JP2007272677A - Self-propelled device and control method for the same - Google Patents

Self-propelled device and control method for the same Download PDF

Info

Publication number
JP2007272677A
JP2007272677A JP2006099093A JP2006099093A JP2007272677A JP 2007272677 A JP2007272677 A JP 2007272677A JP 2006099093 A JP2006099093 A JP 2006099093A JP 2006099093 A JP2006099093 A JP 2006099093A JP 2007272677 A JP2007272677 A JP 2007272677A
Authority
JP
Japan
Prior art keywords
self
propelled device
turning
distance
propelled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099093A
Other languages
Japanese (ja)
Other versions
JP4408872B2 (en
Inventor
Toru Kuga
融 空閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006099093A priority Critical patent/JP4408872B2/en
Publication of JP2007272677A publication Critical patent/JP2007272677A/en
Application granted granted Critical
Publication of JP4408872B2 publication Critical patent/JP4408872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-propelled device and a control method therefor that can implement an efficient operation by shortening an unnecessary travel distance. <P>SOLUTION: The self-propelled device R comprises driving wheels WL and WR, a forward distance detection part SF for detecting a forward clearance distance LF between the self-propelled device R and a preceding object, a side distance detection part SS for detecting a side clearance distance LS between the self-propelled device R and a side object, and a control part COM for periodically determining whether or not to turn the self-propelled device R according to the detected forward clearance distance LF, and if determining to turn it, calculating an instantaneous center of rotation RC of the self-propelled device R according to the detected forward clearance distance LF and side clearance distance LS and determining the speed of the driving wheels WL and WR according to the calculated instantaneous center of rotation RC. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自走装置およびその制御方法に関し、特に、清掃ロボットおよび塗装ロボット等、壁沿い走行を行なう自走装置およびその制御方法に関する。   The present invention relates to a self-propelled device and a control method thereof, and more particularly, to a self-propelled device that travels along a wall, such as a cleaning robot and a painting robot, and a control method thereof.

従来、清掃ロボット等の自走装置では壁沿い走行が多く利用されている。清掃ロボット型の自走装置において、部屋の角部をくまなく清掃するためには、清掃を行なう作業部が自走装置の端部に備えられ、かつ作業部が角のある形状とすることが望ましい。   Conventionally, a self-propelled device such as a cleaning robot is often used along a wall. In a cleaning robot type self-propelled device, in order to clean all corners of a room, a working unit for cleaning is provided at the end of the self-propelled device, and the working unit may have a cornered shape. desirable.

これらの条件を満たす形状の自走装置は、旋回時に端部が周囲の物体に接触することがある。特に壁の角部で旋回を行なう場合、旋回により自走装置の端部が壁に接触する。たとえば自走装置が部屋の右側の壁沿いに進んで部屋の角部に到達したときには左旋回する必要があるが、このような形状の自走装置の場合、壁の角部付近で左旋回すると、自走装置の端部が壁に接触する。自走装置が周囲の物体に接触しながら無理やり回転することは好ましくない。このような問題点を解決するために、たとえば、特許文献1には、以下に示すような自走装置が開示されている。すなわち、自走装置は、角部において複数回の回転および後退走行を組み合わせた一定の角旋回パターンにしたがって走行する。また、特許文献2には、以下に示すような自走装置が開示されている。すなわち、自走装置は、スライド式の作業部を備え、部屋の角部の曲がり角に応じた旋回動作を選択する。このような構成により、未作業領域のない走行を実現する。
特開2005−135400号公報 特開平5−46239号公報
In the self-propelled device having a shape satisfying these conditions, an end portion may come into contact with a surrounding object during turning. In particular, when turning at the corner of the wall, the end of the self-propelled device contacts the wall by turning. For example, when the self-propelled device travels along the right wall of the room and reaches the corner of the room, it needs to turn left, but in the case of such a self-propelled device, if it turns left near the corner of the wall The end of the self-propelled device contacts the wall. It is not preferable for the self-propelled device to rotate forcibly while contacting a surrounding object. In order to solve such problems, for example, Patent Document 1 discloses a self-propelled device as shown below. That is, the self-propelled device travels according to a constant angular turning pattern that combines a plurality of rotations and reverse travels at the corners. Patent Document 2 discloses a self-propelled device as shown below. That is, the self-propelled device includes a slide-type working unit, and selects a turning operation corresponding to the corner of the room. With such a configuration, traveling without an unworked area is realized.
JP 2005-135400 A Japanese Patent Laid-Open No. 5-46239

しかしながら、特許文献1および特許文献2記載の自走装置では、壁の角部で旋回する際に自走装置本体分程度の距離を往復する必要があり、無駄な走行距離が多いという問題点があった。   However, in the self-propelled devices described in Patent Document 1 and Patent Document 2, it is necessary to reciprocate the distance corresponding to the body of the self-propelled device when turning at the corner of the wall, and there is a problem that there is a lot of wasted travel distance there were.

それゆえに、本発明の目的は、無駄な走行距離を短くして効率的に作業を行なうことが可能な自走装置およびその制御方法を提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a self-propelled device and a control method thereof that can efficiently perform work while shortening a useless traveling distance.

上記課題を解決するために、この発明のある局面に係わる自走装置は、一対の駆動輪と、自走装置と前方の物体との距離である前方離間距離を検出する前方距離検出部と、自走装置と側方の物体との距離である側方離間距離を検出する側方距離検出部と、所定周期で、検出された前方離間距離に基づいて自走装置を旋回させるか否かを決定し、旋回させると決定した場合には検出された前方離間距離および側方離間距離に基づいて自走装置の旋回中心を算出し、算出した旋回中心に基づいて各駆動輪の速度を決定する制御部とを備える。   In order to solve the above problems, a self-propelled device according to an aspect of the present invention includes a pair of drive wheels, a front distance detection unit that detects a front separation distance that is a distance between the self-propelled device and a front object, A side distance detection unit that detects a side separation distance that is a distance between the self-propelled device and a side object, and whether or not to turn the self-propelled device based on the detected front separation distance at a predetermined period. When it is determined to turn, the turning center of the self-propelled device is calculated based on the detected front separation distance and side separation distance, and the speed of each drive wheel is determined based on the calculated turning center. And a control unit.

好ましくは、自走装置は、さらに、自走装置の前方部に配置され、床面作業を行なう作業部を備える。   Preferably, the self-propelled device further includes a working unit that is disposed in a front portion of the self-propelled device and performs floor work.

好ましくは、自走装置は、さらに、各駆動輪の所定の最大速度をそれぞれ記憶する記憶部を備え、制御部は、自走装置を旋回させると決定した場合には、算出した旋回中心に基づいて一対の駆動輪のいずれか一方の速度を所定の最大速度に決定する。   Preferably, the self-propelled device further includes a storage unit that stores a predetermined maximum speed of each driving wheel, and when the control unit determines to turn the self-propelled device, the self-propelled device is based on the calculated turning center. Thus, the speed of one of the pair of drive wheels is determined to be a predetermined maximum speed.

好ましくは、自走装置は、さらに、各駆動輪の所定の最大速度をそれぞれ記憶する記憶部を備え、制御部は、さらに、自走装置を旋回させないと決定した場合には、一対の駆動輪のうち少なくともいずれか一方の速度を所定の最大速度に決定する。   Preferably, the self-propelled device further includes a storage unit that stores a predetermined maximum speed of each drive wheel, and the control unit further includes a pair of drive wheels when it is determined that the self-propelled device is not turned. At least one of the speeds is determined as a predetermined maximum speed.

好ましくは、制御部は、自走装置が旋回していない場合であって検出された前方離間距離が第1の閾値未満であるときには自走装置の旋回を開始することを決定し、自走装置が旋回している場合であって検出された前方離間距離が第1の閾値より大きい第2の閾値を超えるときには自走装置の旋回を終了することを決定する。   Preferably, the control unit determines to start turning of the self-propelled device when the self-propelled device is not turning and the detected front separation distance is less than the first threshold value. Is determined to end the turning of the self-propelled device when the detected forward separation distance exceeds a second threshold value that is greater than the first threshold value.

より好ましくは、第1の閾値は自走装置の前後長の1/5よりも小さく、第2の閾値は自走装置の前後長よりも大きい。   More preferably, the first threshold value is smaller than 1/5 of the longitudinal length of the self-propelled device, and the second threshold value is larger than the longitudinal length of the self-propelled device.

好ましくは、自走装置は、さらに、前方の物体との接触を検出する前方接触検出部を備え、制御部は、さらに、自走装置が旋回していない場合であって前方接触検出部が接触を検出したときには自走装置を旋回させることを決定し、旋回させると決定した場合には検出された側方離間距離に基づいて自走装置の旋回中心を算出し、算出した旋回中心に基づいて各駆動輪の速度を決定する。   Preferably, the self-propelled device further includes a front contact detection unit that detects contact with a front object, and the control unit further includes a case where the self-propelled device is not turning and the front contact detection unit is in contact. Is determined to turn the self-propelling device, and if it is determined to turn, the turning center of the self-propelling device is calculated based on the detected lateral separation distance, and based on the calculated turning center Determine the speed of each drive wheel.

好ましくは、制御部は、さらに、自走装置が旋回を開始してからの自走装置の旋回角度を算出し、算出した旋回角度が所定値より大きい場合には自走装置の旋回を終了する。   Preferably, the control unit further calculates a turning angle of the self-propelled device after the self-propelled device starts turning, and ends the turning of the self-propelled device when the calculated turning angle is larger than a predetermined value. .

より好ましくは、制御部は、自走装置が旋回を開始してから経過した時間および決定した各駆動輪の速度に基づいて自走装置の旋回角度を算出する。   More preferably, the control unit calculates the turning angle of the self-propelled device based on the time elapsed since the self-propelled device started turning and the determined speed of each drive wheel.

より好ましくは、所定値は90度未満である。
好ましくは、自走装置は、さらに、物体との接触を検出する接触検出部を備え、制御部は、さらに、自走装置の旋回中に自走装置と物体との接触が検出された場合には自走装置が接触した物体から離れるように各駆動輪の速度を決定する。
More preferably, the predetermined value is less than 90 degrees.
Preferably, the self-propelled device further includes a contact detection unit that detects contact with the object, and the control unit further includes a case where contact between the self-propelled device and the object is detected during the turning of the self-propelled device. Determines the speed of each drive wheel so that the self-propelled device moves away from the contacted object.

より好ましくは、制御部は、自走装置の旋回中に自走装置と物体との接触が検出された場合には、自走装置が所定距離後退し、その後、所定角度旋回するように各駆動輪の速度を決定する。   More preferably, when the contact between the self-propelled device and the object is detected during the turning of the self-propelled device, the control unit drives each drive so that the self-propelled device moves backward by a predetermined distance and then turns by a predetermined angle. Determine the speed of the wheel.

より好ましくは、制御部は、自走装置の旋回中に自走装置と物体との接触が検出された場合には、自走装置が自走装置の前後長の1/5以下後退し、その後、20度以下旋回するように各駆動輪の速度を決定する。   More preferably, when the contact between the self-propelled device and the object is detected during the turning of the self-propelled device, the control unit retreats the self-propelled device by 1/5 or less of the longitudinal length of the self-propelled device, and then The speed of each drive wheel is determined so as to turn 20 degrees or less.

好ましくは、自走装置の走行する床面と平行な平面において、自走装置の直進方向と垂直な方向における前方距離検出部の検出範囲の中心、および前方距離検出部を通る線と自走装置の直進方向とのなす角は30度以内である。   Preferably, in the plane parallel to the floor surface on which the self-propelled device travels, the center of the detection range of the front distance detecting unit in the direction perpendicular to the straight traveling direction of the self-propelled device, and the line passing through the front distance detecting unit and the self-propelled device The angle formed with the straight direction is within 30 degrees.

好ましくは、自走装置の走行する床面と平行な平面において、自走装置の直進方向と平行な方向における側方距離検出部の検出範囲の中心、および側方距離検出部を通る線と自走装置の直進方向とのなす角は60度以上かつ120度未満である。   Preferably, in a plane parallel to the floor surface on which the self-propelled device travels, the center of the detection range of the side distance detection unit in the direction parallel to the straight traveling direction of the self-propelled device and the line passing through the side distance detection unit The angle formed by the straight direction of the traveling device is 60 degrees or more and less than 120 degrees.

上記課題を解決するために、この発明のある局面に係わる自走装置の制御方法は、一対の駆動輪を備えた自走装置の制御方法であって、自走装置と前方の物体との距離である前方離間距離を検出するステップと、自走装置と側方の物体との距離である側方離間距離を検出するステップと、所定周期で、検出された前方離間距離に基づいて自走装置を旋回させるか否かを決定し、旋回させると決定した場合には検出された前方離間距離および側方離間距離に基づいて自走装置の旋回中心を算出し、算出した旋回中心に基づいて各駆動輪の速度を決定するステップとを含む。   In order to solve the above problems, a control method for a self-propelled device according to an aspect of the present invention is a control method for a self-propelled device including a pair of drive wheels, and the distance between the self-propelled device and a front object. A step of detecting a front separation distance, a step of detecting a side separation distance which is a distance between the self-propelled device and a side object, and a self-propelled device based on the detected front separation distance in a predetermined cycle. If it is decided to turn, the turning center of the self-propelled device is calculated on the basis of the detected front separation distance and side separation distance, and each turning point is calculated based on the calculated turning center. Determining the speed of the drive wheels.

本発明によれば、無駄な走行距離を短くして効率的に作業を行なうことができる。   According to the present invention, it is possible to efficiently perform work by shortening a useless travel distance.

以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

<第1の実施の形態>
図1は、本発明の実施の形態に係る自走装置の構成を示す平面図である。
<First Embodiment>
FIG. 1 is a plan view showing a configuration of a self-propelled device according to an embodiment of the present invention.

同図を参照して、上側が自走装置Rの前方部である。また、自走装置Rの形状は前方部が略四角形(角型)であり、後方部が略円形である。また、自走装置Rのサイズはたとえば前後長が約350mmであり、左右幅が約350mmである。   Referring to the figure, the upper side is the front portion of self-propelled device R. Moreover, as for the shape of the self-propelled apparatus R, the front part is substantially square (square shape), and the rear part is substantially circular. The size of the self-propelled device R is, for example, about 350 mm in the front-rear length and about 350 mm in the left-right width.

自走装置Rは、駆動輪Wと、ステッピングモータMOと、距離センサSと、演算部(制御部)COMと、電池BTと、前方接触センサ(前方接触検出部)BFと、側方接触センサ(側方接触検出部)BSと、清掃部(作業部)CLNとを備える。駆動輪Wは、左駆動輪WLと、右駆動輪WRとを含む。ステッピングモータMOは、左右の駆動輪WLおよびWRに対応する2個のステッピングモータMOLおよびMORを含む。距離センサSは、前方距離センサ(前方距離検出部)SFと、側方距離センサ(側方距離検出部)SSとを含む。演算部COMは、メモリMEMと、タイマTIMと、カウンタCPとを含む。   The self-propelled device R includes a drive wheel W, a stepping motor MO, a distance sensor S, a calculation unit (control unit) COM, a battery BT, a front contact sensor (front contact detection unit) BF, and a side contact sensor. (Side contact detection unit) BS and cleaning unit (working unit) CLN are provided. The drive wheel W includes a left drive wheel WL and a right drive wheel WR. The stepping motor MO includes two stepping motors MOL and MOR corresponding to the left and right drive wheels WL and WR. The distance sensor S includes a front distance sensor (front distance detection unit) SF and a side distance sensor (side distance detection unit) SS. The arithmetic unit COM includes a memory MEM, a timer TIM, and a counter CP.

清掃部CLNは、自走装置Rの前方部に配置され、床面の清掃を行なう。このような構成により、容易に部屋等の角部までくまなく清掃を行なうことができる。   The cleaning part CLN is disposed in front of the self-propelled device R and cleans the floor surface. With such a configuration, it is possible to easily clean all the corners of a room or the like.

距離センサSは、赤外線による三角測量式のセンサであり、自走装置Rの周囲の物体までの離間距離を測定する。前方距離センサSFは、自走装置Rの前方に検出範囲を有し、自走装置Rと前方の物体との距離である前方離間距離を検出する。側方距離センサSSは、自走装置Rの側方に検出範囲を有し、自走装置Rと側方の物体との距離である側方離間距離を検出する。前方距離センサSFおよび側方距離センサSSは、自走装置Rの右前方部に配置される。   The distance sensor S is a triangulation type sensor using infrared rays, and measures a separation distance to an object around the self-propelled device R. The front distance sensor SF has a detection range in front of the self-propelled device R, and detects a front separation distance that is a distance between the self-propelled device R and a front object. The lateral distance sensor SS has a detection range on the side of the self-propelled device R, and detects a lateral separation distance that is a distance between the self-propelled device R and a lateral object. The front distance sensor SF and the side distance sensor SS are disposed in the right front portion of the self-propelled device R.

前方接触センサBFは、自走装置Rの前面が物体に接触したことを検知する。側方接触センサBSは、自走装置Rの側面が物体に接触したことを検知する。   The front contact sensor BF detects that the front surface of the self-propelled device R has contacted the object. The side contact sensor BS detects that the side surface of the self-propelled device R has contacted the object.

ステッピングモータMOは、演算部COMから受けたパルス数に応じて左駆動輪WLおよび右駆動輪WRを回転させる。ここで、右駆動輪WRおよび左駆動輪WLの回転軸線は一致している。   The stepping motor MO rotates the left driving wheel WL and the right driving wheel WR according to the number of pulses received from the calculation unit COM. Here, the rotation axes of the right drive wheel WR and the left drive wheel WL are coincident.

電池BTは、ステッピングモータMO、清掃部CLN、距離センサSおよび演算部COM等を駆動するための電力を供給する。電池BTは図示しない配線によりステッピングモータMO、清掃部CLN、距離センサSおよび演算部COM等と接続されている。   The battery BT supplies power for driving the stepping motor MO, the cleaning unit CLN, the distance sensor S, the calculation unit COM, and the like. The battery BT is connected to the stepping motor MO, the cleaning unit CLN, the distance sensor S, the calculation unit COM, and the like by wiring not shown.

演算部COMはたとえばマイクロコンピュータであり、メモリMEM等に記憶されたプログラムを実行する。演算部COMは、たとえば左右のステッピングモータMOと、距離センサSと、前方接触センサBFと、側方接触センサBSと、清掃部CLNとに接続されている。   The arithmetic unit COM is, for example, a microcomputer and executes a program stored in the memory MEM or the like. The calculation unit COM is connected to, for example, the left and right stepping motors MO, the distance sensor S, the front contact sensor BF, the side contact sensor BS, and the cleaning unit CLN.

カウンタCPは、演算部COMが左右のステッピングモータMOにそれぞれ入力したパルス数(以下、左右のパルス数とも称する。)をカウントし、カウント結果をメモリMEMに保存する。   The counter CP counts the number of pulses (hereinafter also referred to as the number of left and right pulses) input to the left and right stepping motors MO by the calculation unit COM, and stores the count result in the memory MEM.

タイマTIMは、時間を測定し、所定周期たとえば10msごとに演算部COMに対して所定周期が経過したことを表わす周期信号を出力する。   The timer TIM measures time and outputs a periodic signal indicating that the predetermined period has elapsed to the arithmetic unit COM every predetermined period, for example, 10 ms.

メモリMEMは、左駆動輪WLおよび右駆動輪WR間の距離LWと、前方距離センサSFの取り付け位置PSFと、側方距離センサSSの取り付け位置PSSと、自走装置Rの前方端部の位置PCと、駆動輪Wの速度上限VMAXと、パルス−距離変換倍率と、角旋回走行の際にカウンタCPがカウントした左右のパルス数と、後述する接触回避旋回の際にカウンタCPがカウントした左右のパルス数と、後述する接触回避後退の際のカウンタCPがカウントした左右のパルス数と、目標離間距離LDと、後述する瞬間旋回中心を算出するための算出式F1〜F3と、後述する駆動輪速度を算出するための算出式F4〜F9とを少なくとも記憶している。   The memory MEM includes the distance LW between the left driving wheel WL and the right driving wheel WR, the mounting position PSF of the front distance sensor SF, the mounting position PSS of the side distance sensor SS, and the position of the front end of the self-propelled device R. PC, upper speed limit VMAX of driving wheel W, pulse-distance conversion magnification, left and right pulse number counted by counter CP during corner turning traveling, left and right counted by counter CP during contact avoidance turning described later , The number of left and right pulses counted by the counter CP at the time of contact avoidance retreat described later, the target separation distance LD, calculation formulas F1 to F3 for calculating the instantaneous turning center described later, and drive described later. At least the calculation formulas F4 to F9 for calculating the wheel speed are stored.

図2(a)および(b)は、自走装置Rと壁面との位置関係を詳細に示す図である。
同図を参照して、前方距離センサSFの取り付け位置PSFおよび側方距離センサSSの取り付け位置PSSと、前方端部位置PCとは、ロボット座標系の座標として記憶されている。ここで、ロボット座標系は、左右の駆動輪WLおよびWRの取り付け位置の中間点を原点ORとし、左右の駆動輪WLおよびWRの回転軸の延在方向をx軸とし、x軸に直交する自走装置Rの直進方向をy軸とする座標系である。x軸は、自走装置Rの直進方向と垂直であり、y軸は、自走装置Rの直進方向と平行である。
FIGS. 2A and 2B are diagrams showing in detail the positional relationship between the self-propelled device R and the wall surface.
With reference to the figure, the attachment position PSF of the front distance sensor SF, the attachment position PSS of the side distance sensor SS, and the front end position PC are stored as coordinates in the robot coordinate system. Here, in the robot coordinate system, an intermediate point between the attachment positions of the left and right drive wheels WL and WR is defined as an origin OR, an extending direction of rotation axes of the left and right drive wheels WL and WR is defined as an x axis, and orthogonal to the x axis. It is a coordinate system in which the straight direction of the self-propelled device R is the y axis. The x axis is perpendicular to the straight direction of the self-propelled device R, and the y axis is parallel to the straight direction of the self-propelled device R.

演算部COMは、距離センサSが検出した前方離間距離LF、側方離間距離LS、前方距離センサSFの取り付け位置PSFおよび側方距離センサSSの取り付け位置PSS等に基づいて、後述する算出式F1〜F3に基づいて自走装置Rの瞬間旋回中心RCを算出する。演算部COMは、自ら算出した瞬間旋回中心RCおよび左右の駆動輪WLおよびWRの離間距離LWならびに算出式F4〜F9等に基づいて左駆動輪WLおよび右駆動輪WRの目標速度VLおよびVRを算出する。   The calculation unit COM is based on the front separation distance LF, the side separation distance LS, the attachment position PSF of the front distance sensor SF, the attachment position PSS of the side distance sensor SS detected by the distance sensor S, etc. The instantaneous turning center RC of the self-propelled device R is calculated based on ~ F3. The computing unit COM calculates the target speeds VL and VR of the left driving wheel WL and the right driving wheel WR based on the instantaneous turning center RC calculated by itself, the separation distance LW between the left and right driving wheels WL and WR, and the calculation formulas F4 to F9. calculate.

演算部COMは、カウンタCPがカウントした左右のパルス数に基づいて自走装置Rの移動距離を算出する。具体的には、演算部COMは、ある時点で記憶した左右のパルス数を現在の左右のパルス数から減算して左右のパルス変位量を算出し、左右のパルス変位量に予め記憶しているパルス−距離変換倍率を乗じて左右の駆動輪移動距離を算出し、左右の駆動輪移動距離の平均値を算出し、左右の駆動輪移動距離の平均値から自走装置Rの移動距離を算出する。また、演算部COMは、左右の駆動輪WLおよびWRの離間距離LWを半径とし、左右の駆動輪移動距離の差を弧の長さとする扇形の中心角を自走装置Rの回転角として算出する。   The calculation unit COM calculates the moving distance of the self-propelled device R based on the number of left and right pulses counted by the counter CP. Specifically, the arithmetic unit COM calculates the left and right pulse displacement amounts by subtracting the left and right pulse numbers stored at a certain time from the current left and right pulse numbers, and stores them in the left and right pulse displacement amounts in advance. Multiply by the pulse-distance conversion magnification to calculate the left and right driving wheel movement distance, calculate the average value of the left and right driving wheel movement distance, and calculate the movement distance of the self-propelled device R from the average value of the left and right driving wheel movement distance To do. In addition, the calculation unit COM calculates, as the rotation angle of the self-propelled device R, a fan-shaped center angle in which the distance LW between the left and right drive wheels WL and WR is a radius, and the difference between the left and right drive wheel movement distances is the arc length. To do.

図2(a)に示すように、自走装置Rの走行する床面と平行な平面において、前方距離センサSFは、x軸方向における検出範囲の中心線、すなわちx軸方向における検出範囲の中心および前方距離センサSFを通る線が自走装置Rの直進方向と一致するように配置されている。側方距離センサSSは、y軸方向における検出範囲の中心線、すなわちy軸方向における検出範囲の中心および側方距離センサSSを通る線が自走装置Rの直進方向と直交するように配置されている。   As shown in FIG. 2A, on a plane parallel to the floor surface on which the self-propelled device R travels, the front distance sensor SF is the center line of the detection range in the x-axis direction, that is, the center of the detection range in the x-axis direction. The line passing through the front distance sensor SF is arranged so as to coincide with the straight traveling direction of the self-propelled device R. The lateral distance sensor SS is arranged so that the center line of the detection range in the y-axis direction, that is, the center of the detection range in the y-axis direction and the line passing through the lateral distance sensor SS is orthogonal to the straight traveling direction of the self-propelled device R. ing.

[動作]
図3は、本発明の実施の形態に係る自走装置が壁沿い走行を行なう際の動作手順を定めたフローチャートである。
[Operation]
FIG. 3 is a flowchart defining an operation procedure when the self-propelled device according to the embodiment of the present invention travels along the wall.

演算部COMは、前方距離センサSFの出力を読み込み、前方離間距離が20mm未満であるかどうかを判定する(S31)。   The calculation unit COM reads the output of the front distance sensor SF and determines whether or not the front separation distance is less than 20 mm (S31).

演算部COMは、前方離間距離が20mm未満であると判定した場合(S31でYES)、後述する図4のフローチャートに示す角旋回走行を行なう(S33)。演算部COMは、角旋回走行が完了すると再び前方距離センサSFの出力を読み込み、角旋回走行を行なうか否かを決定する(S31)。   If the calculation unit COM determines that the front separation distance is less than 20 mm (YES in S31), the calculation unit COM performs the corner turning traveling shown in the flowchart of FIG. 4 described later (S33). When the corner turning is completed, the calculation unit COM reads the output of the front distance sensor SF again and determines whether to perform the corner turning (S31).

演算部COMは、前方離間距離が20mm未満ではないと判定した場合(S31でNO)、前方接触センサBFの出力を読み込む(S32)。   When it is determined that the front separation distance is not less than 20 mm (NO in S31), the calculation unit COM reads the output of the front contact sensor BF (S32).

演算部COMは、自走装置Rの前面が接触している場合(S32でYES)、図4のフローチャートに示す角旋回走行を行なう(S33)。   When the front surface of the self-propelled device R is in contact (YES in S32), the arithmetic unit COM performs the angular turning travel shown in the flowchart of FIG. 4 (S33).

一方、演算部COMは、自走装置Rの前面が接触していない場合(S32でNO)、壁沿い走行用の左右の駆動輪速度を算出する(S34)。   On the other hand, when the front surface of the self-propelled device R is not in contact (NO in S32), the arithmetic unit COM calculates the left and right drive wheel speeds for traveling along the wall (S34).

より詳細には、演算部COMは、側方距離センサSSの出力を読み込んで、自走装置Rの側方部から壁までの距離とメモリMEMに予め記憶している目標離間距離LDとを比較する。   More specifically, the calculation unit COM reads the output of the side distance sensor SS and compares the distance from the side part of the self-propelled device R to the wall with the target separation distance LD stored in the memory MEM in advance. To do.

演算部COMは、自走装置Rの側方部から壁までの距離が目標離間距離LDとほぼ等しい場合には、演算部COMは左右の駆動輪速度VRとVLを共に最大駆動輪速度VMAXに設定する。   When the distance from the side portion of the self-propelled device R to the wall is substantially equal to the target separation distance LD, the calculation unit COM sets the left and right drive wheel speeds VR and VL to the maximum drive wheel speed VMAX. Set.

また、演算部COMは、自走装置Rの側方部から壁までの距離が目標離間距離LDよりも長い場合には、左駆動輪速度VLを最大駆動輪速度VMAXに設定し、右駆動輪速度VRをVMAXよりも小さい値に設定する。   Further, when the distance from the side portion of the self-propelled device R to the wall is longer than the target separation distance LD, the calculation unit COM sets the left driving wheel speed VL to the maximum driving wheel speed VMAX and the right driving wheel. The speed VR is set to a value smaller than VMAX.

また、演算部COMは、自走装置Rの側方部から壁までの距離が目標離間距離LDよりも短い場合には、右駆動輪速度VRを最大駆動輪速度VMAXに設定し、左駆動輪速度VLをVMAXよりも小さい値に設定する。   In addition, when the distance from the side portion of the self-propelled device R to the wall is shorter than the target separation distance LD, the calculation unit COM sets the right driving wheel speed VR to the maximum driving wheel speed VMAX and sets the left driving wheel. The speed VL is set to a value smaller than VMAX.

このように、左駆動輪速度VLおよび右駆動輪速度VRの少なくともいずれか一方を最大駆動輪速度VMAXに設定することにより、自走装置Rをできるだけ高速に走行させることができる。   Thus, by setting at least one of the left driving wheel speed VL and the right driving wheel speed VR to the maximum driving wheel speed VMAX, the self-propelled device R can be driven as fast as possible.

演算部COMは、算出した左右の駆動輪速度VLおよびVRに対応する数のパルスを左右のステッピングモータMOにそれぞれ出力する(S35)。   The calculation unit COM outputs the number of pulses corresponding to the calculated left and right drive wheel speeds VL and VR to the left and right stepping motors MO (S35).

そして、演算部COMは、タイマTIMの出力を読み込んで、周期時間たとえば10msの経過を待ち(S36)、再び前方距離センサSFの出力を読み込み、角旋回走行を行なうか否かを決定する(S31)。   Then, the calculation unit COM reads the output of the timer TIM, waits for the elapse of a cycle time, for example, 10 ms (S36), reads the output of the front distance sensor SF again, and determines whether to perform corner turning (S31). ).

図4は、本発明の実施の形態に係る自走装置が角旋回走行を行なう際の動作手順を定めたフローチャートである。   FIG. 4 is a flowchart that defines an operation procedure when the self-propelled device according to the embodiment of the present invention performs corner turning.

まず、演算部COMは、角旋回走行を終了すべきか否かの判定を行なう(S41)。具体的には、演算部COMは、角旋回走行開始からの旋回角度が60度より大きい場合には(S41でYES)角旋回走行を終了し(S43)、再び前方距離センサSFの出力を読み込み、角旋回走行を行なうか否かを決定する(S31)。   First, the calculation unit COM determines whether or not cornering traveling should be terminated (S41). Specifically, when the turning angle from the start of cornering turning is greater than 60 degrees (YES in S41), the arithmetic unit COM ends the cornering turning (S43), and reads the output of the front distance sensor SF again. Then, it is determined whether or not cornering traveling is performed (S31).

演算部COMは、旋回角度が60度以下の場合であって(S41でNO)前方距離センサSFが検出した前方離間距離が500mmより大きいときには(S42でYES)、角旋回走行を終了し(S43)、再び前方距離センサSFの出力を読み込み、角旋回走行を行なうか否かを決定する(S31)。   When the turning angle is 60 degrees or less (NO in S41) and the forward separation distance detected by the front distance sensor SF is greater than 500 mm (YES in S42), the calculation unit COM ends the corner turning traveling (S43). ) The output of the front distance sensor SF is read again, and it is determined whether or not cornering traveling is to be performed (S31).

演算部COMは、旋回角度が60度以下の場合であって(S41でNO)前方離間距離が500mm以下であるときには(S42でNO)、前方接触センサBFおよび側方接触センサBSの出力を読み込む(S44)。   When the turning angle is 60 degrees or less (NO in S41) and the front separation distance is 500 mm or less (NO in S42), the calculation unit COM reads the outputs of the front contact sensor BF and the side contact sensor BS. (S44).

演算部COMは、前方部または側方部と物体との接触があると判定した場合には(S44でYES)、ステッピングモータMOLおよびMORを駆動して自走装置Rを15mm後退させる接触回避後退を行なう(S45)。   If the calculation unit COM determines that there is contact between the front part or the side part and the object (YES in S44), the operation avoiding retreat is performed by driving the stepping motors MOL and MOR to retract the self-propelled device R by 15 mm. (S45).

具体的には、演算部COMは、左右のステッピングモータMOLおよびMORに対して最高速度VMAXの1/2の速度で後退する指令を出す。また、演算部COMは、後退開始時のカウンタCPの値をメモリMEMに記憶させる。そして、演算部COMは、タイマTIMからの周期信号に基づいて所定周期ごとにカウンタCPの値を調べ、後退開始時からの走行距離を算出する。演算部COMは、後退開始からの走行距離が15mmを超えた時点で左右のステッピングモータMOLおよびMORを停止させる。   Specifically, the arithmetic unit COM issues a command to reverse the left and right stepping motors MOL and MOR at a speed that is 1/2 of the maximum speed VMAX. In addition, the calculation unit COM stores the value of the counter CP at the start of the backward movement in the memory MEM. Then, the calculation unit COM checks the value of the counter CP every predetermined cycle based on the cycle signal from the timer TIM, and calculates the travel distance from the start of reverse. The calculation unit COM stops the left and right stepping motors MOL and MOR when the travel distance from the reverse start exceeds 15 mm.

そして、演算部COMは、ステッピングモータMOLおよびMORを駆動して自走装置Rを左に5度旋回させる接触回避旋回を行なう(S46)。   Then, the calculation unit COM performs a contact avoidance turn that drives the stepping motors MOL and MOR to turn the self-propelled device R five times to the left (S46).

具体的には、演算部COMは、ステッピングモータMOLに対して最高速度VMAXでの後退指令を出し、ステッピングモータMORに対して最高速度VMAXでの前進指令を出す。また、演算部COMは、左旋回開始時のカウンタCPの値をメモリMEMに記憶させる。そして、演算部COMは、タイマTIMからの周期信号に基づいて所定周期ごとにカウンタCPの値を調べ、後退開始時からの旋回角度を算出する。演算部COMは、後退開始からの旋回角度が5度を超えた時点で左右のステッピングモータMOLおよびMORを停止させる。そして、演算部COMは、角旋回走行を終了すべきか否かの判定を再び行なう(S41)。   Specifically, the calculation unit COM issues a reverse command at the maximum speed VMAX to the stepping motor MOL, and issues a forward command at the maximum speed VMAX to the stepping motor MOR. The calculation unit COM stores the value of the counter CP at the start of the left turn in the memory MEM. Then, the calculation unit COM checks the value of the counter CP at every predetermined period based on the periodic signal from the timer TIM, and calculates the turning angle from the start of reverse movement. The calculation unit COM stops the left and right stepping motors MOL and MOR when the turning angle from the reverse start exceeds 5 degrees. Then, the calculation unit COM determines again whether or not the cornering traveling should be terminated (S41).

このような構成により、角旋回走行中において物体との接触が発生しても適切に走行を継続することができる。   With such a configuration, even when contact with an object occurs during cornering traveling, traveling can be continued appropriately.

演算部COMは、前方部および側方部と物体との接触がないと判定した場合には(S44でNO)、瞬間旋回中心RCを算出する(S47)。瞬間旋回中心RCの算出については、後述する図8のフローチャートで詳細に説明する。   If it is determined that there is no contact between the front part and the side part and the object (NO in S44), the calculation unit COM calculates the instantaneous turning center RC (S47). The calculation of the instantaneous turning center RC will be described in detail with reference to the flowchart of FIG.

そして、演算部COMは、算出した瞬間旋回中心RCに基づいて左右の駆動輪速度VLおよびVRを算出する(S48)。左右の駆動輪速度VLおよびVRの算出については、後述する図9のフローチャートで詳細に説明する。   Then, the calculation unit COM calculates the left and right drive wheel speeds VL and VR based on the calculated instantaneous turning center RC (S48). The calculation of the left and right drive wheel speeds VL and VR will be described in detail with reference to the flowchart of FIG.

