JP2007266103A - Manufacturing method for semiconductor device and semiconductor device - Google Patents

Manufacturing method for semiconductor device and semiconductor device Download PDF

Info

Publication number
JP2007266103A
JP2007266103A JP2006086069A JP2006086069A JP2007266103A JP 2007266103 A JP2007266103 A JP 2007266103A JP 2006086069 A JP2006086069 A JP 2006086069A JP 2006086069 A JP2006086069 A JP 2006086069A JP 2007266103 A JP2007266103 A JP 2007266103A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxygen
region
rich layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006086069A
Other languages
Japanese (ja)
Other versions
JP5124964B2 (en
Inventor
Hideto Onishi
秀人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2006086069A priority Critical patent/JP5124964B2/en
Publication of JP2007266103A publication Critical patent/JP2007266103A/en
Application granted granted Critical
Publication of JP5124964B2 publication Critical patent/JP5124964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a semiconductor device having low operation resistance and switching loss and excellent switching characteristics. <P>SOLUTION: An oxygen-rich layer (4) having an oxygen concentration higher than the other depth regions (16 and 17) of a semiconductor substrate (1) is formed to the specified depth region (15) of the semiconductor substrate (1), and the semiconductor substrate (1) is irradiated with a radiation and a recombination region (5) is formed to the oxygen-rich layer (4). When the oxygen-rich layer (4) is formed, the semiconductor substrate (1) is irradiated with the radiation and atomic vacancies are formed among the crystal lattices of the semiconductor substrate (1), the recombination region (5) is formed to the oxygen-rich layer (4) by composite faults formed by bonding oxygen and the atomic vacancies. The recombination region (5) functions as a carrier capture region controlling the lifetime of carriers in the specified depth region (15) of the semiconductor substrate (1). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製法及び半導体装置、特に、電子線等の放射線を半導体基板に照射して、半導体装置のライフタイムを制御する半導体装置の製法及びその製法により形成された半導体装置に関する。   The present invention relates to a method of manufacturing a semiconductor device and a semiconductor device, and more particularly to a method of manufacturing a semiconductor device that controls the lifetime of a semiconductor device by irradiating a semiconductor substrate with radiation such as an electron beam and a semiconductor device formed by the manufacturing method.

電子線、γ線、中性子線又はイオン線等の放射線を半導体基板に照射し、半導体基板の所定の領域に放射線により結晶欠陥(「再結合中心」又は「ライフタイム制御領域」と呼ぶこともできる)を形成して、半導体基板のキャリアのライフタイム(寿命)を制御するライフタイム制御技術は、公知である。半導体基板のキャリアのライフタイムを制御して、半導体装置の応答特性を向上することができる。放射線を半導体基板に照射するライフタイム制御技術は、金又は白金等の重金属原子を半導体基板に導入するライフタイム制御と比較して、ライフタイムの制御性及び再現性に優れている。   A semiconductor substrate is irradiated with radiation such as an electron beam, γ-ray, neutron beam, or ion beam, and a crystal defect (“recombination center” or “lifetime control region”) can be caused by radiation in a predetermined region of the semiconductor substrate. The lifetime control technology for controlling the lifetime of the semiconductor substrate carrier is known. By controlling the lifetime of the carrier of the semiconductor substrate, the response characteristics of the semiconductor device can be improved. The lifetime control technology for irradiating a semiconductor substrate with radiation is superior in lifetime controllability and reproducibility compared to lifetime control in which heavy metal atoms such as gold or platinum are introduced into a semiconductor substrate.

特に、プロトン等の各種イオンを照射するライフタイム制御技術では、イオン線の飛程を中心として半導体基板の厚み方向の限られた領域にイオン線によって集中的に結晶欠陥が形成されるため、制御性の高いライフタイム制御を行なえる。一方、電子線を照射するライフタイム制御技術では、長い飛程距離を有する電子線が半導体基板の厚み方向全体にわたり透過するため、一般的に、半導体基板の厚み方向の全体に結晶欠陥を形成するライフタイム制御として使用されていた。   In particular, in lifetime control technology that irradiates various ions such as protons, crystal defects are formed intensively by ion beams in a limited area in the thickness direction of the semiconductor substrate centering on the range of the ion beam. Highly effective lifetime control. On the other hand, in the lifetime control technology for irradiating an electron beam, since an electron beam having a long range is transmitted through the entire thickness direction of the semiconductor substrate, generally, crystal defects are formed in the entire thickness direction of the semiconductor substrate. It was used as a lifetime control.

