JP2007214162A - Wired substrate, and method for manufacturing same - Google Patents

Wired substrate, and method for manufacturing same Download PDF

Info

Publication number
JP2007214162A
JP2007214162A JP2006029190A JP2006029190A JP2007214162A JP 2007214162 A JP2007214162 A JP 2007214162A JP 2006029190 A JP2006029190 A JP 2006029190A JP 2006029190 A JP2006029190 A JP 2006029190A JP 2007214162 A JP2007214162 A JP 2007214162A
Authority
JP
Japan
Prior art keywords
bonding
substrate body
wiring board
heat radiating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006029190A
Other languages
Japanese (ja)
Inventor
Makoto Nagai
誠 永井
Mitsuo Shiraishi
光雄 白石
Masahito Morita
雅仁 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006029190A priority Critical patent/JP2007214162A/en
Publication of JP2007214162A publication Critical patent/JP2007214162A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wired substrate comprising a substrate body formed of an insulating material, a heat radiating member bonded to the substrate body, and an electronic component bonded to the heat radiating member assuring strong bonding portions and a degree of freedom for design, and to provide a method for manufacturing the same wired substrate. <P>SOLUTION: The method for manufacturing a wired substrate 1a comprises a first step of bonding a light emitting element (electronic component) 15 on the heat radiating member 12 via a bonding member 16; and a second step of bonding the heat radiating member 12 bonded with the light emitting element 15 to the wired substrate 1 with another bonding member 11, in such a manner that the heat radiating member 12 is provided between a bottom surface 6 of a cavity 5 opening to a front surface 3 of the wired substrate 2 formed of ceramic (insulating material) and a rear surface 4. In this manufacturing method, a melting point or a cure temperature of the bonding member 16 for bonding the light emitting element 15 and the heat radiating member 12 is higher than the melting point or cure temperature of another bonding member 11, for bonding the substrate body 2 of the wired substrate 1 and the heat radiating member 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁材からなる基板本体の表面と裏面との間を貫通する放熱部材の上に電子部品を搭載した配線基板およびその製造方法に関する。   The present invention relates to a wiring board on which an electronic component is mounted on a heat dissipation member penetrating between a front surface and a back surface of a substrate body made of an insulating material, and a manufacturing method thereof.

例えば、金属製で且つ放熱性を有する金属製基板の周辺の上方に、融点が700〜900℃のAg−Cu合金などのロウ材や接着剤、あるいは500℃以下で溶融する低融点ガラスを介して、セラミック基板を固定し、上記金属製基板の中央表面に樹脂接着剤やSn−Pb合金のハンダを介して発光素子を搭載した発光素子収納用パッケージが提案されている(例えば、特許文献1参照)。
上記発光素子収納用パッケージによれば、十分な光反射性および放熱性を有し、大電流を流し得る発光素子のような発熱量の多い発光素子にも対応できる。
For example, a brazing material such as an Ag—Cu alloy having a melting point of 700 to 900 ° C. or an adhesive, or a low melting point glass that melts at 500 ° C. or less is disposed above the periphery of a metal and heat radiating metal substrate. Thus, there has been proposed a light emitting element storage package in which a ceramic substrate is fixed and a light emitting element is mounted on a central surface of the metal substrate via a resin adhesive or Sn—Pb alloy solder (for example, Patent Document 1). reference).
According to the light emitting element storage package, the light emitting element has sufficient light reflectivity and heat dissipation, and can deal with a light emitting element that generates a large amount of heat, such as a light emitting element capable of flowing a large current.

特開2004−228240号公報(第1〜8頁、図1)JP 2004-228240 A (pages 1 to 8, FIG. 1)

ところで、前記発光素子収納用パッケージは、予め金属製基板の周辺の上方にセラミック基板をAg−Cu合金のロウ材などを介して固定した後、金属製基板の中央表面にSn−Pb合金のハンダなどを介して発光素子を搭載している。このため、上記ロウ材などの融点は、上記ハンダをリフローするための融点よりも高くする必要がある。
また、前記発光素子収納用パッケージのように、金属製基板(放熱部材)とセラミック基板とからなる配線基板では、外部に露出するパッドなどの表面に予め同一の金属メッキ層が被覆されている。このため、予めセラミック基板が接合された金属製基板の中央表面に、発光素子をハンダを介して搭載する際には、上記金属メッキ層の種類による制約を受ける場合がある。その結果、当該金属メッキ層をそのまま利用した際には、上記金属製基板と発光素子との良好な接続および搭載状態にできなくなると共に、配線基板自体の設計上の自由度も低下する、という問題があった。
By the way, in the light emitting element storage package, after a ceramic substrate is fixed in advance above the periphery of the metal substrate via a brazing material of Ag—Cu alloy, solder of Sn—Pb alloy is provided on the center surface of the metal substrate. A light-emitting element is mounted via the above. For this reason, the melting point of the brazing material or the like needs to be higher than the melting point for reflowing the solder.
Further, in the wiring board composed of a metal substrate (heat radiating member) and a ceramic substrate as in the light emitting element storage package, the same metal plating layer is previously coated on the surface of pads exposed to the outside. For this reason, when a light emitting element is mounted on the center surface of a metal substrate to which a ceramic substrate has been bonded in advance via solder, there is a case where it is restricted by the type of the metal plating layer. As a result, when the metal plating layer is used as it is, the metal substrate and the light emitting element cannot be well connected and mounted, and the degree of freedom in designing the wiring board itself is also reduced. was there.

本発明は、背景技術において説明した問題点を解決し、絶縁材からなる基板本体と、かかる基板本体に接合する放熱部材と、かかる放熱部材に接合する電子部品とを備え、上記各接合部が強固で且つ設計上の自由度を有する配線基板およびその製造方法を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and includes a substrate body made of an insulating material, a heat dissipation member bonded to the substrate body, and an electronic component bonded to the heat dissipation member. It is an object of the present invention to provide a wiring board that is strong and has design freedom and a method for manufacturing the wiring board.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、絶縁材からなる基板本体および放熱部材を接合する接合材と、放熱部材および電子部品を接合する接合材とにおける融点またはキュア温度の関係を特定すると共に、かかる接合の順序を規定する、ことに着想して成されたものである。
即ち、本発明の配線基板(請求項1)は、絶縁材からなり表面および裏面を有する基板本体と、かかる基板本体の表面と裏面との間を貫通し、且つかかる基板本体に接合された放熱部材と、かかる放熱部材の上に接合された電子部品と、を備え、上記電子部品と放熱部材とを接合する接合材の融点またはキュア温度は、上記基板本体と放熱部材とを接合する別の接合材の融点またはキュア温度よりも高い、ことを特徴とする。
In order to solve the above problems, the present invention specifies the relationship between the melting point or the curing temperature in the bonding material for bonding the substrate body and the heat dissipation member made of an insulating material, and the bonding material for bonding the heat dissipation member and the electronic component, The idea is to define the order of such joining.
That is, the wiring board according to the present invention (Claim 1) includes a substrate main body made of an insulating material and having a front surface and a back surface, and heat dissipation that penetrates between the front and back surfaces of the substrate main body and is bonded to the substrate main body. And a melting point or a curing temperature of a bonding material for bonding the electronic component and the heat dissipation member is different from that for bonding the substrate body and the heat dissipation member. It is characterized by being higher than the melting point or curing temperature of the bonding material.

これによれば、予め、放熱部材の上にハンダなどの接合材を介して電子部品を接合した後、当該放熱部材を基板本体の表面と裏面との間を貫通する貫通孔に有機系接着剤などの接合材を介して接着(接合)する際に、かかる接着剤を加熱するキュア温度では上記ハンダは、溶融ないし軟化しない。このため、一般的に広く使用されているロウ材を含むハンダや有機系接着剤を用いて、基板本体と放熱部材、および、当該放熱部材と電子部品の2組の接合を強固にできる。しかも、基板本体におけるパッドなどの表面に被覆したメッキ層の種類によって、電子部品と放熱部材との接合に悪影響を与えない。
従って、電子部品と基板本体との導通が確実に取れ、電子部品が発する熱を放熱部材を介して効率良く放熱できると共に、設計上の自由度が高い配線基板とすることができる。
According to this, after an electronic component is bonded on the heat dissipation member in advance via a bonding material such as solder, the organic adhesive is inserted into the through hole penetrating the heat dissipation member between the front surface and the back surface of the substrate body. When bonding (bonding) through a bonding material such as the above, the solder does not melt or soften at a curing temperature at which the adhesive is heated. For this reason, it is possible to firmly bond the two sets of the substrate body and the heat radiating member and the heat radiating member and the electronic component by using solder or an organic adhesive containing a brazing material that is widely used in general. In addition, the type of the plating layer coated on the surface of the substrate body such as a pad does not adversely affect the bonding between the electronic component and the heat dissipation member.
Therefore, electrical connection between the electronic component and the board body can be ensured, and heat generated by the electronic component can be efficiently radiated through the heat radiating member, and a wiring board having a high degree of design freedom can be obtained.

尚、前記基板本体を形成する絶縁材には、アルミナなどのセラミック、低温焼成セラミックの一種であるガラス−セラミック、あるいはエポキシ系などの各種の樹脂が含まれる。
また、前記基板本体の表面は、平坦な表面のほか、かかる表面に開口するキャビティの底面も含まれる。当該キャビティには、矩形(正方形または長方形)の底面および四角筒形の側面、円形の底面および円筒形の側面、円形の底面およびほぼ円錐形の側面、あるいは、長円形の底面およびほぼ長円錐形の側面からなる形態などが含まれる。
更に、前記接合材には、ハンダ(ロウ材を含む低融点の金属または合金)あるいは有機系接着剤が含まれ、上記ハンダにはその融点が、有機系接着剤にはそのキュア(硬化)温度が適用される。従って、前記接合材および別の接合材には、ハンダ同士、有機系接着剤同士、あるいは、ハンダおよび有機系接着剤の3通りの組み合わせの何れかが適用される。
また、前記放熱部材には、高い熱伝導性を有する例えばCuまたはCu合金、あるいはAlまたはAl合金からなるものが用いられる。
加えて、前記電子部品には、ICチップ、LEDまたは半導体レーザなどからなる発光素子、SAWフィルタ、ダイオード、トランジスタなどが含まれる。
The insulating material forming the substrate body includes ceramics such as alumina, glass-ceramics that are a kind of low-temperature fired ceramics, and various resins such as epoxy.
Further, the surface of the substrate body includes a flat surface as well as a bottom surface of a cavity opening on the surface. The cavity may have a rectangular (square or rectangular) bottom and square cylindrical side, a circular bottom and cylindrical side, a circular bottom and a substantially conical side, or an oval bottom and a substantially long cone. The form which consists of a side is included.
Further, the bonding material includes solder (a low melting point metal or alloy including a brazing material) or an organic adhesive, and the solder has a melting point, and the organic adhesive has a curing (curing) temperature. Applies. Therefore, either one of solders, organic adhesives, or three combinations of solder and organic adhesives is applied to the bonding material and the other bonding material.
The heat radiating member is made of, for example, Cu or Cu alloy having high thermal conductivity, or Al or Al alloy.
In addition, the electronic component includes a light-emitting element such as an IC chip, an LED or a semiconductor laser, a SAW filter, a diode, a transistor, and the like.

また、本発明には、前記電子部品と放熱部材とを接合する接合材の融点またはキュア温度は、前記基板本体と放熱部材とを接合する別の接合材の融点またはキュア温度よりも、50℃以上高い、配線基板(請求項2)も含まれる。
これによれば、放熱部材の上に接合材を介して電子部品を接合した後、当該放熱部材を基板本体の表面と裏面との間を貫通する貫通孔に別の接合材を介して接合する際に、かかる別の接合材を加熱する融点またはキュア温度付近において、上記接合材の溶融ないし軟化を確実に防ぐことができる。
In the present invention, the melting point or curing temperature of the bonding material for bonding the electronic component and the heat dissipation member is 50 ° C. than the melting point or curing temperature of another bonding material for bonding the substrate body and the heat dissipation member. A wiring board (claim 2) which is higher than the above is also included.
According to this, after joining an electronic component on a heat radiating member via a bonding material, the heat radiating member is bonded to a through-hole penetrating between the front surface and the back surface of the substrate body via another bonding material. In this case, melting or softening of the bonding material can be surely prevented in the vicinity of the melting point or the curing temperature at which the other bonding material is heated.

一方、本発明による配線基板の製造方法(請求項3)は、放熱部材の上に電子部品を接合材を介して接合する第1工程と、かかる電子部品が接合された放熱部材を、絶縁材からなる基板本体の表面と裏面との間を貫通するように、配線基板に対し別の接合材で接合する第2工程と、を含み、上記電子部品と放熱部材とを接合する接合材の融点またはキュア温度は、上記基板本体と放熱部材とを接合する接合材の融点またはキュア温度よりも高い、ことを特徴とする。   On the other hand, the method for manufacturing a wiring board according to the present invention (Claim 3) includes a first step of joining an electronic component on a heat radiating member via a bonding material, and a heat radiating member to which the electronic component is bonded. A second step of bonding to the wiring board with another bonding material so as to penetrate between the front surface and the back surface of the substrate body made of, and the melting point of the bonding material for bonding the electronic component and the heat dissipation member Alternatively, the curing temperature is characterized by being higher than the melting point or the curing temperature of the bonding material for bonding the substrate body and the heat dissipation member.

これによれば、放熱部材の上にハンダなどの接合材を介して電子部品を接合した第1工程の後で、当該放熱部材を基板本体の表面と裏面との間を貫通する貫通孔に有機系接着剤などの別の接合材を介して接着(接合)する第2工程が行われる。このため、別の接合材による接着時に、当該別の接合材を加熱するキュア温度では上記接合材は、溶融ないし軟化しない。この結果、一般的に広く使用されているロウ材を含むハンダや有機系接着剤を用いて、基板本体と放熱部材、および、当該放熱部材と電子部品の2組の接合を強固にできる。しかも、基板本体におけるパッドなどの表面に予め被覆したメッキ層の種類によって、電子部品と放熱部材との接合に悪影響を与えることも解消できる。
従って、電子部品と基板本体との導通が確実に取れ、電子部品が発する熱を放熱部材を介して効率良く放熱できると共に、設計上の自由度が高い配線基板を確実に製造することが可能となる。
According to this, after the first step of joining the electronic component on the heat radiating member via the bonding material such as solder, the heat radiating member is organically formed in the through hole penetrating between the front surface and the back surface of the substrate body. A second step of bonding (bonding) through another bonding material such as a system adhesive is performed. For this reason, at the time of adhesion by another bonding material, the bonding material does not melt or soften at a curing temperature at which the other bonding material is heated. As a result, it is possible to firmly bond the two sets of the substrate body and the heat radiating member, and the heat radiating member and the electronic component by using solder or an organic adhesive containing a brazing material that is generally widely used. In addition, it is possible to eliminate the adverse effect on the bonding between the electronic component and the heat radiating member depending on the kind of the plating layer previously coated on the surface of the substrate body such as the pad.
Therefore, it is possible to reliably establish electrical connection between the electronic component and the board body, to efficiently dissipate the heat generated by the electronic component through the heat dissipation member, and to reliably manufacture a wiring board having a high degree of design freedom. Become.

付言すれば、本発明には、前記放熱部材の上端に位置するフランジは、前記基板本体のキャビティの底面に露出している、配線基板も含まれ得る。
これによる場合、上記フランジの表面にハンダまたは有機系接着剤などの接合材を介して電子部品を広い面積で接合できると共に、かかるフランジの裏面における周辺と基板本体の表面または当該表面に開口するキャビティの底面との間では、別の接合材を介して放熱部材と基板本体との強固な接合が可能となる。
In other words, the present invention may include a wiring board in which the flange located at the upper end of the heat radiating member is exposed on the bottom surface of the cavity of the board body.
In this case, an electronic component can be bonded to the surface of the flange via a bonding material such as solder or an organic adhesive over a wide area, and the periphery on the back surface of the flange and the surface of the substrate body or a cavity opened to the surface In this case, the heat radiating member and the substrate main body can be firmly bonded to each other through another bonding material.

以下において、本発明を実施するための最良の形態について説明する。
図1〜図3は、本発明における配線基板の製造方法とこれにより得られた本発明の配線基板1aの概略とを示す概略図または断面図である。
図1の左側に示すように、予め、Cuからなる放熱部材12と、LEDからなる発光素子(電子部品)15とを用意した。放熱部材12は、四角柱を呈するシンク本体13と、その上端から側方に向けて一体に張り出した平面視が矩形(正方形または長方形)のフランジ14と、からなる。
先ず、放熱部材12のフランジ14上に、融点が約280〜300℃のAu−Sn合金からなるシート状のハンダ(接合材)16を介して、発光素子15を載置した後、ハンダ16の上記融点の直上に温度に加熱(リフロー)した。
その結果、図1の右側に示すように、放熱部材12のフランジ14上に、一端溶けた後に再凝固したハンダ16を介して、発光素子15を接合したユニットUが得られた(第1工程)。
In the following, the best mode for carrying out the present invention will be described.
1 to 3 are schematic views or cross-sectional views showing a method of manufacturing a wiring board according to the present invention and an outline of the wiring board 1a of the present invention obtained thereby.
As shown on the left side of FIG. 1, a heat radiating member 12 made of Cu and a light emitting element (electronic component) 15 made of LED were prepared in advance. The heat radiating member 12 includes a sink main body 13 having a quadrangular column and a flange 14 having a rectangular shape (square or rectangular shape) in plan view extending integrally from the upper end toward the side.
First, after placing the light emitting element 15 on the flange 14 of the heat radiating member 12 via the sheet-like solder (joining material) 16 made of an Au—Sn alloy having a melting point of about 280 to 300 ° C., the solder 16 Heated (reflowed) to a temperature just above the melting point.
As a result, as shown on the right side of FIG. 1, a unit U was obtained in which the light emitting element 15 was joined to the flange 14 of the heat radiating member 12 via the solder 16 that was melted at one end and then re-solidified (first step). ).

一方、図2に示すように、発光素子15を搭載する前の配線基板1を別途用意した。配線基板1は、表面3および裏面4を有する基板本体2、かかる基板本体2の表面3に開口するキャビティ5、当該キャビティ5の底面6と基板本体2の裏面4との間を貫通する貫通孔10、上記キャビティ5の側面7に形成した光反射層8、および基板本体2の裏面4に形成した一対のパッド9を備えている。
上記基板本体2は、図2に示すように、アルミナ(セラミック:絶縁材)を主成分とする複数のグリーンシートを積層して焼成したセラミック層c1〜c4からなる。かかるセラミック層c1〜c4間およびそれぞれの内部には、WまたはMoからなる所定パターンの配線層と、これらの間を接続するビア導体(何れも図示せず)とが形成されている。
On the other hand, as shown in FIG. 2, the wiring board 1 before mounting the light emitting element 15 was prepared separately. The wiring board 1 includes a substrate body 2 having a front surface 3 and a back surface 4, a cavity 5 opening in the front surface 3 of the substrate body 2, and a through-hole penetrating between the bottom surface 6 of the cavity 5 and the back surface 4 of the substrate body 2. 10, a light reflecting layer 8 formed on the side surface 7 of the cavity 5, and a pair of pads 9 formed on the back surface 4 of the substrate body 2.
As shown in FIG. 2, the substrate body 2 includes ceramic layers c1 to c4 obtained by laminating and firing a plurality of green sheets mainly composed of alumina (ceramic: insulating material). Between the ceramic layers c1 to c4 and in each of them, a wiring layer having a predetermined pattern made of W or Mo and via conductors (not shown) for connecting them are formed.

また、図2に示すように、キャビティ5は、平面視が円形の底面6と、かかる底面6の周辺から基板本体2の表面3に向かって斜めに立ち上がる全体がほぼ円錐形の側面7と、からなる。かかる側面7の上には、WまたはMoからなるメタライズ層、Niメッキ層、および表層のAgメッキ層からなる光反射層8が全面に形成されている。尚、セラミック層c3,c4が主にアルミナからなり、側面7が白色を呈し且つ光反射が可能な場合には、光反射層8を省略しても良い。
更に、上記キャビティ5の底面6の中央部と、基板本体2の裏面4の中央部との間には、断面が正方形の貫通孔10が貫通している。加えて、基板本体2の裏面4における対向する一辺と対向する一対の側面とにまたがって、WまたはMoからなる断面ほぼL字形を呈する一対のパッド9が形成されている。
As shown in FIG. 2, the cavity 5 has a bottom surface 6 that is circular in a plan view, and a side surface 7 that is substantially conical and rises obliquely from the periphery of the bottom surface 6 toward the surface 3 of the substrate body 2. Consists of. On the side surface 7, a light reflecting layer 8 made of a metallized layer made of W or Mo, a Ni plated layer, and a surface Ag plated layer is formed on the entire surface. When the ceramic layers c3 and c4 are mainly made of alumina, the side surface 7 is white and light reflection is possible, the light reflection layer 8 may be omitted.
Further, a through-hole 10 having a square cross section penetrates between the central portion of the bottom surface 6 of the cavity 5 and the central portion of the back surface 4 of the substrate body 2. In addition, a pair of pads 9 having a substantially L-shaped cross section made of W or Mo are formed across the opposing side and the pair of opposing side surfaces on the back surface 4 of the substrate body 2.

前記のような配線基板1は、以下のようにして製造した。
予め、アルミナ粉末粒子、樹脂バインダ、可塑剤、および溶剤などからなる原料を所要量ずつ混合して、セラミックスラリを製作した。かかるセラミックスラリに対しドクターブレード法を施して、厚みが約50〜750μmのグリーンシートを4枚形成した。尚、かかるグリーンシートは、多数個取り用である大版タイプのものとしても良い。
上記のうち、2枚のグリーンシートに対し、断面が円形のパンチと、かかるパンチの断面よりも大径の受入孔を有するダイとを用いる打ち抜き加工を施すことで、上記パンチと受入孔との剪断作用によって、ほぼ円錐形で且つ互いに連通可能な大小2種類の貫通孔を個別に形成した。これら2種類の貫通孔が互いに連通するように、上記2枚のグリーンシートを積層することで、ほぼ円錐形の貫通孔が形成された。かかる貫通孔の内面に、WまたはMo粉末を含む導電性ペーストを印刷した。尚、かかる導電性ペーストの印刷を省略しても良い。
The wiring board 1 as described above was manufactured as follows.
A ceramic slurry was produced by mixing raw materials composed of alumina powder particles, a resin binder, a plasticizer, a solvent, and the like in advance. The ceramic slurry was subjected to a doctor blade method to form four green sheets having a thickness of about 50 to 750 μm. The green sheet may be of a large plate type for taking a large number.
Among the above, by punching two green sheets with a punch having a circular cross section and a die having a receiving hole having a diameter larger than the cross section of the punch, the punch and the receiving hole Through the shearing action, two types of large and small through-holes each having a substantially conical shape and communicating with each other were individually formed. By laminating the two green sheets so that these two types of through holes communicate with each other, a substantially conical through hole was formed. A conductive paste containing W or Mo powder was printed on the inner surface of the through hole. Note that printing of the conductive paste may be omitted.

一方、残り2枚の平坦なグリーンシートにおける表面と裏面との中央部に、打ち抜き加工を施して、同じ断面正方形の貫通孔を形成した。また、かかる2枚のグリーンシートの表面および裏面の少なくとも一方に、スクリーン印刷により、WまたはMo粉末を含む導電性ペーストを所定パターンで印刷して配線層を形成する共に、上記各グリーンシートにおける表面と裏面との間を貫通するビアホールに上記導電性ペーストを充填してビア導体を形成した。尚、下層側のグリーンシートの裏面と側面には、追って前記パッド9となる導電性ペーストを形成した。
次いで、上記2枚の平坦なグリーンシートを積層し、更にその上に前記ほぼ円錐形を呈する貫通孔を有し、係る貫通孔の内面に導電性ペーストを印刷した前記2枚のグリーンシートを積層した。この結果、表面3、裏面4、表面3に開口し且つ底面6および側面7からなるキャビティ5、および底面6と裏面4との間を貫通する貫通孔10を有するグリーンシート積層体が得られた。
On the other hand, a punching process was performed on the center part of the front and back surfaces of the remaining two flat green sheets to form through holes having the same square cross section. In addition, a conductive layer containing W or Mo powder is printed in a predetermined pattern on at least one of the front and back surfaces of the two green sheets by screen printing to form a wiring layer. A via conductor was formed by filling the via hole penetrating between the first and second surfaces with the conductive paste. A conductive paste to be the pad 9 was formed on the back and side surfaces of the lower layer green sheet.
Next, the two flat green sheets are laminated, and further, the two green sheets having the substantially conical through-holes thereon and the conductive paste printed on the inner surface of the through-holes are laminated. did. As a result, a green sheet laminate having a front surface 3, a back surface 4, a cavity 5 having an opening on the front surface 3 and having a bottom surface 6 and a side surface 7 and a through hole 10 penetrating between the bottom surface 6 and the back surface 4 was obtained. .

次に、かかるグリーンシート積層体を図示しない焼成炉に挿入し、所定の温度帯に加熱して焼成した。この結果、前記4枚のグリーンシートは、前記セラミック層c1〜c4になって基板本体2が得られると共に、かかる基板本体2の側面と裏面4とにまたがる断面ほぼL字形のメタライズ層と、キャビティ5の側面7を覆うほぼ円錐形のメタライズ層とが形成された。
そして、焼成された基板本体2の裏面4側に位置する上記断面ほぼL字形の各メタライズ層に対し、NiメッキおよびAuメッキを施してメッキ層を被覆して、前記パッド9を形成した。更に、キャビティ5の側面7を覆う上記ほぼ円錐形のメタライズ層に対し、NiメッキおよびAgメッキを施して、光反射層8を形成した。その結果、図2に示す配線基板1が得られた。
Next, the green sheet laminate was inserted into a firing furnace (not shown), heated to a predetermined temperature zone, and fired. As a result, the four green sheets become the ceramic layers c1 to c4 to obtain the substrate body 2, and the metallized layer having a substantially L-shaped cross section extending over the side surface and the back surface 4 of the substrate body 2, and the cavity 5 and a substantially conical metallization layer covering the side surface 7 of the film.
Then, the pad 9 was formed by applying Ni plating and Au plating to each metallized layer having a substantially L-shaped cross section located on the back surface 4 side of the fired substrate body 2 to cover the plated layer. Further, the light reflecting layer 8 was formed by applying Ni plating and Ag plating to the substantially conical metallized layer covering the side surface 7 of the cavity 5. As a result, the wiring board 1 shown in FIG. 2 was obtained.

次いで、図2中の矢印で示すように、配線基板1の基板本体2における貫通孔10内に、前記ユニットUにおける放熱部材12のシンク本体13を挿入した。かかるシンク本体13の側面およびフランジ14の底面には、予めキュア温度(約150℃)が前記ハンダ16の融点280〜300℃よりも100℃以上低いエポキシ系接着剤(有機系接着剤:別の接合材)11を被覆した。
配線基板1の貫通孔10に上記ユニットUを構成する放熱部材12のシンク本体13を挿入した状態で、かかる配線基板1と発光素子15および放熱部材12からなるユニットUとを、図示しない加熱炉に挿入し、エポキシ系接着剤11のキュア温度の直上の温度に加熱(リフロー)した。かかる加熱時において、ユニットU側のハンダ16が配線基板1側のエポキシ系接着剤11のキュア温度よりも100℃以上高く、上記ハンダ16は何らの影響を受けなかったため、発光素子15と放熱部材12との接合に悪影響を生じなかった。
Next, as indicated by an arrow in FIG. 2, the sink body 13 of the heat radiating member 12 in the unit U was inserted into the through hole 10 in the board body 2 of the wiring board 1. On the side surface of the sink body 13 and the bottom surface of the flange 14, an epoxy adhesive (organic adhesive: another adhesive having a curing temperature (about 150 ° C.) lower than the melting point 280 to 300 ° C. of the solder 16 by 100 ° C. or more in advance. Bonding material) 11 was coated.
In a state where the sink body 13 of the heat radiating member 12 constituting the unit U is inserted into the through hole 10 of the wiring board 1, the wiring board 1 and the unit U composed of the light emitting element 15 and the heat radiating member 12 are connected to a heating furnace (not shown). And heated (reflowed) to a temperature just above the curing temperature of the epoxy adhesive 11. During the heating, the solder 16 on the unit U side is 100 ° C. or more higher than the cure temperature of the epoxy adhesive 11 on the wiring board 1 side, and the solder 16 was not affected at all. 12 had no adverse effect on the bonding with No. 12.

その結果、図3に示すように、基板本体2の貫通孔10にシンク本体13を挿入させた状態で、かかる基板本体2と放熱部材12とをエポキシ系接着剤11を介して接合できた(第2工程)。これにより、キャビティ5の底面6に発光素子15を搭載した配線基板1aが得られた。
以上のような配線基板1aおよびその製造方法によれば、発光素子15の搭載前の配線基板1における光反射層8の表層に被覆したAgメッキ層や、一対のパッド9の表層に被覆したAuメッキ層は、別途に形成されたユニットUにおける発光素子15と放熱部材12とを接合するハンダ16に何らの影響を及ぼさない。これにより、配線基板1の設計・組立および発光素子15と放熱部材12の設計・組立に対し、それぞれ自由度を高めることができた。
As a result, as shown in FIG. 3, the substrate main body 2 and the heat radiating member 12 can be bonded via the epoxy adhesive 11 in a state where the sink main body 13 is inserted into the through hole 10 of the substrate main body 2 ( Second step). As a result, a wiring substrate 1 a having the light emitting element 15 mounted on the bottom surface 6 of the cavity 5 was obtained.
According to the wiring board 1a and the manufacturing method thereof as described above, the Ag plating layer coated on the surface layer of the light reflecting layer 8 on the wiring board 1 before the light emitting element 15 is mounted, or the Au layer coated on the surface layer of the pair of pads 9. The plating layer has no influence on the solder 16 that joins the light emitting element 15 and the heat dissipation member 12 in the separately formed unit U. As a result, the degree of freedom can be increased with respect to the design / assembly of the wiring board 1 and the design / assembly of the light emitting element 15 and the heat radiating member 12.

しかも、前記ユニットUにおいて発光素子15と放熱部材12とを接合するハンダ16の融点は、ヒートシンク12と基板本体2の貫通孔10を形成するセラミック層c1,c2とを接合するエポキシ系接着剤11のキュア温度よりも100℃以上高い。このため、放熱部材12と基板本体2とを接合する際の加熱時に、発光素子15と放熱部材12とを予め接合したハンダ16に対し、何らの悪影響も与えなかったので、発光素子15の搭載を安定させ、配線基板1の内部配線や各パッド9との導通を安定して取ることができた。
尚、キャビティ5の底面6に搭載する発光素子15を複数個としても良く、かかる形態では、大きい断面積のシンク本体13および広い面積のフランジ14を有する放熱部材12を用いるようにする。あるいは、複数個の放熱部材12のフランジ14上に、ハンダ16を介して複数の発光素子15を個別に接合した複数個のユニットUを、複数の貫通孔10に個別に挿入してエポキシ系接着剤11を介して基板本体2に接合するようにしても良い。
Moreover, the melting point of the solder 16 that joins the light emitting element 15 and the heat radiating member 12 in the unit U is the epoxy adhesive 11 that joins the heat sink 12 and the ceramic layers c1 and c2 that form the through holes 10 of the substrate body 2. 100 ° C. or higher than the cure temperature. For this reason, since there was no adverse effect on the solder 16 in which the light emitting element 15 and the heat radiating member 12 were bonded in advance at the time of heating when the heat radiating member 12 and the substrate body 2 were bonded, the mounting of the light emitting element 15 was not performed. It was possible to stabilize the electrical connection between the internal wiring of the wiring board 1 and each pad 9.
Note that a plurality of light emitting elements 15 mounted on the bottom surface 6 of the cavity 5 may be provided. In this embodiment, the heat dissipating member 12 having the sink body 13 having a large cross-sectional area and the flange 14 having a large area is used. Alternatively, a plurality of units U in which a plurality of light emitting elements 15 are individually joined via the solder 16 on the flanges 14 of the plurality of heat radiating members 12 are individually inserted into the plurality of through holes 10 and epoxy-based bonded. The substrate 11 may be bonded via the agent 11.

図4,図5は、異なる形態の配線基板20aおよびその製造方法に関する。
図4の上方に示すように、予め、前記同様の放熱部材12のフランジ14上に、ICチップ(電子部品)28を、前記と同じハンダ(接合材)16を介して接合(第1工程)することで、ユニットU1を形成した。
一方、図4の下方に示すように、異なる形態の配線基板20を別途に用意した。かかる配線基板20は、表面23および裏面24を有する基板本体22、かかる基板本体22の表面23に開口するキャビティ25、当該キャビティ25の底面26と基板本体22の裏面24との間を貫通する貫通孔21、および基板本体22の裏面24と側面とにまたがって形成した一対のパッド9を備えている。
4 and 5 relate to a wiring board 20a of a different form and a manufacturing method thereof.
As shown in the upper part of FIG. 4, an IC chip (electronic component) 28 is previously bonded onto the flange 14 of the same heat radiating member 12 via the same solder (bonding material) 16 as described above (first step). As a result, the unit U1 was formed.
On the other hand, as shown in the lower part of FIG. 4, different types of wiring boards 20 were prepared separately. The wiring board 20 includes a substrate body 22 having a front surface 23 and a back surface 24, a cavity 25 opening in the front surface 23 of the substrate body 22, and a through hole penetrating between the bottom surface 26 of the cavity 25 and the back surface 24 of the substrate body 22. A pair of pads 9 formed across the hole 21 and the back surface 24 and the side surface of the substrate body 22 are provided.

上記基板本体22は、図4に示すように、前記同様の複数のグリーンシートを積層して焼成したセラミック層c1,c2,c5,c6からなる。かかるセラミック層c1,c2,c5,c6間には、WまたはMoからなる所定パターンの配線層が形成され、これらの間を接続するビア導体(何れも図示せず)がセラミック層c1などを貫通して形成されている。
また、図4に示すように、キャビティ25は、平面視が正方形の底面26と、かかる底面26の周辺から基板本体22の表面23に垂直に立ち上がる全体が四角筒形の側面27と、からなる。更に、かかるキャビティ25の底面26の中央部と、基板本体22の裏面24の中央部との間には、断面が正方形の貫通孔21が貫通している。加えて、基板本体22の裏面24と対向する一対の側面とにまたがって、前記同様の一対のパッド9が形成されている。
As shown in FIG. 4, the substrate body 22 includes ceramic layers c1, c2, c5, and c6 obtained by laminating and firing a plurality of green sheets similar to those described above. Between the ceramic layers c1, c2, c5, and c6, a wiring layer having a predetermined pattern made of W or Mo is formed, and via conductors (not shown) passing through these layers penetrate the ceramic layer c1 and the like. Is formed.
As shown in FIG. 4, the cavity 25 includes a bottom surface 26 having a square shape in plan view, and a side surface 27 having a rectangular tube shape as a whole rising vertically from the periphery of the bottom surface 26 to the surface 23 of the substrate body 22. . Further, a through-hole 21 having a square cross section penetrates between the central portion of the bottom surface 26 of the cavity 25 and the central portion of the back surface 24 of the substrate body 22. In addition, a pair of pads 9 similar to the above are formed across a pair of side surfaces facing the back surface 24 of the substrate body 22.

前記のような配線基板20は、以下のようにして製造した。
予め前記と同様に、厚みが約50〜750μmのグリーンシートを4枚形成した。尚、かかるグリーンシートは、多数個取り用である大版タイプのものとしても良い。
4枚のグリーンシートにおける表面および裏面の少なくとも一方に、WまたはMo粉末を含む導電性ペースト(図示せず)を印刷して配線層を形成すると共に、各グリーンシートにおける表面と裏面との間を貫通するビアホールに上記導電性ペーストを充填してビア導体(図示せず)を形成した。
上記2枚ずつ2組のグリーンシート対し、断面寸法が異なる断面正方形の2種類のパンチと、これらのパンチの各断面と相似形の受入孔を有する2種類のダイと、を各組別に用いる打ち抜き加工を施すことで、比較的大きな正方形または小さな正方形で且つ互いに同心で連通可能な貫通孔を各組ごとに個別に形成した。これら2組ごとの貫通孔が互いに連通し、且つ各貫通孔の中心が同軸になるようにして、上記4枚のグリーンシートを積層した。
The wiring board 20 as described above was manufactured as follows.
In the same manner as described above, four green sheets having a thickness of about 50 to 750 μm were formed in advance. The green sheet may be of a large plate type for taking a large number.
A conductive paste (not shown) containing W or Mo powder is printed on at least one of the front and back surfaces of the four green sheets to form a wiring layer, and between the front and back surfaces of each green sheet. A via conductor (not shown) was formed by filling the via hole penetrating the conductive paste.
Punching using two types of punches having square cross-sections having different cross-sectional dimensions and two types of dies having receiving holes similar in shape to the cross-sections of the two pairs of green sheets. By performing the processing, through-holes that are relatively large squares or small squares and that can communicate with each other concentrically are individually formed for each group. The four green sheets were laminated such that the two sets of through holes communicated with each other and the centers of the through holes were coaxial.

この結果、表面23、裏面24、表面23に開口する底面26および側面27からなるキャビティ5、および底面27と裏面24との間を貫通する貫通孔21を有するグリーンシート積層体が得られた。
次に、かかるグリーンシート積層体を図示しない焼成炉に挿入し、所定の温度帯に加熱して焼成した。この結果、前記4枚のグリーンシートは、前記セラミック層c1,c2,c5,c6になって基板本体22が得られると共に、かかる基板本体22の側面と裏面24とにまたがる断面ほぼL字形のメタライズ層が形成された。そして、焼成された基板本体22の裏面24側に位置する上記各メタライズ層に対し、NiメッキおよびAuメッキを施してメッキ層を被覆して、一対の前記パッド9を形成した。その結果、図4に示す配線基板20が得られた。
As a result, a green sheet laminate having the front surface 23, the back surface 24, the cavity 5 formed of the bottom surface 26 and the side surface 27 opening on the front surface 23, and the through hole 21 penetrating between the bottom surface 27 and the back surface 24 was obtained.
Next, the green sheet laminate was inserted into a firing furnace (not shown), heated to a predetermined temperature zone, and fired. As a result, the four green sheets become the ceramic layers c 1, c 2, c 5, and c 6 to obtain the substrate body 22, and the metallization having a substantially L-shaped cross section extending over the side surface and the back surface 24 of the substrate body 22. A layer was formed. Then, the metallized layer located on the back surface 24 side of the fired substrate body 22 was subjected to Ni plating and Au plating to cover the plating layer, thereby forming the pair of pads 9. As a result, the wiring board 20 shown in FIG. 4 was obtained.

次いで、図4中の矢印で示すように、配線基板20の基板本体22における貫通孔21内に、前記ユニットU1における放熱部材12のシンク本体13を挿入した。かかるシンク本体13の側面およびフランジ14の底面には、予めエポキシ系接着剤(別の接合材)11を被覆した。配線基板20の貫通孔21に上記ユニットU1を構成する放熱部材12のシンク本体13を挿入した状態で、かかる配線基板20とICチップ28および放熱部材12からなるユニットU1とを、図示しない加熱炉に挿入し、エポキシ系接着剤11のキュア温度の直上の温度に加熱(リフロー)した。かかる加熱時において、ユニットU1側のハンダ16は、配線基板20側のエポキシ系接着剤11のキュア温度よりも高く、何らの影響を受けないため、ICチップ28と放熱部材12との接合に悪影響を生じなかった。
その結果、図5に示すように、基板本体22の貫通孔21にシンク本体13を挿入させた状態で、かかる基板本体22と放熱部材12とをエポキシ系接着剤11を介して接着(接合)できた(第2工程)。これにより、キャビティ25の底面26にICチップ28を搭載した配線基板20aが得られた。
Next, as indicated by an arrow in FIG. 4, the sink body 13 of the heat radiating member 12 in the unit U <b> 1 was inserted into the through hole 21 in the board body 22 of the wiring board 20. The side surface of the sink body 13 and the bottom surface of the flange 14 were previously coated with an epoxy adhesive (another bonding material) 11. In a state where the sink body 13 of the heat radiating member 12 constituting the unit U1 is inserted into the through hole 21 of the wiring board 20, the wiring board 20 and the unit U1 composed of the IC chip 28 and the heat radiating member 12 are not shown in a heating furnace. And heated (reflowed) to a temperature just above the curing temperature of the epoxy adhesive 11. During such heating, the solder 16 on the unit U1 side is higher than the cure temperature of the epoxy adhesive 11 on the wiring board 20 side and is not affected at all, and thus adversely affects the bonding between the IC chip 28 and the heat dissipation member 12. Did not occur.
As a result, as shown in FIG. 5, the substrate body 22 and the heat dissipation member 12 are bonded (bonded) via the epoxy adhesive 11 in a state where the sink body 13 is inserted into the through hole 21 of the substrate body 22. (Second step). As a result, a wiring substrate 20 a having the IC chip 28 mounted on the bottom surface 26 of the cavity 25 was obtained.

以上のような配線基板20aおよびその製造方法によれば、ICチップ28を搭載する前の配線基板20における一対のパッド9の表層に被覆したAuメッキ層は、別途に形成されたユニットU1におけるICチップ28と放熱部材12とを接合するハンダ16に何らの影響を及ぼさなかった。これにより、配線基板20の設計・組立およびICチップ28と放熱部材12との設計・接合に対し、それぞれ自由度を高めることができた。
しかも、ユニットU1で用いたハンダ16の融点は、放熱部材12と基板本体22とを接合するエポキシ系接着剤11のキュア温度よりも高いため、放熱部材12と基板本体22とを接合する際のエポキシ系接着剤11の加熱時に、ICチップ28と放熱部材12とを予め接合したハンダ16に対し、何らの悪影響も与えなかった。この結果、ICチップ28の搭載を安定させ、配線基板20の内部配線や各パッド9との導通を安定して取れる配線基板20aを得ることができた。
According to the wiring board 20a and the manufacturing method thereof as described above, the Au plating layer covering the surface layer of the pair of pads 9 on the wiring board 20 before mounting the IC chip 28 is the IC in the unit U1 formed separately. The solder 16 that joins the chip 28 and the heat radiating member 12 was not affected at all. As a result, the degree of freedom can be increased for the design / assembly of the wiring board 20 and the design / joining of the IC chip 28 and the heat dissipation member 12.
In addition, the melting point of the solder 16 used in the unit U1 is higher than the curing temperature of the epoxy adhesive 11 that joins the heat dissipation member 12 and the substrate body 22, and therefore, when the heat dissipation member 12 and the substrate body 22 are joined. When the epoxy adhesive 11 was heated, no adverse effect was exerted on the solder 16 in which the IC chip 28 and the heat dissipation member 12 were bonded in advance. As a result, it was possible to obtain the wiring substrate 20a that can stably mount the IC chip 28 and can stably connect the internal wiring of the wiring substrate 20 and the pads 9.

図6は、更に異なる形態の配線基板30aの概略を示す断面図である。
図6に示すように、配線基板30aは、配線基板30における基板本体32の表面33に、ICチップ28を搭載したものである。
配線基板30は、表面33および裏面34を有する基板本体32、かかる基板本体32の表面33と裏面34との間を貫通する貫通孔31、および基板本体32の裏面34に形成した一対のパッド9を備えている。基板本体32は、前記同様の複数のグリーンシートを積層・焼成したセラミック層c1,c2,c7,c8からなり、これらの間および内部には、WまたはMoからなる所定パターンの配線層と、これらを接続するビア導体(何れも図示せず)とが形成されている。
FIG. 6 is a cross-sectional view showing an outline of a wiring board 30a of still another form.
As shown in FIG. 6, the wiring substrate 30 a is obtained by mounting the IC chip 28 on the surface 33 of the substrate body 32 in the wiring substrate 30.
The wiring board 30 includes a substrate body 32 having a front surface 33 and a back surface 34, a through hole 31 penetrating between the front surface 33 and the back surface 34 of the substrate body 32, and a pair of pads 9 formed on the back surface 34 of the substrate body 32. It has. The substrate body 32 is composed of ceramic layers c1, c2, c7, and c8 obtained by laminating and firing a plurality of green sheets similar to those described above. Between and inside these are wiring layers having a predetermined pattern made of W or Mo, and these layers. Via conductors (both not shown) are formed.

かかる基板本体32の表面33と裏面34の中央部との間には、断面が正方形の貫通孔31が貫通すると共に、基板本体32の裏面34における対向する一対の辺と対向する一対の側面とにまたがって、前記同様の一対のパッド9が形成されている。かかる配線基板30は、前記配線基板1,20と同様にして製造された。
予め、比較的長い(高い)シンク本体37を有する放熱部材36のフランジ38の上に、ICチップ28を前記と同じハンダ16を介して接合(第1工程)してユニットU2を形成した。
次いで、配線基板30の基板本体32における貫通孔31内に、上記ユニットU2における放熱部材36のシンク本体37を挿入した。かかるシンク本体37の側面およびフランジ38の底面には、予めエポキシ系接着剤(別の接合材)11を被覆した。
Between the front surface 33 of the substrate body 32 and the central portion of the back surface 34, a through hole 31 having a square cross section penetrates, and a pair of side surfaces facing a pair of opposing sides on the back surface 34 of the substrate body 32. A pair of pads 9 similar to those described above are formed. The wiring board 30 was manufactured in the same manner as the wiring boards 1 and 20.
The unit U2 was formed in advance by joining the IC chip 28 onto the flange 38 of the heat radiating member 36 having the relatively long (high) sink body 37 via the same solder 16 as described above (first step).
Next, the sink body 37 of the heat radiating member 36 in the unit U2 was inserted into the through hole 31 in the substrate body 32 of the wiring board 30. The side surface of the sink body 37 and the bottom surface of the flange 38 were previously coated with an epoxy adhesive (another bonding material) 11.

配線基板30の貫通孔31に上記ユニットU2を構成する放熱部材36のシンク本体37を挿入した状態で、かかる配線基板30とICチップ28および放熱部材36からなるユニットU2とを、図示しない加熱炉に挿入し、エポキシ系接着剤11のキュア温度直上の温度に加熱(リフロー)して接合(第2工程)した。かかる加熱時において、ユニットU2側のハンダ16の融点は、エポキシ系接着剤11のキュア温度よりも高く、何らの影響を受けないため、ICチップ28と放熱部材36との接合に悪影響を生じなかった。
その結果、図6に示すように、基板本体32の貫通孔31にシンク本体37を挿入させた状態で、かかる基板本体32と放熱部材36とをエポキシ系接着剤11を介して接合できた。これにより、基板本体32の表面33にICチップ28を搭載した配線基板30aが得られた。
In a state where the sink body 37 of the heat radiating member 36 constituting the unit U2 is inserted into the through hole 31 of the wiring board 30, the wiring board 30 and the unit U2 composed of the IC chip 28 and the heat radiating member 36 are not shown in the heating furnace. And then heated (reflowed) to a temperature just above the curing temperature of the epoxy adhesive 11 and joined (second step). At the time of such heating, the melting point of the solder 16 on the unit U2 side is higher than the curing temperature of the epoxy adhesive 11 and is not affected at all, so that the bonding between the IC chip 28 and the heat radiating member 36 is not adversely affected. It was.
As a result, as shown in FIG. 6, the substrate body 32 and the heat radiating member 36 can be bonded via the epoxy adhesive 11 in a state where the sink body 37 is inserted into the through hole 31 of the substrate body 32. As a result, a wiring substrate 30 a having the IC chip 28 mounted on the surface 33 of the substrate body 32 was obtained.

以上のような配線基板30aおよびその製造方法によっても、ICチップ28の搭載前の配線基板30における各パッド9の表層に被覆したAuメッキ層は、別途に形成されたユニットU2のICチップ28と放熱部材36とを接合するハンダ16に何らの影響を及ぼさなかった。これにより、配線基板30の設計・組立およびICチップ28と放熱部材36との設計・接合に対し、それぞれ自由度を高めることができた。
しかも、ユニットU2で用いたハンダ16の融点は、放熱部材36と基板本体32とを接合するエポキシ系接着剤11のキュア温度よりも高いため、放熱部材36と基板本体32とを接合する際の加熱時に、ICチップ28と放熱部材36とを予め接合した当該ハンダ16は、何らの悪影響も受けかった。この結果、ICチップ28の搭載を安定させ、配線基板30の内部配線や各パッド9との導通を安定して取れる配線基板30aを得ることができた。
Also by the wiring board 30a and the manufacturing method thereof as described above, the Au plating layer covering the surface layer of each pad 9 on the wiring board 30 before mounting the IC chip 28 is separated from the IC chip 28 of the unit U2 formed separately. The solder 16 joined to the heat radiating member 36 was not affected at all. As a result, the degree of freedom can be increased for the design / assembly of the wiring board 30 and the design / joining of the IC chip 28 and the heat dissipation member 36.
Moreover, since the melting point of the solder 16 used in the unit U2 is higher than the curing temperature of the epoxy adhesive 11 that joins the heat dissipation member 36 and the substrate body 32, the heat dissipation member 36 and the substrate body 32 are joined together. The solder 16 in which the IC chip 28 and the heat dissipation member 36 were bonded in advance during the heating did not have any adverse effects. As a result, it was possible to obtain the wiring board 30a that can stabilize the mounting of the IC chip 28 and can stably connect the internal wiring of the wiring board 30 and the pads 9.

図7は、前記配線基板30aの応用形態である配線基板40aの製造方法の概略図であり、図8は、かかる配線基板40aの垂直断面図である。
図7の上方に示すように、予めシンク本体39が長い放熱部材36のフランジ38上に、ICチップ(電子部品)28を、前記同様のAu−Sn合金からなるハンダ(接合材)46を介して接合(第1工程)することで、ユニットU3を形成した。
一方、図7の下方に示すように、前記と同じ製造方法で貫通孔31やパッド9などを有する基板本体32を形成した後、その裏面34の各パッド9に融点が約700〜800℃のAgロウ42を介して、194合金などのCu合金からなる導体ピン50を垂直に複数本接合することにより、配線基板40を形成した。
FIG. 7 is a schematic view of a manufacturing method of a wiring board 40a which is an application form of the wiring board 30a, and FIG. 8 is a vertical sectional view of the wiring board 40a.
As shown in the upper part of FIG. 7, an IC chip (electronic component) 28 is placed on a flange 38 of a heat dissipation member 36 having a long sink body 39 in advance via a solder (joining material) 46 made of the same Au—Sn alloy. Then, the unit U3 was formed by joining (first step).
On the other hand, as shown in the lower part of FIG. 7, after the substrate body 32 having the through holes 31 and the pads 9 is formed by the same manufacturing method as described above, the melting point of each pad 9 on the back surface 34 is about 700 to 800 ° C. A plurality of conductor pins 50 made of a Cu alloy such as 194 alloy were vertically joined via the Ag solder 42 to form the wiring board 40.

前記シンク本体39の側面に融点が約186℃のSn−Pb合金(共晶ハンダ)からなるシート状のハンダ(別の接合材)41を巻き付け、図7中の矢印で示すように、ユニットU3のシンク本体39を配線基板40の貫通孔31に挿入した。
かかる状態で、ユニットU3および配線基板40を、上記ハンダ41の融点直上の温度に加熱(リフロー)して接合(第2工程)した。かかる加熱時において、ユニットU3側のハンダ46は、配線基板20側のハンダ41の融点より少なくとも50℃以上高く、何らの影響を受けなかったため、ICチップ28と放熱部材36との接合に悪影響を生じなかった。
その結果、図8に示すように、基板本体32の貫通孔31にシンク本体39を挿入させた状態で、かかる基板本体32と放熱部材36とをハンダ41を介して接着(接合)できた。これにより、基板本体32の表面33にICチップ28を搭載し、裏面34に複数の導体ピン50を垂下させた配線基板40aが得られた。尚、放熱部材36のシンク本体39の下端は、基板本体32の裏面34よりも下方に突出した。
A sheet-like solder (another bonding material) 41 made of an Sn—Pb alloy (eutectic solder) having a melting point of about 186 ° C. is wound around the side surface of the sink main body 39, and as indicated by an arrow in FIG. The sink body 39 was inserted into the through hole 31 of the wiring board 40.
In this state, the unit U3 and the wiring board 40 were heated (reflowed) to a temperature just above the melting point of the solder 41 and joined (second step). During the heating, the solder 46 on the unit U3 side is at least 50 ° C. higher than the melting point of the solder 41 on the wiring board 20 side and is not affected at all, and thus adversely affects the bonding between the IC chip 28 and the heat dissipation member 36. Did not occur.
As a result, as shown in FIG. 8, the substrate body 32 and the heat dissipation member 36 can be bonded (bonded) via the solder 41 with the sink body 39 inserted into the through hole 31 of the substrate body 32. As a result, the wiring board 40a in which the IC chip 28 is mounted on the front surface 33 of the substrate body 32 and the plurality of conductor pins 50 are suspended on the back surface 34 is obtained. The lower end of the sink body 39 of the heat radiating member 36 protrudes downward from the back surface 34 of the substrate body 32.

以上のような配線基板40aおよびその製造方法によれば、ICチップ28を搭載する前の配線基板40における一対のパッド9および導体ピン50の表面に被覆したAuメッキ層は、別途に形成されたユニットU3におけるICチップ28と放熱部材36とを接合するハンダ46に何らの影響を及ぼさなかった。これにより、配線基板40の設計・組立およびICチップ28と放熱部材36との設計・接合に対し、それぞれ自由度を高めることができた。
しかも、ユニットU3で用いたハンダ46の融点は、放熱部材36と基板本体22とを接合するハンダ41の融点よりも高いため、放熱部材36と基板本体32とを接合する際のハンダ41の加熱時に、ICチップ28と放熱部材36とを予め接合したハンダ46に対し、何らの悪影響も与えなかった。この結果、ICチップ28の搭載を安定させ、配線基板40の内部配線や各パッド9との導通を安定して取れる配線基板40aを得ることができた。更に、放熱部材36のシンク本体39の下端部が基板本体32の裏面34から下方に突出したため、ICチップ28からの熱を一層効率良く放熱することができた。
According to the wiring board 40a and the manufacturing method thereof as described above, the Au plating layer covering the surfaces of the pair of pads 9 and the conductor pins 50 in the wiring board 40 before mounting the IC chip 28 is formed separately. The solder 46 that joins the IC chip 28 and the heat dissipation member 36 in the unit U3 was not affected at all. As a result, the degree of freedom can be increased for the design / assembly of the wiring board 40 and the design / joining of the IC chip 28 and the heat dissipation member 36.
In addition, since the melting point of the solder 46 used in the unit U3 is higher than the melting point of the solder 41 that joins the heat radiating member 36 and the substrate body 22, the solder 41 is heated when the heat radiating member 36 and the substrate body 32 are joined. Occasionally, no adverse effect was exerted on the solder 46 in which the IC chip 28 and the heat radiation member 36 were previously joined. As a result, it was possible to obtain the wiring board 40a that can stably mount the IC chip 28 and can stably connect the internal wiring of the wiring board 40 and the pads 9. Further, since the lower end portion of the sink main body 39 of the heat radiating member 36 protrudes downward from the back surface 34 of the substrate main body 32, the heat from the IC chip 28 can be radiated more efficiently.

本発明は、以上において説明した各形態に限定されるものではない。
前記基板本体2などを形成する絶縁材は、低温焼成セラミックの一種であるガラス−セラミック、あるいはエポキシ系などの各種の樹脂としても良い。
また、前記接合材および別の接合材は、それぞれ有機系接着剤とし、これを用いて電子部品と放熱部材とを接着(接合)する前記第1工程、および放熱部材と配線基板の基板本体とを接着(接合)する前記第2工程を行っても良い。
更に、複数個の電子部品を接合材を介して1つの放熱部材の上に接合したり、あるいは、複数個の電子部品を接合材を介して複数の放熱部材ごとの上に個別に接合しても良い。かかる後者により得られる複数のユニットを、1つの配線基板における基板本体の表面(キャビティの底面を含む)と裏面との間に放熱部材を貫通・挿入させた状態で別の接合材によって接合するようにしても良い。
加えて、放熱部材の上に接合する電子部品は、SAWフィルタ、ダイオード、トランジスタなどとしても良い。
The present invention is not limited to the embodiments described above.
The insulating material forming the substrate body 2 and the like may be glass-ceramic, which is a kind of low-temperature fired ceramic, or various resins such as epoxy.
The bonding material and the other bonding material are each an organic adhesive, and the first step of bonding (bonding) the electronic component and the heat dissipation member using the organic adhesive, and the heat dissipation member and the substrate body of the wiring board The second step of adhering (bonding) may be performed.
Further, a plurality of electronic components are bonded onto one heat dissipation member via a bonding material, or a plurality of electronic components are individually bonded onto each of a plurality of heat dissipation members via a bonding material. Also good. A plurality of units obtained by the latter are joined by another joining material in a state where a heat radiation member is inserted and inserted between the front surface (including the bottom surface of the cavity) and the back surface of the substrate body in one wiring board. Anyway.
In addition, the electronic component bonded on the heat dissipation member may be a SAW filter, a diode, a transistor, or the like.

本発明の製造方法における一工程を示す概略図。Schematic which shows 1 process in the manufacturing method of this invention. 図1に続く工程を示す概略図。Schematic which shows the process following FIG. 上記製造方法により得られた本発明の配線基板を示す垂直断面図。The vertical sectional view which shows the wiring board of this invention obtained by the said manufacturing method. 異なる形態の配線基板を得るための製造工程を示す概略図。Schematic which shows the manufacturing process for obtaining the wiring board of a different form. 上記製造方法により得られた異なる形態の配線基板を示す垂直断面図。The vertical sectional view which shows the wiring board of a different form obtained by the said manufacturing method. 更に異なる形態の配線基板を示す垂直断面図。Furthermore, the vertical sectional view which shows the wiring board of a different form. 図6の配線基板の応用形態の配線基板の製造方法を示す概略図。Schematic which shows the manufacturing method of the wiring board of the application form of the wiring board of FIG. 図6の配線基板の応用形態の配線基板を示す垂直断面図。FIG. 7 is a vertical sectional view showing a wiring board according to an application form of the wiring board of FIG. 6.

符号の説明Explanation of symbols

1a,20a,30a,40a…配線基板
2,22,32…………………基板本体
3,23,33…………………表面
4,24,34…………………裏面
5,25…………………………キャビティ
6,26…………………………キャビティの底面(表面)
11………………………………エポキシ系接着剤(別の接合材)
12,36………………………放熱部材
15………………………………発光素子(電子部品)
16,46………………………ハンダ(接合材)
28………………………………ICチップ(電子部品)
41………………………………ハンダ(別の接合材)
1a, 20a, 30a, 40a ... Wiring boards 2, 22, 32 ... ………… Substrate bodies 3, 23, 33 …………… Front side 4, 24, 34 …………… Back side 5,25 ………………………… Cavity 6,26 ………………………… Cavity bottom (surface)
11 ……………………………… Epoxy adhesive (different bonding material)
12, 36 ……………………… Heat dissipation member 15 ……………………………… Light-emitting element (electronic component)
16, 46 ………………………… Solder (bonding material)
28 ……………………………… IC chip (electronic parts)
41 ……………………………… Solder (another bonding material)

Claims (3)

絶縁材からなり表面および裏面を有する基板本体と、
上記基板本体の表面と裏面との間を貫通し、且つかかる基板本体に接合された放熱部材と、
上記放熱部材の上に接合された電子部品と、を備え、
上記電子部品と放熱部材とを接合する接合材の融点またはキュア温度は、上記基板本体と放熱部材とを接合する別の接合材の融点またはキュア温度よりも高い、ことを特徴とする配線基板。
A substrate body made of an insulating material and having a front surface and a back surface;
A heat dissipating member that penetrates between the front and back surfaces of the substrate body and is joined to the substrate body;
An electronic component joined on the heat dissipation member,
A wiring board characterized in that a melting point or a curing temperature of a bonding material for bonding the electronic component and the heat dissipation member is higher than a melting point or a curing temperature of another bonding material for bonding the substrate body and the heat dissipation member.
前記電子部品と放熱部材とを接合する接合材の融点またはキュア温度は、前記基板本体と放熱部材とを接合する別の接合材の融点またはキュア温度よりも、50℃以上高い、ことを特徴とする請求項1に記載の配線基板。   The melting point or cure temperature of the bonding material for bonding the electronic component and the heat dissipation member is 50 ° C. or more higher than the melting point or cure temperature of another bonding material for bonding the substrate body and the heat dissipation member. The wiring board according to claim 1. 放熱部材の上に電子部品を接合材を介して接合する第1工程と、
上記電子部品が接合された放熱部材を、絶縁材からなる基板本体の表面と裏面との間を貫通するように、配線基板に対し別の接合材で接合する第2工程と、を含み、
上記電子部品と放熱部材とを接合する接合材の融点またはキュア温度は、上記基板本体と放熱部材とを接合する接合材の融点またはキュア温度よりも高い、ことを特徴とする配線基板の製造方法。
A first step of joining an electronic component on a heat dissipation member via a joining material;
A second step of joining the heat dissipating member to which the electronic component is joined to the wiring board with another joining material so as to penetrate between the front surface and the back surface of the substrate body made of an insulating material,
A method for manufacturing a wiring board, wherein a melting point or a curing temperature of a bonding material for bonding the electronic component and the heat dissipation member is higher than a melting point or a curing temperature of the bonding material for bonding the substrate body and the heat dissipation member. .
JP2006029190A 2006-02-07 2006-02-07 Wired substrate, and method for manufacturing same Withdrawn JP2007214162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029190A JP2007214162A (en) 2006-02-07 2006-02-07 Wired substrate, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029190A JP2007214162A (en) 2006-02-07 2006-02-07 Wired substrate, and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2007214162A true JP2007214162A (en) 2007-08-23

Family

ID=38492357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029190A Withdrawn JP2007214162A (en) 2006-02-07 2006-02-07 Wired substrate, and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2007214162A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403442A (en) * 2010-09-07 2012-04-04 威晶半导体股份有限公司 Heat conducting structure of light emitting diode
KR101195062B1 (en) 2010-12-21 2012-10-29 한국광기술원 Light emitting diode package
JP2012238633A (en) * 2011-05-10 2012-12-06 Rohm Co Ltd Led module
JP2013046071A (en) * 2011-08-22 2013-03-04 Lg Innotek Co Ltd Light emitting element package and lighting unit including the same
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
JP2018011035A (en) * 2016-06-30 2018-01-18 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2018529231A (en) * 2015-09-03 2018-10-04 ルミレッズ ホールディング ベーフェー Method for manufacturing an LED device
US10193039B2 (en) 2016-04-01 2019-01-29 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US10644210B2 (en) 2016-04-01 2020-05-05 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US10734561B2 (en) 2016-05-20 2020-08-04 Nichia Corporation Method of manufacturing wiring board, wiring board, and light emitting device using the wiring board
US10790426B2 (en) 2016-04-01 2020-09-29 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US10797214B2 (en) 2016-05-20 2020-10-06 Nichia Corporation Method of manufacturing wiring board, method of manufacturing light emitting device using the wiring board, wiring board, and light emitting device using the wiring board

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573795B2 (en) 2008-01-17 2020-02-25 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US11652197B2 (en) 2008-01-17 2023-05-16 Nichia Corporation Method for producing an electronic device
US10950770B2 (en) 2008-01-17 2021-03-16 Nichia Corporation Method for producing an electronic device
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
CN102403442A (en) * 2010-09-07 2012-04-04 威晶半导体股份有限公司 Heat conducting structure of light emitting diode
KR101195062B1 (en) 2010-12-21 2012-10-29 한국광기술원 Light emitting diode package
JP2012238633A (en) * 2011-05-10 2012-12-06 Rohm Co Ltd Led module
USRE48858E1 (en) 2011-08-22 2021-12-21 Suzhou Lekin Semiconductor Co., Ltd. Light emitting device package and light unit
US9634215B2 (en) 2011-08-22 2017-04-25 Lg Innotek Co., Ltd. Light emitting device package and light unit
JP2018186284A (en) * 2011-08-22 2018-11-22 エルジー イノテック カンパニー リミテッド Uv light light-emitting element package
JP2013046071A (en) * 2011-08-22 2013-03-04 Lg Innotek Co Ltd Light emitting element package and lighting unit including the same
JP2016213509A (en) * 2011-08-22 2016-12-15 エルジー イノテック カンパニー リミテッド Light emitting element package and light unit including the same
JP2018529231A (en) * 2015-09-03 2018-10-04 ルミレッズ ホールディング ベーフェー Method for manufacturing an LED device
JP7033060B2 (en) 2015-09-03 2022-03-09 ルミレッズ ホールディング ベーフェー How to make an LED device
US10985303B2 (en) 2015-09-03 2021-04-20 Lumileds Llc Method of making an LED device
US10573796B2 (en) 2016-04-01 2020-02-25 Nichia Corporation Method of manufacturing light emitting element mounting base member, and method of manufacturing light emitting device
US10193039B2 (en) 2016-04-01 2019-01-29 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US10790426B2 (en) 2016-04-01 2020-09-29 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US11257999B2 (en) 2016-04-01 2022-02-22 Nichia Corporation Light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US10644210B2 (en) 2016-04-01 2020-05-05 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US11223000B2 (en) 2016-04-01 2022-01-11 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US10734561B2 (en) 2016-05-20 2020-08-04 Nichia Corporation Method of manufacturing wiring board, wiring board, and light emitting device using the wiring board
US11251352B2 (en) 2016-05-20 2022-02-15 Nichia Corporation Wiring board, and light emitting device using the wiring board
US10797214B2 (en) 2016-05-20 2020-10-06 Nichia Corporation Method of manufacturing wiring board, method of manufacturing light emitting device using the wiring board, wiring board, and light emitting device using the wiring board
JP2018011035A (en) * 2016-06-30 2018-01-18 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2007214162A (en) Wired substrate, and method for manufacturing same
JP5731674B2 (en) Photon configuration device with only top connection
JP4856470B2 (en) Wiring board
JP5421863B2 (en) Manufacturing method of semiconductor package
JPWO2008047918A1 (en) Electronic device package structure and package manufacturing method
EP0987748A2 (en) Multilayered circuit board for semiconductor chip module, and method of manufacturing the same
JP2008041910A (en) Wiring substrate and multicavity wiring substrate
JP2006287126A (en) Led lamp and its unit sheet manufacturing method
JP2008042064A (en) Ceramic wiring board and optical device apparatus using the same, package and manufacturing method of its ceramic wiring board
JP2008016593A (en) Wiring board for mounting light emitting element
TW201133729A (en) Semiconductor chip assembly with post/base heat spreader and conductive trace
JPWO2005071744A1 (en) Laminated electronic component and mounting structure of laminated electronic component
JP2004193334A (en) Bump-forming sheet, and its manufacturing method
WO2015016289A1 (en) Wiring base plate and electronic device
WO2007138771A1 (en) Semiconductor device, electronic parts module, and method for manufacturing the semiconductor device
JP2008130946A (en) Multiple patterning ceramic substrate, and ceramic wiring substrate and method of manufacturing the same
JP2008041811A (en) Wiring circuit board, multiple-chip wiring circuit board, and method for manufacturing the wiring board
JP2005026573A (en) Manufacturing method of module with built-in component
JP4385782B2 (en) Composite multilayer substrate and manufacturing method thereof
JP4849926B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2016122776A (en) Printed wiring board with bump and method for manufacturing the same
JP2016076509A (en) Circuit module
JP2013008826A (en) Wiring board for light emitting element mounting and manufacturing method of the same
JPH10242335A (en) Semiconductor device
CN110634752A (en) Printed circuit board, package substrate including the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081230

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101224