JP2007248204A - Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex - Google Patents

Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex Download PDF

Info

Publication number
JP2007248204A
JP2007248204A JP2006070857A JP2006070857A JP2007248204A JP 2007248204 A JP2007248204 A JP 2007248204A JP 2006070857 A JP2006070857 A JP 2006070857A JP 2006070857 A JP2006070857 A JP 2006070857A JP 2007248204 A JP2007248204 A JP 2007248204A
Authority
JP
Japan
Prior art keywords
oxygen
absorbance
formula
copper complex
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070857A
Other languages
Japanese (ja)
Inventor
Masato Kodera
政人 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2006070857A priority Critical patent/JP2007248204A/en
Publication of JP2007248204A publication Critical patent/JP2007248204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen absorbing/desorbing composition capable of absorbing/desorbing oxygen at a room temperature, a reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, an oxygen concentration measuring method, and an oxygen affinity calculation method of a binuclear copper complex. <P>SOLUTION: An oxygen concentration is measured, by using as a reagent the oxygen absorbing/desorbing composition formed by adding a nitryl compound to a solution acquired by dissolving the binuclear copper complex represented by [Cu<SB>2</SB>(RCN)<SB>2</SB>(H6M4h)](PF<SB>6</SB>)<SB>2</SB>(Formula 1) or [Cu<SB>2</SB>(RCN)<SB>2</SB>(M6M4h)](PF<SB>6</SB>)<SB>2</SB>(Formula 2) into an organic solvent, or oxygen affinity of the binuclear copper complex is calculated. In the Formulas (1), (2), R is an alkyl group or a phenyl group, and H6M4h is 1,2-bis[2-(bis(6-methyl-2-pyridyl)methyl)-6-pyridyl]ethane, and M6M4h is 1,2-bis[2-(1,1-bis(6-methyl-2-pyridyl)ethyl)-6-pyridyl]ethane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸素吸脱着性組成物、この酸素吸脱着性組成物を用いた酸素濃度吸光測定用試薬、酸素濃度測定方法および二核銅錯体の酸素親和性算出方法に関する。   The present invention relates to an oxygen adsorption / desorption composition, an oxygen concentration absorbance measurement reagent using the oxygen adsorption / desorption composition, an oxygen concentration measurement method, and an oxygen affinity calculation method for a binuclear copper complex.

生体内には様々な種類の金属タンパク質が存在し、その活性中心に含まれる金属イオンの特異的な性質を利用して様々な機能を発現している。そして、金属タンパク質の機能について研究を行うことは医学、薬学だけではなく、化学に基礎をおいた工学的応用の観点からも注目されている。金属タンパク質の中には生命活動において重要な役割を果たす酸素運搬タンパク質がある。この酸素運搬タンパク質のメカニズムを明らかにすることは、人工血液やガス貯蔵、ガスセンサーなどの機能性材料の開発に有益な情報を与え、生物化学・錯体化学だけではなく・触媒化学・医学・薬学の面からも重要視されている。
酸素運搬タンパク質には、ほ乳類等の脊椎動物や一部の無脊椎動物がもつヘモグロビン(Hb)、ホシムシなどの海洋無脊椎動物や一部の無脊椎動物がもつヘムエリスリン(Hr)、そしてイカ、タコなどの軟体動物等の軟体動物や、カニ、エビ等の節足動物がもつヘモシアニン(Hc)が存在し、可逆的に酸素と結合することが知られている。
There are various types of metalloproteins in the living body, and various functions are expressed by utilizing specific properties of metal ions contained in the active center. Research on the functions of metalloproteins has attracted attention not only from medicine and pharmacy but also from the viewpoint of engineering applications based on chemistry. Among metal proteins are oxygen-carrying proteins that play an important role in life activities. Clarifying the mechanism of this oxygen-carrying protein provides useful information for the development of functional materials such as artificial blood, gas storage, and gas sensors, and not only biochemistry and complex chemistry, but also catalytic chemistry, medicine, pharmacy It is also important from the aspect of.
Oxygen-carrying proteins include hemoglobin (Hb) possessed by vertebrates such as mammals and some invertebrates, marine invertebrates such as beetles and heme erythrin (Hr) possessed by some invertebrates, and squid and octopus. It is known that hemocyanin (Hc) possessed by mollusks such as molluscs, and arthropods such as crabs and shrimps exists and reversibly binds to oxygen.

本発明の発明者らは、酸素運搬タンパク質であるoxyHcの機能発現のメカニズムを明らかにすることを目的とし、モデル錯体として
下式(a)または下式(b)で示される二核銅錯体
[Cu2(CH3CN)2(H6M4h)](PF6)2 ・・・(a)
[Cu2(CH3CN)2(M6M4h)](PF6)2 ・・・(b)
(式(a)、(b)中、
H6M4hは、1,2-ビス[2-(ビス(6-メチル-2-ピリジル)メチル)-6-ピリジル]エタン、
M6M4hは1,2-ビス[2-(1,1-ビス(6-メチル-2-ピリジル) エチル)-6-ピリジル]エタンである。)を合成し、この得られたモデル錯体を用いて研究を進めてきた(非特許文献1,2)。
The inventors of the present invention aim to elucidate the mechanism of functional expression of oxyHc, which is an oxygen carrier protein, and as a model complex, a binuclear copper complex represented by the following formula (a) or the following formula (b): Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 ... (a)
[Cu 2 (CH 3 CN) 2 (M6M4h)] (PF 6 ) 2 (b)
(In the formulas (a) and (b),
H6M4h is 1,2-bis [2- (bis (6-methyl-2-pyridyl) methyl) -6-pyridyl] ethane,
M6M4h is 1,2-bis [2- (1,1-bis (6-methyl-2-pyridyl) ethyl) -6-pyridyl] ethane. ) And have been studied using the obtained model complex (Non-Patent Documents 1 and 2).

本発明の発明者らが合成した上記モデル錯体は、室温で安定なμ−η2−η2型パーオキソ錯体を生成するという優れた機能を備えているが、式(a)の二核銅錯体の場合、パーオキソ錯体が熱的に安定であるため、減圧下80℃まで加熱しなければ酸素を可逆的に吸脱着することはできなかった。一方、bridgeheadにメチル基を導入した式(b)の二核銅錯体の場合、メチル基による構造摂動によって銅−酸素間結合距離が長くなり、酸素親和性を低下させることで、Ar下40℃での酸素の可逆的吸脱着が可能となった。 The model complex synthesized by the inventors of the present invention has an excellent function of generating a μ-η 22 type peroxo complex that is stable at room temperature, but the binuclear copper complex of the formula (a) In this case, since the peroxo complex was thermally stable, oxygen could not be reversibly adsorbed / desorbed unless heated to 80 ° C. under reduced pressure. On the other hand, in the case of the binuclear copper complex of the formula (b) in which a methyl group is introduced into bridgehead, the copper-oxygen bond distance is increased by the structural perturbation by the methyl group, and the oxygen affinity is lowered. Reversible adsorption / desorption of oxygen was possible.

J.Am.Chem.Soc.1999,121,p.11006-11007J. Am. Chem. Soc. 1999, 121, p. 11006-11007 Angew.Chem.Int.Ed.2004,43, p.334-337Angew.Chem.Int.Ed.2004,43, p.334-337

しかし、上記式(a)および式(b)のいずれの錯体においても加熱しなければ、酸素の可逆的吸脱着ができず、たとえば、室温で繰り返し使用可能な酸素濃度吸光測定用試薬などへの利用ができず、用途に制限があった。   However, if neither of the complexes of the above formulas (a) and (b) is heated, reversible adsorption / desorption of oxygen cannot be performed. For example, it can be applied to a reagent for measuring oxygen concentration absorbance that can be used repeatedly at room temperature. It could not be used and there were restrictions on its use.

また、上記式(a)および式(b)の二核銅錯体の場合、いずれもわずかな酸素分子とも反応してパーオキソ錯体を生成してしまうことは分かるのであるが、実際の酸素親和性について測定をすることができなかった。   In addition, in the case of the binuclear copper complexes of the above formulas (a) and (b), it can be seen that both react with a small amount of oxygen molecules to form a peroxo complex. The measurement could not be done.

本発明は、上記事情に鑑みて、室温で酸素の吸脱着が可能な酸素吸脱着性組成物、この酸素吸脱着性組成物を用いた酸素濃度吸光測定用試薬、酸素濃度測定方法および二核銅錯体の酸素親和性算出方法を提供することを目的としている。   In view of the above circumstances, the present invention provides an oxygen adsorption / desorption composition capable of adsorbing and desorbing oxygen at room temperature, a reagent for measuring oxygen concentration using the oxygen adsorption / desorption composition, an oxygen concentration measurement method, and a binuclear composition. It aims at providing the oxygen affinity calculation method of a copper complex.

上記目的を達成するために、本発明にかかる酸素吸脱着性組成物は、
下式(1)または下式(2)で示される二核銅錯体
[Cu2(RCN)2(H6M4h)](PF6)2 ・・・(1)
[Cu2(RCN)2(M6M4h)](PF6)2 ・・・(2)
(式(1)、(2)中、Rはアルキル基またはフェニル基、
H6M4hは、1,2-ビス[2-(ビス(6-メチル-2-ピリジル)メチル)-6-ピリジル]エタン、
M6M4hは1,2-ビス[2-(1,1-ビス(6-メチル-2-ピリジル) エチル)-6-ピリジル]エタンである。)を有機溶媒に溶解させた溶液にさらにニトリル化合物が添加されていることを特徴としている。
In order to achieve the above object, an oxygen adsorption / desorption composition according to the present invention comprises:
Binuclear copper complex represented by the following formula (1) or (2) [Cu 2 (RCN) 2 (H6M4h)] (PF 6 ) 2 (1)
[Cu 2 (RCN) 2 (M6M4h)] (PF 6 ) 2 (2)
(In the formulas (1) and (2), R is an alkyl group or a phenyl group,
H6M4h is 1,2-bis [2- (bis (6-methyl-2-pyridyl) methyl) -6-pyridyl] ethane,
M6M4h is 1,2-bis [2- (1,1-bis (6-methyl-2-pyridyl) ethyl) -6-pyridyl] ethane. ) Is dissolved in an organic solvent, and a nitrile compound is further added.

本発明の酸素吸脱着性組成物において、式(1)の二核銅錯体および式(2)の二核銅錯体において、RCNとしては、特に限定されないが、アセトニトリル、ベンゾニトリルが挙げられる。   In the oxygen adsorption / desorption composition of the present invention, in the binuclear copper complex of the formula (1) and the binuclear copper complex of the formula (2), RCN is not particularly limited, and examples thereof include acetonitrile and benzonitrile.

有機溶媒としては、ジクロロメタン、トルエン、アセトン、クロロホルム等が挙げられ、ジクロロメタンやクロロホルム等が、錯体の溶解性が高い事や銅(I)に配位しない溶媒であるなどの理由により好ましい。   Examples of the organic solvent include dichloromethane, toluene, acetone, chloroform, and the like. Dichloromethane, chloroform, and the like are preferable because of high solubility of the complex and a solvent that does not coordinate to copper (I).

添加されるニトリル化合物としては、ニトリル基を備えている化合物であれば、特に限定されないが、たとえば、アセトニトリル、ピバロニトリルあるいはそれらの誘導体、ベンゾニトリル、あるいはそれらの誘導体が挙げられ、中でもアセトニトリル、ピバロニトリル、ベンゾニトリルが好適に用いられ、これらが単独であるいは複数混合されて用いられても構わない。   The nitrile compound to be added is not particularly limited as long as it is a compound having a nitrile group, and examples thereof include acetonitrile, pivalonitrile or derivatives thereof, benzonitrile, or derivatives thereof. Benzonitrile is preferably used, and these may be used alone or in combination.

本発明にかかる酸素濃度吸光測定用試薬は、本発明の酸素吸脱着性組成物を少なくとも含むことを特徴としている。
本発明の酸素濃度吸光測定用試薬は、本発明の酸素吸脱着性組成物以外にその担体になる様な高分子材料等を添加するようにしても構わない。
The reagent for measuring oxygen concentration absorbance according to the present invention is characterized by containing at least the oxygen adsorption / desorption composition of the present invention.
In addition to the oxygen adsorption / desorption composition of the present invention, the oxygen concentration absorbance measurement reagent of the present invention may be added with a polymer material or the like that can serve as a carrier.

本発明にかかる酸素濃度測定方法は、異なる既知濃度の酸素が含まれる複数の既知濃度混合ガスのそれぞれに、本発明の酸素濃度吸光測定用試薬を同一の設定時間時間曝したのち、各酸素濃度吸光測定用試薬の波長363±10nmでの吸光度を測定し、その測定結果をプロットして求めた検量線に、請求項4に記載の酸素濃度吸光測定用試薬を測定ガスに前記設定時間曝したのちの酸素濃度吸光測定用試薬の波長363±10nmの光線の吸光度を対比させて、前記測定ガス中の酸素濃度を求めることを特徴としている。   In the oxygen concentration measurement method according to the present invention, the oxygen concentration absorption measurement reagent of the present invention is exposed to each of a plurality of known concentration mixed gas containing oxygen having different known concentrations for the same set time, and then each oxygen concentration is measured. The absorbance at a wavelength of 363 ± 10 nm of the absorbance measurement reagent was measured, and the oxygen concentration absorbance measurement reagent according to claim 4 was exposed to the measurement gas for the set time for a calibration curve obtained by plotting the measurement result. It is characterized in that the oxygen concentration in the measurement gas is obtained by comparing the absorbance of light having a wavelength of 363 ± 10 nm of the oxygen concentration absorbance measurement reagent.

本発明にかかる二核銅錯体の酸素親和性算出方法は、上記式(1)または式(2)で示される二核銅錯体を一定濃度となるように有機溶媒に溶解させた溶液に、ニトリル化合物をXモル添加した酸素吸脱着性組成物を、酸素と不活性ガスとからなり酸素分圧が異なる複数種類の混合気体雰囲気下にそれぞれ一定条件で曝したのち、各混合気体雰囲気に曝露後の酸素吸脱着性組成物の吸光度曲線をそれぞれ求め、吸光度曲線の最大吸光度部分での酸素分圧による吸光度の変化量(ΔA)を算出するとともに、ニトリル化合物添加下での前記二核銅錯体のP(O21/2を下式(3)
P(O21/2=[Cu2tbΔε(P(O2)/ΔA)−P(O2)・・・(3)
(式(1)中、[Cu2tは錯体全濃度、bはセル長、Δεはdeoxy体とoxy体のモル吸光係数の差をあらわしている。)により求め、求められたP(O21/2から
Cu2(RCN)2のO2結合におけるみかけの平衡定数Kを下式(4)
K=1/P(O21/2・・・(4)
から求めた後、ニトリル化合物を添加しない状態の式(1)または式(2)で示される二核銅錯体のP0(O21/2を式(4)で得られたKを用いて下式(5)
0(O21/2=X2/K・・・(5)
により求めることを特徴としている。
The method for calculating the oxygen affinity of a binuclear copper complex according to the present invention comprises adding a nitrile to a solution obtained by dissolving the binuclear copper complex represented by the above formula (1) or (2) in an organic solvent so as to have a constant concentration. After exposing the oxygen adsorbing / desorbing composition containing X mol of the compound to a plurality of types of mixed gas atmospheres composed of oxygen and an inert gas and having different oxygen partial pressures, respectively, after exposure to each mixed gas atmosphere The absorbance curve of the oxygen adsorbing / desorbing composition was calculated, the amount of change in absorbance (ΔA) due to the partial pressure of oxygen at the maximum absorbance portion of the absorbance curve was calculated, and the binuclear copper complex added with the nitrile compound was added. P (O 2 ) 1/2 is expressed by the following formula (3)
P (O 2 ) 1/2 = [Cu 2 ] t bΔε (P (O 2 ) / ΔA) −P (O 2 ) (3)
(In formula (1), [Cu 2 ] t is the total concentration of the complex, b is the cell length, Δε is the difference in molar extinction coefficient between the deoxy and oxy isomers), and P (O 2 ) From 1/2 to the apparent equilibrium constant K in the O 2 bond of Cu 2 (RCN) 2 , the following equation (4)
K = 1 / P (O 2 ) 1/2 (4)
After obtaining from the above, P 0 (O 2 ) 1/2 of the binuclear copper complex represented by the formula (1) or the formula (2) in a state where no nitrile compound is added is used as K obtained by the formula (4). (5)
P 0 (O 2 ) 1/2 = X 2 / K (5)
It is characterized by obtaining by.

詳しく説明すると、二核銅サイト(Cu2)と酸素との平衡は以下に平衡式(A),(B)で表すことができる。   More specifically, the equilibrium between the binuclear copper site (Cu2) and oxygen can be expressed by the following equilibrium equations (A) and (B).

Figure 2007248204
Figure 2007248204

ここで、
k1=[Cu2(RCN)2]/[Cu2][ RCN]2
k2=[Cu2O2]/[Cu2]P(O2)
よって、
k2/ k1=[Cu2O2] [ RCN]2/[Cu2(RCN)2]P(O2)
ニトリル化合物(RCN)は過剰量であるから、
k2/ k1[ RCN]2=[Cu2O2]/[ [Cu2] [ RCN]2≡Kと表わせる。
here,
k 1 = [Cu 2 (RCN) 2 ] / [Cu 2 ] [RCN] 2
k 2 = [Cu 2 O 2 ] / [Cu 2 ] P (O 2 )
Therefore,
k 2 / k 1 = [Cu 2 O 2 ] [RCN] 2 / [Cu 2 (RCN) 2 ] P (O 2 )
Since the nitrile compound (RCN) is in excess,
k 2 / k 1 [RCN] 2 = [Cu 2 O 2 ] / [Cu 2 ] [RCN] 2 ≡K

また、酸素分圧とみかけの平衡定数Kの関係は、吸光度の変化量△Aを用いて以下のように書き表せられる。
-1=P(O2)[[Cu2]tb△ε/△A−1]
よって、
P(O2)=[Cu2]tb△ε(P(O2)/△A)−1/K
Kは酸素結合のみかけの平衡定数を表わしているから、
K=[Cu2O2]/[Cu2(RCN)2]P(O2)と表せる。
そして、酸素が半分結合しているとき、[Cu2O2]=[Cu2(RCN)2]であるから
1/K=P(O2)1/2となる。
The relationship between the partial pressure of oxygen and the apparent equilibrium constant K can be expressed as follows using the amount of change ΔA in absorbance.
k −1 = P (O 2 ) [[Cu 2 ] t bΔε / ΔA-1]
Therefore,
P (O 2 ) = [Cu 2 ] t b △ ε (P (O 2 ) / △ A) -1 / K
Since K represents the apparent equilibrium constant of oxygen bond,
K = [Cu 2 O 2 ] / [Cu 2 (RCN) 2 ] P (O 2 )
And when oxygen is half-bonded, [Cu 2 O 2 ] = [Cu 2 (RCN) 2 ]
1 / K = P (O 2 ) 1/2 .

すなわち、用いた二核銅錯体全体の50%がoxy体になったときの酸素分圧をP(O2)1/2と定義した。そして、上記の式を利用し、P(O2)/△Aに対してP(O2)をプロットすると直線の関係が得られ、ここからP(O2)1/2を決定できる。 That is, the oxygen partial pressure when 50% of the total dinuclear copper complex used was in the oxy-form was defined as P (O 2 ) 1/2 . Then, by using the above formula and plotting P (O 2 ) against P (O 2 ) / ΔA, a linear relationship is obtained, from which P (O 2 ) 1/2 can be determined.

つづいて測定したP(O2)1/2より、ニトリル化合物を全く添加していない状態での酸素親和性P0(O2)1/2を以下のようにして求めることができる。
すなわち、k1、k2、P(O2)1/2、[RCN]の間には以下の関係式が成り立つ。
2/k1=[ RCN]2/P(O2)1/2=K
From the subsequently measured P (O 2 ) 1/2 , the oxygen affinity P 0 (O 2 ) 1/2 in a state where no nitrile compound is added can be determined as follows.
That is, the following relational expressions hold among k 1 , k 2 , P (O 2 ) 1/2 , and [RCN].
k 2 / k 1 = [RCN] 2 / P (O 2 ) 1/2 = K

そして、k2/k1は二核銅錯体ごとに一定の値となるため、ニトリル化合物を全く加えていないときのRCN濃度がわかれば、P0(O2)1/2を求めることができる。
ここで、溶液中の二核銅錯体濃度がXモルであり、P0(O2)1/2がoxy体の濃度
([Cu22])とdeoxy体の濃度([Cu2(RCN)2])が等しくなったときの値であるので、
[Cu2(RCN)2]=X/2モル、[Cu2O2]=X/2モル、2[RCN]=Xモルとなる。
したがって、k2/k1=X2/P(O2)1/2=Kとなり、P(O2)1/2=X2/ Kとなる。
Since k 2 / k 1 is a constant value for each binuclear copper complex, P 0 (O 2 ) 1/2 can be obtained if the RCN concentration when no nitrile compound is added is known. .
Here, the concentration of the dinuclear copper complex in the solution is X mol, and P 0 (O 2 ) 1/2 is the concentration of the oxy isomer.
Since ([Cu 2 O 2 ]) and deoxy concentration ([Cu 2 (RCN) 2 ]) are equal,
[Cu 2 (RCN) 2 ] = X / 2 mol, [Cu 2 O 2 ] = X / 2 mol, and 2 [RCN] = X mol.
Therefore, k 2 / k 1 = X 2 / P (O 2 ) 1/2 = K, and P (O 2 ) 1/2 = X 2 / K.

本発明の二核銅錯体の酸素親和性算出方法において、不活性ガスとしては、二核銅錯体に対して不活性なものであれば特に限定されないが、窒素が一般的である。   In the method for calculating the oxygen affinity of the binuclear copper complex of the present invention, the inert gas is not particularly limited as long as it is inert to the binuclear copper complex, but nitrogen is generally used.

本発明にかかる酸素吸脱着性組成物は、以上のように、式(1)または式(2)で示される二核銅錯体を有機溶媒に溶解させた溶液にさらにニトリル化合物が添加されているので、室温で酸素を吸脱着することができる。
すなわち、添加されたニトリル化合物が、μ−η2−η2型パーオキソ錯体の形成を阻害すると同時に、銅イオンと結合してdeoxy体(もとの錯体)の生成を促進するためだと考えられる。
As described above, in the oxygen adsorption / desorption composition according to the present invention, a nitrile compound is further added to a solution obtained by dissolving the binuclear copper complex represented by the formula (1) or the formula (2) in an organic solvent. Therefore, oxygen can be adsorbed and desorbed at room temperature.
That is, it is considered that the added nitrile compound inhibits the formation of the μ-η 22 type peroxo complex and simultaneously promotes the formation of a deoxy form (original complex) by binding to copper ions. .

有機溶媒として、ジクロロメタンを用いるようにすれば、錯体の溶解度が高い事や酸素錯体の安定性が高い事などの利点がある。   If dichloromethane is used as the organic solvent, there are advantages such as high solubility of the complex and high stability of the oxygen complex.

本発明にかかる酸素濃度吸光測定用試薬は、本発明の酸素吸脱着性組成物を少なくとも含んでいるので、酸素を感度で測定できるとともに、繰り返して使用することができ、コストダウンをはかることができる。また、添加するニトリル化合物の添加量を調整することによって所望の感度で酸素濃度を検出できるようになる。   Since the reagent for measuring oxygen concentration absorbance according to the present invention contains at least the oxygen adsorption / desorption composition of the present invention, it can measure oxygen with sensitivity and can be used repeatedly, thereby reducing costs. it can. In addition, the oxygen concentration can be detected with a desired sensitivity by adjusting the amount of nitrile compound to be added.

本発明にかかる酸素濃度測定方法は、異なる既知濃度の酸素が含まれる複数の既知濃度混合ガスのそれぞれに、請求項4に記載の酸素濃度吸光測定用試薬を同一の設定時間時間曝したのち、各酸素濃度吸光測定用試薬の波長363±10nmの範囲内の一定波長での吸光度を測定し、その測定結果をプロットして求めた検量線に、請求項4に記載の酸素濃度吸光測定用試薬を測定ガスに前記設定時間曝したのちの酸素濃度吸光測定用試薬の検量線測定波長と同波長の光線の吸光度を対比させて、前記測定ガス中の酸素濃度を求めるようにしたので、精度よく酸素濃度を測定することができる。   In the oxygen concentration measurement method according to the present invention, the oxygen concentration absorption measurement reagent according to claim 4 is exposed to each of a plurality of known concentration mixed gas containing oxygen having different known concentrations after the same set time, 5. The reagent for measuring oxygen concentration absorbance according to claim 4, wherein the absorbance at a constant wavelength within a wavelength range of 363 ± 10 nm of each oxygen concentration absorbance measuring reagent is measured, and the measurement result is plotted to obtain a calibration curve. The oxygen concentration in the measurement gas was determined accurately by comparing the absorbance of the light having the same wavelength as the calibration curve measurement wavelength of the oxygen concentration absorbance measurement reagent after exposure to the measurement gas for the set time. The oxygen concentration can be measured.

本発明にかかる酸素親和性算出方法は、上記式(1)または式(2)で示される二核銅錯体を一定濃度となるように有機溶媒に溶解させた溶液に、ニトリル化合物をXモル添加した酸素吸脱着性組成物を、酸素と不活性ガスとからなり酸素分圧が異なる複数種類の混合気体雰囲気下にそれぞれ一定条件で曝したのち、各混合気体雰囲気に曝露後の酸素吸脱着性組成物の吸光度曲線をそれぞれ求め、吸光度曲線の最大吸光度部分での酸素分圧による吸光度の変化量(ΔA)を算出するとともに、ニトリル化合物添加下での前記二核銅錯体のP(O21/2を下式(3)
P(O21/2=[Cu2tbΔε(P(O2)/ΔA)−P(O2)・・・(3)
(式(3)中、[Cu2tは錯体全濃度、bはセル長、Δεはdeoxy体とoxy体のモル吸光係数の差をあらわしている。)により求め、求められたP(O21/2から
Cu2(RCN)2のO2結合におけるみかけの平衡定数Kを下式(4)
K=1/P(O21/2・・・(4)
から求めた後、
ニトリル化合物を添加しない状態の式(1)または式(2)で示される二核銅錯体の
0(O21/2を式(4)で得られたKを用いて下式(5)
0(O21/2=X2/K・・・(5)
により求めるようにしたので、従来困難であった式(1)または式(2)で示される二核銅錯体の酸素親和性P0(O21/2を算出することができるようになる。
In the oxygen affinity calculation method according to the present invention, X mole of a nitrile compound is added to a solution in which the dinuclear copper complex represented by the above formula (1) or formula (2) is dissolved in an organic solvent so as to have a constant concentration. The oxygen adsorbing / desorbing composition after exposure to each mixed gas atmosphere after exposing to a mixed gas atmosphere consisting of oxygen and inert gas with different oxygen partial pressures under different conditions. Absorbance curves of the composition are obtained, the amount of change in absorbance (ΔA) due to oxygen partial pressure at the maximum absorbance portion of the absorbance curve is calculated, and P (O 2 ) of the binuclear copper complex with the addition of a nitrile compound. 1/2 is the following formula (3)
P (O 2 ) 1/2 = [Cu 2 ] t bΔε (P (O 2 ) / ΔA) −P (O 2 ) (3)
(In formula (3), [Cu 2 ] t is the total complex concentration, b is the cell length, and Δε is the difference in molar extinction coefficient between the deoxy and oxy isomers). 2 ) From 1/2 to the apparent equilibrium constant K in the O 2 bond of Cu 2 (RCN) 2 , the following equation (4)
K = 1 / P (O 2 ) 1/2 (4)
After seeking from
P 0 (O 2 ) 1/2 of the dinuclear copper complex represented by the formula (1) or the formula (2) in the state where the nitrile compound is not added is represented by the following formula (5) using K obtained by the formula (4). )
P 0 (O 2 ) 1/2 = X 2 / K (5)
Therefore, it is possible to calculate the oxygen affinity P 0 (O 2 ) 1/2 of the binuclear copper complex represented by the formula (1) or the formula (2), which has been difficult in the past. .

また、不活性ガスとして窒素を用いるようにすれば、コスト的に好ましい。   Further, it is preferable in terms of cost if nitrogen is used as the inert gas.

以下に、本発明を、その実施例を参照しつつ詳しく説明する。   Hereinafter, the present invention will be described in detail with reference to examples thereof.

(実施例1)
まず、 [Cu(CH3CN)4]PF6 (298.0 mg, 0.80 mmol) をCH3CN 5 ml に溶かした。次に H6M4h 230.7 mg (0.40 mmol)をCH3CN 溶液 5 ml に溶かし、先程の溶液に加えて、室温(25℃)、Ar雰囲気下でスターラーによって混ぜ合わした。このときに生じた黄色溶液を1 時間かき混ぜた後、この溶液に脱気した 無水エタノール(以下、「Et2O」と記す)を加えると、黄色の沈殿が析出したので、この黄色沈殿を吸引ろ過により集め、30分間減圧乾燥した。
乾燥して得た粉末を CH3CN / Et2Oの気液拡散から再結晶することにより薄黄色の単結晶である[Cu2(CH3CN)2(H6M4h)](PF6)2(以下、「錯体1」と記す)を得た。収率は76%であった。
なお、実験操作はすべてグローブボックス中で行った。
1H NMR data (δ/ppm vs Me4Si) in CD3CN: 7.78 (t, 4H, py-4), 7.71 (t, 2H, py'-4), 7.59 (d, 4H, py-3), 7.59 (d, 2H, py'-3), 7.30 (d, 4H, py-5), 7.08 (d, 2H, py'-5), 5.97 (s, 2H, methine), 3.53 (s, 4H, CH2) 2.70 (s, 12H, 6-CH3-py).
Example 1
First, [Cu (CH 3 CN) 4 ] PF 6 (298.0 mg, 0.80 mmol) was dissolved in 5 ml of CH 3 CN. Next, 230.7 mg (0.40 mmol) of H6M4h was dissolved in 5 ml of CH 3 CN solution, added to the previous solution, and mixed with a stirrer at room temperature (25 ° C.) under Ar atmosphere. The yellow solution produced at this time was stirred for 1 hour, and then degassed absolute ethanol (hereinafter referred to as “Et 2 O”) was added to the solution. A yellow precipitate was formed. Collected by filtration and dried in vacuo for 30 minutes.
[Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 (a pale yellow single crystal by recrystallizing the powder obtained after drying from gas-liquid diffusion of CH 3 CN / Et 2 O Hereinafter, this was referred to as “complex 1”. The yield was 76%.
All experimental operations were performed in a glove box.
1 H NMR data (δ / ppm vs Me 4 Si) in CD 3 CN: 7.78 (t, 4H, py-4), 7.71 (t, 2H, py'-4), 7.59 (d, 4H, py-3 ), 7.59 (d, 2H, py'-3), 7.30 (d, 4H, py-5), 7.08 (d, 2H, py'-5), 5.97 (s, 2H, methine), 3.53 (s, 4H, CH 2 ) 2.70 (s, 12H, 6-CH 3 -py).

(実施例2)
CH3CN 10 mLに [Cu(CH3CN)4]PF6 (149.0 mg, 0.40 mmol)とM6M4h (120.8 mg, 0.2 mmol)を加えて溶かした。この溶液を室温(25℃)、Ar雰囲気下でスターラーによって1時間かき混ぜた後、この溶液に脱気した Et2Oを加えて激しく攪拌した後溶液を静置すると、淡黄色の沈殿が析出したので、この淡黄色沈殿を吸引ろ過により集め、30分間減圧乾燥した。
乾燥して得た粉末をCH3CN / Et2Oの気液拡散から再結晶することにより薄黄色の単結晶である[Cu2(CH3CN)2(M6M4h)](PF6)2(以下、「錯体2」と記す)を得た。収率は83%であった。
なお、実験操作はすべてグローブボックス中で行った。
1H NMR data (δ/ppm vs Me4Si) in CD3CN: 7.79 (t, 4H, py-4), 7.68 (t, 2H, py'-4), 7.65 (br, 4H, py-3), 7.54 (br, 2H, py'-3), 7.30 (d, 4H, py-5), 7.03 (d, 2H, py'-5), 3.45 (s, 4H, CH2), 2.65 (s, 12H, py-6-CH3), 2.48 (s, 6H, CH3-C).
(Example 2)
CH 3 CN 10 mL in [Cu (CH 3 CN) 4 ] PF 6 (149.0 mg, 0.40 mmol) and M6M4h (120.8 mg, 0.2 mmol) was added and dissolved. The solution was stirred with a stirrer at room temperature (25 ° C.) for 1 hour under an Ar atmosphere, then degassed Et 2 O was added to the solution, stirred vigorously, and the solution was allowed to stand to precipitate a pale yellow precipitate. The pale yellow precipitate was collected by suction filtration and dried under reduced pressure for 30 minutes.
[Cu 2 (CH 3 CN) 2 (M6M4h)] (PF 6 ) 2 (light yellow single crystal by recrystallizing the powder obtained by drying from gas-liquid diffusion of CH 3 CN / Et 2 O Hereinafter, this is referred to as “complex 2”. The yield was 83%.
All experimental operations were performed in a glove box.
1 H NMR data (δ / ppm vs Me 4 Si) in CD 3 CN: 7.79 (t, 4H, py-4), 7.68 (t, 2H, py'-4), 7.65 (br, 4H, py-3 ), 7.54 (br, 2H, py'-3), 7.30 (d, 4H, py-5), 7.03 (d, 2H, py'-5), 3.45 (s, 4H, CH 2 ), 2.65 (s , 12H, py-6-CH 3 ), 2.48 (s, 6H, CH 3 -C).

(実施例3)
M6M4h 60 mg (0.10 mmol) および[Cu(CH3CN)4](PF6) 75 mg (0.20 mmol) をベンゾニトリル 0.5 mlに溶かし、室温(25℃)、Ar雰囲気下でスターラーによって2時間撹拌した。この時溶液は黄色になった。この溶液に脱気した Et2Oを加えて激しく攪拌した後溶液を静置すると、黄色の沈殿が析出したので、この黄色沈殿を吸引ろ過により集め、30分間減圧乾燥した。
乾燥して得た粉末をEt2O / C6H5CNの気液拡散から再結晶することにより淡黄色の単結晶の[Cu2(C6H5CN)2(M6M4h)](PF6)2(以下、「錯体3」と記す)を得た。収率は69%であった。
なお、実験操作はすべてグローブボックス中で行った。
1H NMR data (δ/ppm vs Me4Si) in CD2Cl2: 7.76 (t, 4H, py-4), 7.60(m, 10H, py'-4, py-3, py'-3, p-ph), 7.25 (m, 10H, py-5, o-ph, py'-5), 7.02 (br, 4H, m-ph), 3.68 (s, 4H, -CH2-), 2.77 (s, 12H, py-CH3), 2.58 (s, 6H, C-CH3)
(Example 3)
M6M4h 60 mg (0.10 mmol) and [Cu (CH 3 CN) 4 ] (PF 6 ) 75 mg (0.20 mmol) were dissolved in 0.5 ml of benzonitrile and stirred with a stirrer at room temperature (25 ° C.) under Ar atmosphere for 2 hours. did. At this time, the solution turned yellow. Degassed Et 2 O was added to this solution and stirred vigorously, and then the solution was allowed to stand. As a result, a yellow precipitate was deposited. The yellow precipitate was collected by suction filtration and dried under reduced pressure for 30 minutes.
The powder obtained by drying was recrystallized from the gas-liquid diffusion of Et 2 O / C 6 H 5 CN to produce a pale yellow single crystal [Cu 2 (C 6 H 5 CN) 2 (M6M4h)] (PF 6 ) 2 (hereinafter referred to as “complex 3”). The yield was 69%.
All experimental operations were performed in a glove box.
1 H NMR data (δ / ppm vs Me 4 Si) in CD 2 Cl 2 : 7.76 (t, 4H, py-4), 7.60 (m, 10H, py'-4, py-3, py'-3, p-ph), 7.25 (m, 10H, py-5, o-ph, py'-5), 7.02 (br, 4H, m-ph), 3.68 (s, 4H, -CH 2- ), 2.77 ( s, 12H, py-CH 3 ), 2.58 (s, 6H, C-CH 3 )

(実施例4)
グローブボックス内で上記錯体1を5×10-5M含むCH2Cl2-CH3CN(2.5:0.001,v/v,[CH3CN]=7.7×10-3M)混合溶液を調製した。この溶液を室温(25℃)、O2雰囲気下にすると淡黄色溶液が紫色の溶液に変化して[Cu2(O)2(H6M4h)](PF6)2(以下、「oxy体1」と記す)を生じた。この溶液をN2置換すると溶液は徐々に淡黄色にもどった。この溶液を再びO2雰囲気下にすると紫色のoxy体1が再生した。このサイクルを3回繰り返した。このときの紫外可視吸収(UV-vis)スペクトル変化を図1に示した。
なお、CH3CNはP205で脱水した後、蒸留したものを使用した。CH2Cl2はH2S04で安定剤を除去し、CaCl2およびCaH2で脱水した後、蒸留したものを使用した。また、紫外可視吸収スペクトルは、ユニソク社製低温セル室および温度コントローラーを整備した大塚電子社製超高感度瞬間マルチ測光システムMCPD-7000を用いて測定した。
Example 4
A CH 2 Cl 2 —CH 3 CN (2.5: 0.001, v / v, [CH 3 CN] = 7.7 × 10 −3 M) mixed solution containing 5 × 10 −5 M of the complex 1 was prepared in the glove box. . When this solution was brought to room temperature (25 ° C.) and in an O 2 atmosphere, the pale yellow solution turned into a purple solution, and [Cu 2 (O) 2 (H6M4h)] (PF 6 ) 2 (hereinafter “oxy body 1”) ). When this solution was substituted with N 2 , the solution gradually returned to pale yellow. When this solution was again brought into an O 2 atmosphere, a purple oxy-form 1 was regenerated. This cycle was repeated three times. The ultraviolet-visible absorption (UV-vis) spectrum change at this time is shown in FIG.
The CH 3 CN used was dehydrated with P 2 0 5 and then distilled. CH 2 Cl 2 was obtained by removing the stabilizer with H 2 S0 4 , dehydrating with CaCl 2 and CaH 2 , and then distilling. The UV-visible absorption spectrum was measured using an ultra-sensitive instantaneous multi-photometry system MCPD-7000 manufactured by Otsuka Electronics Co., Ltd. equipped with a low temperature cell room and a temperature controller manufactured by UNISOKU.

(実施例5)
グローブボックス内で上記錯体1を5×10-5M含むCH2Cl2-CH3CN(2.5: 0.0006,v/v,[CH3CN]=4.7×10-3M)混合溶液を調製した。この溶液を室温(25℃)、O2雰囲気下にすると淡黄色溶液が紫色の溶液に変化してoxy体1を生じた。この溶液をN2置換すると溶液は徐々に淡黄色にもどった。この溶液を再びO2雰囲気下にすると紫色のoxy体1が再生した。このサイクルを3回繰り返した。このときの紫外可視吸収(UV-vis)スペクトル変化を図2に示した。
(Example 5)
A CH 2 Cl 2 —CH 3 CN (2.5: 0.0006, v / v, [CH 3 CN] = 4.7 × 10 −3 M) mixed solution containing 5 × 10 −5 M of the complex 1 was prepared in the glove box. . When this solution was brought to room temperature (25 ° C.) and in an O 2 atmosphere, the pale yellow solution was changed to a purple solution to give oxy form 1. When this solution was substituted with N 2 , the solution gradually returned to pale yellow. When this solution was again brought into an O 2 atmosphere, a purple oxy-form 1 was regenerated. This cycle was repeated three times. The ultraviolet-visible absorption (UV-vis) spectrum change at this time is shown in FIG.

(実施例6)
グローブボックス内で上記錯体1を5×10-5M含むCH2Cl2-CH3CN(2.5: 0.0002,v/v,[CH3CN]=1.6×10-3M)混合溶液を調製した。この溶液を室温(25℃)、O2雰囲気下にすると淡黄色溶液が紫色の溶液に変化してoxy体1を生じた。この溶液をN2置換すると溶液は徐々に淡黄色にもどった。この溶液を再びO2雰囲気下にすると紫色のoxy体1が再生した。このサイクルを3回繰り返した。このときの紫外可視吸収(UV-vis)スペクトル変化を図3に示した。
(Example 6)
Prepare CH 2 Cl 2 —CH 3 CN (2.5: 0.0002, v / v, [CH 3 CN] = 1.6 × 10 −3 M) mixed solution containing Complex 1 5 × 10 −5 M in the glove box. did. When this solution was brought to room temperature (25 ° C.) and in an O 2 atmosphere, the pale yellow solution was changed to a purple solution to give oxy form 1. When this solution was substituted with N 2 , the solution gradually returned to pale yellow. When this solution was again brought into an O 2 atmosphere, a purple oxy-form 1 was regenerated. This cycle was repeated three times. The ultraviolet-visible absorption (UV-vis) spectrum change at this time is shown in FIG.

(実施例7)
グローブボックス内で上記錯体2を5×10-5M含むCH2Cl2-CH3CN(2.5:0.001,v/v,[CH3CN]=7.7×10-3M)混合溶液を調製した。この溶液を室温(25℃)、O2雰囲気下にすると淡黄色溶液が紫色の溶液に変化して[Cu2(O)2(H6M4h)](PF6)2(以下、「oxy体 2」と記す)を生じた。この溶液をN2置換すると溶液は徐々に淡黄色にもどった。この溶液を再びO2雰囲気下にすると紫色のoxy体2が再生した。このサイクルを3回繰り返した。このときの紫外可視吸収(UV-vis)スペクトル変化を図4に示した。
(Example 7)
A CH 2 Cl 2 —CH 3 CN (2.5: 0.001, v / v, [CH 3 CN] = 7.7 × 10 −3 M) mixed solution containing 5 × 10 −5 M of the complex 2 was prepared in the glove box. . When this solution was brought to room temperature (25 ° C.) and in an O 2 atmosphere, the pale yellow solution turned into a purple solution, and [Cu 2 (O) 2 (H6M4h)] (PF 6 ) 2 (hereinafter “oxy body 2”) ). When this solution was substituted with N 2 , the solution gradually returned to pale yellow. When this solution was again brought into an O 2 atmosphere, a purple oxy-form 2 was regenerated. This cycle was repeated three times. The ultraviolet-visible absorption (UV-vis) spectrum change at this time is shown in FIG.

(実施例8)
グローブボックス内で上記錯体2を5×10-5M含むCH2Cl2-CH3CN(2.5: 0.0006,v/v,[CH3CN]=4.7×10-3M)混合溶液を調製した。この溶液を室温(25℃)、O2雰囲気下にすると淡黄色溶液が紫色の溶液に変化してoxy体2を生じた。この溶液をN2置換すると溶液は徐々に淡黄色にもどった。この溶液を再びO2雰囲気下にすると紫色のoxy体 2が再生した。このサイクルを3回繰り返した。このときの紫外可視吸収(UV-vis)スペクトル変化を図5に示した。
(Example 8)
A CH 2 Cl 2 —CH 3 CN (2.5: 0.0006, v / v, [CH 3 CN] = 4.7 × 10 −3 M) mixed solution containing 5 × 10 −5 M of the complex 2 was prepared in the glove box. . When this solution was brought to room temperature (25 ° C.) and in an O 2 atmosphere, the pale yellow solution was changed to a purple solution to give oxy form 2. When this solution was substituted with N 2 , the solution gradually returned to pale yellow. When this solution was again brought into an O 2 atmosphere, a purple oxy-form 2 was regenerated. This cycle was repeated three times. The ultraviolet-visible absorption (UV-vis) spectrum change at this time is shown in FIG.

(実施例9)
グローブボックス内で上記錯体2を5×10-5M含むCH2Cl2-CH3CN(2.5: 0.0002,v/v,[CH3CN]=1.6×10-3M)混合溶液を調製した。この溶液を室温(25℃)、O2雰囲気下にすると淡黄色溶液が紫色の溶液に変化してoxy体2を生じた。この溶液をN2置換すると溶液は徐々に淡黄色にもどった。この溶液を再びO2雰囲気下にすると紫色のoxy体 2が再生した。このサイクルを3回繰り返した。このときの紫外可視吸収(UV-vis)スペクトル変化を図6に示した。
Example 9
Prepare CH 2 Cl 2 —CH 3 CN (2.5: 0.0002, v / v, [CH 3 CN] = 1.6 × 10 −3 M) mixed solution containing 5 × 10 −5 M of Complex 2 in the glove box. did. When this solution was brought to room temperature (25 ° C.) and in an O 2 atmosphere, the pale yellow solution was changed to a purple solution to give oxy form 2. When this solution was substituted with N 2 , the solution gradually returned to pale yellow. When this solution was again brought into an O 2 atmosphere, a purple oxy-form 2 was regenerated. This cycle was repeated three times. The ultraviolet-visible absorption (UV-vis) spectrum change at this time is shown in FIG.

図1〜図6から、錯体1、2を有機溶媒であるジクロロメタンに溶解させた溶液にさらにニトロ化合物であるアセトニトリルを添加するようにすれば、室温で酸素を吸脱着できることがよくわかる。また、添加するニトリル化合物の添加量を調整することによって所望の感度で酸素濃度を検出できるようになることがわかる。なお、図1〜6中、1、1‘、1“は錯体1を、2、2‘、2“はoxy体1を、3、3‘、3“は錯体2を、4、4‘、4“はoxy体2を、それぞれあらわしている。
さらに、図1〜図6から、アセトニトリル濃度が高いときにはoxy体の生成速度は遅くなり、oxy体から元の錯体1,2(deoxy体)への酸素放出の速度は加速されることがわかる。これはアセトニトリルがoxy体の生成を阻害すると同時に、銅イオンと結合して元の錯体1,2の生成を促進するためだと考えられる。
1 to 6, it can be seen that oxygen can be adsorbed and desorbed at room temperature by adding acetonitrile as a nitro compound to a solution in which complexes 1 and 2 are dissolved in dichloromethane as an organic solvent. It can also be seen that the oxygen concentration can be detected with a desired sensitivity by adjusting the amount of nitrile compound to be added. In FIGS. 1 to 6, 1, 1 ′, 1 ″ represent Complex 1, 2, 2 ′, 2 ″ represent oxy-form 1, 3, 3 ′, 3 ″ represent Complex 2, 4, 4 ′, 4 "represents the oxy body 2 respectively.
Furthermore, it can be seen from FIGS. 1 to 6 that when the acetonitrile concentration is high, the generation rate of the oxy form is slow, and the rate of oxygen release from the oxy form to the original complexes 1 and 2 (deoxy form) is accelerated. This is thought to be due to the fact that acetonitrile inhibits the formation of oxy-forms and at the same time promotes the formation of the original complexes 1 and 2 by binding to copper ions.

なお、錯体1からoxy体1を生成するのに要する時間は、実施例1〜実施例3の濃度範囲でおよそ10分から120分の間で、酸素を放出するのに要する時間はおよそ12時間から25時間の間であった。それに対して、錯体2からoxy体2を生成するのに要する時間はおよそ5分から10分の間で、酸素を放出するのに要する時間はおよそ40分から14時間の間であった。これはbridgehead置換基の構造摂動によって銅酸素間距離が長くなり、酸素を放出しやすくなったためだと考えられる。   The time required to produce oxy-form 1 from complex 1 is approximately 10 to 120 minutes in the concentration range of Examples 1 to 3, and the time required to release oxygen is approximately 12 hours. It was between 25 hours. In contrast, the time required to produce oxy-form 2 from complex 2 was approximately 5 to 10 minutes, and the time required to release oxygen was approximately 40 to 14 hours. This is thought to be because the distance between copper and oxygen increased due to the structural perturbation of the bridgehead substituent, making it easier to release oxygen.

(実施例10)
実施例5と同様の混合溶液を調整した。この調整した混合溶液を一方コック付き連結管をつけたセルに入れ、液体窒素で溶液を完全に凍結した後、完全に脱気した。酸素と窒素を混合して一定の酸素分圧(P(O2)=253Torr、152 Torr、69.1 Torr、36.2 Torr、0Torr)に調製した混合気体の入ったバルーンをあらかじめ三方コックにとりつけておき、この混合気体を脱気したセルに加えて、溶液を混合気体雰囲気下にした、酸素分圧P(O2)=253Torr、152 Torr、69.1 Torr、36.2 Torr、0Torrの酸素―窒素混合気体雰囲気下でそれぞれ60、120、180、240、300分間放置したのち、それぞれのUV-visスペクトルを25℃、1気圧の条件下で測定し、その結果を図7に示した。
そして、各酸素分圧における吸光度の最大値からoxy体の飽和生成量を決定し、このときの吸光度の変化量(ΔA)を用いて、P(O2)/ΔAに対するP(O2)をプロットすると、図8に示すように、y=0.9571X−50.312(相関係数R2=0.9993)の直線を示したので、ここからP(O2)1/2=50.3Torrが求められた。
なお、酸素分圧P(O2)は、コフロック社製ガス混合装置GM-4Bを用いて酸素と窒素を混合して調整した。
(Example 10)
A mixed solution similar to that in Example 5 was prepared. This adjusted mixed solution was put into a cell equipped with a connecting pipe with a cock, and the solution was completely frozen with liquid nitrogen and then completely deaerated. A balloon containing a mixed gas prepared by mixing oxygen and nitrogen to a constant oxygen partial pressure (P (O 2 ) = 253 Torr, 152 Torr, 69.1 Torr, 36.2 Torr, 0 Torr) is attached to the three-way cock in advance. This mixed gas was added to the degassed cell, and the solution was put in a mixed gas atmosphere. Under an oxygen-nitrogen mixed gas atmosphere of oxygen partial pressure P (O 2 ) = 253 Torr, 152 Torr, 69.1 Torr, 36.2 Torr, 0 Torr And left for 60, 120, 180, 240, and 300 minutes, respectively, and each UV-vis spectrum was measured under the conditions of 25 ° C. and 1 atm. The results are shown in FIG.
Then, the saturation generation amount of the oxy body is determined from the maximum value of the absorbance at each oxygen partial pressure, and the change amount (ΔA) of the absorbance at this time is used to calculate P (O 2 ) relative to P (O 2 ) / ΔA. When plotted, a straight line with y = 0.9571X−50.312 (correlation coefficient R 2 = 0.9993) was shown as shown in FIG. 8, and P (O 2 ) 1/2 = 50.3 Torr was obtained therefrom.
The oxygen partial pressure P (O 2 ) was adjusted by mixing oxygen and nitrogen using a gas mixer GM-4B manufactured by Cofrock.

(実施例11)
グローブボックス内で上記錯体1を5×10-5M含むCH2Cl2-CH3CN(2.5:0.0008,v/v,[CH3CN]=6.1×10-3M)混合溶液を調製し、この混合溶液を用いた以外は、上記実施例10と同様にしてP(O2)1/2を求めたところ、P(O2)1/2=113Torrとなった。
(Example 11)
Prepare a CH 2 Cl 2 -CH 3 CN (2.5: 0.0008, v / v, [CH 3 CN] = 6.1 × 10 -3 M) mixed solution containing 5 x 10 -5 M of the complex 1 in the glove box. P (O 2 ) 1/2 was determined in the same manner as in Example 10 except that this mixed solution was used. As a result, P (O 2 ) 1/2 = 113 Torr.

(実施例12)
グローブボックス内で上記錯体1を5×10-5M含むCH2Cl2-CH3CN(2.5:0.0004,v/v,[CH3CN]=3.2×10-3M)混合溶液を調製し、この混合溶液を用いた以外は、上記実施例10と同様にしてP(O2)1/2を求めたところ、P(O2)1/2=16.2Torrとなった。
また、上記実施例10〜実施例12で求めた各アセトニトリル濃度でのP(O2)1/2と、
2/k1=[CH3CN]2/P(O2)1/2の式を利用してk2/k1を算出し、その結果を表1に示した。
(Example 12)
Prepare a CH 2 Cl 2 -CH 3 CN (2.5: 0.0004, v / v, [CH 3 CN] = 3.2 × 10 -3 M) mixed solution containing 5 x 10 -5 M of the complex 1 in the glove box. P (O 2 ) 1/2 was determined in the same manner as in Example 10 except that this mixed solution was used, and P (O 2 ) 1/2 = 16.2 Torr was obtained.
In addition, P (O 2 ) 1/2 at each acetonitrile concentration determined in Examples 10 to 12 above,
k 2 / k 1 = [CH 3 CN] 2 / P (O 2) by using the half of the equation to calculate the k 2 / k 1, and the results are shown in Table 1.

Figure 2007248204
Figure 2007248204

つぎに、上記実施例10〜実施例12で求めた各k2/k1の平均k2/k1=4.66×10-7を、[Cu2(CH3CN)2(H6M4h)](PF6)2のk2/k1とした。
そして、[Cu2(CH3CN)2(H6M4h)](PF6)2のP0(O2)1/2を、平均k2/k1と、アセトニトリルを全く加えていないときのアセトニトリル濃度を用いて以下のようにして求めた。
すなわち、[Cu2(CH3CN)2(H6M4h)](PF6)2は、有機溶媒中で下記式
[Cu2(CH3CN)2]+ [O2]⇔[Cu2O2]+ 2[CH3CN]
に示す平衡状態となっている。
Next, the average k 2 / k 1 = 4.66 × 10 −7 of each k 2 / k 1 obtained in Examples 10 to 12 above is expressed as [Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 k 2 / k 1
Then, P 0 (O 2 ) 1/2 of [Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 is the average k 2 / k 1 and the acetonitrile concentration when no acetonitrile is added. Was obtained as follows.
That is, [Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 is represented by the following formula in an organic solvent:
[Cu 2 (CH 3 CN) 2 ] + [O 2 ] ⇔ [Cu 2 O 2 ] + 2 [CH 3 CN]
The equilibrium state shown in FIG.

また、 [Cu2(CH3CN)2(H6M4h)](PF6)2の濃度が5×10-5Mであるとともに、P0(O2)1/2は、oxy体の濃度 [Cu2O2]と、錯体1(deoxy体)の濃度[Cu2(CH3CN)2]とが、等しくなったとき、つまり2.5×10-5Mとなったときであるから、アセトニトリルを全く加えていないときのアセトニトリル濃度は、2[CH3CN]= 5×10-5Mとなる。
つぎに、この値を用いてP0(O2)1/2を算出すると、
P0(O2)1/2=(5×10-52/4.66×10-7=0.0054 Torrと非常に小さな値となった。
すなわち、求められたP0(O2)1/2は、Hcモデル錯体でP(O2)1/2を求めた例はこれまでになく、比較することはできないが、報告例の多いHbモデル錯体と比較してみても非常に小さいP(O2)1/2の値を示すことがわかった。
In addition, the concentration of [Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 is 5 × 10 −5 M, and P 0 (O 2 ) 1/2 is the concentration of oxy isomer [Cu 2 O 2 ] and the concentration of complex 1 (deoxy isomer) [Cu 2 (CH 3 CN) 2 ] are equal, that is, 2.5 × 10 −5 M. The acetonitrile concentration when not added is 2 [CH 3 CN] = 5 × 10 −5 M.
Next, using this value to calculate P 0 (O 2 ) 1/2 ,
P 0 (O 2 ) 1/2 = (5 × 10 -5 ) 2 /4.66×10 -7 = 0.0054 Torr, which is a very small value.
In other words, the calculated P 0 (O 2 ) 1/2 is an Hc model complex that has not been used to calculate P (O 2 ) 1/2 so far. Compared with the model complex, it was found that the value of P (O 2 ) 1/2 was very small.

このことから、[Cu2(CH3CN)2(H6M4h)](PF6)2は、非常に高い酸素親和性を備え、たとえば、液体窒素中にどうしても含まれる極微量の酸素までも吸着除去できる脱酸素剤としても有用であることがわかる。 From this, [Cu 2 (CH 3 CN) 2 (H6M4h)] (PF 6 ) 2 has a very high affinity for oxygen, for example, adsorption and removal of trace amounts of oxygen contained in liquid nitrogen. It turns out that it is useful also as an oxygen scavenger that can be used.

(実施例13)
上記錯体2について、上記錯体1と同様(実施例10〜実施例12と同様)にしてP0(O2)1/2を求めたところ、0.020であった。
(Example 13)
With respect to Complex 2 above, P 0 (O 2 ) 1/2 was determined in the same manner as Complex 1 above (same as in Examples 10 to 12), which was 0.020.

(実施例14)
上記錯体3について、上記錯体1と同様(実施例10〜実施例12と同様)にしてP0(O2)1/2を求めたところ、0.17であった。
(Example 14)
With respect to Complex 3 above, P 0 (O 2 ) 1/2 was determined in the same manner as Complex 1 above (same as in Examples 10 to 12), which was 0.17.

また、上記錯体1〜3の添加したアセトニトリルの濃度と、P(O2)1/2との関係を図9に示した。 FIG. 9 shows the relationship between the concentration of acetonitrile added with the above complexes 1 to 3 and P (O 2 ) 1/2 .

(実施例15)
グローブボックス内で上記錯体2を5×10-5M含むCH2Cl2-t-C4H9CN(2.5: 0.0006,v/v,[CH3CN]=4.7×10-3M)混合溶液を調製した。この調整した混合溶液を、実施例10と同様にして酸素分圧P(O2)=380Torr、326 Torr、253Torr、197 Torr、99.1 Torr、36.2 Torrの酸素―窒素混合気体雰囲気下でそれぞれ5、10、15、20、25、30分間放置したのち、それぞれのUV-visスペクトルを25℃、1気圧の条件下で測定し、その結果を図10に示した。
そして、各酸素分圧における吸光度の最大値からoxy体の飽和生成量を決定し、このときの吸光度の変化量(ΔA)を用いて、P(O2)/ΔAに対するP(O2)をプロットすると、図11に示すように、y=1.7062X−486.83(相関係数R2=0.9973)の直線を示したので、ここからP(O2)1/2=487Torrが求められた。
(Example 15)
CH 2 Cl 2 -tC 4 H 9 CN (2.5: 0.0006, v / v, [CH 3 CN] = 4.7 × 10 -3 M) mixed solution containing 5 x 10 -5 M of the above complex 2 in the glove box Prepared. In the same manner as in Example 10, this adjusted mixed solution was subjected to oxygen partial pressure P (O 2 ) = 380 Torr, 326 Torr, 253 Torr, 253 Torr, 197 Torr, 99.1 Torr, 36.2 Torr in an oxygen-nitrogen mixed gas atmosphere, respectively 5, After standing for 10, 15, 20, 25, and 30 minutes, each UV-vis spectrum was measured under the conditions of 25 ° C. and 1 atm. The results are shown in FIG.
Then, to determine the saturation production of oxy body from the maximum value of absorbance at each oxygen partial pressure, with the variation in the absorbance at this time (.DELTA.A), P a (O 2) / ΔA for P (O 2) When plotted, a straight line with y = 1.7062X−486.83 (correlation coefficient R 2 = 0.9973) was shown, and P (O 2 ) 1/2 = 487 Torr was obtained therefrom.

(実施例16)
グローブボックス内で上記錯体2を5×10-5M含むCH2Cl2- C6H5CN(2.5: 0.0006,v/v,[CH3CN]=4.7×10-3M)混合溶液を調製した。この調整した混合溶液を、実施例10と同様にして酸素分圧P(O2)=507Torr、456 Torr、326Torr、253 Torr、197 Torr、152 Torrの酸素―窒素混合気体雰囲気下でそれぞれ5、10、15、20、25、30分間放置したのち、それぞれのUV-visスペクトルを25℃、1気圧の条件下で測定し、その結果を図12に示した。
そして、各酸素分圧における吸光度の最大値からoxy体の飽和生成量を決定し、このときの吸光度の変化量(ΔA)を用いて、P(O2)/ΔAに対するP(O2)をプロットすると、図13に示すように、y=1.4072X−1201.9(相関係数R2=0.9973)の直線を示したので、ここからP(O2)1/2=1202Torrが求められた。
(Example 16)
CH 2 Cl 2 -C 6 H 5 CN (2.5: 0.0006, v / v, [CH 3 CN] = 4.7 × 10 −3 M) containing 5 × 10 −5 M of the above complex 2 in the glove box Prepared. In the same manner as in Example 10, the adjusted mixed solution was subjected to oxygen partial pressure P (O 2 ) = 507 Torr, 456 Torr, 326 Torr, 326 Torr, 253 Torr, 197 Torr, 152 Torr under an oxygen-nitrogen mixed gas atmosphere, After standing for 10, 15, 20, 25, and 30 minutes, each UV-vis spectrum was measured under the conditions of 25 ° C. and 1 atm. The results are shown in FIG.
Then, to determine the saturation production of oxy body from the maximum value of absorbance at each oxygen partial pressure, with the variation in the absorbance at this time (.DELTA.A), P a (O 2) / ΔA for P (O 2) When plotted, a straight line of y = 1.4072X−1201.9 (correlation coefficient R 2 = 0.9973) was shown, and P (O 2 ) 1/2 = 1202 Torr was obtained therefrom.

上記実施例14,15から添加するニトリル化合物の種類を変更すれば、添加量が同じでも酸素親和性が変化すること、ニトリル化合物としてC6H5CNを添加すれば、少ない添加量で酸素親和性が下がることがわかった。 If the kind of the nitrile compound added from Examples 14 and 15 is changed, the oxygen affinity changes even if the addition amount is the same. If C 6 H 5 CN is added as the nitrile compound, the oxygen affinity can be reduced with a small addition amount. It turns out that the sex goes down.

実施例4で測定したUV-visスペクトルの測定結果をあらわすグラフである。6 is a graph showing a measurement result of a UV-vis spectrum measured in Example 4. 実施例5で測定したUV-visスペクトルの測定結果をあらわすグラフである。6 is a graph showing a measurement result of a UV-vis spectrum measured in Example 5. FIG. 実施例6で測定したUV-visスペクトルの測定結果をあらわすグラフである。10 is a graph showing a measurement result of a UV-vis spectrum measured in Example 6. FIG. 実施例7で測定したUV-visスペクトルの測定結果をあらわすグラフである。10 is a graph showing a measurement result of a UV-vis spectrum measured in Example 7. 実施例8で測定したUV-visスペクトルの測定結果をあらわすグラフである。10 is a graph showing a measurement result of a UV-vis spectrum measured in Example 8. 実施例9で測定したUV-visスペクトルの測定結果をあらわすグラフである。10 is a graph showing a measurement result of a UV-vis spectrum measured in Example 9. 実施例10で測定したUV-visスペクトルの測定結果をあらわすグラフである。10 is a graph showing a measurement result of a UV-vis spectrum measured in Example 10. 実施例10で求めたP(O2)/ΔAに対するP(O2)をプロットしたグラフである。Is a graph plotting P (O 2) for P (O 2) / ΔA obtained in Example 10. 錯体1〜3の添加したアセトニトリルの濃度と、P(O2)1/2との関係をあらわすグラフである。It is a graph showing the relationship between the concentration of acetonitrile to which complexes 1 to 3 are added and P (O 2 ) 1/2 . 実施例15で測定したUV-visスペクトルの測定結果をあらわすグラフである。16 is a graph showing a measurement result of a UV-vis spectrum measured in Example 15. 実施例15で求めたP(O2)/ΔAに対するP(O2)をプロットしたグラフである。Is a graph plotting P (O 2) for P (O 2) / ΔA obtained in Example 15. 実施例16で測定したUV-visスペクトルの測定結果をあらわすグラフである。14 is a graph showing a measurement result of a UV-vis spectrum measured in Example 16. 実施例16で求めたP(O2)/ΔAに対するP(O2)をプロットしたグラフである。Is a graph plotting P (O 2) for P (O 2) / ΔA obtained in Example 16.

Claims (7)

下式(1)または下式(2)で示される二核銅錯体
[Cu2(RCN)2(H6M4h)](PF6)2 ・・・(1)
[Cu2(RCN)2(M6M4h)](PF6)2 ・・・(2)
(式(1)、(2)中、Rはアルキル基またはフェニル基、あるいはそれらの誘導体基
H6M4hは、1,2-ビス[2-(ビス(6-メチル-2-ピリジル)メチル)-6-ピリジル]エタン、
M6M4hは1,2-ビス[2-(1,1-ビス(6-メチル-2-ピリジル) エチル)-6-ピリジル]エタンである。)を有機溶媒に溶解させた溶液にさらにニトリル化合物が添加されていることを特徴とする酸素吸脱着性組成物。
Binuclear copper complex represented by the following formula (1) or (2) [Cu 2 (RCN) 2 (H6M4h)] (PF 6 ) 2 (1)
[Cu 2 (RCN) 2 (M6M4h)] (PF 6 ) 2 (2)
(In the formulas (1) and (2), R is an alkyl group, a phenyl group, or a derivative group thereof.
H6M4h is 1,2-bis [2- (bis (6-methyl-2-pyridyl) methyl) -6-pyridyl] ethane,
M6M4h is 1,2-bis [2- (1,1-bis (6-methyl-2-pyridyl) ethyl) -6-pyridyl] ethane. ) Is dissolved in an organic solvent, and a nitrile compound is further added to the composition.
有機溶媒がジクロロメタンである請求項1に記載の酸素吸脱着性組成物。   The oxygen adsorption / desorption composition according to claim 1, wherein the organic solvent is dichloromethane. ニトリル化合物がアセトニトリル、ピバロニトリル、ベンゾニトリルからなる群より選ばれた少なくとも一種ある請求項1または請求項2に記載の酸素吸脱着性組成物。   The oxygen adsorption / desorption composition according to claim 1 or 2, wherein the nitrile compound is at least one selected from the group consisting of acetonitrile, pivalonitrile, and benzonitrile. 請求項1〜請求項3のいずれかに記載の酸素吸脱着性組成物を少なくとも含むことを特徴とする酸素濃度吸光測定用試薬。   A reagent for oxygen concentration absorption measurement, comprising at least the oxygen adsorption / desorption composition according to any one of claims 1 to 3. 異なる既知濃度の酸素が含まれる複数の既知濃度混合ガスのそれぞれに、請求項4に記載の酸素濃度吸光測定用試薬を同一の設定時間時間曝したのち、各酸素濃度吸光測定用試薬の波長363±10nmの範囲内の一定波長での吸光度を測定し、その測定結果をプロットして求めた検量線に、請求項4に記載の酸素濃度吸光測定用試薬を測定ガスに前記設定時間曝したのちの酸素濃度吸光測定用試薬の検量線測定波長と同波長の光線の吸光度を対比させて、前記測定ガス中の酸素濃度を求めることを特徴とする酸素濃度測定方法。   The oxygen concentration absorption measurement reagent according to claim 4 is exposed to each of a plurality of known concentration mixed gases containing oxygen of different known concentrations for the same set time, and then the wavelength 363 of each oxygen concentration absorption measurement reagent is set. The absorbance at a constant wavelength within a range of ± 10 nm was measured, and the oxygen concentration absorbance measurement reagent according to claim 4 was exposed to the measurement gas for the set time for a calibration curve obtained by plotting the measurement result. A method for measuring oxygen concentration, comprising: comparing the absorbance of a light having the same wavelength as the calibration curve measurement wavelength of the reagent for measuring oxygen concentration absorbance to obtain the oxygen concentration in the measurement gas. 請求項1に記載の式(1)または式(2)で示される二核銅錯体を一定濃度となるように有機溶媒に溶解させた溶液に、ニトリル化合物をXモル添加した酸素吸脱着性組成物を、酸素と不活性ガスとからなり酸素分圧が異なる複数種類の混合気体雰囲気下にそれぞれ一定条件で曝したのち、各混合気体雰囲気に曝露後の酸素吸脱着性組成物の吸光度曲線をそれぞれ求め、吸光度曲線の最大吸光度部分での酸素分圧による吸光度の変化量(ΔA)を算出するとともに、ニトリル化合物添加下での前記二核銅錯体のP(O21/2を下式(3)
P(O21/2=[Cu2tbΔε(P(O2)/ΔA)−P(O2)・・・(3)
(式(3)中、[Cu2tは錯体全濃度、bはセル長、Δεはdeoxy体とoxy体のモル吸光係数の差をあらわしている。)により求め、求められたP(O21/2から
Cu2(RCN)2のO2結合におけるみかけの平衡定数Kを下式(4)
K=1/P(O21/2・・・(4)
から求めた後、
ニトリル化合物を添加しない状態の式(1)または式(2)で示される二核銅錯体の
0(O21/2を式(4)で得られたKを用いて下式(5)
0(O21/2=X2/K・・・(5)
により求めることを特徴とする二核銅錯体の酸素親和性算出方法。
An oxygen adsorption / desorption composition obtained by adding X mole of a nitrile compound to a solution obtained by dissolving the dinuclear copper complex represented by the formula (1) or the formula (2) according to claim 1 in an organic solvent so as to have a constant concentration. After exposing the product to oxygen and inert gas and mixed gas atmospheres with different oxygen partial pressures under certain conditions, the absorbance curve of the oxygen adsorption / desorption composition after exposure to each gas mixture atmosphere The amount of change in absorbance due to the partial pressure of oxygen (ΔA) at the maximum absorbance portion of the absorbance curve was calculated, and P (O 2 ) 1/2 of the binuclear copper complex with the addition of the nitrile compound was calculated using the following formula: (3)
P (O 2 ) 1/2 = [Cu 2 ] t bΔε (P (O 2 ) / ΔA) −P (O 2 ) (3)
(In formula (3), [Cu 2 ] t is the total complex concentration, b is the cell length, and Δε is the difference in molar extinction coefficient between the deoxy and oxy isomers). 2 ) From 1/2 to the apparent equilibrium constant K in the O 2 bond of Cu 2 (RCN) 2 , the following equation (4)
K = 1 / P (O 2 ) 1/2 (4)
After seeking from
P 0 (O 2 ) 1/2 of the dinuclear copper complex represented by the formula (1) or the formula (2) in the state where the nitrile compound is not added is represented by the following formula (5) using K obtained by the formula (4). )
P 0 (O 2 ) 1/2 = X 2 / K (5)
The method for calculating the oxygen affinity of a binuclear copper complex, characterized by:
不活性ガスが窒素である請求項7に記載の二核銅錯体の酸素親和性算出方法。   The method for calculating the oxygen affinity of a binuclear copper complex according to claim 7, wherein the inert gas is nitrogen.
JP2006070857A 2006-03-15 2006-03-15 Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex Pending JP2007248204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070857A JP2007248204A (en) 2006-03-15 2006-03-15 Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070857A JP2007248204A (en) 2006-03-15 2006-03-15 Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex

Publications (1)

Publication Number Publication Date
JP2007248204A true JP2007248204A (en) 2007-09-27

Family

ID=38592686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070857A Pending JP2007248204A (en) 2006-03-15 2006-03-15 Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex

Country Status (1)

Country Link
JP (1) JP2007248204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050272A1 (en) * 2012-09-28 2014-04-03 住友精化株式会社 Method for producing complex composed of organic nitrogen compound and copper (i) salt of fluorooxo acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050272A1 (en) * 2012-09-28 2014-04-03 住友精化株式会社 Method for producing complex composed of organic nitrogen compound and copper (i) salt of fluorooxo acid
CN104507907A (en) * 2012-09-28 2015-04-08 住友精化株式会社 Method for producing complex composed of organic nitrogen compound and copper (I) salt of fluorooxo acid

Similar Documents

Publication Publication Date Title
Custelcean Crystal engineering with urea and thiourea hydrogen-bonding groups
Karmakar et al. Recent advances on supramolecular isomerism in metal organic frameworks
Gale Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing
Karpishin et al. Coordination chemistry of microbial iron transport. 49. The vanadium (IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization
Wang et al. Reductive coupling of nitrogen monoxide (• NO) facilitated by heme/copper complexes
Ellison et al. Syntheses, characterization, and structural studies of several (nitro)(nitrosyl) iron (III) porphyrinates:[Fe (Porph)(NO2)(NO)]
Richter-Addo Binding of organic nitroso compounds to metalloporphyrins
Singh et al. Experimental and quantum computational study of two new bridged copper (II) coordination complexes as possible models for antioxidant superoxide dismutase: Molecular structures, X-band electron paramagnetic spectra and cryogenic magnetic properties
Yeşilel et al. An unusual 3D metal–organic framework,{[Ag 4 (μ 4-pzdc) 2 (μ-en) 2]· H 2 O} n: C–H⋯ Ag, N–H⋯ Ag and (O–H)⋯ Ag interactions and an unprecedented coordination mode for pyrazine-2, 3-dicarboxylate
Traylor et al. 1, 3-Adamantane-3, 13-porphyrin-6, 6-cyclophane: crystal structure of the free base and steric effects on ligation of the iron (II) complex
Herron et al. Synthesis and characterization of some reversible iron (II) dioxygen carriers of lacunar macrobicyclic ligands and their reactivities with dioxygen
Li et al. Methionine Can Favor DNA Platination by trans‐Coordinated Platinum Antitumor Drugs
Mitewa Coordination properties of the bioligands creatinine and creatine in various reaction media
Du et al. Optical detection of small biomolecule thiamines at a micromolar level by highly luminescent lanthanide complexes with tridentate N-heterocyclic ligands
Lü et al. A series of silver coordination polymers constructed from flexible bis (benzimidazole) ligands and different carboxylates
Lewandowska Coordination chemistry of nitrosyls and its biochemical implications
Karimi Alavijeh et al. Two-fold homointerpenetrated metal–organic framework with the potential for anticancer drug loading using computational simulations
Tabushi et al. Artificial allosteric systems. 3. Cooperative carbon monoxide binding to diiron (II)-gable porphyrin-diimidazolylmethane complexes
JP2007248204A (en) Oxygen-absorbing/desorbing composition, reagent for oxygen concentration absorptiometry using the oxygen-absorbing/desorbing composition, oxygen concentration measuring method, and oxygen affinity calculation method of binuclear copper complex
Hamdani et al. Synthesis, structure, spectral characterization and thermal analysis of the tetraaquabis (isothiocyanato-κN) cobalt (II)-bis (caffeine)-tetrahydrate complex
Darensbourg et al. The reversible insertion reaction of carbon dioxide with the W (CO) 5OH-anion. Isolation and characterization of the resulting bicarbonate complex [PPN][W (CO) 5O2COH]
Liu et al. Aminobenzonitrile isomers-mediated self-assembly of mixed-ligand silver (I) coordination architectures: Synthesis, structural characterization and properties
Brüning et al. N1 and N3 Linkage Isomers of Neutral and Deprotonated Cytosine with trans‐[(CH3NH2) 2PtII]
Xi et al. Synthesis, characterization, antioxidant activity, and DNA-binding studies of 1-cyclohexyl-3-tosylurea and its Nd (III), Eu (III) complexes
Opalade et al. Structural characterization of products in the Ni (II)–2-oximino-2-cyan-N-piperidineacetamide (HPiPCO) system