薄膜に高周波電流を印加し、絶縁層を挟んで積層された平面コイルにより外部磁界による磁性薄膜内部の磁束変化を誘導出力として取り出す磁気検出素子において、前記磁性薄膜は、非磁性基板の一面に直列に接続された複数の並列パターンとして形成され、且つ、前記複数の並列パターンの端部は前記基板の1つの辺に接して又は近接して揃えられて、前記複数の並列パターンの幅を検知幅とする磁気検知部が形成され、前記平面コイルは、その中心部が前記磁性薄膜の複数の並列パターンを横切るように配置されていることを特徴とする磁気検出素子。 In a magnetic sensing element that applies a high-frequency current to a magnetic thin film and extracts a magnetic flux change in the magnetic thin film due to an external magnetic field as an induced output by a planar coil laminated with an insulating layer interposed therebetween, the magnetic thin film is formed on one surface of a nonmagnetic substrate. Formed as a plurality of parallel patterns connected in series, and the ends of the plurality of parallel patterns are aligned in contact with or close to one side of the substrate to detect the width of the plurality of parallel patterns A magnetic detection element, wherein a magnetic detection part having a width is formed, and the planar coil is disposed so that a central part thereof traverses a plurality of parallel patterns of the magnetic thin film. 前記磁性薄膜の複数の並列パターンは、前記平面コイルの中心部で磁気的に分離され、電気的に導電膜で接続されていることを特徴とする請求項1に記載の磁気検出素子。 The magnetic detection element according to claim 1, wherein the plurality of parallel patterns of the magnetic thin film are magnetically separated at a central portion of the planar coil and electrically connected by a conductive film. 前記磁性薄膜の複数の並列パターンは、先端に向かって断面積が広がるように形成されていることを特徴とする請求項1又は2に記載の磁気検出素子。 The magnetic detection element according to claim 1, wherein the plurality of parallel patterns of the magnetic thin film are formed so that a cross-sectional area increases toward a tip. 請求項1乃至3のいずれか1項に記載の磁気検出素子を有し、前記磁気検出素子は媒体当接面が媒体に当接するように配置され、且つ、前記媒体の搬送方向に対して前記磁気検出素子の前後の位置に磁石が配置され、前記磁石のNS方向が前記媒体に対して垂直で、互いに逆極性となるように配置されていることを特徴とする磁気識別センサ。 4. The magnetic detection element according to claim 1, wherein the magnetic detection element is disposed such that a medium contact surface is in contact with a medium, and the medium detection direction is the medium detection direction. A magnetic identification sensor, wherein magnets are arranged at positions before and after the magnetic detection element, and the NS directions of the magnets are perpendicular to the medium and have opposite polarities. 前記磁気検出素子の周囲には、前記磁性薄膜の並列パターンの長さに応じた高さの磁気シールド部材が設置されていることを特徴とする請求項4に記載の磁気識別センサ。 The magnetic identification sensor according to claim 4, wherein a magnetic shield member having a height corresponding to the length of the parallel pattern of the magnetic thin films is provided around the magnetic detection element.
JP2006116849A 2006-04-20 2006-04-20 Magnetic detection element and magnetic identification sensor using the same Active JP4818792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116849A JP4818792B2 (en) 2006-04-20 2006-04-20 Magnetic detection element and magnetic identification sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116849A JP4818792B2 (en) 2006-04-20 2006-04-20 Magnetic detection element and magnetic identification sensor using the same

Publications (3)

Publication Number Publication Date
JP2007286012A true JP2007286012A (en) 2007-11-01
JP2007286012A5 JP2007286012A5 (en) 2009-05-28
JP4818792B2 JP4818792B2 (en) 2011-11-16

Family

ID=38757909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116849A Active JP4818792B2 (en) 2006-04-20 2006-04-20 Magnetic detection element and magnetic identification sensor using the same

Country Status (1)