図6は、半導体基板(1)と、半導体基板(1)の一方の主面(1a)側に形成されたN−型半導体領域(11)と、N−型半導体領域(11)に隣接して半導体基板(1)の他方の主面(1b)側に形成されたN+型半導体領域(12)と、N−型半導体領域(11)内で半導体基板(1)の一方の主面(1a)側に形成されたP+型半導体領域(13)とを備え、P+型半導体領域(13)とN−型半導体領域(11)及びN+型半導体領域(12)とによりPN接合を形成するダイオード装置(20)を例示する。半導体基板(1)の一方の主面(1a)には、P+型半導体領域(13)に隣接して形成された開口部(2a)を有する絶縁膜(2)が形成され、金属膜からなる上部電極(エミッタ電極)(3)が絶縁膜(2)の一部と、絶縁膜(2)の開口部(2a)を通じてP+型半導体領域(13)とに固着される。また、半導体基板(1)の他方の主面(1b)には、N+型半導体領域(12)に隣接して下部電極(コレクタ電極)(6)が固着される。この種の半導体装置では、例えば、図示しないダイナミトロン加速装置を使用し、図7に示すように、半導体基板(1)に2.0MeV程度の加速電圧で加速された電子線(25)を照射して、半導体基板(1)の厚み方向全体にわたり適宜に結晶欠陥を形成することができる。   FIG. 6 shows a semiconductor substrate (1), an N − type semiconductor region (11) formed on one main surface (1a) side of the semiconductor substrate (1), and an N − type semiconductor region (11). An N + type semiconductor region (12) formed on the other main surface (1b) side of the semiconductor substrate (1), and one main surface (1a) of the semiconductor substrate (1) in the N− type semiconductor region (11). ) Side P + type semiconductor region (13), and a diode device forming a PN junction with the P + type semiconductor region (13), the N− type semiconductor region (11) and the N + type semiconductor region (12) (20) is illustrated. An insulating film (2) having an opening (2a) formed adjacent to the P + type semiconductor region (13) is formed on one main surface (1a) of the semiconductor substrate (1), and is made of a metal film. The upper electrode (emitter electrode) (3) is fixed to a part of the insulating film (2) and the P + type semiconductor region (13) through the opening (2a) of the insulating film (2). A lower electrode (collector electrode) (6) is fixed to the other main surface (1b) of the semiconductor substrate (1) adjacent to the N + type semiconductor region (12). In this type of semiconductor device, for example, a dynamitron accelerator (not shown) is used, and as shown in FIG. 7, the semiconductor substrate (1) is irradiated with an electron beam (25) accelerated at an acceleration voltage of about 2.0 MeV. Thus, crystal defects can be appropriately formed over the entire thickness direction of the semiconductor substrate (1).

上述のように、半導体基板(1)の厚み方向全体にわたり結晶欠陥を形成すると、キャリアのライフタイムを短縮して半導体装置のスイッチング特性を向上させることができるが、半導体基板の内部抵抗が増大して、半導体装置(20)の動作抵抗(オン抵抗)が大きくなる問題が生じる。よって、近年では、結晶欠陥を半導体基板(1)の厚み方向全体に形成せずに、厚み方向の特定領域に形成する試みがある。半導体基板(1)の厚み方向に局所的に結晶欠陥を形成すれば、動作抵抗が比較的低く且つスイッチング特性が向上した優れた電気的特性を有する半導体装置を形成することができる。   As described above, when crystal defects are formed over the entire thickness direction of the semiconductor substrate (1), the carrier lifetime can be shortened and the switching characteristics of the semiconductor device can be improved, but the internal resistance of the semiconductor substrate increases. As a result, there arises a problem that the operating resistance (ON resistance) of the semiconductor device (20) increases. Therefore, in recent years, there has been an attempt to form a crystal defect in a specific region in the thickness direction without forming the crystal defect in the entire thickness direction of the semiconductor substrate (1). If crystal defects are locally formed in the thickness direction of the semiconductor substrate (1), a semiconductor device having excellent electrical characteristics with relatively low operating resistance and improved switching characteristics can be formed.

半導体基板の厚み方向の特定領域に結晶欠陥を有する半導体装置の製法は、例えば、下記特許文献1に開示される。特許文献1によれば、半導体基板の主面に30μmの厚さを有するアルミニウム及び50μmの厚さを有するステンレスから成る金属マスクを配置し、20.0MeVの加速電圧で加速された軽イオン線を金属マスクを介して半導体基板に照射して、半導体基板の厚み方向の特定領域に結晶欠陥を形成することができる。   A method for manufacturing a semiconductor device having crystal defects in a specific region in the thickness direction of the semiconductor substrate is disclosed in, for example, Patent Document 1 below. According to Patent Document 1, a metal mask made of aluminum having a thickness of 30 μm and stainless steel having a thickness of 50 μm is arranged on the main surface of a semiconductor substrate, and a light ion beam accelerated by an acceleration voltage of 20.0 MeV is used. By irradiating the semiconductor substrate through the metal mask, crystal defects can be formed in a specific region in the thickness direction of the semiconductor substrate.

特開平4−214674号公報Japanese Patent Laid-Open No. 4-214673

しかしながら、特許文献1の半導体装置の製法では、電子線を照射する場合には、質量の軽い電子が金属マスクを容易に通過するため、半導体基板の厚み方向の特定領域に結晶欠陥を形成できなかった。また、他の放射線を使用する場合であっても、形成する結晶欠陥の深さを制御するためには、金属マスクの厚みを制御しなければならず、実用的ではなかった。
そこで、本発明は、半導体基板の厚み方向の所望の特定領域に結晶欠陥を容易に且つ再現性よく形成することができる半導体装置の製法及びその製法により形成された半導体装置を提供することを目的とする。
However, in the manufacturing method of the semiconductor device of Patent Document 1, when irradiating an electron beam, electrons with a light mass easily pass through the metal mask, so that a crystal defect cannot be formed in a specific region in the thickness direction of the semiconductor substrate. It was. Even when other radiation is used, in order to control the depth of crystal defects to be formed, the thickness of the metal mask must be controlled, which is not practical.
Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device capable of easily and reproducibly forming crystal defects in a desired specific region in the thickness direction of a semiconductor substrate, and a semiconductor device formed by the manufacturing method. And

本発明による半導体装置の製法は、半導体基板(1)の所定の深さ領域(15)に半導体基板(1)の他の深さ領域(16,17)より酸素濃度の高い酸素富裕層(4)を形成する過程と、半導体基板(1)に放射線を照射して、酸素富裕層(4)に再結合領域(5)を形成する過程とを含む。酸素富裕層(4)を形成した後に、半導体基板(1)に放射線を照射して、半導体基板(1)の結晶格子間に原子空孔を形成すると、酸素と原子空孔とが結合して成る複合欠陥により酸素富裕層(4)に再結合領域(5)が形成される。再結合領域(5)は、半導体基板(1)の所定の深さ領域(15)でキャリアのライフタイムを制御するキャリア捕獲領域となる。このため、動作抵抗が比較的低く且つスイッチング特性に優れた半導体装置を得ることができる。半導体基板(1)の所望且つ所定の深さ領域(15)に酸素富裕層(4)を形成することにより、半導体基板(1)内に形成する再結合領域(5)の深さ及び厚みを制御することができる。
本発明による半導体装置は、少なくとも1つのPN接合が形成された半導体基板(1)を備え、半導体基板(1)は、半導体基板(1)の所定の深さ領域(15)に原子空孔と酸素とが結合して成る複合欠陥により形成される再結合領域(5)を有する。原子空孔と酸素とが結合して成る複合欠陥によって形成される再結合領域(5)により、半導体基板(1)のキャリアのライフタイムを制御することができる。
The manufacturing method of a semiconductor device according to the present invention is a method for producing an oxygen-rich layer (4) having a higher oxygen concentration in a predetermined depth region (15) of a semiconductor substrate (1) than in other depth regions (16, 17) of the semiconductor substrate (1). ) And a process of irradiating the semiconductor substrate (1) with radiation to form a recombination region (5) in the oxygen-rich layer (4). After forming the oxygen-rich layer (4), the semiconductor substrate (1) is irradiated with radiation to form atomic vacancies between the crystal lattices of the semiconductor substrate (1). A recombination region (5) is formed in the oxygen-rich layer (4) by the composite defect. The recombination region (5) serves as a carrier capture region that controls the lifetime of carriers in a predetermined depth region (15) of the semiconductor substrate (1). Therefore, it is possible to obtain a semiconductor device having a relatively low operating resistance and excellent switching characteristics. By forming the oxygen rich layer (4) in the desired and predetermined depth region (15) of the semiconductor substrate (1), the depth and thickness of the recombination region (5) formed in the semiconductor substrate (1) can be reduced. Can be controlled.
A semiconductor device according to the present invention includes a semiconductor substrate (1) on which at least one PN junction is formed. The semiconductor substrate (1) has atomic vacancies in a predetermined depth region (15) of the semiconductor substrate (1). It has a recombination region (5) formed by a composite defect formed by bonding with oxygen. The lifetime of carriers in the semiconductor substrate (1) can be controlled by the recombination region (5) formed by a composite defect formed by combining atomic vacancies and oxygen.

本発明によれば、半導体基板の厚み方向の特定領域に再結合領域を良好に形成して、動作抵抗が低く且つスイッチング特性が向上した優れた電気的特性を有する半導体装置を提供することができる。   According to the present invention, it is possible to provide a semiconductor device having excellent electrical characteristics in which a recombination region is favorably formed in a specific region in the thickness direction of a semiconductor substrate, low operating resistance, and improved switching characteristics. .

以下、本発明による半導体装置の製法及び半導体装置をダイオード装置及びその製法に適用した実施の形態を図1〜図5について説明する。また、本実施の形態では、電子線を照射して半導体装置のキャリアのライフタイムを制御する。但し、これらの図面では、図6及び図7に示す箇所と実質的に同一の部分には同一の符号を付し、その説明を省略する。   A semiconductor device manufacturing method and an embodiment in which the semiconductor device is applied to a diode device and the manufacturing method thereof will be described below with reference to FIGS. In this embodiment mode, the lifetime of the carrier of the semiconductor device is controlled by irradiation with an electron beam. However, in these drawings, parts that are substantially the same as those shown in FIGS. 6 and 7 are given the same reference numerals, and descriptions thereof are omitted.

図1に示す本実施の形態のダイオード装置(10)を形成する際に、単結晶のシリコンウエハにより形成された図2に示す半導体基板(1)を用意する。半導体基板(1)は、N−型半導体領域(11)、N+型半導体領域(12)及びP+型半導体領域(13)を有する。便宜上、図示する半導体基板(1)は、単一のP+型半導体領域(13)を有する単一の半導体チップを示すが、実際の半導体基板(1)は、半導体基板(1)のX軸方向とY軸方向とに前記半導体チップを繰り返し形成した構造を有する。本実施の形態では、周知の半導体基板の製法と共に、多数の半導体チップを整列させた半導体基板の図を省略する。   When the diode device (10) of the present embodiment shown in FIG. 1 is formed, a semiconductor substrate (1) shown in FIG. 2 formed of a single crystal silicon wafer is prepared. The semiconductor substrate (1) has an N− type semiconductor region (11), an N + type semiconductor region (12), and a P + type semiconductor region (13). For convenience, the illustrated semiconductor substrate (1) represents a single semiconductor chip having a single P + type semiconductor region (13), but the actual semiconductor substrate (1) is the X-axis direction of the semiconductor substrate (1). And a structure in which the semiconductor chip is repeatedly formed in the Y-axis direction. In this embodiment, together with the well-known semiconductor substrate manufacturing method, the illustration of the semiconductor substrate in which a large number of semiconductor chips are aligned is omitted.

次に、図3に示すように、半導体基板(1)の一方の主面(1a)の全面から半導体基板(1)の所定の深さ領域(15)に酸素を導入する。即ち、酸素は、半導体基板(1)の厚み方向の全体にわたり導入されず、半導体基板(1)の一方の主面(1a)から所定の深さの領域(15)に局所的に導入される。本工程により、半導体基板(1)の所定の深さ領域(15)に半導体基板(1)の他の深さ領域(16,17)より酸素濃度の高い酸素富裕層(4)が形成される。本実施の形態では、所定の深さ領域(15)に含まれない半導体基板(1)の一方の主面(1a)に隣接する領域を一方の他の深さ領域(16)とし、他方の主面(1b)に隣接する領域を他方の他の深さ領域(17)とする。P+型半導体領域(13)は、半導体基板(1)の一方の他の深さ領域(16)に形成される。   Next, as shown in FIG. 3, oxygen is introduced into the predetermined depth region (15) of the semiconductor substrate (1) from the entire surface of one main surface (1a) of the semiconductor substrate (1). That is, oxygen is not introduced throughout the thickness direction of the semiconductor substrate (1), but is locally introduced from one main surface (1a) of the semiconductor substrate (1) into the region (15) having a predetermined depth. . By this step, the oxygen rich layer (4) having a higher oxygen concentration than the other depth regions (16, 17) of the semiconductor substrate (1) is formed in the predetermined depth region (15) of the semiconductor substrate (1). . In the present embodiment, a region adjacent to one main surface (1a) of the semiconductor substrate (1) not included in the predetermined depth region (15) is set as one other depth region (16), and the other The region adjacent to the main surface (1b) is the other depth region (17). The P + type semiconductor region (13) is formed in one other depth region (16) of the semiconductor substrate (1).

例えば、図示しない周知のサイクロトロン加速装置により、半導体基板(1)に酸素イオン(24)を照射して、半導体基板(1)の所定の深さ領域(15)に格子間酸素原子又は分子を導入することができる。サイクロトロン加速装置又はバンデグラフ加速装置により酸素イオン(24)を1.0MeV〜50.0MeV程度の加速電圧で注入すれば、半導体基板(1)の一方の主面(1a)から15μm〜20μm程度の深さ領域(15)に他の深さ領域(16,17)に比較して酸素濃度が高い酸素富裕層(4)を5μm程度の厚さで形成することができる。半導体基板(1)は、基板の強度を高める等の理由により、シリコンインゴット又はウエハの製造時に、シリコン中に酸素原子又は分子を含ませることがある。よって、所定の深さの領域(15)に形成される酸素富裕層(4)は、他の深さ領域(16,17)と比較して1.2倍以上、望ましくは2.0倍以上の酸素濃度を有する。例えば、他の深さ領域(16,17)の酸素濃度が1.0×1015atoms/cm3程度であれば、酸素富裕層(4)の酸素濃度は、1.2×1015atoms/cm3以上、望ましくは2.0×1015atoms/cm3以上とする。酸素富裕層(4)の酸素濃度が他の深さ領域(16,17)と比較して1.2倍未満であると、次工程で半導体基板(1)に電子線(25)を照射しても、キャリア捕獲領域として良好に機能する複合欠陥を酸素富裕層(4)のみに局所的に形成できない。本実施の形態では、半導体基板(1)の一方の主面(1a)から約13μmの深さにP+型半導体領域(13)を形成したので、P+型半導体領域(13)とN−型半導体領域(11)との界面に形成されたPN接合よりも若干深い位置に酸素富裕層(4)を形成することができる。 For example, a well-known cyclotron accelerator (not shown) irradiates the semiconductor substrate (1) with oxygen ions (24), and introduces interstitial oxygen atoms or molecules into a predetermined depth region (15) of the semiconductor substrate (1). can do. If oxygen ions (24) are implanted with an acceleration voltage of about 1.0 MeV to 50.0 MeV by a cyclotron accelerator or a vandegraph accelerator, a depth of about 15 μm to 20 μm from one main surface (1a) of the semiconductor substrate (1). An oxygen rich layer (4) having a higher oxygen concentration than the other depth regions (16, 17) can be formed in the thickness region (15) with a thickness of about 5 μm. The semiconductor substrate (1) may contain oxygen atoms or molecules in the silicon during the production of the silicon ingot or wafer for reasons such as increasing the strength of the substrate. Therefore, the oxygen rich layer (4) formed in the region (15) of a predetermined depth is 1.2 times or more, preferably 2.0 times or more compared with other depth regions (16, 17). Having an oxygen concentration of For example, if the oxygen concentration in the other depth regions (16, 17) is about 1.0 × 10 15 atoms / cm 3 , the oxygen concentration in the oxygen rich layer (4) is 1.2 × 10 15 atoms / cm 3. cm 3 or more, preferably 2.0 × 10 15 atoms / cm 3 or more. If the oxygen concentration in the oxygen rich layer (4) is less than 1.2 times that in the other depth regions (16, 17), the semiconductor substrate (1) is irradiated with an electron beam (25) in the next step. However, complex defects that function well as a carrier trapping region cannot be locally formed only in the oxygen-rich layer (4). In this embodiment, since the P + type semiconductor region 13 is formed at a depth of about 13 μm from one main surface 1a of the semiconductor substrate 1, the P + type semiconductor region 13 and the N− type semiconductor are formed. The oxygen rich layer (4) can be formed at a position slightly deeper than the PN junction formed at the interface with the region (11).

続いて、図4に示すように、半導体基板(1)に電子線(25)を照射して、図5に示すように、酸素富裕層(4)に再結合領域(5)を形成する。電子線(25)は、半導体基板(1)の一方の主面(1a)の全面に照射され、半導体基板(1)の結晶格子間に原子空孔を形成する。電子線(25)は、従来と同様に、半導体基板(1)の厚み方向の全体に導入されるが、酸素富裕層(4)では、シリコンの結晶格子間に導入された酸素と電子線(25)によりシリコンに形成された原子空孔とが結合して、複合欠陥が形成される。複合欠陥は、キャリア捕獲領域として良好に機能し、酸素富裕層(4)に再結合領域(5)を形成することができる。前記のように、半導体基板(1)の厚み方向の全体に電子線(25)が導入されるため、酸素富裕層(4)以外の他の深さ領域(16,17)にも電子線(25)による原子空孔が形成される。しかしながら、他の深さ領域(16,17)の酸素密度は、酸素富裕層(4)と比較して低いため、他の深さ領域(16,17)に形成された原子空孔は、酸素と殆ど結合せず、キャリア捕獲領域として良好に機能する複合欠陥とはならない。   Subsequently, as shown in FIG. 4, the semiconductor substrate (1) is irradiated with an electron beam (25) to form a recombination region (5) in the oxygen rich layer (4) as shown in FIG. The electron beam (25) is irradiated to the entire surface of one main surface (1a) of the semiconductor substrate (1) to form atomic vacancies between crystal lattices of the semiconductor substrate (1). The electron beam (25) is introduced into the entire thickness direction of the semiconductor substrate (1) as in the prior art, but in the oxygen-rich layer (4), oxygen introduced into the silicon crystal lattice and the electron beam ( 25) bonds with the atomic vacancies formed in the silicon to form a composite defect. The composite defect functions well as a carrier trapping region and can form a recombination region (5) in the oxygen-rich layer (4). As mentioned above, since the electron beam (25) is introduced to the entire thickness direction of the semiconductor substrate (1), the electron beam (16, 17) other than the oxygen-rich layer (4) ( 25) Atomic vacancies are formed. However, since the oxygen density of the other depth regions (16, 17) is lower than that of the oxygen-rich layer (4), the atomic vacancies formed in the other depth regions (16, 17) And does not form a composite defect that functions well as a carrier trapping region.

例えば、図示しない周知のダイナミトロン加速装置により、半導体基板(1)に電子線(25)を照射して、半導体基板(1)の酸素富裕層(4)に複合欠陥を形成することができる。ダイナミトロン加速装置により電子線(25)を0.5MeV〜5.0MeV程度の加速電圧で注入すれば、半導体基板(1)の厚さ方向の全体に電子線(25)が照射され、半導体基板(1)の酸素富裕層(4)の酸素原子又は分子と電子線(25)の照射により形成された原子空孔とを結合して、酸素富裕層(4)にキャリア捕獲領域として良好に機能する複合欠陥を形成することができる。本実施の形態では、電子線(25)の照射密度を従来の半導体装置(20)の製法の1/2〜1/4程度にしているため、半導体基板(1)の他の深さ領域(16,17)には、従来の半導体装置(20)と比較して僅かな原子空孔しか形成されない。よって、半導体基板(1)の他の深さ領域(16,17)は、再結合領域(5)として殆ど機能しない。この結果、この方法により、半導体基板(1)の一方の主面(1a)から15μm〜20μm程度の深さ領域(15)に他の深さ領域(16,17)と比較して再結合中心密度の高い再結合領域(5)を形成することができる。半導体基板(1)の所望の深さ領域(15)に所定の厚さで酸素富裕層(4)を比較的容易に形成できるため、電子線(25)を使用して、半導体基板(1)の所望の深さ領域(15)に所定の厚さで再結合領域(5)を形成できる。   For example, a compound defect can be formed in the oxygen-rich layer (4) of the semiconductor substrate (1) by irradiating the electron beam (25) to the semiconductor substrate (1) with a well-known dynamitron accelerator (not shown). When an electron beam (25) is injected at an acceleration voltage of about 0.5 MeV to 5.0 MeV by a dynamitron accelerator, the electron beam (25) is irradiated to the entire thickness direction of the semiconductor substrate (1), and the semiconductor substrate Combines oxygen atoms or molecules in the oxygen-rich layer (4) of (1) with atomic vacancies formed by irradiation of the electron beam (25), and functions well as a carrier trapping region in the oxygen-rich layer (4) Composite defects can be formed. In the present embodiment, since the irradiation density of the electron beam (25) is set to about 1/2 to 1/4 of the manufacturing method of the conventional semiconductor device (20), other depth regions of the semiconductor substrate (1) ( 16, 17) are formed with few atomic vacancies as compared with the conventional semiconductor device (20). Therefore, the other depth regions (16, 17) of the semiconductor substrate (1) hardly function as the recombination region (5). As a result, by this method, a recombination center is formed from one main surface (1a) of the semiconductor substrate (1) to a depth region (15) of about 15 μm to 20 μm compared to the other depth regions (16, 17). A high-density recombination region (5) can be formed. Since the oxygen-rich layer (4) can be formed relatively easily with a predetermined thickness in the desired depth region (15) of the semiconductor substrate (1), the electron beam (25) is used to form the semiconductor substrate (1). The recombination region (5) can be formed with a predetermined thickness in the desired depth region (15).

次に、再結合領域(5)を形成した半導体基板(1)にアニール(加熱)処理を施して、半導体基板(1)の所定の深さの領域(15)に形成された結晶欠陥を安定化させる。また、このアニール処理によって、半導体基板(1)の他の深さ領域(16,17)に形成された結晶欠陥又は格子欠陥を除去又は減少することができる。アニール処理は、例えば、200℃〜400℃、好ましくは、300℃で1時間の加熱工程とする。200℃未満の温度により加熱すると、他の深さ領域(16,17)に形成された結晶欠陥を良好に除去できない。また、400℃を超える温度により加熱すると、再結合領域(5)を形成する複合欠陥も減少するため、好ましくない。   Next, the semiconductor substrate (1) in which the recombination region (5) is formed is annealed (heated) to stabilize crystal defects formed in the region (15) of a predetermined depth of the semiconductor substrate (1). Make it. In addition, this annealing treatment can remove or reduce crystal defects or lattice defects formed in other depth regions (16, 17) of the semiconductor substrate (1). The annealing process is, for example, a heating process of 200 ° C. to 400 ° C., preferably 300 ° C. for 1 hour. When heated at a temperature lower than 200 ° C., crystal defects formed in other depth regions (16, 17) cannot be removed satisfactorily. Further, heating at a temperature exceeding 400 ° C. is not preferable because composite defects that form the recombination region (5) are also reduced.

最後に、半導体基板(1)の一方の主面(1a)に絶縁膜(2)及び上部電極(3)を形成すると共に、半導体基板(1)の他方の主面(1b)に下部電極(6)を形成して、図1に示すダイオード装置(ファーストリカバリダイオード)(10)を完成する。例えば、絶縁膜(2)は、シリコン酸化膜(SiO2)により形成される。また、上部電極(3)は、アルミニウムを蒸着して形成され、下部電極(6)は、アルミニウム、チタン及びニッケルの積層電極を固着して形成される。 Finally, the insulating film (2) and the upper electrode (3) are formed on one main surface (1a) of the semiconductor substrate (1), and the lower electrode (1b) is formed on the other main surface (1b) of the semiconductor substrate (1). 6) is formed to complete the diode device (fast recovery diode) (10) shown in FIG. For example, the insulating film (2) is formed of a silicon oxide film (SiO 2 ). The upper electrode (3) is formed by vapor-depositing aluminum, and the lower electrode (6) is formed by fixing a laminated electrode of aluminum, titanium and nickel.

上記半導体装置の製法によれば、半導体基板(1)の所望且つ所定の深さ領域(15)に酸素富裕層(4)を形成して、半導体基板(1)内で再結合領域(5)を形成する深さ及び厚みを制御することができる。この結果、動作抵抗が比較的低く且つスイッチング特性に優れた半導体装置(10)を容易に製造することができる。上記製法により形成されたダイオード装置(10)は、半導体基板(1)の所定の深さ領域(15)に原子空孔と酸素とが結合して成る複合欠陥により形成される再結合領域(5)を備える。複合欠陥は、原子空孔又は格子間原子等の単純な孤立欠陥に比べて、キャリア捕獲領域として良好に機能する。   According to the manufacturing method of the semiconductor device, an oxygen-rich layer (4) is formed in a desired and predetermined depth region (15) of the semiconductor substrate (1), and the recombination region (5) is formed in the semiconductor substrate (1). The depth and thickness of the film can be controlled. As a result, the semiconductor device (10) having a relatively low operating resistance and excellent switching characteristics can be easily manufactured. The diode device (10) formed by the above manufacturing method has a recombination region (5) formed by a composite defect formed by combining atomic vacancies and oxygen in a predetermined depth region (15) of the semiconductor substrate (1). ). A composite defect functions well as a carrier trapping region as compared with a simple isolated defect such as an atomic vacancy or an interstitial atom.

本発明は、前記実施の形態に限定されず、更に種々の変更が可能である。IGBT又はサイリスタ等の他の半導体装置の製法に本発明を適用してもよい。また、電子線(25)による半導体装置(10)のライフタイム制御に限定されず、シリコン中に原子空孔を形成する他の放射線によるライフタイム制御に本発明を適用してもよい。半導体装置の製造工程の順序を適宜に変更してもよい。本実施の形態では、半導体基板(1)に再結合領域(5)を形成した後に、半導体基板(1)に絶縁膜(2)、上部電極(3)及び下部電極(6)を形成した。しかしながら、半導体基板(1)に絶縁膜(2)、上部電極(3)及び下部電極(6)の何れか又は全てを形成した後に、半導体基板(1)に酸素富裕層(4)又は再結合領域(5)を形成してもよい。また、酸素富裕層(4)を半導体基板(1)の平面方向の全体に形成したが、例えば、P+型半導体領域(13)の下側等の半導体基板(1)の平面方向の一部にのみに酸素を導入して、酸素富裕層(4)及び再結合領域(5)を形成してもよい。   The present invention is not limited to the embodiment described above, and various modifications can be made. You may apply this invention to the manufacturing method of other semiconductor devices, such as IGBT or a thyristor. Further, the present invention is not limited to the lifetime control of the semiconductor device (10) by the electron beam (25), and the present invention may be applied to the lifetime control by other radiation that forms atomic vacancies in silicon. You may change the order of the manufacturing process of a semiconductor device suitably. In this embodiment, after forming the recombination region (5) in the semiconductor substrate (1), the insulating film (2), the upper electrode (3), and the lower electrode (6) are formed in the semiconductor substrate (1). However, after forming any or all of the insulating film (2), the upper electrode (3) and the lower electrode (6) on the semiconductor substrate (1), the oxygen-rich layer (4) or recombination on the semiconductor substrate (1) Region (5) may be formed. Further, the oxygen-rich layer (4) is formed over the entire planar direction of the semiconductor substrate (1). Only oxygen may be introduced to form the oxygen rich layer (4) and the recombination region (5).

本実施の形態に示す半導体装置の製法は、単なる例示に過ぎず、特許請求の範囲に明記しない限り、本発明は、酸素濃度、酸素及び放射線の照射速度、アニール処理温度及び時間、半導体基板(1)及び各深さ領域(15,16,17)の寸法等の各種設定値並びに酸素又は放射線を放出する各装置の種類により限定されない。   The manufacturing method of the semiconductor device described in this embodiment mode is merely an example, and unless otherwise specified in the claims, the present invention relates to an oxygen concentration, an irradiation rate of oxygen and radiation, an annealing temperature and time, a semiconductor substrate ( It is not limited by 1) and various set values such as the dimensions of the depth regions (15, 16, 17) and the type of each device that emits oxygen or radiation.

本発明は、ダイオード、IGBT等のトランジスタ、サイリスタ又はIC等の半導体装置及びその製法に良好に適用することができる。   The present invention can be favorably applied to a semiconductor device such as a diode, a transistor such as an IGBT, a thyristor, or an IC, and a manufacturing method thereof.

本発明による半導体装置の製法及び半導体装置の実施の形態を示す断面図Sectional drawing which shows the manufacturing method of the semiconductor device by this invention, and embodiment of a semiconductor device 図1の半導体基板の断面図Sectional view of the semiconductor substrate of FIG. 酸素イオンを照射した図2の断面図Cross section of FIG. 2 irradiated with oxygen ions 電子線を照射した図3の断面図Cross-sectional view of FIG. 3 irradiated with an electron beam 再結合領域が形成された図4の断面図4 is a cross-sectional view of FIG. 4 where a recombination region is formed. 従来の半導体装置を示す断面図Sectional view showing a conventional semiconductor device 電子線を照射した図6の断面図Sectional view of FIG. 6 irradiated with an electron beam

符号の説明Explanation of symbols

(1)・・半導体基板、 (4)・・酸素富裕層、 (5)・・再結合領域、 (15)・・所定の深さ領域、 (16,17)・・他の深さ領域、 (24)・・酸素イオン、 (25)・・電子線(放射線)、   (1) ・ ・ Semiconductor substrate, (4) ・ ・ Oxygen rich layer, (5) ・ ・ Recombination region, (15) ・ ・ Predetermined depth region, (16,17) ・ ・ Other depth regions, (24) ... Oxygen ions, (25) ... Electron beams (radiation),

Claims (4)

半導体基板の所定の深さ領域に前記半導体基板の他の深さ領域より酸素濃度の高い酸素富裕層を形成する過程と、
前記半導体基板に放射線を照射して、前記酸素富裕層に再結合領域を形成する過程とを含むことを特徴とする半導体装置の製法。
Forming an oxygen-rich layer having a higher oxygen concentration than other depth regions of the semiconductor substrate in a predetermined depth region of the semiconductor substrate;
Irradiating the semiconductor substrate with radiation to form a recombination region in the oxygen-rich layer.
前記酸素富裕層を形成する過程は、
前記半導体基板に酸素イオンを照射して、前記半導体基板の所定の深さ領域に酸素を導入する過程を含む請求項1に記載の半導体装置の製法。
The process of forming the oxygen rich layer is:
The method for manufacturing a semiconductor device according to claim 1, comprising a step of irradiating the semiconductor substrate with oxygen ions and introducing oxygen into a predetermined depth region of the semiconductor substrate.
前記再結合領域を形成する過程は、
前記酸素富裕層が形成された前記半導体基板に電子線を照射して、前記半導体基板に原子空孔を形成し、前記酸素富裕層の酸素と前記原子空孔とが結合して成る複合欠陥を形成する過程を含む請求項1又は2に記載の半導体装置の製法。
The process of forming the recombination region includes:
The semiconductor substrate on which the oxygen-rich layer is formed is irradiated with an electron beam to form atomic vacancies in the semiconductor substrate, and a composite defect formed by combining oxygen and the atomic vacancies in the oxygen-rich layer. The manufacturing method of the semiconductor device of Claim 1 or 2 including the process to form.
少なくとも1つのPN接合が形成された前記半導体基板を備え、
前記半導体基板は、該半導体基板の所定の深さ領域に原子空孔と酸素とが結合して成る複合欠陥により形成される再結合領域を有することを特徴とする半導体装置。
Comprising the semiconductor substrate on which at least one PN junction is formed;
The semiconductor device according to claim 1, wherein the semiconductor substrate has a recombination region formed by a composite defect formed by combining atomic vacancies and oxygen in a predetermined depth region of the semiconductor substrate.
JP2006086069A 2006-03-27 2006-03-27 Manufacturing method of semiconductor devices Expired - Fee Related JP5124964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086069A JP5124964B2 (en) 2006-03-27 2006-03-27 Manufacturing method of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086069A JP5124964B2 (en) 2006-03-27 2006-03-27 Manufacturing method of semiconductor devices

Publications (2)

Publication Number Publication Date
JP2007266103A true JP2007266103A (en) 2007-10-11
JP5124964B2 JP5124964B2 (en) 2013-01-23

Family

ID=38638833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086069A Expired - Fee Related JP5124964B2 (en) 2006-03-27 2006-03-27 Manufacturing method of semiconductor devices

Country Status (1)

Country Link
JP (1) JP5124964B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352101A (en) * 2005-05-20 2006-12-28 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2010114368A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Semiconductor device and method of manufacturing the same
CN102104074A (en) * 2009-12-16 2011-06-22 丰田自动车株式会社 Semiconductor device and manufacturing method thereof
JP2011222550A (en) * 2010-04-02 2011-11-04 Toyota Central R&D Labs Inc Pin diode
JP2012033568A (en) * 2010-07-28 2012-02-16 Toyota Motor Corp Method of manufacturing semiconductor device
CN103107203A (en) * 2011-11-10 2013-05-15 比亚迪股份有限公司 Diode and manufacturing method thereof
WO2016035531A1 (en) * 2014-09-04 2016-03-10 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2016157935A1 (en) * 2015-04-02 2016-10-06 三菱電機株式会社 Method for manufacturing power semiconductor device
CN106449729A (en) * 2016-08-22 2017-02-22 湖南大学 Semiconductor structure and manufacturing method thereof
JP2017208490A (en) * 2016-05-19 2017-11-24 ローム株式会社 Fast diode and method for manufacturing the same
CN109888025A (en) * 2019-03-21 2019-06-14 哈尔滨工业大学 PIN diode displacement radiation-resistant reinforcement method based on deep ion implantation mode
CN110226236A (en) * 2017-01-25 2019-09-10 罗姆股份有限公司 Semiconductor device
JPWO2020217683A1 (en) * 2019-04-26 2021-10-14 富士電機株式会社 Semiconductor devices and manufacturing methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102545A (en) * 1994-09-30 1996-04-16 Meidensha Corp Life time control method of semiconductor element
JP2003249662A (en) * 2003-02-12 2003-09-05 Mitsubishi Electric Corp Semiconductor device
JP2006352101A (en) * 2005-05-20 2006-12-28 Toyota Motor Corp Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102545A (en) * 1994-09-30 1996-04-16 Meidensha Corp Life time control method of semiconductor element
JP2003249662A (en) * 2003-02-12 2003-09-05 Mitsubishi Electric Corp Semiconductor device
JP2006352101A (en) * 2005-05-20 2006-12-28 Toyota Motor Corp Semiconductor device and manufacturing method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352101A (en) * 2005-05-20 2006-12-28 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2010114368A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Semiconductor device and method of manufacturing the same
US8846544B2 (en) 2009-12-16 2014-09-30 Toyota Jidosha Kabushiki Kaisha Reverse recovery using oxygen-vacancy defects
CN102104074A (en) * 2009-12-16 2011-06-22 丰田自动车株式会社 Semiconductor device and manufacturing method thereof
JP2011146673A (en) * 2009-12-16 2011-07-28 Toyota Central R&D Labs Inc Diode and method of manufacturing the same
US8698285B2 (en) 2009-12-16 2014-04-15 Toyota Jidosha Kabushiki Kaisha Reverse recovery using oxygen-vacancy defects
JP2011222550A (en) * 2010-04-02 2011-11-04 Toyota Central R&D Labs Inc Pin diode
JP2012033568A (en) * 2010-07-28 2012-02-16 Toyota Motor Corp Method of manufacturing semiconductor device
CN103107203A (en) * 2011-11-10 2013-05-15 比亚迪股份有限公司 Diode and manufacturing method thereof
WO2016035531A1 (en) * 2014-09-04 2016-03-10 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US9870923B2 (en) 2014-09-04 2018-01-16 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
CN106062966A (en) * 2014-09-04 2016-10-26 富士电机株式会社 Semiconductor device and semiconductor device manufacturing method
CN106062966B (en) * 2014-09-04 2019-04-26 富士电机株式会社 The manufacturing method of semiconductor device and semiconductor device
JPWO2016035531A1 (en) * 2014-09-04 2017-04-27 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2016157935A1 (en) * 2015-04-02 2016-10-06 三菱電機株式会社 Method for manufacturing power semiconductor device
JPWO2016157935A1 (en) * 2015-04-02 2017-04-27 三菱電機株式会社 Method for manufacturing power semiconductor device
JP2017208490A (en) * 2016-05-19 2017-11-24 ローム株式会社 Fast diode and method for manufacturing the same
CN106449729A (en) * 2016-08-22 2017-02-22 湖南大学 Semiconductor structure and manufacturing method thereof
CN106449729B (en) * 2016-08-22 2019-04-30 湖南大学 A kind of semiconductor structure is with its production method
CN110226236A (en) * 2017-01-25 2019-09-10 罗姆股份有限公司 Semiconductor device
CN109888025A (en) * 2019-03-21 2019-06-14 哈尔滨工业大学 PIN diode displacement radiation-resistant reinforcement method based on deep ion implantation mode
JPWO2020217683A1 (en) * 2019-04-26 2021-10-14 富士電機株式会社 Semiconductor devices and manufacturing methods
US11710766B2 (en) 2019-04-26 2023-07-25 Fuji Electric Co., Ltd. Semiconductor device containing an oxygen concentration distribution

Also Published As

Publication number Publication date
JP5124964B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5124964B2 (en) Manufacturing method of semiconductor devices
US10546919B2 (en) Semiconductor device and semiconductor device manufacturing method
US9276071B2 (en) Semiconductor device and method for producing semiconductor device
JP5104314B2 (en) Semiconductor device and manufacturing method thereof
JP5718026B2 (en) Method for manufacturing a semiconductor device using laser annealing for selectively activating implanted dopants
US20080079119A1 (en) Semiconductor device and method for manufacturing the same
WO2013108911A1 (en) Semiconductor device and method for producing same
KR100207938B1 (en) Annealed semiconductor device and annealing method
JP6169249B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPWO2012063342A1 (en) Manufacturing method of semiconductor device
JP6406452B2 (en) Semiconductor device and manufacturing method thereof
JP5929741B2 (en) Manufacturing method of semiconductor device
JPWO2020036015A1 (en) Semiconductor devices and manufacturing methods
JP2007502541A (en) Internal gettering in SIMOX SOI silicon substrate
JP2009141304A (en) Semiconductor device and method of manufacturing the same
JP4858527B2 (en) Manufacturing method of semiconductor device
JP5751106B2 (en) Manufacturing method of semiconductor device
JP2000077350A (en) Power semiconductor device and manufacture thereof
JPS6068621A (en) Manufacture of semiconductor device
JPS6074536A (en) Manufacture of semiconductor device
JP6903254B1 (en) Manufacturing method of semiconductor device and semiconductor device
JP4363827B2 (en) Impurity diffusion method, semiconductor device, and manufacturing method of semiconductor device
TWI833756B (en) How to form the suction layer
JPH05121540A (en) Manufacture of semiconductor device
JP2022073497A (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees