JP2007261896A - Panel parting method - Google Patents

Panel parting method Download PDF

Info

Publication number
JP2007261896A
JP2007261896A JP2006090460A JP2006090460A JP2007261896A JP 2007261896 A JP2007261896 A JP 2007261896A JP 2006090460 A JP2006090460 A JP 2006090460A JP 2006090460 A JP2006090460 A JP 2006090460A JP 2007261896 A JP2007261896 A JP 2007261896A
Authority
JP
Japan
Prior art keywords
panel
liquid crystal
temperature
thermal shock
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090460A
Other languages
Japanese (ja)
Other versions
JP4673781B2 (en
Inventor
Megumi Babahata
恵 馬場畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
Original Assignee
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Display Corp filed Critical Kyocera Display Corp
Priority to JP2006090460A priority Critical patent/JP4673781B2/en
Publication of JP2007261896A publication Critical patent/JP2007261896A/en
Application granted granted Critical
Publication of JP4673781B2 publication Critical patent/JP4673781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a panel parting method for parting a large-sized substrate to individual optical panels surely achieving higher performance and cost reduction by improvement in productivity, versatility, workability, etc. <P>SOLUTION: The panel parting method comprises parting the optical panel formed by sticking together the two glass substrates by the scribing lines formed on the surface of the glass substrates, a thermal impact having an abrupt temperature change, wherein the temperature difference is ≥50°C and a change speed of the temperature is ≥30°C/min, is applied to the glass substrate in order to generate cracks at the points formed with the scribing lines. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、2枚のガラス基板を貼り合わせた光学パネルをガラス基板の表面に形成したスクライブラインで分断するのに好適なパネル分断方法に関する。   The present invention relates to a panel cutting method suitable for cutting an optical panel obtained by bonding two glass substrates together with a scribe line formed on the surface of the glass substrate.

近年の液晶パネル、ELパネルなどの光学パネルの製造においては、多面取り用の大きな面積を有するガラス基板を貼り合わせた大判の基板(マザー基板)の状態で複数の光学パネルを一体に作り込み、その後、大判の基板を個々の光学パネルに分断することが、製造の効率化および低コスト化の観点から多用されている。   In the production of optical panels such as liquid crystal panels and EL panels in recent years, a plurality of optical panels are integrally formed in the state of a large substrate (mother substrate) bonded with a glass substrate having a large area for multi-sided drawing. Thereafter, dividing large-sized substrates into individual optical panels is frequently used from the viewpoint of manufacturing efficiency and cost reduction.

そして、このような光学パネルのガラス基板の分断は、例えば、超硬チップなどを用いてガラス基板の表面に予め切断予定線に沿って断面V溝状の傷であるスクライブラインを形成した後、前記スクライブラインに対向する反対側箇所に、スキージ、ブレイクバー、分断ヘッドなどと称される押圧部材を当接させることで行われている(例えば、特許文献1参照)。   And, for example, after dividing the glass substrate of such an optical panel, after forming a scribe line that is a scratch having a V-shaped cross section along the planned cutting line in advance on the surface of the glass substrate using a carbide chip or the like, This is done by bringing a pressing member called a squeegee, a break bar, a cutting head or the like into contact with the opposite side facing the scribe line (see, for example, Patent Document 1).

特開2001−235733号公報JP 2001-235733 A

しかしながら、従来のパネル分断方法においては、ガラス基板を直線状に分断する場合には前記押圧部材によって良好に分断することができるものの、ガラス基板を曲線状に分断したり、ガラス基板から外周形状が曲線の基板を打ち抜くように分断すること(以下、これらを異形分断と称する)は困難であった。   However, in the conventional panel cutting method, when the glass substrate is cut into a straight line, it can be cut off with the pressing member, but the glass substrate is cut into a curved shape or the outer shape from the glass substrate is changed. It was difficult to divide the curved substrate so as to be punched (hereinafter referred to as irregular division).

このように、従来のパネル分断方法は、直線および曲線などの多種多様のスクライブラインの形状に対応することができず、汎用性に劣るという問題点があった。また、異形分断の場合、ホイールカッタ等の切断部材(以下、ホイールカッタという)を使用する方法を採用しても、ガラス基板に欠け等を発生させずに分断することが困難な作業であったことに変わりがない。   As described above, the conventional panel cutting method cannot cope with various shapes of scribe lines such as straight lines and curves, and has a problem that it is inferior in versatility. In the case of irregular cutting, even if a method using a cutting member such as a wheel cutter (hereinafter referred to as a wheel cutter) is adopted, it is difficult to cut the glass substrate without causing chipping or the like. There is no change.

さらに、従来のパネル分断方法においては、スクライブラインに対して外力を一様に付与する必要があるため、ガラス基板と押圧部材の押圧部との平行度を極めて高精度に管理する必要があり、平行度の調整やメンテナンスの頻度が増加して生産性および作業性が低下するという問題点があった。   Furthermore, in the conventional panel cutting method, it is necessary to uniformly apply an external force to the scribe line, so it is necessary to manage the parallelism between the glass substrate and the pressing portion of the pressing member with extremely high accuracy, There is a problem that the frequency of adjustment of parallelism and maintenance is increased and productivity and workability are lowered.

本発明はこのような点に鑑みてなされたものであり、汎用性、生産性および作業性の優れたパネル分断方法を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the panel cutting method excellent in versatility, productivity, and workability | operativity.

前述した目的を達成するため、本発明のパネル分断方法は、2枚のガラス基板を貼り合わせた光学パネルを前記ガラス基板の表面に形成したスクライブラインで分断するパネル分断方法であって、加熱および/または冷却により、前記ガラス基板に急激な温度変化を与える熱衝撃で前記光学パネルを分断することを特徴とする。   In order to achieve the above-described object, the panel cutting method of the present invention is a panel cutting method in which an optical panel in which two glass substrates are bonded together is cut by a scribe line formed on the surface of the glass substrate. The optical panel is divided by a thermal shock that gives a sudden temperature change to the glass substrate by cooling.

このように、ガラス基板に対し、加熱および/または冷却によりガラス基板の破壊応力を超える熱衝撃を与えることで、前記ガラス基板に形成されたスクライブラインに応力を生じさせて、前記スクライブラインの形成箇所にクラックを発生させることができ、前記光学パネルをスクライブラインの所望の形状に沿って簡単かつ確実に分断することができる。   In this way, by applying a thermal shock exceeding the breaking stress of the glass substrate by heating and / or cooling to the glass substrate, stress is generated in the scribe line formed on the glass substrate, thereby forming the scribe line. Cracks can be generated at locations, and the optical panel can be divided easily and reliably along the desired shape of the scribe line.

なお、前記ガラス基板に急激な温度変化を与えてガラス基板の破壊応力を超える熱衝撃を与えるための加熱および/または冷却は回数を拘るものではない。例えば、常温の光学パネルに熱衝撃を与えるに足る加熱と冷却とを1回ずつ行ってもよいし、前記冷却の後、さらに、もう1回、前記光学パネルに熱衝撃を与える加熱をおこなってもよい。   The number of heating and / or cooling operations for giving a thermal shock exceeding the breaking stress of the glass substrate by applying a rapid temperature change to the glass substrate is not limited. For example, heating and cooling sufficient to give a thermal shock to an optical panel at room temperature may be performed once, and after the cooling, heating that gives a thermal shock to the optical panel is performed once more. Also good.

また、前記加熱または冷却による温度変化の速度を30℃/分以上とし、さらに、前記加熱または冷却の前後における温度変化の温度差を50℃以上とすれば、ガラス基板の破壊応力を超える熱衝撃をより確実に与えることができ、前記クラックの発生を促進させることができる。   Further, if the rate of temperature change by heating or cooling is 30 ° C./min or more, and the temperature difference of temperature change before and after heating or cooling is 50 ° C. or more, thermal shock exceeding the fracture stress of the glass substrate Can be more reliably applied, and the occurrence of the cracks can be promoted.

さらに、本発明のパネル分断方法は、前記光学パネルが2枚のガラス基板間に液晶層を封止してなる液晶パネルであり、前記液晶パネルに対する温度変化を加熱および/または冷却で行い、前記液晶パネルに対する加熱温度を前記液晶層の液晶の層転移温度以上とし、その後に、前記熱衝撃で液晶パネルを分断することを特徴とする。   Further, the panel cutting method of the present invention is a liquid crystal panel in which the optical panel is formed by sealing a liquid crystal layer between two glass substrates, the temperature change with respect to the liquid crystal panel is performed by heating and / or cooling, The heating temperature for the liquid crystal panel is set to be equal to or higher than the liquid crystal transition temperature of the liquid crystal layer, and then the liquid crystal panel is divided by the thermal shock.

このように、液晶パネルに対する加熱温度を前記液晶層の液晶の層転移温度以上の温度とすることで、液晶パネルの分断と前記液晶の配向処理とを1つのステップにおいて行なうことができる。   Thus, by setting the heating temperature for the liquid crystal panel to a temperature equal to or higher than the liquid crystal transition temperature of the liquid crystal layer, the liquid crystal panel can be divided and the liquid crystal alignment process can be performed in one step.

このように、本発明のパネル分断方法によれば、光学パネルを直線状に分断することは勿論のこと、異形分断であっても、確実かつ容易に行なうことができ、汎用性、生産性および作業性を向上させることができるといった優れた効果を奏する。   As described above, according to the panel cutting method of the present invention, it is possible to reliably and easily carry out the optical panel cutting in a straight line as well as irregular cutting, and versatility, productivity and There is an excellent effect that workability can be improved.

以下に説明する本発明の各実施形態のパネル分断方法は、ガラス基板の表面に断面V溝状のスクライブラインが形成された光学パネルに対し、急激な温度変化を与えて前記ガラス基板の破壊応力を超える熱衝撃で分断する方法である。   In the panel cutting method according to each embodiment of the present invention described below, the glass substrate is subjected to an abrupt temperature change with respect to the optical panel having a V-shaped scribe line formed on the surface of the glass substrate. It is a method of dividing by thermal shock exceeding.

各実施形態のパネル分断方法においては、載置面に載置された被分断物を所定の温度に加熱可能とされたホットプレートが配設された加熱装置と、載置面に載置された被分断物を所定の温度に冷却可能とされたコールドプレートが配設された冷却装置とを用いる。   In the panel cutting method of each embodiment, a heating device provided with a hot plate capable of heating the object to be cut placed on the placement surface to a predetermined temperature, and placed on the placement surface A cooling device provided with a cold plate capable of cooling the object to be cut to a predetermined temperature is used.

前記加熱装置に配設されたホットプレートおよび冷却装置に配設されたコールドプレートについては、公知の構成のホットプレート、コールドプレートを使用する。例えば、コールドプレートにおいては、空冷式は、放熱フィンを通して吸熱した熱量を放熱側ファンより排熱する空冷式、放熱ジャケット内を循環する冷却水によって吸熱した熱量を移送する水冷式を問わず、載置面を有するプレートを冷却可能であればよい。   As the hot plate disposed in the heating device and the cold plate disposed in the cooling device, a hot plate and a cold plate having a known configuration are used. For example, in the cold plate, the air-cooled type is mounted regardless of whether it is an air-cooled type that exhausts heat absorbed through the radiating fin from the heat-dissipation side fan or a water-cooled type that transfers heat absorbed by cooling water circulating in the radiating jacket. It is sufficient if the plate having the mounting surface can be cooled.

但し、本実施形態のパネル分断方法においては、前記加熱装置、冷却装置はそれぞれ、被分断物としての光学パネルを30℃/分以上の温度変化の速度で加熱あるいは冷却が可能な性能を有するものを用い、前記加熱および/または冷却の前後における温度変化の温度差が50℃以上となるように設定する。光学パネルに対し、前記ガラス基板の破壊応力を超える熱衝撃をより確実に与え、クラックの発生を促進させるためである。   However, in the panel cutting method of the present embodiment, the heating device and the cooling device each have a performance capable of heating or cooling the optical panel as a material to be cut at a temperature change rate of 30 ° C./min or more. The temperature difference of the temperature change before and after the heating and / or cooling is set to be 50 ° C. or more. This is because a thermal shock exceeding the breaking stress of the glass substrate is more reliably applied to the optical panel and the generation of cracks is promoted.

そこで、第1実施形態および第2実施形態においては、前記加熱装置は、作業環境温度と同じ25℃(常温)とされた被分断物としての光学パネルを60秒間の載置で80℃に加熱可能とされ、また、前記冷却装置は、80℃に加熱された被分断物としての光学パネルを90秒間の載置で25℃に冷却可能とされたものを用いる。   Therefore, in the first embodiment and the second embodiment, the heating device heats the optical panel as an object to be cut at 25 ° C. (normal temperature), which is the same as the working environment temperature, to 80 ° C. after being placed for 60 seconds. In addition, the cooling device that can cool the optical panel as an object heated to 80 ° C. to 25 ° C. after being placed for 90 seconds is used.

そして、第1実施形態のパネル分断方法においては、前記加熱装置および冷却装置を用い、図1に示すように、以下の要領で光学パネルを分断する。   And in the panel cutting method of 1st Embodiment, as shown in FIG. 1, using the said heating apparatus and cooling device, an optical panel is cut in the following ways.

まず、2枚のガラス基板を貼り合わせた光学パネルの前記ガラス基板の表面に、切断予定線に沿って、断面V溝状のスクライブラインを形成する(ステップST1)。   First, a scribe line having a V-shaped cross section is formed along the planned cutting line on the surface of the glass substrate of the optical panel obtained by bonding two glass substrates (step ST1).

当初温度を環境温度とされた前記光学パネルを、加熱装置のホットプレートの載置面に120秒間載置させて加熱し、25℃から80℃へ温度変化させ、熱衝撃を与える(ステップST2:第1熱衝撃ステップ)。なお、このとき、前記スティック基板は、加熱装置の加熱性能により、60秒後には80℃に加熱される。   The optical panel whose initial temperature is set as the environmental temperature is placed on the placement surface of the hot plate of the heating device for 120 seconds and heated, and the temperature is changed from 25 ° C. to 80 ° C. to give a thermal shock (step ST2: First thermal shock step). At this time, the stick substrate is heated to 80 ° C. after 60 seconds due to the heating performance of the heating device.

続いて、さらに、80℃にまで加熱された光学パネルを、冷却装置のコールドプレートの載置面に90秒間載置させて冷却し、80℃から25℃へ急激に温度変化させ、熱衝撃を与える(ステップST3:第2熱衝撃ステップ)。   Subsequently, the optical panel heated to 80 ° C. is placed on the cold plate placement surface of the cooling device for 90 seconds to be cooled, and the temperature is rapidly changed from 80 ° C. to 25 ° C. (Step ST3: second thermal shock step).

このように、ガラス基板に対し、加熱と冷却とにより、破壊応力を超える熱衝撃を与えることで、前記ガラス基板に形成された断面V溝状のスクライブラインに応力を生じさせることができる。これにより、前記スクライブラインのV溝部分にクラックを発生させることができ、前記光学パネルを切断予定線に沿って所望の形状に簡単かつ確実に分断することができる。   As described above, by applying a thermal shock exceeding the breaking stress to the glass substrate by heating and cooling, stress can be generated in the scribe line having a V-shaped cross section formed on the glass substrate. Thereby, a crack can be generated in the V-groove portion of the scribe line, and the optical panel can be easily and reliably divided into a desired shape along the planned cutting line.

また、前記加熱または冷却による温度変化の速度を30℃/分以上(急温、急冷)とし、さらに、前記加熱または冷却の前後における温度変化の温度差を50℃以上とすることで、ガラス基板の破壊応力を超える熱衝撃をより確実に与えることができ、前記クラックの発生を促進させることができる。   Further, the temperature change rate by heating or cooling is set to 30 ° C./min or more (rapid temperature, rapid cooling), and the temperature difference between temperature changes before and after the heating or cooling is set to 50 ° C. or more, It is possible to more reliably give a thermal shock exceeding the breaking stress of the above, and promote the generation of the cracks.

なお、前記ガラス基板に破壊応力を超える熱衝撃を与えるための加熱および/または冷却はそれぞれ回数を拘るものではない。例えば、前記実施形態における第2熱衝撃ステップの冷却を省略し、1回の熱衝撃ステップのみで分断を試みることも論理上、可能ではある。但し、熱衝撃ステップで分断されない部分が残った場合には、手折りなどの手段で光学パネルを分断することとなるが、他の方法による分断はガラス基板の欠けが発生しやすく、断面も悪化する傾向があるため、加熱と冷却とを組み合わせた2回以上の熱衝撃ステップを以て、光学パネルを分断することが好ましい。   In addition, the heating and / or cooling for applying a thermal shock exceeding the breaking stress to the glass substrate is not limited. For example, it is theoretically possible to omit the cooling of the second thermal shock step in the embodiment and try to divide by only one thermal shock step. However, if the part that is not divided by the thermal shock step remains, the optical panel will be divided by means such as hand folding, but the division by other methods tends to cause chipping of the glass substrate and the cross section also deteriorates. Since there is a tendency, it is preferable to divide the optical panel with two or more thermal shock steps in which heating and cooling are combined.

例えば、前述の第1実施形態のパネル分断方法の効果確認試験においては、加熱による第1熱衝撃ステップ後(ステップST2)には、全体の20%のスクライブラインにおいて分断が確認され、冷却による第2熱衝撃ステップ後(ステップST3)には、全体の90%以上のスクライブラインにおいて分断が確認された。その分断ラインにおける断面には、いずれもガラス基板の欠け等が見あたらず、分断面の状態は良好なものではあったが、この条件下での2回の衝撃ステップで、全スクライブラインの分断を行なうことはできなかった。   For example, in the effect confirmation test of the panel cutting method of the first embodiment described above, after the first thermal shock step by heating (step ST2), the cutting is confirmed in 20% of the entire scribe lines, and the first by the cooling. After the two thermal shock steps (step ST3), the separation was confirmed in 90% or more of the scribe lines. In the section of the cutting line, no chipping or the like of the glass substrate was found, and the state of the cutting section was satisfactory. However, the scribe line was cut in two impact steps under these conditions. I couldn't do it.

そこで、第2実施形態として、図2に示すように、前記第1実施形態における第1熱衝撃ステップ(ステップST2)、第2熱衝撃ステップ(ステップST3)の後に、第3熱衝撃ステップとして、一旦、常温にまで冷却された前記光学パネルに対し、再度、前記加熱装置を用い、前記第2熱衝撃ステップと同じ条件の下で80℃の加熱を施した(ステップST4)ところ、再加熱による第3熱衝撃ステップ後(ステップST4)においては、全スクライブラインにおいて分断が確認され、その分断面の状態も良好なものとなった。   Therefore, as a second embodiment, as shown in FIG. 2, after the first thermal shock step (step ST2) and the second thermal shock step (step ST3) in the first embodiment, as a third thermal shock step, The optical panel once cooled to room temperature was heated again at 80 ° C. under the same conditions as in the second thermal shock step using the heating device (step ST4). After the third thermal shock step (step ST4), the cutting was confirmed in all the scribe lines, and the state of the cross section was also improved accordingly.

以下では、さらに具体的に、液晶注入後の複数の個別の液晶パネルが配列されたスティック基板から個別の液晶パネルを分断する場合を第3実施形態として説明する。   In the following, a case where the individual liquid crystal panels are separated from the stick substrate on which the plurality of individual liquid crystal panels after liquid crystal injection is arranged will be described as a third embodiment.

前記スティック基板は、2枚のガラス基板を個別の液晶パネルの枠状シール部となるシール材で貼り合わせたマザー基板を、前記シール材からなる枠状シール部の液晶注入口を同一辺上に開口させるようにして短冊状に切り出し、各枠状シール部と2枚のガラス基板とで囲繞された空洞部内に液晶を前記液晶注入口から注入し、封止して形成されている。   The stick substrate is a mother substrate in which two glass substrates are bonded together with a sealing material that becomes a frame-shaped seal portion of an individual liquid crystal panel, and a liquid crystal injection port of the frame-shaped seal portion that is made of the sealing material is on the same side. It is cut out into a strip shape so as to be opened, and liquid crystal is injected from the liquid crystal injection port into a hollow portion surrounded by each frame-like seal portion and two glass substrates, and is formed by sealing.

そして、本実施形態のパネル分断方法においては、第1実施形態および第2実施形態のパネル分断方法において用いた加熱装置と、対流による伝熱によって風炉内に配置した被分断物を所定の温度に加熱可能とされた公知の構成の温風炉を用いて、前記スティック基板から個別の液晶パネルを分断する。なお、本実施形態における冷却装置の冷却性能は、120℃に加熱された被分断物としての光学パネルを90秒間の載置で25℃に冷却可能とされたものを用いる。   And in the panel cutting method of this embodiment, the heating apparatus used in the panel cutting method of 1st Embodiment and 2nd Embodiment, and the to-be-divided object arrange | positioned in the wind furnace by the heat transfer by a convection are made into predetermined | prescribed temperature. An individual liquid crystal panel is cut off from the stick substrate using a hot air furnace having a known configuration that can be heated. In addition, the cooling performance of the cooling device in the present embodiment uses an optical panel that can be cooled to 25 ° C. by placing the optical panel as an object heated to 120 ° C. for 90 seconds.

そして、第3実施形態においては、図3に示すように、まず、前記スティック基板を構成する両ガラス基板の表面に、個別の液晶パネルを得るための直線状のスクライブラインをホイールカッタによって断面V溝状に形成する(ステップST11)。   In the third embodiment, as shown in FIG. 3, first, a linear scribe line for obtaining individual liquid crystal panels is formed on the surfaces of both glass substrates constituting the stick substrate by a wheel cutter. A groove is formed (step ST11).

そして、常温の25℃とされたスティック基板を炉内温度125℃とされた温風炉内に放置し、前記2枚のガラス基板間に封止された液晶のネマティック−アイソトロピック相転移温度以上である120℃以上として30分間加熱する(ステップST12)。本実施形態における、この温風炉を利用した加熱は、急速な温度変化によって熱衝撃を与えることを主たる目的とした加熱ではなく、むしろ、次工程である冷却による熱衝撃の効果を高めるための加熱、すなわち、冷却前後における温度差を大きくし、急冷の効果を顕著なものとすることを主たる目的とする加熱である。また、前記温風炉を利用した加熱温度を、封入した液晶のネマティック−アイソトロピック相転移温度(本実施形態においては98℃程度を想定)以上である120℃とすることにより、前記液晶の配向処理(ISO処理)を兼ねることができ、液晶パネルの製造工程における液晶の配向のための加熱工程を省略することが可能となる。なお、前記液晶の配向処理は、ネマティック−アイソトロピック相転移温度より15℃以上であることが好ましい。   Then, the stick substrate having a normal temperature of 25 ° C. is left in a hot air oven having a furnace temperature of 125 ° C., and the temperature is higher than the nematic-isotropic phase transition temperature of the liquid crystal sealed between the two glass substrates. It heats for 30 minutes as a certain 120 degreeC or more (step ST12). In the present embodiment, the heating using the hot air furnace is not a heating mainly intended to give a thermal shock by a rapid temperature change, but rather a heating for enhancing the effect of the thermal shock by cooling, which is the next process. That is, the heating is mainly intended to increase the temperature difference before and after cooling and to make the effect of rapid cooling remarkable. In addition, the heating temperature using the hot air furnace is set to 120 ° C. which is equal to or higher than the nematic-isotropic phase transition temperature of the encapsulated liquid crystal (assuming about 98 ° C. in this embodiment). (ISO treatment) can be used, and the heating step for aligning the liquid crystal in the manufacturing process of the liquid crystal panel can be omitted. The alignment treatment of the liquid crystal is preferably at least 15 ° C. from the nematic-isotropic phase transition temperature.

そして、120℃とされたスティック基板を、冷却装置のコールドプレートの載置面に90秒間載置させて冷却し、120℃から25℃へ急激に温度変化させ、熱衝撃を与える(ステップST13:第1熱衝撃ステップ)。   Then, the stick substrate set at 120 ° C. is placed on the cold plate placement surface of the cooling device for 90 seconds to be cooled, and the temperature is rapidly changed from 120 ° C. to 25 ° C. to give a thermal shock (step ST13: First thermal shock step).

続いて、常温にまで急冷された前記スティック基板を、加熱装置のホットプレートの載置面に120秒間載置させて加熱し、25℃から80℃へ急激に温度変化させ、熱衝撃を与える(ステップST14:第2熱衝撃ステップ)。このとき、前記スティック基板は、加熱装置の加熱性能により、60秒後には80℃に加熱される。なお、前記第2熱衝撃ステップの加熱温度は、前記ネマティック−アイソトロピック相転移温以下であって、急激な温度変化による熱衝撃を期待できる高温であればよい。   Subsequently, the stick substrate that has been rapidly cooled to room temperature is placed on the surface of the hot plate of the heating device for 120 seconds and heated, and the temperature is suddenly changed from 25 ° C. to 80 ° C. to give a thermal shock ( Step ST14: Second thermal shock step). At this time, the stick substrate is heated to 80 ° C. after 60 seconds due to the heating performance of the heating device. The heating temperature in the second thermal shock step may be a temperature that is not higher than the nematic-isotropic phase transition temperature and that can be expected to cause a thermal shock due to a rapid temperature change.

このように、ガラス基板に対し、加熱と冷却とにより破壊応力を超える熱衝撃を与えることで、前記ガラス基板に形成された断面V溝状のスクライブラインに応力を生じさせることができる。これにより、前記スクライブラインのV溝部分にクラックを発生させることができ、前記スティック基板を切断予定線に沿って分断し、個別の液晶パネルを得ることができる。   Thus, by giving a thermal shock exceeding the fracture stress to the glass substrate by heating and cooling, stress can be generated in the scribe line having a V-shaped cross section formed on the glass substrate. Thereby, a crack can be generated in the V-groove portion of the scribe line, and the stick substrate can be divided along a planned cutting line to obtain an individual liquid crystal panel.

また、この第3実施形態のパネル分断方法の効果確認試験においては、冷却による前記第1熱衝撃ステップ後(ステップST13)には、全体の90%のスクライブラインにおいて分断が確認され、加熱による第2熱衝撃ステップ後(ステップST14)には、全スクライブラインにおいて分断が確認され、その分断面の状態も良好なものであった。   Further, in the effect confirmation test of the panel cutting method of the third embodiment, after the first thermal shock step by cooling (step ST13), the cutting is confirmed in 90% of the entire scribe lines, and the first heating test is performed. After two thermal shock steps (step ST14), the cutting was confirmed in all scribe lines, and the state of the cross section was also good accordingly.

このように、本実施形態のパネル分断方法によれば、加熱および/または冷却という簡単な方法で、光学パネルのガラス基板を効率よく、確実に分断することが可能となる。   As described above, according to the panel cutting method of the present embodiment, the glass substrate of the optical panel can be efficiently and surely divided by a simple method of heating and / or cooling.

そして、このパネル分断方法は、スクライブラインが直線状に形成されているか、曲線状に形成されているかに拘わらず、良好な分断を行なうことができるものであるので、特に、光学パネルの異形分断には有効である。   This panel cutting method can perform good cutting regardless of whether the scribe line is formed in a straight line or a curved line. Is effective.

また、本発明は、前述した各実施形態に限定されるものではなく、必要に応じて種々の変更が可能である。   Further, the present invention is not limited to the above-described embodiments, and various modifications can be made as necessary.

例えば、本実施の形態において、熱衝撃ステップを複数回行ったが、1回の熱衝撃ステップで全ての光学パネルの分断をおこなってもよい。しかし、温度変化の速度および温度変化の温度差は複数回の熱衝撃ステップのそれらより2倍以上大きくすることが好ましい。   For example, in this embodiment, the thermal shock step is performed a plurality of times, but all the optical panels may be divided in one thermal shock step. However, it is preferable that the speed of temperature change and the temperature difference of temperature change be at least twice as large as those of a plurality of thermal shock steps.

本発明のパネル分断方法の第1実施形態を示す分断フローチャートThe parting flowchart which shows 1st Embodiment of the panel parting method of this invention 本発明のパネル分断方法の第2実施形態を示す分断フローチャートThe cutting flowchart which shows 2nd Embodiment of the panel cutting method of this invention 本発明のパネル分断方法の第3実施形態を示す分断フローチャートThe cutting flowchart which shows 3rd Embodiment of the panel cutting method of this invention

Claims (3)

2枚のガラス基板を貼り合わせた光学パネルを前記ガラス基板の表面に形成したスクライブラインで分断するパネル分断方法であって、前記ガラス基板に急激な温度変化を与える熱衝撃で前記光学パネルを分断することを特徴とするパネル分断方法。   A panel cutting method in which an optical panel in which two glass substrates are bonded together is cut by a scribe line formed on the surface of the glass substrate, and the optical panel is cut by a thermal shock that gives a sudden temperature change to the glass substrate. A panel cutting method characterized by: 前記温度変化の速度を30℃/分以上とし、前記温度変化の温度差を50℃以上とする請求項1のパネル分断方法。   The panel cutting method according to claim 1, wherein the temperature change rate is 30 ° C./min or more, and the temperature difference of the temperature change is 50 ° C. or more. 前記光学パネルは2枚のガラス基板間に液晶層を封止してなる液晶パネルであり、前記液晶パネルに対する温度変化を加熱および/または冷却で行い、前記液晶パネルに対する加熱温度を前記液晶層の液晶のネマティック−アイソトロピック相転移温度以上とし、その後に前記熱衝撃で液晶パネルを分断する請求項1または請求項2のいずれか1項に記載のパネル分断方法。   The optical panel is a liquid crystal panel in which a liquid crystal layer is sealed between two glass substrates, a temperature change with respect to the liquid crystal panel is performed by heating and / or cooling, and a heating temperature with respect to the liquid crystal panel is set. 3. The panel cutting method according to claim 1, wherein the liquid crystal panel is cut by the thermal shock after the liquid crystal has a nematic-isotropic phase transition temperature or higher.
JP2006090460A 2006-03-29 2006-03-29 Panel cutting method Active JP4673781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090460A JP4673781B2 (en) 2006-03-29 2006-03-29 Panel cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090460A JP4673781B2 (en) 2006-03-29 2006-03-29 Panel cutting method

Publications (2)

Publication Number Publication Date
JP2007261896A true JP2007261896A (en) 2007-10-11
JP4673781B2 JP4673781B2 (en) 2011-04-20

Family

ID=38635254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090460A Active JP4673781B2 (en) 2006-03-29 2006-03-29 Panel cutting method

Country Status (1)

Country Link
JP (1) JP4673781B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545207B1 (en) 2014-01-23 2015-08-18 주식회사 디스플레이테크 Board the local hot expansion using board cutting method
KR101554034B1 (en) 2014-01-23 2015-09-17 주식회사 디스플레이테크 Board the local hot expansion and solvent the local cooling expansion using board cutting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633622A (en) * 1979-08-28 1981-04-04 Sanyo Electric Co Ltd Production of liquid crystal panel
JPS5691216A (en) * 1979-12-25 1981-07-24 Sanyo Electric Co Ltd Production of liquid crystal panel
JP2000063137A (en) * 1998-08-10 2000-02-29 Toyota Motor Corp Method for cutting plate glass and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633622A (en) * 1979-08-28 1981-04-04 Sanyo Electric Co Ltd Production of liquid crystal panel
JPS5691216A (en) * 1979-12-25 1981-07-24 Sanyo Electric Co Ltd Production of liquid crystal panel
JP2000063137A (en) * 1998-08-10 2000-02-29 Toyota Motor Corp Method for cutting plate glass and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545207B1 (en) 2014-01-23 2015-08-18 주식회사 디스플레이테크 Board the local hot expansion using board cutting method
KR101554034B1 (en) 2014-01-23 2015-09-17 주식회사 디스플레이테크 Board the local hot expansion and solvent the local cooling expansion using board cutting method

Also Published As

Publication number Publication date
JP4673781B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4414473B2 (en) Cutting method
JP6378167B2 (en) Thermal laser scribe cutting method and apparatus for manufacturing electrochromic devices and corresponding cut glass panels
TWI385047B (en) Method for cutting brittle material substrates
JP2002047024A (en) Liquid crystal display and method of manufacturing the same
JP2003117921A (en) Method of cutting nonmetallic substrate
JP2010023071A (en) Method for machining terminal of laminated substrate
JP2008149716A (en) Laser cutting system and cutting method
JP4673781B2 (en) Panel cutting method
WO2014116788A9 (en) Laminated glass structure and method of manufacture
CN113714649B (en) Method for manufacturing wafer
KR102210523B1 (en) Display Device And Manufacturing Method Thereof
JP2010199251A (en) Method of manufacturing semiconductor device
JP2010095414A (en) Method for cutting mother glass substrate for display and brittle material substrate, and method for manufacturing display
KR101545207B1 (en) Board the local hot expansion using board cutting method
JP2009263159A (en) Method for working laminated glass substrate
CN104470868A (en) Method for the production of chemically strengthened glass substrates
KR100300416B1 (en) Method and apparatus of splitting non-metallic materials
JP2003181826A (en) Apparatus for dividing and method for dividing
US10689286B2 (en) Separation of glass shapes using engineered induced thermal gradients after process cutting
JP2006150642A (en) Cell and cell manufacturing method
WO2008010457A1 (en) Cutting apparatus
KR101554034B1 (en) Board the local hot expansion and solvent the local cooling expansion using board cutting method
JP2010215480A (en) Method of laminating brittle plate and method of processing thereof
JP2008162824A (en) Cutting method of glass substrate and method for manufacturing display panel from glass substrate
WO2023058510A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350