Country Link
JP (1) JP4818792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097058A (en) * 2017-02-22 2018-08-30 삼성전기주식회사 Power inductor, board having the same, and current measurement method using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48111114U (en) * 1972-03-27 1973-12-20
JPH10153454A (en) * 1996-11-21 1998-06-09 Yazaki Corp Magnetic detecting device and magnetoresistance effect element
JP2000098012A (en) * 1998-09-25 2000-04-07 Tdk Corp Magnetic field sensor
JP2000292506A (en) * 1999-04-08 2000-10-20 Minebea Co Ltd Magnetic impedance element
JP2001004728A (en) * 1999-09-02 2001-01-12 Micro Magune Kk Magnetism detecting apparatus
JP2003004831A (en) * 2001-04-17 2003-01-08 Hitachi Metals Ltd Orthogonal flux gate type magnetic sensor
JP2003163391A (en) * 2001-09-17 2003-06-06 Canon Electronics Inc Magnetic detecting element and its manufacturing method, and portable equipment using the element
JP2004264215A (en) * 2003-03-03 2004-09-24 Fuji Electric Fa Components & Systems Co Ltd Magnetic impedance element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48111114U (en) * 1972-03-27 1973-12-20
JPH10153454A (en) * 1996-11-21 1998-06-09 Yazaki Corp Magnetic detecting device and magnetoresistance effect element
JP2000098012A (en) * 1998-09-25 2000-04-07 Tdk Corp Magnetic field sensor
JP2000292506A (en) * 1999-04-08 2000-10-20 Minebea Co Ltd Magnetic impedance element
JP2001004728A (en) * 1999-09-02 2001-01-12 Micro Magune Kk Magnetism detecting apparatus
JP2003004831A (en) * 2001-04-17 2003-01-08 Hitachi Metals Ltd Orthogonal flux gate type magnetic sensor
JP2003163391A (en) * 2001-09-17 2003-06-06 Canon Electronics Inc Magnetic detecting element and its manufacturing method, and portable equipment using the element
JP2004264215A (en) * 2003-03-03 2004-09-24 Fuji Electric Fa Components & Systems Co Ltd Magnetic impedance element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097058A (en) * 2017-02-22 2018-08-30 삼성전기주식회사 Power inductor, board having the same, and current measurement method using the same
KR101952866B1 (en) * 2017-02-22 2019-02-27 삼성전기주식회사 Power inductor, board having the same, and current measurement method using the same
US10712371B2 (en) 2017-02-22 2020-07-14 Samsung Electro-Mechanics Co., Ltd. Power inductor, board having the same, and current measurement method using the same

Also Published As

Publication number Publication date
JP4818792B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5714144B2 (en) Magnetoresistive sensor and device
CN102628696B (en) Sensor
US7477490B2 (en) Single sensor element that is naturally differentiated
JP5362188B2 (en) Magnetic detection sensor
US20110007426A1 (en) Trapezoidal back bias and trilayer reader geometry to enhance device performance
CN1008668B (en) Magnetoresistive read transducer
US20110051294A1 (en) Non rectangular reader for ultra high density magnetic recording
JPH1091923A (en) Orthogonal spin value reading head and magnetic disk drive
JP3206810B2 (en) Magnetic detector
JP4867391B2 (en) Paper sheet identification sensor
US20070002502A1 (en) Reader shield/electrode structure for improved stray field and electrical performance
US20110050211A1 (en) Trapezoidal reader for ultra high density magnetic recording
WO2008072610A1 (en) Magnetic sensor, and magnetic encoder using the sensor
JP6359858B2 (en) Magnetic field detection device and magnetic identification device
JP6535024B2 (en) Magnetoresistive magnetic imaging sensor
US20130301162A1 (en) Apparatus for measuring magnetic field of microwave-assisted head
JP2005293805A (en) Perpendicular recording magnetic head and method for manufacturing the same
JP2005183614A (en) Magnetic sensor
JP2006293575A (en) Apparatus and method for identifying paper sheet
JP4818792B2 (en) Magnetic detection element and magnetic identification sensor using the same
JPH07176019A (en) Flat magnetoresistance head
JP4541136B2 (en) Magnetic body detection sensor and magnetic body detection line sensor
US6388846B1 (en) Magnetic field sensor with magnetoresistor
EP3851864A1 (en) Magnetic sensor and current sensor
JPH09270544A (en) Macro-magnetoresistance effect element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4818792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250