そして、演算部COMは、駆動輪速度VLおよびVRに対応する数のパルスをステッピングモータMOLおよびMORにそれぞれ出力する(S49)。   Then, the calculation unit COM outputs the number of pulses corresponding to the driving wheel speeds VL and VR to the stepping motors MOL and MOR, respectively (S49).

そして、演算部COMはタイマTIMからの周期信号を受けて、周期時間たとえば10msの経過を待ち(S4a)、角旋回走行を終了すべきか否かの判定を再び行なう(S41)。   The arithmetic unit COM receives the periodic signal from the timer TIM, waits for the elapse of a period of time, for example, 10 ms (S4a), and again determines whether or not the cornering traveling should be terminated (S41).

次に、自走装置Rが壁沿い走行および角旋回走行を行なう手順の一例を説明する。
自走装置Rは、清掃作業の一部として、壁に沿って部屋を1周する壁沿い清掃を行なう。自走装置Rは、壁沿い清掃中において、部屋の角部に接近したかどうかを判定し(S31)、部屋の角部に接近したと判断した場合には(S31でYES)、角旋回走行を開始する(S33)。
Next, an example of a procedure in which the self-propelled device R performs traveling along the wall and cornering traveling will be described.
The self-propelled device R performs cleaning along the wall that goes around the room along the wall as part of the cleaning work. The self-propelled device R determines whether or not it has approached the corner of the room during cleaning along the wall (S31). If it is determined that it has approached the corner of the room (YES in S31), the cornering traveling is performed. Is started (S33).

自走装置Rは、部屋の角部の曲がり角が60度より大きい場合、60度以上旋回した時点で(S41でYES)角旋回走行を終了し(S43)、壁沿い走行を再開する(S31)。ここで、曲がり角とは、部屋の角部における手前の壁面の延在軸と次の壁面とのなす角度をいい、曲がり角0度は壁が曲がっていない状態を示し、曲がり角90度は壁が直角に曲がっている状態を示す。   If the corner of the room is larger than 60 degrees, the self-propelled device R ends the corner turning (S43) when it turns 60 degrees or more (YES in S41), and resumes running along the wall (S31). . Here, the bend angle means an angle formed by the extension axis of the front wall surface at the corner of the room and the next wall surface. A turn angle of 0 degrees indicates a state in which the wall is not bent, and a turn angle of 90 degrees is a right angle of the wall. Shows the bent state.

一方、部屋の角部の曲がり角が60度以下である場合、自走装置Rが次の壁面とほぼ平行になるまで旋回した時点で、前方距離センサSFが壁を検出しなくなる。すなわち、前方離間距離が500mmよりも大きい値になる(S42でYES)。   On the other hand, when the turning angle of the corner of the room is 60 degrees or less, the forward distance sensor SF does not detect the wall when the self-propelled device R turns until it is substantially parallel to the next wall surface. That is, the front separation distance is larger than 500 mm (YES in S42).

前方離間距離が500mmよりも大きい値になると(S42でYES)、自走装置Rは角旋回走行を終了し(S43)、壁沿い走行を再開する(S31)。   When the front separation distance is greater than 500 mm (YES in S42), the self-propelled device R ends the corner turning traveling (S43) and resumes traveling along the wall (S31).

したがって、本発明の実施の形態に係る自走装置は、壁の曲がり角が60度以下である場合にも、角旋回走行の開始および終了を適切に行なうことができる。   Therefore, the self-propelled device according to the embodiment of the present invention can appropriately start and end the corner turning traveling even when the wall turning angle is 60 degrees or less.

図5は、(a)90度、(b)60度、(c)45度の曲がり角を有する壁面を本発明の実施の形態に係る自走装置が走行するシミュレーション結果を示す図である。   FIG. 5 is a diagram illustrating a simulation result in which the self-propelled device according to the embodiment of the present invention travels on a wall surface having corners of (a) 90 degrees, (b) 60 degrees, and (c) 45 degrees.

TRはロボット座標系の原点ORの軌跡であり、TCは自走装置Rの前方端部位置PCの軌跡であり、AREAは清掃部CLNが通過した領域である。   TR is the locus of the origin OR of the robot coordinate system, TC is the locus of the front end position PC of the self-propelled device R, and AREA is the area through which the cleaning unit CLN has passed.

同図を参照して、いずれの曲がり角を有する壁面においても、壁沿いに未清掃領域がほとんど無いこと、自走装置Rの前方端部が壁面に近接した状態で旋回していること、および往復動作は部屋の角部付近での1回だけであり、かつ往復距離は自走装置Rの寸法よりかなり小さいことが分かる。   Referring to the figure, there is almost no uncleaned area along the wall at any corner, and the reciprocation of the front end of self-propelled device R is close to the wall. It can be seen that the movement is only once near the corner of the room, and the reciprocation distance is much smaller than the size of the self-propelled device R.

次に、2つの角部が連続する壁面において本発明の実施の形態に係る自走装置が壁沿い走行および角旋回走行を行なう際の動作について説明する。   Next, the operation when the self-propelled device according to the embodiment of the present invention performs traveling along the wall and cornering traveling on the wall surface where the two corners are continuous will be described.

図6は、2つの角部が連続する壁面において本発明の実施の形態に係る自走装置が行なう壁沿い走行および角旋回走行の様子を示す図である。   FIG. 6 is a diagram showing a state of traveling along a wall and cornering traveling performed by the self-propelled device according to the embodiment of the present invention on a wall surface where two corner portions are continuous.

同図に示すように2つの角部WC1およびWC2が近接する壁面では、自走装置Rが最初の角部WC1を曲がり終わった時点で次の角部WC2が自走装置Rの前面に近接しており、前方距離センサSFの出力する前方離間距離LFが500mm以下となる。   As shown in the figure, on the wall surface where the two corners WC1 and WC2 are close to each other, the next corner WC2 approaches the front surface of the self-propelled device R when the self-propelled device R finishes bending the first corner WC1. The front separation distance LF output by the front distance sensor SF is 500 mm or less.

このような壁面において、仮に、自走装置Rが、角旋回走行開始からの旋回角度によって角旋回走行を終了すべきか否かの判定(S41)を行なわない構成であるとすると、前方離間距離LFが500mm以下であることから角旋回走行の終了条件が満たされない。このため、自走装置Rが最初の角部WC1で開始した角旋回走行が継続されたまま2つ目の角部WC2における自走装置Rの走行が行なわれる。したがって、自走装置Rが2つ目の角部WC2から離れた位置で角旋回走行を行なうことになり、角部WC2に近接して走行することができず、角部WC2付近の未清掃領域が増大してしまう。   In such a wall surface, if the self-propelled device R is configured not to perform the determination (S41) as to whether or not the cornering turn should be terminated based on the turning angle from the start of the cornering turning, the front separation distance LF. Is 500 mm or less, the end condition for cornering traveling is not satisfied. For this reason, the self-propelled device R travels at the second corner WC2 while the cornering traveling started by the first corner WC1 is continued. Therefore, the self-propelled device R performs corner turning at a position away from the second corner WC2, and cannot travel close to the corner WC2, so that the uncleaned region in the vicinity of the corner WC2 Will increase.

しかしながら、本発明の実施の形態に係る自走装置では、角旋回走行開始からの旋回角度によって角旋回走行を終了すべきか否かの判定を行なう(S41)構成である。このため、自走装置Rは、角旋回走行開始から60度を超えて回転した時点で1つ目の角部WC1を曲がり終えたと判定して(S41でYES)壁沿い走行を再開し、2つ目の角部WC2に接近する。したがって、本発明の実施の形態に係る自走装置では、2つ目の角部WC2に対しても接近してから角旋回走行を開始することができ、各角部に近接して走行することができる。   However, the self-propelled device according to the embodiment of the present invention has a configuration in which it is determined whether or not the angular turn traveling should be ended based on the turning angle from the start of the angular turn traveling (S41). For this reason, the self-propelled device R determines that the first corner WC1 has been turned when it has rotated more than 60 degrees from the start of the corner turning travel (YES in S41), and resumes traveling along the wall. Approach the second corner WC2. Therefore, in the self-propelled device according to the embodiment of the present invention, the corner turning traveling can be started after approaching the second corner WC2, and the vehicle travels close to each corner. Can do.

ここで、角旋回走行終了の判定基準である角旋回走行開始からの旋回角度を60度とする理由を説明する。   Here, the reason why the turning angle from the start of cornering turning which is the determination criterion for the end of cornering turning is set to 60 degrees will be described.

一般に、人工の壁面では角部の曲がり角が90度前後の物が多い。90度前後の角部において、自走装置Rが60度旋回した時点で壁沿い走行を再開した場合、自走装置の進行方向は次の壁面に対して約30度傾いた方向となる。ここで、壁面に対して約40度以下の傾きであれば自走装置Rは図3のフローチャートに示す壁沿い走行で適正に走行することが可能である。したがって、本発明の実施の形態に係る自走装置では、角旋回走行終了の判定基準である角旋回走行開始からの旋回角度を60度とする構成により、たとえば連続する2つの角部の曲がり角がそれぞれ60度以上かつ100度以下である場合、各角部において角旋回走行の開始および終了を適切に行なうことができる。このため、本発明の実施の形態に係る自走装置は、90度前後の角部が連続する壁面形状における未清掃領域の増大を防ぐことができる。なお、角旋回走行終了の判定基準である角旋回走行開始からの旋回角度は、60度に限定するものではなく、自走装置Rの直進方向が壁面に対して40度となる50度であってもよい。すなわち、角旋回走行終了の判定基準である角旋回走行開始からの旋回角度は、50度以上かつ90度未満とすることが可能である。   In general, many artificial wall surfaces have corners with a turn angle of around 90 degrees. When the self-propelled device R resumes traveling along the wall when the self-propelled device R turns 60 degrees at the corners around 90 degrees, the traveling direction of the self-propelled device is inclined about 30 degrees with respect to the next wall surface. Here, if the inclination is about 40 degrees or less with respect to the wall surface, the self-propelled device R can travel appropriately along the wall shown in the flowchart of FIG. Therefore, in the self-propelled device according to the embodiment of the present invention, the turning angle from the start of the corner turning traveling, which is the criterion for the end of the corner turning traveling, is set to 60 degrees. When the angle is 60 degrees or more and 100 degrees or less, the corner turning can be appropriately started and ended at each corner. For this reason, the self-propelled device according to the embodiment of the present invention can prevent an increase in the uncleaned area in the wall surface shape in which the corners of about 90 degrees are continuous. It should be noted that the turning angle from the start of the corner turning traveling, which is the criterion for the end of the corner turning traveling, is not limited to 60 degrees, but is 50 degrees in which the straight traveling direction of the self-propelled device R is 40 degrees with respect to the wall surface. May be. That is, the turning angle from the start of the corner turning traveling, which is a criterion for the end of the corner turning traveling, can be 50 degrees or more and less than 90 degrees.

次に、本発明の実施の形態に係る自走装置が行なう瞬間旋回中心RCの算出方法の概要を説明する。   Next, an outline of a method for calculating the instantaneous turning center RC performed by the self-propelled device according to the embodiment of the present invention will be described.

本発明の実施の形態に係る自走装置において、瞬間旋回中心RCおよび駆動輪速度の算出は、前述の自走装置Rの位置を基準とするロボット座標系上で行なう。   In the self-propelled device according to the embodiment of the present invention, the instantaneous turning center RC and the drive wheel speed are calculated on the robot coordinate system based on the position of the self-propelled device R described above.

再び図2を参照して、演算部COMは、前方距離センサSFの取り付け位置PSFおよび側方距離センサSSの取り付け位置PSSと前方離間距離LFおよび側方離間距離LSとに基づいて、ロボット座標系における前方物体検出位置PFおよび側方物体検出位置PSを算出する。   Referring again to FIG. 2, the calculation unit COM determines the robot coordinate system based on the attachment position PSF of the front distance sensor SF, the attachment position PSS of the side distance sensor SS, the front separation distance LF, and the side separation distance LS. The front object detection position PF and the side object detection position PS are calculated.

距離センサSは破線で示すような扇形の検出範囲を持つが、演算部COMは、物体検出位置が検出範囲の中心線(図2(a)の一点鎖線)上にあると仮定して算出する。   The distance sensor S has a fan-shaped detection range as indicated by a broken line, but the calculation unit COM calculates on the assumption that the object detection position is on the center line of the detection range (the one-dot chain line in FIG. 2A). .

図2(b)を参照して、演算部COMは、前方物体検出位置PFおよび側方物体検出位置PSを結んだ直線を仮想的な壁面Vとみなし、自走装置Rの前方端部位置PCが仮想壁面Vと平行に移動するための瞬間旋回中心RCを求める。   Referring to FIG. 2B, the calculation unit COM regards a straight line connecting the front object detection position PF and the side object detection position PS as a virtual wall surface V, and the front end position PC of the self-propelled device R. Finds the instantaneous turning center RC for moving in parallel with the virtual wall surface V.

瞬間旋回中心RCは幾何学的に、前方端部位置PCを通り仮想壁面Vに垂直な直線(図2(b)の破線)と、x軸(駆動輪Wの回転軸の延長線)との交点として決定される。演算部COMは、代数式およびベクトルを利用して幾何学計算を行ない、瞬間旋回中心RCを算出する。具体的には、演算部COMは、後述する図8のフローチャートに示す各ステップを実行する。なお、図2では説明を分かりやすくするために自走装置Rと壁との距離を長めに描いているが、実際には、自走装置Rは可能な限り壁に近接して走行する。   The instantaneous turning center RC is geometrically defined by a straight line (broken line in FIG. 2 (b)) passing through the front end position PC and perpendicular to the virtual wall surface V, and an x-axis (extension line of the rotation axis of the drive wheel W). Determined as an intersection. The calculation unit COM performs geometric calculation using algebraic expressions and vectors, and calculates the instantaneous turning center RC. Specifically, the arithmetic unit COM executes each step shown in the flowchart of FIG. In FIG. 2, the distance between the self-propelled device R and the wall is drawn to be easy to understand, but actually, the self-propelled device R travels as close to the wall as possible.

瞬間旋回中心RCの旋回円上において、自走機器Rの前方端部位置PCは仮想的な壁面Vに一番接近した(場合によってはめり込んだ)位置にあり、前方端部位置PCにおける旋回円の接線は仮想的な壁面Vと平行になる。そして、瞬間旋回中心RCの算出周期すなわちステップS4aにおける所定時間をたとえば10msの短時間に設定することにより、算出した瞬間旋回中心RCの旋回円上を自走装置Rが走行する距離が十分に短くなり、自走装置Rの前方端部位置PCの進行方向は仮想的な壁面Vとほぼ平行になる。   On the turning circle of the instantaneous turning center RC, the front end position PC of the self-propelled device R is the position closest to the virtual wall surface V (in some cases, fitted), and the turning circle at the front end position PC. Is parallel to the virtual wall surface V. Then, by setting the calculation period of the instantaneous turning center RC, that is, the predetermined time in step S4a to be a short time of 10 ms, for example, the distance that the self-propelled device R travels on the turning circle of the calculated instantaneous turning center RC is sufficiently short. Thus, the traveling direction of the front end position PC of the self-propelled device R is substantially parallel to the virtual wall surface V.

次に、本発明の実施の形態に係る自走装置が行なう駆動輪速度の算出方法の概要を説明する。   Next, an outline of a driving wheel speed calculation method performed by the self-propelled device according to the embodiment of the present invention will be described.

図7は、自走装置の旋回に関する位置関係を詳細に示す図である。
同図を参照して、左駆動輪WLと右駆動輪WRとの距離LWは、左駆動輪WLの幅方向の中央位置と、右駆動輪WRの幅方向の中央位置との距離である。
FIG. 7 is a diagram showing in detail the positional relationship regarding turning of the self-propelled device.
With reference to the figure, the distance LW between the left driving wheel WL and the right driving wheel WR is the distance between the center position in the width direction of the left driving wheel WL and the center position in the width direction of the right driving wheel WR.

まず、演算部COMは、x軸上における、瞬間旋回中心RCから左右の駆動輪の接地位置までの水平距離LLおよびLRを求める。ここで、演算部COMは、駆動輪Wの回転軸の幅方向における中心位置の鉛直下方に駆動輪Wの接地位置が存在すると仮定して計算する。   First, the calculation unit COM obtains horizontal distances LL and LR from the instantaneous turning center RC to the ground contact positions of the left and right drive wheels on the x axis. Here, the calculation unit COM calculates on the assumption that the ground contact position of the drive wheel W exists vertically below the center position in the width direction of the rotation axis of the drive wheel W.

演算部COMは、駆動輪速度の絶対値が駆動輪Wおよび瞬間旋回中心RC間の距離に比例することから、瞬間旋回中心RCからの距離が遠い側の駆動輪Wの速度を、駆動輪Wの速度上限VMAXに設定する。   Since the absolute value of the driving wheel speed is proportional to the distance between the driving wheel W and the instantaneous turning center RC, the calculation unit COM determines the speed of the driving wheel W on the side far from the instantaneous turning center RC as the driving wheel W. Is set to the upper speed limit VMAX.

また、演算部COMは、他方の駆動輪の速度を、駆動輪Wの速度上限VMAXに水平距離LLおよびLRの比率を乗じた値とする。   The calculation unit COM sets the speed of the other driving wheel to a value obtained by multiplying the speed upper limit VMAX of the driving wheel W by the ratio of the horizontal distances LL and LR.

また、演算部COMは、左駆動輪WLの回転方向をベクトルVL、右駆動輪WRの回転方向をベクトルVRに設定し、自走装置Rの前方端部位置PCが瞬間旋回中心RC周りに左旋回する方向を選択する。   Further, the calculation unit COM sets the rotation direction of the left driving wheel WL to the vector VL and the rotation direction of the right driving wheel WR to the vector VR, and the front end position PC of the self-propelled device R rotates counterclockwise around the instantaneous turning center RC. Select the direction of rotation.

具体的には、演算部COMは、後述する図9のフローチャートに示す各ステップを実行する。   Specifically, the arithmetic unit COM executes each step shown in the flowchart of FIG.

次に、本発明の実施の形態に係る自走装置が行なう瞬間旋回中心RCの算出方法を詳細に説明する。   Next, a method for calculating the instantaneous turning center RC performed by the self-propelled device according to the embodiment of the present invention will be described in detail.

図8は、本発明の実施の形態に係る自走装置が瞬間旋回中心RCを算出する際の動作手順を定めたフローチャートである。   FIG. 8 is a flowchart defining an operation procedure when the self-propelled device according to the embodiment of the present invention calculates the instantaneous turning center RC.

図8および図2を参照して、演算部COMは、前方距離センサSFの取り付け位置PSFからy軸+方向に前方の離間距離LFだけ移動した位置として前方物体検出位置ベクトルPFを算出する(S81)。ここで、自走装置Rの前面が接触していることにより角旋回走行を行なう場合(S32でYES)には、演算部COMは、側方離間距離LSのみに基づいて瞬間旋回中心RCを算出することができる。これは、自走装置Rの前面が接触している場合には、演算部COMは、前方距離センサSFの取り付け位置PSFから固定的に前方物体検出位置ベクトルPFを算出することができるからである。   Referring to FIGS. 8 and 2, calculation unit COM calculates forward object detection position vector PF as a position moved by forward separation distance LF in the y-axis + direction from attachment position PSF of forward distance sensor SF (S81). ). Here, when the cornering traveling is performed because the front surface of the self-propelled device R is in contact (YES in S32), the calculation unit COM calculates the instantaneous turning center RC based only on the side separation distance LS. can do. This is because, when the front surface of the self-propelled device R is in contact, the calculation unit COM can calculate the front object detection position vector PF in a fixed manner from the attachment position PSF of the front distance sensor SF. .

演算部COMは、側方距離センサSSの取り付け位置PSSからx軸+方向に側方の離間距離LSだけ移動した位置として側方物体検出位置ベクトルPSを算出する(S82)。   The computing unit COM calculates the side object detection position vector PS as a position moved from the attachment position PSS of the side distance sensor SS by the side separation distance LS in the x-axis + direction (S82).

演算部COMは、物体検出位置ベクトルPF{PFx、PFy}およびPS{PSx、PSy}に基づいて、物体検出位置ベクトルPFおよび物体検出位置ベクトルPSを結ぶ線分と直交する直線の傾きKを以下の式によって算出する(S83)。   Based on the object detection position vectors PF {PFx, PFy} and PS {PSx, PSy}, the arithmetic unit COM calculates a slope K of a straight line orthogonal to a line segment connecting the object detection position vector PF and the object detection position vector PS below. (S83).

K=(PFx−PSx)/(PSy−PFy) ・・・(F1)
傾きがKで自走装置Rの前方端部位置PC{PCx、PCy}を通過する直線は以下の式で表わされる。
K = (PFx−PSx) / (PSy−PFy) (F1)
A straight line having an inclination of K and passing through the front end position PC {PCx, PCy} of the self-propelled device R is represented by the following expression.

y=K(x−PCx)+PCy ・・・(F2)
演算部COMは、式(F2)で表わされる直線とx軸との交点である瞬間旋回中心RCのx座標RCxを以下の式によって算出する。
y = K (x-PCx) + PCy (F2)
The calculation unit COM calculates the x coordinate RCx of the instantaneous turning center RC that is the intersection of the straight line represented by the formula (F2) and the x axis by the following formula.

RCx=−PCy/K+PCx ・・・(F3)
式(F3)は、式(F2)においてxを求める形式に変形した後、x=RCxおよびy=0を代入したものである。
RCx = −PCy / K + PCx (F3)
Formula (F3) is obtained by substituting x = RCx and y = 0 after being transformed into the form for obtaining x in Formula (F2).

以上のように、演算部COMは、瞬間旋回中心RC{RCx、0}を算出する。
次に、本発明の実施の形態に係る自走装置が行なう瞬間旋回中心の算出方法を詳細に説明する。
As described above, the calculation unit COM calculates the instantaneous turning center RC {RCx, 0}.
Next, a method of calculating the instantaneous turning center performed by the self-propelled device according to the embodiment of the present invention will be described in detail.

図9は、本発明の実施の形態に係る自走装置が駆動輪速度を算出する際の動作手順を定めたフローチャートである。   FIG. 9 is a flowchart defining an operation procedure when the self-propelled device according to the embodiment of the present invention calculates the drive wheel speed.

図9および図7を参照して、演算部COMは、瞬間旋回中心RCから左駆動輪WLの接地位置までの水平距離LLを算出する(S91)。ここで、左駆動輪WLおよび右駆動輪WR間の距離がLWであり、原点ORは左駆動輪WLおよび右駆動輪WRの中点であることから、左駆動輪WLの接地位置は{−LW/2、0}である。したがって、瞬間旋回中心RCから左駆動輪WLの接地位置までの水平距離LLは、以下の式で表わされる。   Referring to FIG. 9 and FIG. 7, the calculation unit COM calculates a horizontal distance LL from the instantaneous turning center RC to the ground contact position of the left driving wheel WL (S91). Here, since the distance between the left driving wheel WL and the right driving wheel WR is LW and the origin OR is the midpoint of the left driving wheel WL and the right driving wheel WR, the grounding position of the left driving wheel WL is {− LW / 2, 0}. Accordingly, the horizontal distance LL from the instantaneous turning center RC to the ground contact position of the left drive wheel WL is expressed by the following equation.

LL=RCx+LW/2 ・・・(F4)
式(F4)において、LLの符号は瞬間旋回中心RCと左駆動輪WLの接地位置との位置関係を表わす。すなわち、LLの符号が正の場合には瞬間旋回中心RCは左駆動輪WLの接地位置より右側となり、LLの符号が負の場合には瞬間旋回中心RCは左駆動輪WLの接地位置より左側になる。
LL = RCx + LW / 2 (F4)
In the formula (F4), the sign LL represents the positional relationship between the instantaneous turning center RC and the ground contact position of the left drive wheel WL. That is, when the sign of LL is positive, the instantaneous turning center RC is on the right side from the grounding position of the left driving wheel WL, and when the sign of LL is negative, the instantaneous turning center RC is on the left side of the grounding position of the left driving wheel WL. become.

演算部COMは、瞬間旋回中心RCから右駆動輪WRの接地位置までの水平距離LRを以下の式によって算出する(S92)。   The calculation unit COM calculates the horizontal distance LR from the instantaneous turning center RC to the ground contact position of the right drive wheel WR by the following formula (S92).

LR=RCx−LW/2 ・・・(F5)
演算部COMは、LLとLRの絶対値を比較し、LLの絶対値のほうが大きい場合には(S93でYES)、左駆動輪WLの速度VLを以下の式によって算出する(S94)。
VL=−VMAX×LL/|LL| ・・・(F6)
式(F6)より、VLは−VMAXにLLの符号を乗じた値となる。
LR = RCx−LW / 2 (F5)
The arithmetic unit COM compares the absolute values of LL and LR, and if the absolute value of LL is larger (YES in S93), it calculates the speed VL of the left drive wheel WL by the following formula (S94).
VL = −VMAX × LL / | LL | (F6)
From Expression (F6), VL is a value obtained by multiplying −VMAX by the sign of LL.

次に、演算部COMは、右駆動輪WRの速度VRを以下の式(F7)によって算出する(S95)。   Next, the calculation unit COM calculates the speed VR of the right drive wheel WR by the following formula (F7) (S95).

VR=−VMAX×|LR|/|LL|×LR/|LR| ・・・(F7)
一方、演算部COMは、LLとLRの絶対値を比較し、LRの絶対値がLLの絶対値以上である場合には(S93でNO)、右駆動輪WRの速度VRを以下の式によって算出する(S94)。
VR = −VMAX × | LR | / | LL | × LR / | LR | (F7)
On the other hand, the arithmetic unit COM compares the absolute values of LL and LR. If the absolute value of LR is equal to or greater than the absolute value of LL (NO in S93), the speed VR of the right drive wheel WR is calculated by the following equation. Calculate (S94).

VR=−VMAX×LR/|LR|・・・(F8)
式(F8)より、VRは−VMAXにLRの符号を乗じた値となる。
VR = −VMAX × LR / | LR | (F8)
From equation (F8), VR is a value obtained by multiplying -VMAX by the sign of LR.

次に、演算部COMは、左駆動輪WLの速度VLを以下の式によって算出する。
VL=−VMAX×|LL|/|LR|×LL/|LL|・・・(F9)
以上のように、演算部COMは、左右の駆動輪速度VLおよびVRを算出する。駆動輪速度VLおよびVRの符号は正が前進方向を表わし、負が後退方向を表わす。なお、本発明の実施の形態に係る自走装置は右壁沿いの走行を行なう構成であるため、角部での旋回方向は左旋回である。
Next, the calculation unit COM calculates the speed VL of the left drive wheel WL by the following formula.
VL = −VMAX × | LL | / | LR | × LL / | LL | (F9)
As described above, the calculation unit COM calculates the left and right drive wheel speeds VL and VR. In the signs of the drive wheel speeds VL and VR, positive represents the forward direction and negative represents the reverse direction. Since the self-propelled device according to the embodiment of the present invention is configured to travel along the right wall, the turning direction at the corner is a left turn.

このように、角旋回走行においても、左駆動輪速度VLおよび右駆動輪速度VRの少なくともいずれか一方を最大駆動輪速度VMAXに設定することにより、自走装置Rをできるだけ高速に旋回させることができる。   As described above, also in the corner turning traveling, the self-propelled device R can be turned as fast as possible by setting at least one of the left driving wheel speed VL and the right driving wheel speed VR to the maximum driving wheel speed VMAX. it can.

[変形例1]
本発明の実施の形態に係る自走装置は右壁沿いの走行を行なう構成であるとしたが、これに限定するものではなく、左壁沿いの走行を行なう構成であってもよい。
[Modification 1]
Although the self-propelled device according to the embodiment of the present invention is configured to travel along the right wall, the present invention is not limited to this and may be configured to travel along the left wall.

この場合、前方距離センサSFおよび側方距離センサSSは、自走装置Rの左前方部に取り付けられる。   In this case, the front distance sensor SF and the side distance sensor SS are attached to the left front portion of the self-propelled device R.

さらに、壁沿い走行中のステップS34の処理は以下のようになる。すなわち、演算部COMは、側方距離センサSSの出力を読み込んで、自走装置Rの側方部から壁までの距離とメモリMEMに予め記憶している目標離間距離LDとを比較する。   Furthermore, the process of step S34 during traveling along the wall is as follows. That is, the calculation unit COM reads the output of the side distance sensor SS and compares the distance from the side part of the self-propelled device R to the wall with the target separation distance LD stored in advance in the memory MEM.

演算部COMは、自走装置Rの側方部から壁までの距離が目標離間距離LDとほぼ等しい場合には、左右の駆動輪速度VLおよびVRを共に最大駆動輪速度VMAXに設定する。   When the distance from the side portion of the self-propelled device R to the wall is substantially equal to the target separation distance LD, the calculation unit COM sets both the left and right driving wheel speeds VL and VR to the maximum driving wheel speed VMAX.

また、演算部COMは、自走装置Rの側方部から壁までの距離が目標離間距離LDよりも長い場合には、右駆動輪速度VRを最大駆動輪速度VMAXに設定し、左駆動輪速度VLをVMAXよりも小さい値に設定する。   In addition, when the distance from the side portion of the self-propelled device R to the wall is longer than the target separation distance LD, the calculation unit COM sets the right driving wheel speed VR to the maximum driving wheel speed VMAX and sets the left driving wheel. The speed VL is set to a value smaller than VMAX.

また、演算部COMは、自走装置Rの側方部から壁までの距離が目標離間距離LDよりも短い場合には、左駆動輪速度VLを最大駆動輪速度VMAXに設定し、右駆動輪速度VRをVMAXよりも小さい値に設定する。   In addition, when the distance from the side portion of the self-propelled device R to the wall is shorter than the target separation distance LD, the calculation unit COM sets the left driving wheel speed VL to the maximum driving wheel speed VMAX and the right driving wheel. The speed VR is set to a value smaller than VMAX.

さらに、図8のフローチャートにおけるステップS82の処理は以下のようになる。すなわち、演算部COMは、側方距離センサSSの取り付け位置PSSからx軸−方向に側方の離間距離LSだけ移動した位置として側方物体検出位置ベクトルPSを算出する。さらに、駆動輪速度の算出式(F6)〜(F9)において、右辺の−VMAXをVMAXに置き換える(負の符号をなくす)。   Furthermore, the process of step S82 in the flowchart of FIG. 8 is as follows. That is, the calculation unit COM calculates the side object detection position vector PS as a position moved from the attachment position PSS of the side distance sensor SS by the side separation distance LS in the x-axis direction. Further, in the calculation formulas (F6) to (F9) for the drive wheel speed, -VMAX on the right side is replaced with VMAX (the negative sign is removed).

さらに、図4のフローチャートにおけるステップS46の処理は以下のようになる。すなわち、演算部COMは、ステッピングモータMOLおよびMORを駆動して自走装置を右に5度旋回させる接触回避旋回を行なう。   Furthermore, the process of step S46 in the flowchart of FIG. 4 is as follows. That is, the calculation unit COM performs contact avoidance turning by driving the stepping motors MOL and MOR and turning the self-propelled device to the right by 5 degrees.

上記以外の構成および動作は本発明の実施の形態に係る自走装置と同様であるため、ここでは詳細な説明を繰り返さない。   Since the configuration and operation other than those described above are the same as those of the self-propelled device according to the embodiment of the present invention, detailed description thereof will not be repeated here.

[変形例2]
本発明の実施の形態に係る自走装置では、自走装置Rの走行する床面と平行な平面において、前方距離センサSFは、x軸方向における検出範囲の中心線が自走装置Rの直進方向と一致するように配置され、側方距離センサSSは、y軸方向における検出範囲の中心線が自走装置Rの直進方向と直交するように配置される構成であるとしたが、これに限定するものではない。前方距離センサSFのx軸方向における検出範囲の中心線が自走装置Rの直進方向と一致せず、側方距離センサSSのy軸方向における検出範囲の中心線が自走装置Rの直進方向と直交しない構成とすることも可能である。
[Modification 2]
In the self-propelled device according to the embodiment of the present invention, in the plane parallel to the floor surface on which the self-propelled device R travels, the front distance sensor SF has the center line of the detection range in the x-axis direction straight ahead of the self-propelled device R. The lateral distance sensor SS is arranged so as to coincide with the direction, and the center line of the detection range in the y-axis direction is arranged so as to be orthogonal to the straight traveling direction of the self-propelled device R. It is not limited. The center line of the detection range in the x-axis direction of the front distance sensor SF does not coincide with the rectilinear direction of the self-propelled device R, and the center line of the detection range in the y-axis direction of the side distance sensor SS is the rectilinear direction of the self-propelled device R. It is also possible to adopt a configuration that is not orthogonal to.

より詳細には、演算部COMにおけるメモリMEMは、前方距離センサSFの取り付け角θFおよび側方距離センサSSの取り付け角θSを記憶する。   More specifically, the memory MEM in the calculation unit COM stores the attachment angle θF of the front distance sensor SF and the attachment angle θS of the side distance sensor SS.

ここで、前方距離センサSFの取り付け角θFは、x軸方向における前方距離センサSFの検出範囲の中心線と自走装置Rの直進方向とのなす角度である。側方距離センサSSの取り付け角θSは、y軸方向における側方距離センサSSの検出範囲の中心線と自走装置Rの直進方向とのなす角度である。   Here, the attachment angle θF of the front distance sensor SF is an angle formed by the center line of the detection range of the front distance sensor SF in the x-axis direction and the straight traveling direction of the self-propelled device R. The mounting angle θS of the side distance sensor SS is an angle formed by the center line of the detection range of the side distance sensor SS in the y-axis direction and the straight traveling direction of the self-propelled device R.

この場合、図8に示すフローチャートのステップS81の処理は以下のようになる。すなわち、演算部COMは、前方距離センサSFの取り付け位置PSF、前方離間距離LFおよび前方距離センサSFの取り付け角θFに基づいて、以下の式によって前方物体検出位置PFを算出する。   In this case, the process of step S81 in the flowchart shown in FIG. 8 is as follows. That is, the calculation unit COM calculates the front object detection position PF by the following equation based on the attachment position PSF of the front distance sensor SF, the front separation distance LF, and the attachment angle θF of the front distance sensor SF.

PF=PSF+{LF×cos(θF)、LF×sin(θF)}・・・(F10)
さらに、図8に示すフローチャートのステップS82の処理は以下のようになる。すなわち、演算部COMは、側方距離センサSSの取り付け位置PSS、側方離間距離LSおよび側方距離センサSSの取り付け角θSに基づいて、以下の式によって側方物体検出位置PSを算出する。
PF = PSF + {LF × cos (θF), LF × sin (θF)} (F10)
Furthermore, the process of step S82 of the flowchart shown in FIG. 8 is as follows. That is, the calculation unit COM calculates the side object detection position PS by the following formula based on the attachment position PSS of the side distance sensor SS, the side separation distance LS, and the attachment angle θS of the side distance sensor SS.

PS=PSS+{LS×cos(θS)、LS×sin(θS)}・・・(F11)
上記以外の構成および動作は本発明の実施の形態に係る自走装置と同様であるため、ここでは詳細な説明を繰り返さない。
PS = PSS + {LS × cos (θS), LS × sin (θS)} (F11)
Since the configuration and operation other than those described above are the same as those of the self-propelled device according to the embodiment of the present invention, detailed description thereof will not be repeated here.

以上のような構成により、前方距離センサSFのx軸方向における検出範囲の中心線が自走装置Rの直進方向と一致せず、側方距離センサSSのy軸方向における検出範囲の中心線が自走装置Rの直進方向と直交しない構成にも本発明を適用することができる。   With the configuration described above, the center line of the detection range in the x-axis direction of the front distance sensor SF does not coincide with the straight direction of the self-propelled device R, and the center line of the detection range in the y-axis direction of the side distance sensor SS is The present invention can also be applied to configurations that are not orthogonal to the straight direction of the self-propelled device R.

なお、x軸方向における前方距離センサSFの検出範囲の中心線と自走装置Rの直進方向とのなす角度は、自走装置Rの前方の物体を検知するために30度以内である構成が好ましい。また、側方距離センサSSの取り付け角θSは、y軸方向における側方距離センサSSの検出範囲の中心線と自走装置Rの直進方向とのなす角度は、自走装置Rの側方の物体を検知するために60度以上かつ120度未満である構成が好ましい。   Note that the angle formed by the center line of the detection range of the forward distance sensor SF in the x-axis direction and the straight traveling direction of the self-propelled device R is within 30 degrees in order to detect an object in front of the self-propelled device R. preferable. Further, the mounting angle θS of the side distance sensor SS is an angle formed by the center line of the detection range of the side distance sensor SS in the y-axis direction and the straight traveling direction of the self-propelled device R. In order to detect an object, a configuration of 60 degrees or more and less than 120 degrees is preferable.

ところで、特許文献1および特許文献2記載の自走装置では、壁の角部で旋回する際に自走装置本体分程度の距離を往復する必要があり、無駄な走行距離が多いという問題点があった。しかしながら、本発明の実施の形態に係る自走装置では、演算部COMが、所定周期で、距離センサSによって検出された前方離間距離LFおよび側方離間距離LSに基づいて自走装置Rが角旋回走行を行なうか否か、すなわち旋回するか否かを決定し、旋回すると決定した場合には前方離間距離LFおよび側方離間距離LSに基づいて自走装置Rの瞬間旋回中心RCを算出し、算出した瞬間旋回中心RCに基づいて各駆動輪の速度を決定する。このような構成により、所定周期で最適な旋回中心を算出して自走装置Rの清掃部CLNが配置された前方部が壁と平行に移動することができるため、たとえば図5に示すように壁の角部で旋回する際の往復距離を小さくすることができ、無駄な走行距離を短くして効率的に作業を行なうことができる。また、仮に駆動輪がスリップするなどして自走装置の正確な移動量および旋回角度が測定できない場合でも、駆動輪がスリップした次の周期においてすぐに前方離間距離LFおよび側方離間距離LSに基づいて瞬間旋回中心および左右の駆動輪速度を更新することができるため、壁から大きく離れることなく安定して走行することができる。   By the way, in the self-propelled device described in Patent Document 1 and Patent Document 2, it is necessary to reciprocate the distance of the self-propelled device main body when turning at the corner of the wall, and there is a problem that there is a lot of useless traveling distance. there were. However, in the self-propelled device according to the embodiment of the present invention, the calculation unit COM is configured to detect the angle of the self-propelled device R based on the front separation distance LF and the side separation distance LS detected by the distance sensor S at a predetermined period. It is determined whether or not to turn, that is, whether or not to turn, and when it is determined to turn, the instantaneous turning center RC of the self-propelled device R is calculated based on the front separation distance LF and the side separation distance LS. The speed of each drive wheel is determined based on the calculated instantaneous turning center RC. With such a configuration, an optimum turning center can be calculated at a predetermined cycle, and the front part of the self-propelled device R where the cleaning part CLN is arranged can move in parallel with the wall. For example, as shown in FIG. The reciprocation distance when turning at the corner of the wall can be reduced, and the wasteful travel distance can be shortened and work can be performed efficiently. Even if the driving wheel slips and the accurate movement amount and turning angle of the self-propelling device cannot be measured, the front separation distance LF and the side separation distance LS are immediately set in the next cycle when the driving wheel slips. Based on this, the instantaneous turning center and the left and right drive wheel speeds can be updated, so that the vehicle can travel stably without greatly leaving the wall.

また、直進して壁に接触すれば少しだけ旋回するという単純な壁沿い走行を行なう自走装置と比較して壁面への接触回数を少なくすることができ、商品性を向上させることができる。   In addition, the number of times of contact with the wall surface can be reduced as compared with a self-propelled device that travels along a simple wall that turns a little if it goes straight and touches the wall, thereby improving the merchantability.

また、特許文献1および特許文献2記載の自走装置では、一定半径で旋回を行なう構成であるため、往復回数が多くなる等、無駄な走行距離が多いという問題点がある。しかしながら、本発明の実施の形態に係る自走装置では、前方離間距離LFおよび側方離間距離LSに基づいて自走装置Rの瞬間旋回中心RCを算出し、算出した瞬間旋回中心RCに基づいて各駆動輪の旋回半径を算出し、算出した各旋回半径に基づいて各駆動輪の速度をそれぞれ決定する。このような構成により、所定周期で最適な旋回半径を算出して自走装置Rの清掃部CLNが配置された前方部が壁と平行に移動することができ、無駄な走行距離を短くして効率的に作業を行なうことができる。   Moreover, since the self-propelled devices described in Patent Document 1 and Patent Document 2 are configured to turn with a constant radius, there is a problem in that there is a lot of useless travel distance such as an increase in the number of reciprocations. However, in the self-propelled device according to the embodiment of the present invention, the instantaneous turning center RC of the self-propelled device R is calculated based on the front separation distance LF and the side separation distance LS, and based on the calculated instantaneous turning center RC. The turning radius of each driving wheel is calculated, and the speed of each driving wheel is determined based on the calculated turning radius. With such a configuration, an optimum turning radius can be calculated at a predetermined cycle, and the front part of the self-propelled device R where the cleaning part CLN is arranged can move in parallel with the wall, thereby shortening the useless travel distance. Work can be done efficiently.

また、特許文献1記載の自走装置は、回転角センサおよび複数の前方センサが必要であり、さらに作業部のスライド機構が必要であるため、製造コストが増大するという問題点があるが、本発明の実施の形態に係る自走装置では、回転角センサが不要であり、また、前方距離センサは1個だけ備えればよく、製造コストの低減を図ることができる。   In addition, the self-propelled device described in Patent Document 1 requires a rotation angle sensor and a plurality of front sensors, and further requires a slide mechanism for a working unit. In the self-propelled device according to the embodiment of the invention, the rotation angle sensor is unnecessary, and only one front distance sensor is required, and the manufacturing cost can be reduced.

また、特許文献2記載の自走装置は、走行距離に基づく現在位置測定を行なった後、現在位置に基づいて旋回を行なうため、滑りなどにより正確な位置測定を行なうことができない状況では適正な旋回ができず、また、走行パターンが一定であり異なる角度の角部に対応できず、また、角部で旋回する際に壁から離れる動作が必要であるため狭い場所に対応できないという問題点がある。しかしながら、本発明の実施の形態に係る自走装置では、演算部COMが、所定周期で前方離間距離LFおよび側方離間距離LSに基づいて自走装置Rの瞬間旋回中心RCを算出し、算出した瞬間旋回中心RCに基づいて各駆動輪の速度をそれぞれ決定する構成であるため、滑りなどが生じて正確な走行距離の測定ができない場合でも適正に壁に沿って旋回することができ、また、様々な角度の角部に対応することができる。また、角部で旋回する際に壁から離れる動作が不要であるため、狭い場所でも適切に作業を行なうことができる。   Moreover, since the self-propelled device described in Patent Document 2 performs turning based on the current position after measuring the current position based on the travel distance, it is appropriate in a situation where accurate position measurement cannot be performed due to slipping or the like. There is a problem that it cannot turn, it cannot handle corners of different angles with a constant traveling pattern, and it cannot handle narrow spaces because it needs to move away from the wall when turning at corners. is there. However, in the self-propelled device according to the embodiment of the present invention, the calculation unit COM calculates the instantaneous turning center RC of the self-propelled device R based on the front separation distance LF and the side separation distance LS in a predetermined cycle. Since the speed of each drive wheel is determined based on the instantaneous turning center RC, it is possible to turn along the wall properly even when slippage or the like occurs and the accurate travel distance cannot be measured. It can correspond to corners of various angles. Moreover, since the operation | movement which leaves | separates from a wall is unnecessary when turning in a corner | angular part, it can work appropriately also in a narrow place.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に係る自走装置の構成を示す平面図である。It is a top view which shows the structure of the self-propelled apparatus which concerns on embodiment of this invention. (a)および(b)は、自走装置Rと壁面との位置関係を詳細に示す図である。(A) And (b) is a figure which shows the positional relationship of the self-propelled apparatus R and a wall surface in detail. 本発明の実施の形態に係る自走装置が壁沿い走行を行なう際の動作手順を定めたフローチャートである。It is the flowchart which defined the operation | movement procedure at the time of the self-propelled apparatus which concerns on embodiment of this invention traveling along a wall. 本発明の実施の形態に係る自走装置が角旋回走行を行なう際の動作手順を定めたフローチャートである。It is the flowchart which defined the operation | movement procedure at the time of the self-propelled apparatus which concerns on embodiment of this invention performing corner turning driving | running | working. (a)90度、(b)60度、(c)45度の曲がり角を有する壁面を本発明の実施の形態に係る自走装置が走行するシミュレーション結果を示す図である。(a) 90 degree | times, (b) 60 degree | times, (c) It is a figure which shows the simulation result which the self-propelled apparatus which concerns on embodiment of this invention drive | works the wall surface which has a 45 degree | times corner. 2つの角部が連続する壁面において本発明の実施の形態に係る自走装置が行なう壁沿い走行および角旋回走行の様子を示す図である。It is a figure which shows the mode of the traveling along a wall and the corner turning traveling which the self-propelled apparatus which concerns on embodiment of this invention performs in the wall surface which two corner | angular parts continue. 自走装置の旋回に関する位置関係を詳細に示す図である。It is a figure which shows the positional relationship regarding turning of a self-propelled device in detail. 本発明の実施の形態に係る自走装置が瞬間旋回中心RCを算出する際の動作手順を定めたフローチャートである。It is the flowchart which defined the operation | movement procedure at the time of the self-propelling apparatus which concerns on embodiment of this invention calculating instantaneous turning center RC. 本発明の実施の形態に係る自走装置が駆動輪速度を算出する際の動作手順を定めたフローチャートである。It is the flowchart which defined the operation | movement procedure at the time of the self-propelled apparatus which concerns on embodiment of this invention calculating drive wheel speed.

符号の説明Explanation of symbols

R 自走装置、W 駆動輪、MO,MOL,MOR ステッピングモータ、S 距離センサ、COM 演算部(制御部)、BT 電池、BF 前方接触センサ(前方接触検出部)、BS 側方接触センサ(側方接触検出部)、CLN 清掃部(作業部)、WR 右駆動輪、WL 左駆動輪、SF 前方距離センサ(前方距離検出部)、SS 側方距離センサ(側方距離検出部)、MEM メモリ、TIM タイマ、CP カウンタ、PSF,PSS 取り付け位置、PC 前方端部位置、RC 瞬間旋回中心、OR 原点、LF 前方離間距離、LS 側方離間距離、LW 離間距離、LD 目標離間距離、LL,LR 水平距離、VL,VR 目標速度、VMAX 最大駆動輪速度。   R self-propelled device, W drive wheel, MO, MOL, MOR stepping motor, S distance sensor, COM calculation unit (control unit), BT battery, BF front contact sensor (front contact detection unit), BS side contact sensor (side Side contact detection unit), CLN cleaning unit (working unit), WR right drive wheel, WL left drive wheel, SF front distance sensor (front distance detection unit), SS side distance sensor (side distance detection unit), MEM memory , TIM timer, CP counter, PSF, PSS installation position, PC front end position, RC instantaneous turning center, OR origin, LF forward separation distance, LS lateral separation distance, LW separation distance, LD target separation distance, LL, LR Horizontal distance, VL, VR Target speed, VMAX Maximum driving wheel speed.

Claims (16)

自走装置であって、
一対の駆動輪と、
前記自走装置と前方の物体との距離である前方離間距離を検出する前方距離検出部と、
前記自走装置と側方の物体との距離である側方離間距離を検出する側方距離検出部と、
所定周期で、前記検出された前方離間距離に基づいて前記自走装置を旋回させるか否かを決定し、旋回させると決定した場合には前記検出された前方離間距離および側方離間距離に基づいて前記自走装置の旋回中心を算出し、前記算出した旋回中心に基づいて前記各駆動輪の速度を決定する制御部とを備える自走装置。
A self-propelled device,
A pair of drive wheels;
A front distance detection unit that detects a front separation distance that is a distance between the self-propelled device and a front object;
A lateral distance detection unit that detects a lateral separation distance that is a distance between the self-propelled device and a lateral object;
In a predetermined cycle, it is determined whether or not the self-propelled device is to be turned based on the detected front separation distance, and when it is determined to be turned, based on the detected front separation distance and side separation distance. A self-propelled device including a control unit that calculates a turning center of the self-propelled device and determines a speed of each drive wheel based on the calculated turning center.
前記自走装置は、さらに、前記自走装置の前方部に配置され、床面作業を行なう作業部を備える請求項1記載の自走装置。   The said self-propelled apparatus is a self-propelled apparatus of Claim 1 provided with the operation | work part which is arrange | positioned in the front part of the said self-propelled apparatus and performs a floor work. 前記自走装置は、さらに、前記各駆動輪の所定の最大速度をそれぞれ記憶する記憶部を備え、
前記制御部は、前記自走装置を旋回させると決定した場合には、前記算出した旋回中心に基づいて前記一対の駆動輪のいずれか一方の速度を前記所定の最大速度に決定する請求項1記載の自走装置。
The self-propelled device further includes a storage unit that stores a predetermined maximum speed of each driving wheel,
The control unit, when determining to turn the self-propelled device, determines the speed of one of the pair of driving wheels to the predetermined maximum speed based on the calculated turning center. The self-propelled device described.
前記自走装置は、さらに、前記各駆動輪の所定の最大速度をそれぞれ記憶する記憶部を備え、
前記制御部は、さらに、前記自走装置を旋回させないと決定した場合には、前記一対の駆動輪のうち少なくともいずれか一方の速度を前記所定の最大速度に決定する請求項1記載の自走装置。
The self-propelled device further includes a storage unit that stores a predetermined maximum speed of each driving wheel,
2. The self-propelled vehicle according to claim 1, wherein the control unit further determines the speed of at least one of the pair of driving wheels to be the predetermined maximum speed when it is determined not to turn the self-propelled device. apparatus.
前記制御部は、前記自走装置が旋回していない場合であって前記検出された前方離間距離が第1の閾値未満であるときには前記自走装置の旋回を開始することを決定し、前記自走装置が旋回している場合であって前記検出された前方離間距離が前記第1の閾値より大きい第2の閾値を超えるときには前記自走装置の旋回を終了することを決定する請求項1記載の自走装置。   The control unit determines to start turning of the self-propelled device when the self-propelled device is not turning and the detected forward separation distance is less than a first threshold. 2. The turning of the self-propelled device is determined to end when the traveling device is turning and the detected forward separation distance exceeds a second threshold value that is greater than the first threshold value. Self-propelled device. 前記第1の閾値は前記自走装置の前後長の1/5よりも小さく、前記第2の閾値は前記自走装置の前後長よりも大きい請求項5記載の自走装置。   The self-propelled device according to claim 5, wherein the first threshold value is smaller than 1/5 of the front-rear length of the self-propelled device, and the second threshold value is larger than the front-rear length of the self-propelled device. 前記自走装置は、さらに、前方の物体との接触を検出する前方接触検出部を備え、
前記制御部は、さらに、前記自走装置が旋回していない場合であって前記前方接触検出部が接触を検出したときには前記自走装置を旋回させることを決定し、旋回させると決定した場合には前記検出された側方離間距離に基づいて前記自走装置の旋回中心を算出し、前記算出した旋回中心に基づいて前記各駆動輪の速度を決定する請求項1記載の自走装置。
The self-propelled device further includes a front contact detection unit that detects contact with a front object,
The control unit further determines that the self-propelled device is to be turned when the self-propelled device is not turning, and the front contact detection unit detects contact, and determines that the self-propelled device is to be turned. The self-propelled device according to claim 1, wherein the center of rotation of the self-propelled device is calculated based on the detected lateral separation distance, and the speed of each driving wheel is determined based on the calculated center of rotation.
前記制御部は、さらに、前記自走装置が旋回を開始してからの前記自走装置の旋回角度を算出し、前記算出した旋回角度が所定値より大きい場合には前記自走装置の旋回を終了する請求項1記載の自走装置。   The control unit further calculates a turning angle of the self-propelled device after the self-propelled device starts turning, and turns the self-propelled device when the calculated turning angle is larger than a predetermined value. The self-propelled device according to claim 1, which is terminated. 前記制御部は、前記自走装置が旋回を開始してから経過した時間および前記決定した各駆動輪の速度に基づいて前記自走装置の旋回角度を算出する請求項8記載の自走装置。   The self-propelled device according to claim 8, wherein the control unit calculates a turning angle of the self-propelled device based on a time elapsed since the self-propelled device started turning and the determined speed of each driving wheel. 前記所定値は90度未満である請求項8記載の自走装置。   The self-propelled device according to claim 8, wherein the predetermined value is less than 90 degrees. 前記自走装置は、さらに、物体との接触を検出する接触検出部を備え、
前記制御部は、さらに、前記自走装置の旋回中に前記自走装置と物体との接触が検出された場合には前記自走装置が前記接触した物体から離れるように前記各駆動輪の速度を決定する請求項1記載の自走装置。
The self-propelled device further includes a contact detection unit that detects contact with an object,
The control unit further controls the speed of each driving wheel so that the self-propelled device is separated from the contacted object when contact between the self-propelled device and the object is detected during the turning of the self-propelled device. The self-propelled device according to claim 1, which determines
前記制御部は、前記自走装置の旋回中に前記自走装置と物体との接触が検出された場合には、前記自走装置が所定距離後退し、その後、所定角度旋回するように前記各駆動輪の速度を決定する請求項11記載の自走装置。   When the contact between the self-propelled device and the object is detected during the turning of the self-propelled device, the control unit moves the self-propelled device backward by a predetermined distance, and then turns each predetermined angle. The self-propelled device according to claim 11, wherein the speed of the driving wheel is determined. 前記制御部は、前記自走装置の旋回中に前記自走装置と物体との接触が検出された場合には、前記自走装置が前記自走装置の前後長の1/5以下後退し、その後、20度以下旋回するように前記各駆動輪の速度を決定する請求項12記載の自走装置。   When the contact between the self-propelled device and the object is detected during the turning of the self-propelled device, the control unit retreats the self-propelled device by 1/5 or less of the longitudinal length of the self-propelled device, 13. The self-propelled device according to claim 12, wherein the speed of each drive wheel is determined so as to turn 20 degrees or less. 前記自走装置の走行する床面と平行な平面において、前記自走装置の直進方向と垂直な方向における前記前方距離検出部の検出範囲の中心、および前記前方距離検出部を通る線と前記自走装置の直進方向とのなす角は30度以内である請求項1記載の自走装置。   In a plane parallel to the floor surface on which the self-propelled device travels, the center of the detection range of the front distance detection unit in a direction perpendicular to the straight traveling direction of the self-propelled device, and a line passing through the front distance detection unit The self-propelled device according to claim 1, wherein an angle formed by the straight direction of the traveling device is within 30 degrees. 前記自走装置の走行する床面と平行な平面において、前記自走装置の直進方向と平行な方向における前記側方距離検出部の検出範囲の中心、および前記側方距離検出部を通る線と前記自走装置の直進方向とのなす角は60度以上かつ120度未満である請求項1記載の自走装置。   In a plane parallel to the floor surface on which the self-propelled device travels, the center of the detection range of the lateral distance detection unit in a direction parallel to the straight traveling direction of the self-propelled device, and a line passing through the side distance detection unit The self-propelled device according to claim 1, wherein an angle formed by the straight traveling direction of the self-propelled device is 60 degrees or more and less than 120 degrees. 一対の駆動輪を備えた自走装置の制御方法であって、
前記自走装置と前方の物体との距離である前方離間距離を検出するステップと、
前記自走装置と側方の物体との距離である側方離間距離を検出するステップと、
所定周期で、前記検出された前方離間距離に基づいて前記自走装置を旋回させるか否かを決定し、旋回させると決定した場合には前記検出された前方離間距離および側方離間距離に基づいて前記自走装置の旋回中心を算出し、前記算出した旋回中心に基づいて前記各駆動輪の速度を決定するステップとを含む自走装置の制御方法。
A control method for a self-propelled device having a pair of drive wheels,
Detecting a front separation distance that is a distance between the self-propelled device and a front object;
Detecting a lateral separation distance that is a distance between the self-propelled device and a lateral object;
In a predetermined cycle, it is determined whether or not the self-propelled device is to be turned based on the detected front separation distance, and when it is determined to be turned, based on the detected front separation distance and side separation distance. Calculating the turning center of the self-propelled device and determining the speed of each drive wheel based on the calculated turning center.
JP2006099093A 2006-03-31 2006-03-31 Self-propelled device and control method thereof Expired - Fee Related JP4408872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099093A JP4408872B2 (en) 2006-03-31 2006-03-31 Self-propelled device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099093A JP4408872B2 (en) 2006-03-31 2006-03-31 Self-propelled device and control method thereof

Publications (2)

Publication Number Publication Date
JP2007272677A true JP2007272677A (en) 2007-10-18
JP4408872B2 JP4408872B2 (en) 2010-02-03

Family

ID=38675405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099093A Expired - Fee Related JP4408872B2 (en) 2006-03-31 2006-03-31 Self-propelled device and control method thereof

Country Status (1)

Country Link
JP (1) JP4408872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031706A1 (en) * 2014-08-29 2016-03-03 株式会社東芝 Autonomous travel body and vacuum cleaner
JP2020501283A (en) * 2017-01-09 2020-01-16 広東宝楽機器人股▲ふん▼有限公司Guangdong Bona Robot Corporation Limited Robot movement control method and robot
JP2020174962A (en) * 2019-04-19 2020-10-29 東芝ライフスタイル株式会社 Autonomous vacuum cleaner
JP2023508435A (en) * 2020-06-30 2023-03-02 珠海一微半導体股▲ふん▼有限公司 Obstacle avoidance end judgment method, obstacle avoidance control method, chip and robot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031706A1 (en) * 2014-08-29 2016-03-03 株式会社東芝 Autonomous travel body and vacuum cleaner
JP2016051341A (en) * 2014-08-29 2016-04-11 株式会社東芝 Autonomous traveling body and vacuum cleaner
US10416673B2 (en) 2014-08-29 2019-09-17 Toshiba Lifestyle Products & Services Corporation Autonomous traveling body and vacuum cleaner
JP2020501283A (en) * 2017-01-09 2020-01-16 広東宝楽機器人股▲ふん▼有限公司Guangdong Bona Robot Corporation Limited Robot movement control method and robot
JP2020174962A (en) * 2019-04-19 2020-10-29 東芝ライフスタイル株式会社 Autonomous vacuum cleaner
JP2023508435A (en) * 2020-06-30 2023-03-02 珠海一微半導体股▲ふん▼有限公司 Obstacle avoidance end judgment method, obstacle avoidance control method, chip and robot

Also Published As

Publication number Publication date
JP4408872B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4165965B2 (en) Autonomous work vehicle
JP5676039B1 (en) Self-propelled device, control method for self-propelled device, and control program for self-propelled device
KR101566207B1 (en) Robot cleaner and control method thereof
CN113306549B (en) Automatic parking trajectory planning algorithm
CN102063123B (en) Control method of performing rotational traveling of robot cleaner
JP2007213236A (en) Method for planning route of autonomously traveling robot and autonomously traveling robot
JP4462196B2 (en) Moving vehicle
JP2006260161A (en) Self-propelled working robot
KR20150014113A (en) Cleaning robot and method for controlling the same
JP2006164223A (en) Method and apparatus for recognizing object position of moving robot
JP2001265437A (en) Traveling object controller
JP2009037378A (en) Autonomous travelling device and program
JP2005135400A (en) Self-propelled working robot
JP4408872B2 (en) Self-propelled device and control method thereof
JP2006113952A (en) Charging type travel system
JP5553220B2 (en) Moving body
CN111466846B (en) Cleaning method of cleaning robot, chip and cleaning robot
KR101412582B1 (en) Robot cleaner and controlling method of the same
KR100963781B1 (en) Controlling method of robot cleaner
JPH09204223A (en) Autonomous mobile working vehicle
CN114355887B (en) Narrow-lane passage method and device for robot, robot and storage medium
JP2005346477A (en) Autonomous travelling body
JP3237500B2 (en) Autonomous mobile work vehicle
KR20100012350A (en) Cell based cleaning robot and method
KR100635829B1 (en) Cleaning area driving method of robot cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Ref document number: 4408872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees