JP2007245185A - Steel wire for gas shielded arc welding - Google Patents

Steel wire for gas shielded arc welding Download PDF

Info

Publication number
JP2007245185A
JP2007245185A JP2006071584A JP2006071584A JP2007245185A JP 2007245185 A JP2007245185 A JP 2007245185A JP 2006071584 A JP2006071584 A JP 2006071584A JP 2006071584 A JP2006071584 A JP 2006071584A JP 2007245185 A JP2007245185 A JP 2007245185A
Authority
JP
Japan
Prior art keywords
steel wire
welding
arc welding
shielded arc
gas shielded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006071584A
Other languages
Japanese (ja)
Other versions
JP4791218B2 (en
Inventor
Masahiro Nomura
正裕 野村
Koichi Makii
浩一 槙井
Koichi Sakamoto
浩一 坂本
Yasushi Yoneda
康司 米田
Akira Ogawa
亮 小川
Original Assignee
Kobe Steel Ltd
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, 株式会社神戸製鋼所 filed Critical Kobe Steel Ltd
Priority to JP2006071584A priority Critical patent/JP4791218B2/en
Publication of JP2007245185A publication Critical patent/JP2007245185A/en
Application granted granted Critical
Publication of JP4791218B2 publication Critical patent/JP4791218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel wire having superior arc stability, causing less spatters and having excellent welding work efficiency when applied to gas shielded arc welding of DC straight polarity. <P>SOLUTION: The steel wire is used for gas shielded arc welding of DC straight polarity, wherein the surface is coated with a Ti layer or an Ni layer, or an alloy layer mainly made up of Ni or Ti. The desirable thickness of the coating is 5-50 μm. The steel wire demonstrates superior performance particularly for carbon dioxide gas shielded arc welding. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はガスシールドアーク溶接用の鋼ワイヤに関し、特に直流正極性のガスシールドアーク溶接に用いられる鋼ワイヤであって、アーク安定性に優れ溶滴移行がスムーズでスパッタが少なく、溶接作業性の著しく改善された溶接用鋼ワイヤ(以下、本明細書では単に溶接ワイヤということがある)に関するものである。   The present invention relates to a steel wire for gas shielded arc welding, particularly a steel wire used for direct current positive polarity gas shielded arc welding, which has excellent arc stability, smooth droplet transfer, low spatter, and good welding workability. The present invention relates to a significantly improved steel wire for welding (hereinafter sometimes referred to simply as a welding wire).
ガスシールドアーク溶接に用いられる殆どの溶接ワイヤは、直流逆極(溶接ワイヤをプラス極、被溶接金属材をマイナス極とする通電方式)で使用される。その理由は、逆極の方がガスシールドアーク溶接時のアーク安定性が良好であり、溶滴移行が小粒かつスムーズでスパッタも少なく、優れた溶接性が得られ易いからである。   Most welding wires used for gas shielded arc welding are used with a DC reverse pole (a current-carrying method with the welding wire as the positive electrode and the welded metal material as the negative electrode). The reason is that the reverse pole has better arc stability during gas shielded arc welding, the droplet transfer is small, smooth, less spatter, and excellent weldability is easily obtained.
ところで、例えば非特許文献1は、溶接ワイヤ中に含まれる微量元素が溶接時のスパッタに及ぼす影響を示しており、Mn,Si,Tiにはスパッタ抑制効果がある一方、C,Al,REM(希土類元素)にはスパッタを助長する傾向があることを明らかにしている。また、溶接ワイヤに含まれる酸素にもスパッタ抑制効果があると言われており、例えば特許文献1や特許文献2には、溶接ワイヤの表層部に酸素を含ませるため、表面に酸化物を残存させることを推奨している。更に特許文献3,4は、アルカリ金属や炭素(C)にスパッタ抑制効果があることを明らかにしており、それらの元素を溶接ワイヤの表面に存在させることでスパッタの抑制を図っている。   By the way, for example, Non-Patent Document 1 shows the influence of trace elements contained in the welding wire on sputtering during welding, and Mn, Si, Ti have a sputter suppression effect, while C, Al, REM ( It has been clarified that rare earth elements) tend to promote sputtering. In addition, oxygen contained in the welding wire is also said to have a sputter suppression effect. For example, in Patent Document 1 and Patent Document 2, since oxygen is included in the surface layer portion of the welding wire, oxide remains on the surface. It is recommended that Further, Patent Documents 3 and 4 make it clear that alkali metals and carbon (C) have a sputtering suppression effect, and attempt to suppress sputtering by causing these elements to exist on the surface of the welding wire.
他方、直流正極(溶接ワイヤをマイナス極、被溶接材をプラス極とする通電方式)でスパッタを抑制できる溶接ワイヤも報告されている(特許文献5,6など)。即ち特許文献5には、正極性の炭酸ガスアーク溶接用としてアーク安定性が良好でスパッタの少ない鋼ワイヤが開示されている。この溶接ワイヤは、鋼素材中のC,Mn,Si含量を規定し、あるいは更にP,S,K,Ti,Cr,Ni,Mo,Cu,Bなどの含有量の上限を規定することで、アーク安定性を高めると共にスパッタの発生量を低減している。そしてこの特許文献5では、Ti含量の上限設定理由として“Ti含量が0.30%を超えると溶滴が粗大化しスパッタが発生する”ことを挙げている。   On the other hand, a welding wire that can suppress spattering by a DC positive electrode (a current-carrying method in which the welding wire is a negative electrode and the material to be welded is a positive electrode) has also been reported (Patent Documents 5 and 6). That is, Patent Document 5 discloses a steel wire having good arc stability and less spatter for positive carbon dioxide arc welding. This welding wire defines the C, Mn, Si content in the steel material, or further defines the upper limit of the content of P, S, K, Ti, Cr, Ni, Mo, Cu, B, etc. Increases arc stability and reduces spatter generation. In Patent Document 5, the reason for setting the upper limit of the Ti content is that “when the Ti content exceeds 0.30%, the droplets become coarse and spatter occurs”.
また特許文献6では、溶接ワイヤにREMを含有させると直流正極性での溶接性が改善されると記載している。即ち前掲の非特許文献1では、REMは直流逆極性の溶接には好ましくない元素とされているが、極性が変われば元素の影響も変わり、直流正極性では溶接性を改善する方向に作用するのである。   Patent Document 6 describes that when REM is contained in the welding wire, the weldability with DC positive polarity is improved. That is, in the above-mentioned Non-Patent Document 1, REM is considered as an element that is not preferable for welding with reverse polarity of DC, but if the polarity changes, the influence of the element also changes, and with DC positive polarity, it works in the direction of improving weldability. It is.
先に述べた如く溶接性に及ぼす添加元素の影響については、直流逆極性での研究が殆どであり、直流正極性の通電方式に適用した場合の添加元素の影響は極一部で報告されているに過ぎず、また直流逆極性で確認されている作用から直流正極性に適用した場合の影響を予測することはできない。また、直流正極性についての数少ない報告の1つである上記特許文献5では、上記の様に鋼ワイヤ中にTiを含有させるとアーク安定性が低下しスパッタが発生し易くなることを指摘し、Ti含量の上限値を定めている。また、上記非特許文献1で直流正極性での溶接性改善効果が確認されているREMは、溶接金属素材の中では非常に高価であるため、溶接ワイヤの大幅なコストアップを招く。しかも、REMは非常に活性が高いため溶製時の歩留りが低く、改質に十分な量のREMを合金化させること自体が難しい。
特開平5−69181号公報 特開平7−227692号公報 特開平8−1369号公報 特開2001−239393号公報 特開2001−353592号公報 特開2004−249352号公報 溶接学会論文集、第1巻(1983)第2号、第279頁
As mentioned earlier, the effects of additive elements on weldability are mostly researched with DC reverse polarity, and the effects of additive elements when applied to a DC positive polarity energization method have been reported in a small part. In addition, it is impossible to predict the effect when applied to DC positive polarity from the action confirmed in the reverse polarity of DC. Moreover, in the above-mentioned Patent Document 5, which is one of the few reports on DC positive polarity, it is pointed out that when Ti is contained in the steel wire as described above, the arc stability is lowered and sputtering is likely to occur. The upper limit of Ti content is defined. In addition, REM, which has been confirmed to have the effect of improving the weldability with DC positive polarity in Non-Patent Document 1, is very expensive among weld metal materials, and causes a significant cost increase of the welding wire. Moreover, since REM has very high activity, the yield during melting is low, and it is difficult to alloy a sufficient amount of REM for reforming.
JP-A-5-69181 Japanese Patent Laid-Open No. 7-276992 JP-A-8-1369 JP 2001-239393 A Japanese Patent Laid-Open No. 2001-353592 JP 2004-249352 A The Japan Welding Society Proceedings, Volume 1 (1983) No.2, 279 pages
本発明は上記の様な事情に着目してなされたものであって、その目的は、直流正極性の通電方式に適用されるガスシールドアーク溶接用ワイヤを対象とし、REMの如き高価で且つ合金化の困難な元素を使用せずとも溶接性を有意に改善することができ、特に溶接時の溶滴移行がスムーズでスパッタの少ない直流正極性ガスシールドアーク溶接用の鋼ワイヤを提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is directed to a gas shielded arc welding wire applied to a DC positive polarity energization method, and is expensive and alloy like REM. To provide a steel wire for DC positive gas shielded arc welding that can significantly improve weldability without the use of elements that are difficult to make, especially with smooth droplet transfer during welding and less spatter. is there.
上記課題を解決することのできた本発明のガスシールドアーク溶接用鋼ワイヤは、直流正極性ガスシールドアーク溶接に用いられる鋼ワイヤであって、表面が、Ti層またはTi主体の合金層、もしくはNi層またはNi主体の合金層で被覆されているところに特徴を有している。   The steel wire for gas shielded arc welding of the present invention that has solved the above problems is a steel wire used for direct current positive gas shielded arc welding, the surface of which is a Ti layer or a Ti-based alloy layer, or Ni It is characterized by being covered with a layer or an alloy layer mainly composed of Ni.
本発明において、ワイヤ表面に形成される前記被覆によってもたらされる作用、即ちアーク安定化効果とスパッタ抑制効果を有効に発揮させるには、該被覆の厚さを5μm以上で50μm以下、より好ましくは10μm以上で30μm以下にするのがよい。   In the present invention, the thickness of the coating is 5 μm or more and 50 μm or less, more preferably 10 μm, in order to effectively exhibit the effects brought about by the coating formed on the wire surface, that is, the arc stabilization effect and the sputter suppression effect. It is good to set it as 30 micrometers or less above.
また本発明に係るガスシールドアーク溶接用鋼ワイヤの上記特徴は、シールドガスとして炭酸ガスを使用する際により効果的に発揮される。   Moreover, the said characteristic of the steel wire for gas shielded arc welding which concerns on this invention is more effectively exhibited when using a carbon dioxide gas as shielding gas.
本発明によれば、溶接ワイヤの表面にTiまたはTi主体の合金層、もしくはNiまたはNi主体の合金層を形成することで、直流正極性を採用したガスシールドアーク溶接時のアーク安定性を高めてスパッタを大幅に低減することができ、溶接作業性を著しく改善できる。しかも、安定して美麗な溶接ビードを形成することができ、優れた溶接作業性の下で欠陥のない健全な溶接継手を安定して得ることができる。   According to the present invention, by forming a Ti or Ti-based alloy layer or Ni or Ni-based alloy layer on the surface of the welding wire, the arc stability during gas shielded arc welding employing DC positive polarity is improved. As a result, spatter can be greatly reduced and welding workability can be significantly improved. In addition, a beautiful weld bead can be stably formed, and a sound welded joint with no defects can be stably obtained under excellent welding workability.
本発明者らは先に示した様な状況の下で、直流正極性を採用したガスシールドアーク溶接に適用する鋼ワイヤに焦点を絞り、その欠点であるアーク安定性不良によるスパッタ多発の問題を比較的安価な素材による改質で克服すべく、様々の角度から研究を進めた。   Under the circumstances as described above, the present inventors focused on steel wires applied to gas shielded arc welding adopting DC positive polarity, and the problem of frequent occurrence of spatter due to poor arc stability, which is a drawback thereof. In order to overcome this problem by reforming with relatively inexpensive materials, research was conducted from various angles.
その結果、上記の様に、溶接用鋼ワイヤの表面をTi層またはNi層、或はTiおよび/またはNiを主体とする合金層で被覆してやれば、直流正極性ガスシールドアーク溶接時におけるアーク安定性が著しく改善されてスパッタの発生が抑えられ、優れた溶接作業性の下で欠陥のない美麗な溶接継手が得られることを知り、本発明に想到した。   As a result, if the surface of the steel wire for welding is covered with a Ti layer or Ni layer, or an alloy layer mainly composed of Ti and / or Ni as described above, arc stability during DC positive gas shielded arc welding is achieved. Thus, the present inventors have come to the present invention by knowing that the weldability is remarkably improved, the generation of spatter is suppressed, and a beautiful welded joint having no defects can be obtained under excellent welding workability.
従って本発明では、直流正極性のガスシールドアーク溶接に使用される鋼ワイヤであることを前提とし、その表面をTi層またはNi層、或はTiおよび/またはNiを主体とする合金層で被覆してなるところに要旨が存在する。被覆の形態は特に制限されないが、最も一般的なのはめっき(電気めっき、置換めっき、蒸着などを含む)被覆あるいは溶射被覆である。   Therefore, in the present invention, it is assumed that the steel wire is used for direct current positive polarity gas shielded arc welding, and the surface thereof is coated with a Ti layer or a Ni layer, or an alloy layer mainly composed of Ti and / or Ni. There is a gist there. The form of the coating is not particularly limited, but the most common is a plating (including electroplating, displacement plating, vapor deposition, etc.) coating or thermal spray coating.
ここで、被覆素材をTi,Niまたはそれらを主体とする合金に特定したのは、様々の元素につき上記前提要件の下でアーク安定性改善効果を検討した結果、上記2種の元素、およびこれらを主体とする合金に特異な改質効果が確認されたからである。ちなみに、めっき法などで鋼ワイヤを表面被覆できる元素は種々考えられるが、後記実験例でも明らかにする如くCu,Ag,Sn等の金属は勿論のこと、Al,Cr,Taなどの金属でも本発明で意図する様な効果は得られず、TiまたはNiに限ってその効果が発揮されることによる。   Here, the reason for specifying the coating material as Ti, Ni, or an alloy mainly composed of them is that, as a result of examining the effect of improving the arc stability under the above-mentioned prerequisites for various elements, the above two kinds of elements, and these This is because a modification effect peculiar to an alloy mainly composed of is confirmed. By the way, there are various elements that can cover the surface of steel wires by plating, etc., but it is possible to use not only metals such as Cu, Ag, Sn, but also metals such as Al, Cr, Ta as well as the following experimental examples. The effect as intended in the invention cannot be obtained, and the effect is exhibited only for Ti or Ni.
また表面被覆に特定したのは、鋼ワイヤ中にTiやNiを適量含有させただけでは本発明で意図する効果は得られず、これらの金属を鋼ワイヤの表面に局在化させることが、アーク安定性の向上に極めて重要であることが確認されたからである。   In addition, the specific surface coating is that the effect intended in the present invention cannot be obtained simply by adding an appropriate amount of Ti or Ni in the steel wire, and these metals can be localized on the surface of the steel wire. This is because it has been confirmed that it is extremely important for improving the arc stability.
そして、TiまたはNiの表面局在化効果を有効に発揮させるには、該被覆の厚さを好ましくは5μm以上、より好ましくは10μm以上とするのがよい。但し、該被覆によるアーク安定化効果は厚さ約50μmで飽和し、それ以上に厚くすることはコスト的に無駄であることから、厚くとも50μmまで、好ましくは40μm程度以下に抑えるのがよい。   In order to effectively exhibit the surface localization effect of Ti or Ni, the thickness of the coating is preferably 5 μm or more, more preferably 10 μm or more. However, the arc stabilization effect by the coating is saturated at a thickness of about 50 μm, and it is wasteful in cost to make it thicker than that. Therefore, it is preferable to keep the thickness up to 50 μm, preferably about 40 μm or less.
被覆素材としては、上記の様にTiまたはNiが選択され、それらは当該金属単体として使用できることは勿論のこと、両金属を任意の比率で含有するNi−Ti合金が好ましく使用され、更には、Niおよび/またはTiと鉄の如き他の金属との合金を使用することも可能である。中でも鉄との合金は、鋼ワイヤ素線との密着性などの観点から好ましく使用される。鉄との合金として使用する場合、該合金中に占めるNiおよび/またはTiの好ましい含有量は60質量%程度以上、より好ましくは80質量%以上である。他方、鉄以外の金属との合金を使用する場合、当該合金成分によってはアーク安定性に悪影響を及ぼす恐れがあるので、合金中に占めるNiおよび/またはTiの含有率は50質量%以上、より好ましくは60質量%以上とするのがよい。   As the coating material, Ti or Ni is selected as described above, and they can be used as the metal simple substance, and Ni-Ti alloys containing both metals in an arbitrary ratio are preferably used. It is also possible to use alloys of Ni and / or Ti with other metals such as iron. Among these, an alloy with iron is preferably used from the viewpoint of adhesion with a steel wire. When used as an alloy with iron, the preferred content of Ni and / or Ti in the alloy is about 60% by mass or more, more preferably 80% by mass or more. On the other hand, when using an alloy with a metal other than iron, depending on the alloy component, the arc stability may be adversely affected. Therefore, the Ni and / or Ti content in the alloy is 50% by mass or more. Preferably it is 60 mass% or more.
本発明の鋼ワイヤは、前述の如く直流正極性のガスシールドアーク溶接に適用されるもので、シールドガスとしては、炭酸ガス、あるいはアルゴンなどのイナートガスが使用される。しかし、イナートガスを用いた場合のアーク安定性は一般に良好でスパッタも少ないことから、殆ど問題になることはなく、アーク安定性やスパッタが問題となるのは殆どが炭酸ガスを用いた場合である。よって本発明は、炭酸ガスシールドアーク溶接に適用したときにその特徴がより効果的に発揮されるが、イナートガスアーク溶接への適用を否定する理由はない。   The steel wire of the present invention is applied to DC positive polarity gas shielded arc welding as described above, and carbon dioxide gas or inert gas such as argon is used as the shielding gas. However, arc stability when inert gas is used is generally good and there is little spatter, so there is almost no problem, and arc stability and sputtering are mostly problems when carbon dioxide gas is used. . Therefore, the present invention exhibits its characteristics more effectively when applied to carbon dioxide shielded arc welding, but there is no reason to deny application to inert gas arc welding.
本発明の鋼ワイヤを用いた溶接条件は、直流正極性という通電方式と、ガスシールドアーク溶接を採用する限り、その他の条件には一切制限がなく、被溶接材の種類や肉厚、溶接姿勢などに応じて任意に設定すればよい。鋼ワイヤ素線の成分組成も限定的ではなく、被溶接材の種類に応じて任意に選定すればよい。   The welding conditions using the steel wire of the present invention are not limited to any other conditions as long as the current-carrying method of DC positive polarity and gas shielded arc welding are adopted. Any setting may be made according to the above. The component composition of the steel wire is not limited, and may be arbitrarily selected according to the type of the material to be welded.
以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
実験例
炭酸ガスシールドアーク用の溶接用素線として、JIS Z3312のYGW16に相当する銅めっきなしの鋼ワイヤ(直径1.2mm、組成は質量比でC;0.06%、Si;0.62%、Mn;1.27%、P;0.010%、S;0.015%)を使用し、該素線の表面に下記の方法で各種の金属被覆を形成した。
Experimental Example Steel wire without copper plating corresponding to YGW16 of JIS Z3312 (diameter: 1.2 mm, composition is C: 0.06%, Si: 0.62 as a welding wire for carbon dioxide shielded arc) %, Mn; 1.27%, P; 0.010%, S; 0.015%), and various metal coatings were formed on the surface of the strands by the following method.
金属被覆形成法(めっき法)
Ti,Ni,Al,Cr,Taについては、それぞれ溶射法を採用し、Sn,Ag,Cuについては、めっき法を採用した。溶射法では、各元素を溶融させて素線表面に被覆し、厚さを一定にするため、必要に応じて溶射直後に穴ダイスで伸線することによって直径を整えた。まためっき法としては、電気めっき法を採用した。
Metal coating formation method (plating method)
For Ti, Ni, Al, Cr, and Ta, a thermal spraying method was employed, and for Sn, Ag, and Cu, a plating method was employed. In the thermal spraying method, each element was melted and coated on the surface of the strand to make the thickness constant, so that the diameter was adjusted by drawing with a hole die immediately after thermal spraying as necessary. Moreover, the electroplating method was employ | adopted as the plating method.
得られた金属被覆ワイヤを使用し、厚さ50mmの鋼板(SM490、C:0.2%、Mn:1.60%、Si:0.55%、P:0.035%以下、S:0.035%以下)の突合せ溶接を行った。具体的には、シールドガスとして100%COガスを2リットル/分の流速で溶接部へ供給しつつ、余熱なし、電流;340A、電圧;40V、溶接速度;0.35m/minで溶接実験を行ない、スパッタ発生状況から下記の方法で溶接性を評価した。 Using the obtained metal-coated wire, a steel plate having a thickness of 50 mm (SM490, C: 0.2%, Mn: 1.60%, Si: 0.55%, P: 0.035% or less, S: 0 .035% or less). Specifically, a welding experiment was conducted at a current of 340 A, a voltage of 40 V, and a welding speed of 0.35 m / min while supplying 100% CO 2 gas as a shielding gas to the weld at a flow rate of 2 liters / minute. Then, the weldability was evaluated by the following method from the spatter generation state.
即ち、アーク溶接時の溶滴が小さくて連続的に移行するほどスパッタは減少し易いことから、溶接性は、アーク溶接時の溶滴サイズと溶滴移行時間によって評価した。具体的には、各供試ワイヤを用いたアーク溶接時の溶滴移行状況を、高速度カメラ(フォトロン社製の商品名「FASTCAM−MAX」)により毎秒6000コマで写真撮影し、その写真の中から母材方向へ移行する溶滴を無作為に20滴抽出し、そのうち母材方向へ溶滴が移行する直前(溶滴が母材に接触するか、あるいは溶接ワイヤの先端から離れる画像の1つ前の高速撮影画像)の溶滴で、最大となる溶滴画像を抽出し、当該画像での溶滴の最大径を求めて溶滴サイズとした。   That is, the spatter is more likely to decrease as the droplets during arc welding are smaller and move continuously, so the weldability was evaluated based on the droplet size and droplet transfer time during arc welding. Specifically, the state of droplet transfer during arc welding using each test wire was photographed at 6000 frames per second with a high-speed camera (trade name “FASTCAM-MAX” manufactured by Photoron Co., Ltd.). 20 droplets that move in the direction of the base metal are extracted at random. Immediately before the droplet moves in the direction of the base material (an image in which the droplet contacts the base material or moves away from the tip of the welding wire) The largest droplet image was extracted from the previous droplet (high-speed photographed image), and the maximum diameter of the droplet in the image was obtained to obtain the droplet size.
なお、図1(A),(B)は、高速撮影した溶滴画像の一例であり、図1(A)(左側)はめっきなしのワイヤ、図1(B)(右側)はTiめっきワイヤを用いた場合の写真で、溶接ワイヤ[図1(A)の写真において、上方から下方に黒く突き出ているもの]の直径は1.2mmである。   1 (A) and 1 (B) are examples of droplet images taken at high speed, FIG. 1 (A) (left side) is a wire without plating, and FIG. 1 (B) (right side) is a Ti plated wire. The diameter of the welding wire [the one protruding black from above in the photograph of FIG. 1A] is 1.2 mm.
また溶滴移行時間は、上記と同様に抽出した20個の溶滴について、その発生から母材側へ移行するまでの平均移行時間によって求めた。溶接性の評価としては、溶滴サイズが5mm以下で且つ移行時間が0.1秒以下であるものを「良」(○)と判定した。   Further, the droplet transfer time was determined by the average transfer time from the occurrence of the 20 droplets extracted in the same manner as described above to the shift to the base material side. As the evaluation of weldability, a sample having a droplet size of 5 mm or less and a transition time of 0.1 seconds or less was determined as “good” (◯).
結果を表1に一括して示す。   The results are collectively shown in Table 1.
溶接実験でワイヤ先端部にできた溶滴の高速撮影画像の一例を示すもので、図1(A)はめっきなしワイヤを用いた場合、図1(B)はTiめっきワイヤを用いた場合である。FIG. 1A shows an example of a high-speed image of a droplet formed on the tip of a wire in a welding experiment. FIG. 1A shows a case where a wire without plating is used, and FIG. 1B shows a case where a Ti-plated wire is used. is there.

Claims (4)

  1. 直流正極性ガスシールドアーク溶接に用いられる鋼ワイヤであって、表面がTi層またはTi主体の合金層で被覆されていることを特徴とするガスシールドアーク溶接用鋼ワイヤ。   A steel wire for gas shielded arc welding, which is a steel wire used for direct current positive gas shielded arc welding, the surface of which is coated with a Ti layer or a Ti-based alloy layer.
  2. 直流正極性ガスシールドアーク溶接に用いられる鋼ワイヤであって、表面がNi層またはNi主体の合金層で被覆されていることを特徴とするガスシールドアーク溶接用鋼ワイヤ。   A steel wire used for direct current positive gas shielded arc welding, the surface of which is coated with a Ni layer or a Ni-based alloy layer.
  3. 前記被覆の厚さが5〜50μmである請求項1または2に記載のガスシールドアーク溶接用鋼ワイヤ。   The steel wire for gas shielded arc welding according to claim 1 or 2, wherein the coating has a thickness of 5 to 50 µm.
  4. 炭酸ガスシールドアーク溶接に用いられるものである請求項1〜3のいずれかに記載のガスシールドアーク溶接用鋼ワイヤ。   The steel wire for gas shielded arc welding according to any one of claims 1 to 3, which is used for carbon dioxide shielded arc welding.
JP2006071584A 2006-03-15 2006-03-15 Steel wire for gas shielded arc welding Expired - Fee Related JP4791218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071584A JP4791218B2 (en) 2006-03-15 2006-03-15 Steel wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071584A JP4791218B2 (en) 2006-03-15 2006-03-15 Steel wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2007245185A true JP2007245185A (en) 2007-09-27
JP4791218B2 JP4791218B2 (en) 2011-10-12

Family

ID=38590017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071584A Expired - Fee Related JP4791218B2 (en) 2006-03-15 2006-03-15 Steel wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP4791218B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504434A (en) * 2009-09-11 2013-02-07 ユニバーシティ インダストリー コーオペレーション ファウンデーション コリア エアロスペース ユニバーシティ Welding wire
WO2014063222A1 (en) 2012-10-24 2014-05-01 Liburdi Engineering Limited A composite welding wire and method of manufacturing
CN104289828A (en) * 2014-10-08 2015-01-21 山东大学 Active stranded wire welding wire capable of reducing spatter lose rate
US10702953B2 (en) 2014-10-15 2020-07-07 Liburdi Engineering Limited Composite welding wire and method of manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156691A (en) * 1979-05-28 1980-12-05 Daido Steel Co Ltd Gas shielded arc welding wire and its production
JPH07227692A (en) * 1994-02-18 1995-08-29 Sumitomo Metal Ind Ltd Wire for gas shielded arc welding and its production
JP2005246479A (en) * 2004-02-04 2005-09-15 Jfe Steel Kk Multilayer carbon dioxide gas shielded arc welding method for steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156691A (en) * 1979-05-28 1980-12-05 Daido Steel Co Ltd Gas shielded arc welding wire and its production
JPH07227692A (en) * 1994-02-18 1995-08-29 Sumitomo Metal Ind Ltd Wire for gas shielded arc welding and its production
JP2005246479A (en) * 2004-02-04 2005-09-15 Jfe Steel Kk Multilayer carbon dioxide gas shielded arc welding method for steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504434A (en) * 2009-09-11 2013-02-07 ユニバーシティ インダストリー コーオペレーション ファウンデーション コリア エアロスペース ユニバーシティ Welding wire
WO2014063222A1 (en) 2012-10-24 2014-05-01 Liburdi Engineering Limited A composite welding wire and method of manufacturing
CN104289828A (en) * 2014-10-08 2015-01-21 山东大学 Active stranded wire welding wire capable of reducing spatter lose rate
CN104289828B (en) * 2014-10-08 2016-05-04 山东大学 A kind of active twisted wire welding wire that reduces spatter loss coefficient
US10702953B2 (en) 2014-10-15 2020-07-07 Liburdi Engineering Limited Composite welding wire and method of manufacturing

Also Published As

Publication number Publication date
JP4791218B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
KR101623676B1 (en) Solid wire, and gas-shielded arc welding method using same
JP2004263280A (en) Corrosionproof magnesium alloy member, corrosionproofing treatment method for magnesium alloy member, and corrosionproofing method for magnesium alloy member
JP5980128B2 (en) Manufacturing method of arc-welded structural members
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP4791218B2 (en) Steel wire for gas shielded arc welding
JP2010201448A (en) Filler metal for joining different materials and joining method for different materials
JP4385028B2 (en) MIG brazing welding method
JP3802642B2 (en) Arc welding method for galvanized steel sheet
JP2016179484A (en) Welding method of galvanized steel sheet
JP2019063870A (en) Aluminum-containing welding electrode
JP3465647B2 (en) Pulsed CO2 welding steel wire
KR20190019020A (en) Electrodes for forming austenitic and duplex steel weld metal
JP2013504434A (en) Welding wire
JP2560125B2 (en) Gas shield arc welding method
JP5066375B2 (en) Copper-plated solid wire for pulse MAG welding
KR102004103B1 (en) Welding method of galvanized steel sheet
JP5600262B2 (en) Arc brazing shielding gas and welding method using the shielding gas
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JP2002346787A (en) Solid wire for pulse mag welding
JP2009248121A (en) Solid wire for pulse mag welding of thin steel sheet
JP3346888B2 (en) Gas metal arc welding wire for austenitic stainless steel
JP5337665B2 (en) Solid wire for MAG welding
JP6892305B2 (en) Arc welding method
JP6892302B2 (en) Arc welding method
TWI641699B (en) Hardfacing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees