JP2007212326A - Potential difference measuring instrument and method - Google Patents

Potential difference measuring instrument and method Download PDF

Info

Publication number
JP2007212326A
JP2007212326A JP2006033404A JP2006033404A JP2007212326A JP 2007212326 A JP2007212326 A JP 2007212326A JP 2006033404 A JP2006033404 A JP 2006033404A JP 2006033404 A JP2006033404 A JP 2006033404A JP 2007212326 A JP2007212326 A JP 2007212326A
Authority
JP
Japan
Prior art keywords
potential difference
salt bridge
alternately
reference electrode
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033404A
Other languages
Japanese (ja)
Inventor
Kenji Amaya
賢治 天谷
Toshitaka Shimizu
利恭 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2006033404A priority Critical patent/JP2007212326A/en
Publication of JP2007212326A publication Critical patent/JP2007212326A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a potential difference measuring instrument and a potential difference measurement method using the instrument capable of highly precisely measuring the potential difference of a liquid. <P>SOLUTION: The potential difference measurement instrument for measuring the potential difference of an objective liquid to be measured comprises: two salt bridges; the reference electrode; and the detector for reading an electric signal. The inside of the salt bridge is filled with electrolyte solution, and each edge of the salt bridge is solidified with gel-like matter. The potential difference of the objective solution to be measured is measured by intermittently connecting each salt bridge with reference electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高精度に液体の電位差を計測することができる装置およびその装置を使用した電位計測方法に関する。   The present invention relates to an apparatus capable of measuring a liquid potential difference with high accuracy and a potential measurement method using the apparatus.

生命理学分野、めっき工学等様々な分野において、液体内の電位差を計測する必要がある。中でも、腐食防食工学においては、電流と腐食速度が比例関係にあるため、電位差を計測することにより腐食の程度を知ることができ、正確に電位差計測することは、重要な課題となっている。   In various fields such as bioscience and plating engineering, it is necessary to measure the potential difference in the liquid. In particular, in corrosion protection engineering, since the current and the corrosion rate are in a proportional relationship, it is possible to know the degree of corrosion by measuring the potential difference, and accurately measuring the potential difference is an important issue.

従来の電位計測方法として、例えば、2つの基準電極を液体に浸して電位差を測定する方法が知られている。しかし、この方法は、電極の液相−固体相間の内部電位は厳密に一致せず、計測される電位は誤差が生じる。このため、数ミリボルトの精度までしか計測をすることができないといった問題があった。
特表平4−507145号公報
As a conventional potential measurement method, for example, a method of measuring a potential difference by immersing two reference electrodes in a liquid is known. However, in this method, the internal potential between the liquid phase and the solid phase of the electrode does not exactly match, and an error occurs in the measured potential. For this reason, there has been a problem that measurement can be performed only to an accuracy of several millivolts.
Japanese National Patent Publication No. 4-507145

このような問題を解決するために、例えば、特許文献1では、1つの電極を振動させ、サンプルの間の電位差を高精度に計測することができる装置について提案している。   In order to solve such a problem, for example, Patent Document 1 proposes an apparatus that can vibrate one electrode and measure a potential difference between samples with high accuracy.

しかしながら、振動させることができる範囲は約100μm以下であり、距離の離れた点での電位差を計測することができないといった問題点があった。   However, the range that can be vibrated is about 100 μm or less, and there is a problem in that it is impossible to measure a potential difference at a point away from the distance.

本発明は、上述したような問題点を解決するためになされたものであり、本発明の上記目的は、高精度に液体の電位を計測する装置およびその装置を使用する電位の計測方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and the object of the present invention is to provide a device for measuring the potential of a liquid with high accuracy and a method for measuring a potential using the device. The purpose is to do.

本発明は、高精度に液体の電位を計測することができる装置を提供することを目的とし、本発明の上記目的は、2本の塩橋と、基準電極と、電気信号を読み取る検出器と、を備えた計測対象溶液の電位差を計測する電位差計測装置であって、塩橋の内部は、電解質溶液で満たされ、かつ、塩橋の各端部は、ゲル状物質で固められており、各塩橋を交互に基準電極と接続することで計測対象溶液の電位差を計測することによって達成される。   An object of the present invention is to provide an apparatus capable of measuring the potential of a liquid with high accuracy. The object of the present invention is to provide two salt bridges, a reference electrode, and a detector for reading an electrical signal. The potential difference measuring device for measuring the potential difference of the measurement target solution provided with, wherein the inside of the salt bridge is filled with an electrolyte solution, and each end of the salt bridge is solidified with a gel substance, This is achieved by measuring the potential difference of the solution to be measured by alternately connecting each salt bridge to the reference electrode.

また、本発明の上記目的は、基準電極は、電解質溶液で満たされた容器内に設置されることによって、或いは各塩橋を交互に上下方向に往復運動をさせることにより、交互に各塩橋を基準電極と接続することによって、或いはスロッシング制御で容器内の電解質溶液の液面を上昇・下降させることにより各塩橋を交互に電解質溶液に浸漬させて、交互に各塩橋を基準電極と接続することによって、或いは遠心力を利用して容器内の電解質溶液の液面を上昇・下降させることにより各塩橋を交互に電解質溶液に浸漬させて、交互に各塩橋を基準電極と接続することによって、或いは容器は、H字型構造またはU字型構造をとっており、2つの筒部を有することによって、或いは各塩橋は、各筒部ごとに設置されており、空気圧により各筒部中の液面を交互に上昇・下降させることにより各塩橋を電解質溶液中に交互に浸漬させて、交互に各塩橋を基準電極と接続することによって、或いは容器は、少なくとも2つの筒部を有し、各筒部の下部に流出口が備え付けられており、流出口より電解質溶液を入出することで各筒部中の液面を交互に上昇・下降させることにより各塩橋を電解質溶液中に交互に浸漬させて、交互に各塩橋を基準電極と接続することによって、或いは容器は、少なくとも2つの筒部を有しており、各筒部は、下部に弁を介して接続されており、弁を開閉することにより各塩橋を電解質溶液中に交互に浸漬させて、交互に各塩橋を基準電極と接続することによって、或いは塩橋のうち1本は、分枝していることによって、或いは各塩橋を止め具で交互に開閉することにより、交互に各塩橋を基準電極と接続することによって、或いは分枝している塩橋の分枝している箇所を止め具で開閉することによって、或いは塩橋のうち分枝している箇所にそれぞれ絶縁物を入れ、熱源で絶縁物を膨張・収縮させることにより、塩橋の分枝している箇所を交互に絶縁、短絡させ、交互に基準電極と接続することによって、或いは容器内に絶縁物を発生させる絶縁物発生器が設置され、絶縁物発生器から発生した絶縁物が各塩橋と交互に接触させることで各塩橋を絶縁、短絡させ、交互に各塩橋を基準電極と接続することによって或いは絶縁物は、泡または電解質溶液と混ざり合わない絶縁油であることによって、或いは0・01〜1000Hzで各塩橋を交互に基準電極と接続させることによって、より効果的に達成される。   Further, the above object of the present invention is that the reference electrode is alternately installed in a container filled with the electrolyte solution, or by alternately reciprocating each salt bridge in the vertical direction. Are connected to the reference electrode, or the salt bridge is alternately immersed in the electrolyte solution by raising or lowering the level of the electrolyte solution in the container by sloshing control, and each salt bridge is alternately used as the reference electrode. Each salt bridge is alternately connected to the reference electrode by alternately immersing each salt bridge in the electrolyte solution by connecting or by using a centrifugal force to raise or lower the level of the electrolyte solution in the container. Or the container has an H-shaped structure or a U-shaped structure, and has two cylindrical parts, or each salt bridge is installed for each cylindrical part, In the tube By alternately immersing each salt bridge in the electrolyte solution by alternately raising and lowering the surface and alternately connecting each salt bridge to the reference electrode, or the container has at least two cylinders In addition, an outlet is provided at the bottom of each cylinder, and each salt bridge is alternately placed in the electrolyte solution by alternately raising and lowering the liquid level in each cylinder by entering and exiting the electrolyte solution from the outlet. Or by alternately connecting each salt bridge with a reference electrode, or the container has at least two cylinder parts, each cylinder part is connected to the lower part via a valve, By alternately immersing each salt bridge in the electrolyte solution by opening and closing the valve and alternately connecting each salt bridge to the reference electrode, or one of the salt bridges is branched Or alternately open and close each salt bridge with a stopper By alternately connecting each salt bridge to the reference electrode, or by opening and closing a branching point of the branching salt bridge with a stopper, or branching out of the salt bridge Insulators are placed in each location, and the insulation is expanded and contracted with a heat source to alternately insulate and short-circuit the branching points of the salt bridge, and alternately connect to the reference electrode, or in the container Insulator generators that generate insulators are installed in the base, and each salt bridge is insulated and short-circuited by alternately contacting the insulators generated from the insulator generator with each salt bridge. More effective by connecting with the electrode, or the insulator is an insulating oil that does not mix with foam or electrolyte solution, or by alternately connecting each salt bridge to the reference electrode at 0.01 to 1000 Hz To be achieved The

上述した本発明の電位差計測装置を使用した電位差計測方法によっても本発明の上記目的が効果的に達成される。   The above-mentioned object of the present invention is also effectively achieved by the potential difference measuring method using the above-described potentiometer of the present invention.

本発明の電位差計測装置および電位差計測方法によれば、液体内の電位計測を従来は数mVであったものを数十μVまで高精度に計測できるようになった。   According to the potential difference measuring apparatus and the potential difference measuring method of the present invention, it has become possible to measure a potential in a liquid with high accuracy up to several tens of μV from what was conventionally several mV.

また、本発明では、2点の電位差を一つの基準電極を用いて交互に計測するため、基準電極の内部電位による測定誤差を防止することができ、かつ、低コストで液体の電位を計測できるようになった。   In the present invention, since the potential difference at two points is alternately measured using one reference electrode, measurement errors due to the internal potential of the reference electrode can be prevented, and the potential of the liquid can be measured at low cost. It became so.

本発明の電位差計測装置および電位差計測方法は、少なくとも2本の塩橋の内部は、電解質溶液で満たされており、様々な方法を用いて各塩橋を電解質溶液中に交互に浸漬するように往復運動をさせて液体の電位差を計測することを特徴とする。   In the potential difference measuring apparatus and the potential difference measuring method of the present invention, at least two salt bridges are filled with an electrolyte solution, and each salt bridge is alternately immersed in the electrolyte solution using various methods. It is characterized by measuring the potential difference of the liquid by reciprocating.

以下、本発明の電位差計測装置および電位差計測方法について、図面を参照にしながら詳細に説明する。   Hereinafter, the potential difference measuring apparatus and the potential difference measuring method of the present invention will be described in detail with reference to the drawings.

図1は、本発明の電位差計測装置および電位差計測方法の第1実施形態を示した概略図である。   FIG. 1 is a schematic view showing a first embodiment of a potential difference measuring apparatus and a potential difference measuring method according to the present invention.

本発明の電位差計測装置および電位差計測方法は、第一基準電極11および第二基準電極12からなる基準電極と、電気信号を読み取る検出器2と、第一塩橋31第二塩橋32と第三塩橋33とからなる計測対象溶液4の電位差を測定する塩橋3と、および飽和KCl等の電解質溶液または計測対象溶液4を入れる容器5とからなる。容器5は、第一基準電極11が設置され、電解質溶液で満たされている第一容器51と、第二基準電極12を設置され、電解質溶液で満たされている第二容器52とからなる。なお、必要に応じて第一容器51および第二容器52を省略してもよい。さらに、電解質溶液と計測対象溶液4が同一であってもよい。また、図1では、計測対象溶液4を直接測定する場合について示しているが、必要に応じて計測対象溶液4を容器に入れて電位差を測定するようにしてもよいことは言うまでもない。   The potential difference measuring device and the potential difference measuring method of the present invention include a reference electrode composed of a first reference electrode 11 and a second reference electrode 12, a detector 2 for reading an electrical signal, a first salt bridge 31, a second salt bridge 32, and a second reference electrode. It consists of a salt bridge 3 for measuring the potential difference of the measurement target solution 4 comprising the three salt bridges 33, and a container 5 in which an electrolyte solution such as saturated KCl or the measurement target solution 4 is placed. The container 5 includes a first container 51 in which the first reference electrode 11 is installed and filled with the electrolyte solution, and a second container 52 in which the second reference electrode 12 is installed and filled with the electrolyte solution. In addition, you may abbreviate | omit the 1st container 51 and the 2nd container 52 as needed. Furthermore, the electrolyte solution and the measurement target solution 4 may be the same. Moreover, although FIG. 1 shows a case where the measurement target solution 4 is directly measured, it goes without saying that the potential difference may be measured by putting the measurement target solution 4 in a container as necessary.

第一塩橋31と第二塩橋32は、手動もしくは自動で交互に上下方向に往復運動をさせて第一塩橋31および第二塩橋32を第一容器51内の電解質溶液に交互に浸漬させ、第一塩橋31と第二塩橋32とは、交互に第一基準電極11と接続(誘電)できるようにする。   The first salt bridge 31 and the second salt bridge 32 are alternately or manually reciprocated in the vertical direction so that the first salt bridge 31 and the second salt bridge 32 are alternately used as the electrolyte solution in the first container 51. It is soaked that the first salt bridge 31 and the second salt bridge 32 can be alternately connected (dielectric) to the first reference electrode 11.

第一塩橋31が第一基準電極11と接続されており、誘電している場合、検出器2での計測値をφとすると、 The first salt bridge 31 is connected to the first reference electrode 11, if you are dielectric, the measurement value of the detector 2 and phi A,

Figure 2007212326
となる。ここで、φCAL1、φCAL2はそれぞれ第一基準電極11および第二基準電極12の内部電位、φは第三塩橋33間の液内電位差である。
Figure 2007212326
It becomes. Here, φ CAL1, φ CAL2 the internal potential of the first reference electrode 11 and the second reference electrode 12, respectively, phi 0 is the liquid within the potential difference between the third salt bridge 33.

手動もしくは自動で第二塩橋32と基準電極が接続されるように切り替えると、計測値φWhen switching so that the second salt bridge 32 and the reference electrode are connected manually or automatically, the measured value φ B is

Figure 2007212326
となる。φは第二塩橋32間の液内電位差である。手動もしくは自動で第一塩橋31と第二塩橋32とを交互に第一基準電極11と接続することで得られる計測値φとφとの差を考えると、
Figure 2007212326
It becomes. φ 1 is the liquid potential difference between the second salt bridges 32. Considering the difference between the measured values φ A and φ B obtained by manually or automatically connecting the first salt bridge 31 and the second salt bridge 32 to the first reference electrode 11,

Figure 2007212326
となる。すなわち、第一塩橋31と第二塩橋32とを交互に第一基準電極11と接続することで得られる2つの計測値の差に注目することで、電極電位の影響を受けずに、第一塩橋31と第二塩橋32との間の液内電位差(図1では、φ)を計測することができる。
Figure 2007212326
It becomes. That is, by paying attention to the difference between the two measured values obtained by alternately connecting the first salt bridge 31 and the second salt bridge 32 to the first reference electrode 11, without being affected by the electrode potential, The liquid potential difference (φ 2 in FIG. 1) between the first salt bridge 31 and the second salt bridge 32 can be measured.

本発明で使用する第一基準電極11および第二基準電極12は、材質等特に限定する必要はなく、例えば、銅、鉄、白金等公知の種々の基準電極を使用することができる。   The first reference electrode 11 and the second reference electrode 12 used in the present invention need not be particularly limited to materials and the like. For example, various known reference electrodes such as copper, iron, and platinum can be used.

検出器2は、検波器、復調器、帯域フィルター等公知の種々の検出器を使用することができるが、本発明では、雑音に埋もれた微小な繰り返し信号を検出するロックインアンプを使用することが好ましい。ロックインアンプを使用することにより、手動もしくは自動で第一塩橋31と第二塩橋32とを交互に第一基準電極11と接続することで図2に示したような信号から繰り返し成分の強度を得ることができる。   As the detector 2, various known detectors such as a detector, a demodulator, and a bandpass filter can be used. In the present invention, a lock-in amplifier that detects a minute repetitive signal buried in noise is used. Is preferred. By using the lock-in amplifier, the first salt bridge 31 and the second salt bridge 32 are alternately connected to the first reference electrode 11 manually or automatically, so that the repetitive component of the signal shown in FIG. Strength can be obtained.

塩橋3は、シリコーンゴムチューブやガラス等からなり、塩橋3の内部は、電解質溶液が充填され、塩橋3の各端部(塩橋3の先端部と末端部)はゲル状物質で固められており、充填されている内部の電解質溶液が流出しないようになっている。塩橋3内を電解質溶液で満たすことにより、塩橋3の電位ギャップによる測定誤差を防止することができる。塩橋3に使用されるゲル状物質は、電解質溶液と塩橋3が互いに混ざり合い、互いに汚染することを防ぐことができれば特に限定されず、例えば、寒天、ゼラチン等公知の種々のゲル状物質を使用することができる。なお、塩橋3の先端部は、多孔質やろ紙等で固めてもよい。また、電解質溶液とゲル状物質とを混合させたものを塩橋3の内部に充填させるようにしてもよい。   The salt bridge 3 is made of a silicone rubber tube, glass or the like, and the inside of the salt bridge 3 is filled with an electrolyte solution, and each end of the salt bridge 3 (the tip and the end of the salt bridge 3) is a gel-like substance. It is hardened so that the filled electrolyte solution does not flow out. By filling the salt bridge 3 with the electrolyte solution, measurement errors due to the potential gap of the salt bridge 3 can be prevented. The gel-like substance used for the salt bridge 3 is not particularly limited as long as the electrolyte solution and the salt bridge 3 are mixed with each other and can prevent contamination with each other. For example, various known gel-like substances such as agar and gelatin Can be used. The tip of the salt bridge 3 may be hardened with a porous material or filter paper. Moreover, you may make it fill the inside of the salt bridge 3 with what mixed electrolyte solution and the gel-like substance.

第一塩橋31と第二塩橋32のうちを第一基準電極11と交互に接続(誘電)させる周期は、電位計測を行う目的等に応じて適宜変更することができるが、0.01〜1000Hzで第一塩橋31と第二塩橋32を第一基準電極11と交互に接続することが好ましい。第一塩橋31と第二塩橋32を第一基準電極11と交互に接続する周期が0.01Hz未満であると、計測時間に時間がかかるといった問題が生じる。一方、第一塩橋31と第二塩橋32を第一基準電極11と交互に接続する周期が1000Hzを超えると、第一容器51内の電解質溶液が波立ち、高精度な電位を計測することが困難となる。   The period of alternately connecting (dielectric) the first salt bridge 31 and the second salt bridge 32 with the first reference electrode 11 can be appropriately changed according to the purpose of measuring the potential, etc. It is preferable to connect the first salt bridge 31 and the second salt bridge 32 alternately with the first reference electrode 11 at ˜1000 Hz. If the period in which the first salt bridge 31 and the second salt bridge 32 are alternately connected to the first reference electrode 11 is less than 0.01 Hz, there arises a problem that it takes a long measurement time. On the other hand, when the period in which the first salt bridge 31 and the second salt bridge 32 are alternately connected to the first reference electrode 11 exceeds 1000 Hz, the electrolyte solution in the first container 51 undulates and measures a highly accurate potential. It becomes difficult.

なお、本発明では、図3に示すように、塩橋3が第一塩橋31と第二塩橋32とに分枝している塩橋を用いてもよい。図3では、計測対象溶液4に分枝した第一塩橋31および第二塩橋32が浸漬しているが、第一容器51内に第一塩橋31および第二塩橋32を浸漬させるようにしてもよい。   In the present invention, as shown in FIG. 3, a salt bridge in which the salt bridge 3 is branched into a first salt bridge 31 and a second salt bridge 32 may be used. In FIG. 3, the first salt bridge 31 and the second salt bridge 32 branched in the measurement target solution 4 are immersed, but the first salt bridge 31 and the second salt bridge 32 are immersed in the first container 51. You may do it.

また、第一塩橋31および第二塩橋32に、電磁弁やチューブ等の止め具を一定周期で挟む(開閉する)ことによって第一塩橋31と第二塩橋32のうちどちらか一方を第一基準電極11と交互に接続するようにしてもよい。この場合、第一塩橋31および第二塩橋32は、共に浸漬している状態でよい。なお、分枝している塩橋3を使用する場合は、第一塩橋31と第二塩橋32とに分枝している部分にそれぞれ止め具を設け、交互に止め具で開閉すれば第一基準電極11と交互に接続させることができる。   Moreover, either a 1st salt bridge 31 or a 2nd salt bridge 32 is pinched | interposed into the 1st salt bridge 31 and the 2nd salt bridge 32 (opening / closing) fasteners, such as a solenoid valve and a tube, with a fixed period. May be alternately connected to the first reference electrode 11. In this case, the first salt bridge 31 and the second salt bridge 32 may be immersed together. In addition, when using the salt bridge 3 which branches, if a stop is provided in the part branched to the 1st salt bridge 31 and the 2nd salt bridge 32, respectively, and it opens and closes with a stop The first reference electrodes 11 can be alternately connected.

さらに、図4に示すように、第一塩橋31および第二塩橋32の内部に絶縁物を入れて第一基準電極11と交互に接続するようにしてもよい。この場合、絶縁物101の部分に熱源12を設け、例えば第一塩橋31側の熱源12の温度が上昇すると絶縁物101が膨張し、第一塩橋31の断面が絶縁物101で満たされ、絶縁・短絡する。一方、第二塩橋32側の熱源12の温度を下降すると、絶縁物101は縮小し、第一基準電極11と接続する。このように、熱源の温度を制御することによっても第一基準電極11と交互に接続させることができる。   Furthermore, as shown in FIG. 4, an insulator may be inserted into the first salt bridge 31 and the second salt bridge 32 so as to be alternately connected to the first reference electrode 11. In this case, the heat source 12 is provided in the portion of the insulator 101. For example, when the temperature of the heat source 12 on the first salt bridge 31 side rises, the insulator 101 expands, and the cross section of the first salt bridge 31 is filled with the insulator 101. Insulate and short circuit. On the other hand, when the temperature of the heat source 12 on the second salt bridge 32 side is lowered, the insulator 101 is reduced and connected to the first reference electrode 11. Thus, the first reference electrode 11 can be alternately connected by controlling the temperature of the heat source.

また、図5に示すように第一容器51に設置する第一塩橋31、第二塩橋32および第一基準電極11の総数(3つ)と同数の筒部を設けた第一容器51を使用してもよい。この第一容器51の各筒部は、下部で接続されており、第一塩橋31および第二塩橋32を設置している筒部の下部にさらに弁13を設置し、弁13を交互に開閉させることで第一塩橋31および第二塩橋32を交互に第一基準電極と接続させるようにしてもよい。   Moreover, as shown in FIG. 5, the 1st container 51 which provided the same number of cylinder parts as the total number (three) of the 1st salt bridge 31, the 2nd salt bridge 32, and the 1st reference electrode 11 installed in the 1st container 51. May be used. Each cylinder part of this 1st container 51 is connected by the lower part, the valve 13 is installed in the lower part of the cylinder part which has installed the 1st salt bridge 31 and the 2nd salt bridge 32, and the valve 13 is alternated. The first salt bridge 31 and the second salt bridge 32 may be alternately connected to the first reference electrode by opening and closing.

次に、本発明の電位差計測装置および電位差計測方法の第二実施形態について詳細に説明する。なお、上述した内容と重複する箇所については説明を省略する。   Next, the second embodiment of the potential difference measuring device and the potential difference measuring method of the present invention will be described in detail. In addition, description is abbreviate | omitted about the location which overlaps with the content mentioned above.

図6は、本発明の電位差計測装置および電位差計測方法の第二実施形態を示した概略図である。   FIG. 6 is a schematic diagram showing a second embodiment of the potential difference measuring apparatus and the potential difference measuring method of the present invention.

本発明の電位差計測装置および電位差計測方法の第二実施形態では、空気圧を利用して第一塩橋31と第二塩橋32とを交互に第一基準電極11と接続(誘電)させること以外は、第一実施形態と同様である。   In the second embodiment of the potential difference measuring device and the potential difference measuring method of the present invention, except that the first salt bridge 31 and the second salt bridge 32 are alternately connected (dielectric) to the first reference electrode 11 using air pressure. Is the same as in the first embodiment.

第二実施形態の第一容器51は、二つの筒を有するH字型構造をとっており、第一塩橋31と第二塩橋32とは、それぞれ別の筒部に設置されている。また、第一塩橋31は、栓6を介して第一容器51に配置されている。なお、図示していないが、H字型構造の代わりにU字型構造をとる容器を使用してもよい。   The first container 51 of the second embodiment has an H-shaped structure having two cylinders, and the first salt bridge 31 and the second salt bridge 32 are respectively installed in different cylinder portions. The first salt bridge 31 is disposed in the first container 51 through the stopper 6. Although not shown, a container having a U-shaped structure may be used instead of the H-shaped structure.

フォトインタラプタ7、モータ8およびピストン9を用いて、一定周期で第一塩橋31が配置されている筒部内に空気圧をかけることにより、第一塩橋31が設置されている筒部の液面が下降し、第一塩橋31は、液面から引き上げられる形になる。一方、第二塩橋32が設置されている筒部の液面は上昇し、第二塩橋が電解質溶液に浸漬することにより、第一基準電極11と接続する。フォトインタラプタ7の周期信号は、ロックインアンプの参照信号として利用することができる。   Using the photointerrupter 7, the motor 8 and the piston 9, the air level is applied to the cylindrical portion where the first salt bridge 31 is arranged at a constant period, whereby the liquid level of the cylindrical portion where the first salt bridge 31 is installed. The first salt bridge 31 is pulled up from the liquid level. On the other hand, the liquid level of the cylindrical portion where the second salt bridge 32 is installed rises, and the second salt bridge is immersed in the electrolyte solution, thereby connecting to the first reference electrode 11. The periodic signal of the photo interrupter 7 can be used as a reference signal for the lock-in amplifier.

空気圧を抜くことにより、第二塩橋32が設置されている筒部の液面が下降し、第二塩橋32は、液面から引き上げられる形になる。一方、第一塩橋31が設置されている筒部内の液面が上昇し、第一塩橋31が電解質溶液に浸漬し、第一基準電極11と接続する。すなわち、モータ8の回転周期にあわせて各筒部の液面が上下し、電解質溶液に浸漬した第一塩橋31および第二塩橋32のどちらか一方が第一基準電極11と周期的に接続する。   By removing the air pressure, the liquid level of the cylinder portion where the second salt bridge 32 is installed is lowered, and the second salt bridge 32 is pulled up from the liquid level. On the other hand, the liquid level in the cylinder portion where the first salt bridge 31 is installed rises, and the first salt bridge 31 is immersed in the electrolyte solution and connected to the first reference electrode 11. That is, the liquid level of each cylinder part rises and falls according to the rotation period of the motor 8, and one of the first salt bridge 31 and the second salt bridge 32 immersed in the electrolyte solution periodically with the first reference electrode 11. Connecting.

フォトインタラプタ7は、空気圧により電解質溶液が上昇・下降し、第一塩橋31と第二塩橋32の一方が第一基準電極11と接続する信号を得る。この信号を検出器2を用いて電解質溶液内の電位を計測することで、電解質溶液内の微小電位差を精度よく測定することができる。   The photointerrupter 7 obtains a signal that the electrolyte solution is raised or lowered by air pressure, and one of the first salt bridge 31 and the second salt bridge 32 is connected to the first reference electrode 11. By measuring the potential in the electrolyte solution using this signal with the detector 2, the minute potential difference in the electrolyte solution can be accurately measured.

モータ8は、一定の回転周期をすれば、材質等は特に限定されず、公知のモータを使用することができる。   The motor 8 is not particularly limited as long as it has a constant rotation cycle, and a known motor can be used.

第一塩橋31と第二塩橋32のうちどちらか一方を第一基準電極11と交互に接続する周期を上述したように0.01〜1000Hzとなるように、モータ8を回転させることが好ましい。   The motor 8 may be rotated so that the period of alternately connecting either the first salt bridge 31 or the second salt bridge 32 with the first reference electrode 11 is 0.01 to 1000 Hz as described above. preferable.

なお、空気圧を利用して容器5の各筒部の液面を交互に移動させる方法以外に、例えば、図7に示すようにスロッシング制御により、電解質溶液の液面を揺動させ、第一塩橋31および第二塩橋32を一定周期ごとに交互に電解質溶液中に浸漬させるようにしてもよい。なお、この場合、第一容器51の形状はH字型構造でなくてもよく、図1に示したような第一容器51やU字型構造の容器を使用してもよい。   In addition to the method of alternately moving the liquid level of each cylindrical portion of the container 5 using air pressure, for example, as shown in FIG. The bridge 31 and the second salt bridge 32 may be alternately immersed in the electrolyte solution at regular intervals. In this case, the shape of the first container 51 may not be an H-shaped structure, and a first container 51 or a U-shaped container as shown in FIG. 1 may be used.

また、図8に示すように電解質溶液を攪拌することにより遠心力を生じさせ、電解質溶液の液面の上昇部分と下降部分を生じさせ、第一塩橋31および第二塩橋32を一定周期ごとに交互に電解質溶液中に浸漬させるようにしてもよい。   Further, as shown in FIG. 8, the electrolytic solution is stirred to generate a centrifugal force, thereby causing the rising and lowering portions of the electrolyte solution to move the first salt bridge 31 and the second salt bridge 32 at a constant cycle. Alternately, it may be immersed in the electrolyte solution every time.

さらに、図9に示すような第一容器51を使用してもよい。この第一容器51の各筒部は、流出口14があり、流出口14から電解質溶液を入出することで第一塩橋31および第二塩橋32を交互に浸漬させ、交互に第一基準電極と接続させるようにしてもよい。   Furthermore, you may use the 1st container 51 as shown in FIG. Each cylindrical portion of the first container 51 has an outlet 14, and the first salt bridge 31 and the second salt bridge 32 are alternately immersed by entering and exiting the electrolyte solution from the outlet 14, and the first reference alternately. You may make it connect with an electrode.

本発明の電位差計測装置および電位差計測方法の第三実施形態について詳細に説明する。なお、上述した内容と重複する箇所については説明を省略する。   A third embodiment of the potential difference measuring device and the potential difference measuring method of the present invention will be described in detail. In addition, description is abbreviate | omitted about the location which overlaps with the content mentioned above.

図10は、本発明の電位差計測装置および電位差計測方法の第三実施形態を示した概略図である。   FIG. 10 is a schematic view showing a third embodiment of the potential difference measuring device and the potential difference measuring method of the present invention.

本発明の電位差計測装置および電位差計測方法の第三実施形態では、絶縁物を利用して第一塩橋31と第二塩橋32とを交互に第一基準電極11と接続(誘電)させること以外は、上述した実施形態と同様である。   In the third embodiment of the potential difference measuring apparatus and the potential difference measuring method of the present invention, the first salt bridge 31 and the second salt bridge 32 are alternately connected (dielectric) to the first reference electrode 11 using an insulator. Other than the above, this embodiment is the same as the embodiment described above.

第一塩橋31と第二塩橋32は、第一容器51内において横方向に平行に並んで配置されており、第一容器51の底部に絶縁物発生器10が設置されている。なお、絶縁物発生器10は、発生した絶縁物101が電解質溶液中を上昇する際、第一塩橋31および第二塩橋32の末端部と接触するように設置する。   The first salt bridge 31 and the second salt bridge 32 are arranged in parallel in the lateral direction in the first container 51, and the insulator generator 10 is installed at the bottom of the first container 51. The insulator generator 10 is installed so as to come into contact with the end portions of the first salt bridge 31 and the second salt bridge 32 when the generated insulator 101 rises in the electrolyte solution.

絶縁物発生器10から一定周期で絶縁物101を発生させ、第一塩橋31の末端部と接触することにより、絶縁物101と接触した第一塩橋31の端部がふさがれて絶縁状態となる。このとき、第一基準電極11は、第二塩橋32とのみ接続している。第一塩橋31と接触した絶縁物101は、さらに電解質溶液内を上昇することにより、第一塩橋31の上部に設置されている第二塩橋32と接触し、第二塩橋32の端部がふさがれて絶縁状態となる。このとき、第一基準電極11は、第一塩橋31とのみ接続している。このように、一定周期で絶縁物101を絶縁物発生器10から発生させることにより、第一塩橋31と第二塩橋32を第一基準電極11と交互に接続することができる。   The insulator 101 is generated from the insulator generator 10 at a constant cycle, and by contacting the terminal portion of the first salt bridge 31, the end portion of the first salt bridge 31 in contact with the insulator 101 is blocked and insulated. It becomes. At this time, the first reference electrode 11 is connected only to the second salt bridge 32. The insulator 101 in contact with the first salt bridge 31 further moves up in the electrolyte solution, thereby coming into contact with the second salt bridge 32 installed on the upper part of the first salt bridge 31. The end is blocked and becomes insulative. At this time, the first reference electrode 11 is connected only to the first salt bridge 31. Thus, the first salt bridge 31 and the second salt bridge 32 can be alternately connected to the first reference electrode 11 by generating the insulator 101 from the insulator generator 10 at a constant period.

本発明の電位差計測装置および電位差計測方法で使用する絶縁物101は、第一塩橋31および第二塩橋32を絶縁、短絡することができれば特に種類等は限定されないが、空気等からなる気体や電解質溶液と混ざり合わない絶縁油等を使用することができる。   The insulator 101 used in the potential difference measuring apparatus and the potential difference measuring method of the present invention is not particularly limited as long as the first salt bridge 31 and the second salt bridge 32 can be insulated and short-circuited. Insulating oil that does not mix with electrolyte solution can be used.

第一塩橋31と第二塩橋32のうちどちらか一方を第一基準電極11と交互に接続する周期を上述したように0.01〜1000Hzとなるように絶縁物101を発生させることが好ましい。   The insulator 101 may be generated so that the cycle of alternately connecting either the first salt bridge 31 or the second salt bridge 32 with the first reference electrode 11 is 0.01 to 1000 Hz as described above. preferable.

図10では、第一塩橋31および第二塩橋32を第一容器51の側壁に接続されているが、図1のように第一塩橋31および第二塩橋32を設置するようにしてもよい。この場合、絶縁物発生器10は、第一塩橋31と第二塩橋32の下部にそれぞれ設置し、交互に絶縁物101を発生させるようにすればよい。また、分枝している塩橋3を使用してもよい。   In FIG. 10, the first salt bridge 31 and the second salt bridge 32 are connected to the side wall of the first container 51, but the first salt bridge 31 and the second salt bridge 32 are installed as shown in FIG. May be. In this case, the insulator generator 10 may be installed at the lower part of the first salt bridge 31 and the second salt bridge 32 to generate the insulators 101 alternately. Further, a branched salt bridge 3 may be used.

以上、本発明の電位差計測装置および電位差計測方法について詳細に説明したが、本発明はこれらに限定されるものではない。本発明では、電位差を測定するために容器を必要としないため、例えば、船舶や海洋構造物の周囲の海中に形成される腐食・防食電場の電位差や生体内の電場を直接測定することもできる。   Although the potential difference measuring apparatus and the potential difference measuring method of the present invention have been described in detail above, the present invention is not limited to these. In the present invention, since no container is required to measure the potential difference, for example, the potential difference of the corrosion / corrosion prevention electric field formed in the sea around the ship or the marine structure can be directly measured or the electric field in the living body can be directly measured. .

また、本発明により測定された電位差を測定点の距離で割ることにより、電界の強さを測定することもできる。さらに、電界の強さに計測対象溶液4の電気伝導度を掛けることにより、計測対象溶液4の電流密度を測定することもできる。   The electric field strength can also be measured by dividing the potential difference measured according to the present invention by the distance of the measurement point. Furthermore, the current density of the measurement target solution 4 can also be measured by multiplying the strength of the electric field by the electrical conductivity of the measurement target solution 4.

以下、本発明の電位差計測装置および電位差計測方法について、実施例を用いて詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the potential difference measuring apparatus and the potential difference measuring method of the present invention will be described in detail using examples, but the present invention is not limited to these.

図1に示したように、飽和KCl溶液が入っている100×50×50(mm)の第一容器51内に銅からなる第一基準電極11を設置し、第一容器51と同様の大きさの第三容器53内に白金からなる第二基準電極12を設置した。なお、第三容器53内には、飽和KCl溶液で満たされていた。計測対象溶液4内に、外周がガラスからなり、内部が飽和KCl溶液で満たされ、かつ、各端部が寒天で固められた第一塩橋31と第二塩橋32を設置した。また、第二容器52と第三容器53とを第三塩橋33を介して接続させた。第三塩橋33も第一塩橋31および第二塩橋32と同様の構造をとっていた。なお、第一塩橋31と第二塩橋32との間の距離は、80mmであった。1Hzごとに第一塩橋31と第二塩橋32とを交互に第一容器51内の飽和KCl溶液に浸漬させる往復運動をさせながら電流を変化させ、計測対象溶液4内の電位差を測定した。   As shown in FIG. 1, a first reference electrode 11 made of copper is installed in a first container 51 of 100 × 50 × 50 (mm) containing a saturated KCl solution, and has the same size as the first container 51. The second reference electrode 12 made of platinum was installed in the third container 53. The third container 53 was filled with a saturated KCl solution. In the measurement object solution 4, a first salt bridge 31 and a second salt bridge 32 each having an outer periphery made of glass and filled with a saturated KCl solution and each end portion being hardened with agar were installed. Further, the second container 52 and the third container 53 were connected via the third salt bridge 33. The third salt bridge 33 also had the same structure as the first salt bridge 31 and the second salt bridge 32. In addition, the distance between the 1st salt bridge 31 and the 2nd salt bridge 32 was 80 mm. The electric current was changed while reciprocating the first salt bridge 31 and the second salt bridge 32 alternately immersed in the saturated KCl solution in the first container 51 every 1 Hz, and the potential difference in the measurement target solution 4 was measured. .

図6に示したように、飽和KCl溶液が入っている200×100×100(mm)のH字型構造の第一容器51内の筒に銅からなる第一基準電極11を設置し、第一基準電極11と同じ筒に第二塩橋32を設置し、もう一方の筒に第一塩橋31を設置した。なお、第一塩橋31と第二塩橋32は、外周がガラスからなり、内部が飽和KCl溶液で満たされ、かつ、各端部が寒天で固められた構造をとっていた。第一塩橋31を設置した筒には、栓6により閉じられており、モータ8、ピストン9により、空気圧を調整できるようにした。100×50×50(mm)の第三容器53内に白金からなる第二基準電極12を設置した。なお、第三容器53内には、飽和KCl溶液で満たされていた。計測対象溶液4内に、第一塩橋31と第二塩橋32を設置した。また、第二容器52と第三容器53とを第三塩橋33を介して接続させた。なお、第一塩橋31と第二塩橋32との間の距離は、80mmであった。電流を変化させ、計測対象溶液4内の電位差を測定した。   As shown in FIG. 6, a first reference electrode 11 made of copper is installed in a cylinder in a first container 51 of a 200 × 100 × 100 (mm) H-shaped structure containing a saturated KCl solution, The second salt bridge 32 was installed in the same cylinder as the one reference electrode 11, and the first salt bridge 31 was installed in the other cylinder. The first salt bridge 31 and the second salt bridge 32 have a structure in which the outer periphery is made of glass, the inside is filled with a saturated KCl solution, and each end is hardened with agar. The cylinder in which the first salt bridge 31 is installed is closed by a stopper 6 so that the air pressure can be adjusted by a motor 8 and a piston 9. The second reference electrode 12 made of platinum was placed in a third container 53 of 100 × 50 × 50 (mm). The third container 53 was filled with a saturated KCl solution. A first salt bridge 31 and a second salt bridge 32 were installed in the measurement target solution 4. Further, the second container 52 and the third container 53 were connected via the third salt bridge 33. In addition, the distance between the 1st salt bridge 31 and the 2nd salt bridge 32 was 80 mm. The electric current was changed and the potential difference in the measurement target solution 4 was measured.

モータ8を作動させ、空気圧を利用して第一容器51内の飽和KCl溶液面を上昇・下降させ、第一塩橋31と第二塩橋32が交互に第一基準電極11と接続され、誘電させた。なお、第一塩橋31と第二塩橋32とが、交互に第一基準電極11と誘電する周期は、800mHzであった。   The motor 8 is actuated to raise and lower the saturated KCl solution surface in the first container 51 using the air pressure, and the first salt bridge 31 and the second salt bridge 32 are alternately connected to the first reference electrode 11, Dielectric. The period in which the first salt bridge 31 and the second salt bridge 32 alternately dielectric with the first reference electrode 11 was 800 mHz.

比較例Comparative example

比較例として、図11に示したように、200×100×100(mm)の水槽の両端に銅および白金からなる二つの基準電極を配置した。測定用の塩橋として、飽和カロメル電極を用いて、互いの塩橋の距離は80mmとした。電流を変化させ、容器内の電位差を測定した。   As a comparative example, as shown in FIG. 11, two reference electrodes made of copper and platinum were arranged at both ends of a 200 × 100 × 100 (mm) water tank. A saturated calomel electrode was used as a salt bridge for measurement, and the distance between the salt bridges was 80 mm. The electric current was changed and the potential difference in the container was measured.

図12に実施例1と比較例の試験結果を、図13に実施例2と比較例の試験結果を示す。図12および図13から明らかのように、比較例では、約1mV程度から測定結果が直線からずれるが、本発明では、実施例1および実施例2の両方とも、0.1mV以下であっても線形的に計測でき、従来に比べてより高精度に電位を測定できることがわかる。   FIG. 12 shows the test results of Example 1 and the comparative example, and FIG. 13 shows the test results of Example 2 and the comparative example. As is clear from FIGS. 12 and 13, in the comparative example, the measurement result deviates from a straight line from about 1 mV. However, in the present invention, both of Example 1 and Example 2 are 0.1 mV or less. It can be measured linearly, and it can be seen that the potential can be measured with higher accuracy than in the past.

本発明の第一実施形態の示す概略図である。It is the schematic which 1st embodiment of this invention shows. ロックインアンプを用いて得られる信号を示した図である。It is the figure which showed the signal obtained using a lock-in amplifier. 本発明の第一実施形態の変形例を示した概略図である。It is the schematic which showed the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を示した概略図である。It is the schematic which showed the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を示した概略図である。It is the schematic which showed the modification of 1st embodiment of this invention. 本発明の第二実施形態を示す概略図である。It is the schematic which shows 2nd embodiment of this invention. 本発明の第二実施形態の変形例を示した概略図である。It is the schematic which showed the modification of 2nd embodiment of this invention. 本発明の第二実施形態の変形例を示した概略図である。It is the schematic which showed the modification of 2nd embodiment of this invention. 本発明の第二実施形態の変形例を示した概略図である。It is the schematic which showed the modification of 2nd embodiment of this invention. 本発明の第三実施形態を示す概略図である。It is the schematic which shows 3rd embodiment of this invention. 従来例の概略図である。It is the schematic of a prior art example. 実施例1と比較例の試験結果を表した図である。It is a figure showing the test result of Example 1 and a comparative example. 実施例2と比較例の試験結果を表した図である。It is a figure showing the test result of Example 2 and a comparative example.

符号の説明Explanation of symbols

11 第一基準電極
12 第二基準電極
2 検出器
3 塩橋
31 第一塩橋
32 第二塩橋
33 第三塩橋
4 計測対象溶液
5 容器
51 第一容器
52 第二容器
6 栓
7 フォトインタラプタ
8 モータ
9 ピストン
10 絶縁物発生器
101 絶縁物
12 熱源
13 弁
14 流出口
11 First reference electrode 12 Second reference electrode 2 Detector 3 Salt bridge 31 First salt bridge 32 Second salt bridge 33 Third salt bridge 4 Solution to be measured 5 Container 51 First container 52 Second container 6 Plug 7 Photo interrupter 8 Motor 9 Piston 10 Insulator generator 101 Insulator 12 Heat source 13 Valve 14 Outlet

Claims (17)

2本の塩橋と、基準電極と、電気信号を読み取る検出器と、を備えた計測対象溶液の電位差を計測する電位差計測装置であって、前記塩橋の内部は、電解質溶液で満たされ、かつ、前記塩橋の各端部は、ゲル状物質で固められており、各前記塩橋を交互に前記基準電極と接続することで前記計測対象溶液の電位差を計測することを特徴とする電位差計測装置。   A potential difference measuring device for measuring a potential difference of a solution to be measured comprising two salt bridges, a reference electrode, and a detector for reading an electrical signal, wherein the inside of the salt bridge is filled with an electrolyte solution, And each end of the salt bridge is hardened with a gel-like substance, and the potential difference of the solution to be measured is measured by alternately connecting the salt bridges to the reference electrode. Measuring device. 前記基準電極は、前記電解質溶液で満たされた容器内に設置される請求項1に記載の電位差計測装置。   The potentiometer according to claim 1, wherein the reference electrode is installed in a container filled with the electrolyte solution. 各前記塩橋を交互に上下方向に往復運動をさせることにより、交互に各前記塩橋を前記基準電極と接続する請求項1または2に記載の電位差計測装置。   The potential difference measuring device according to claim 1 or 2, wherein the salt bridges are alternately connected to the reference electrode by alternately reciprocating the salt bridges in the vertical direction. スロッシング制御で前記容器内の前記電解質溶液の液面を上昇・下降させることにより各前記塩橋を交互に前記電解質溶液に浸漬させて、交互に各前記塩橋を前記基準電極と接続する請求項1または2に記載の電位差計測装置。   The salt bridges are alternately immersed in the electrolyte solution by raising and lowering the level of the electrolyte solution in the container by sloshing control, and the salt bridges are alternately connected to the reference electrode. 3. The potential difference measuring apparatus according to 1 or 2. 遠心力を利用して前記容器内の前記電解質溶液の液面を上昇・下降させることにより各前記塩橋を交互に前記電解質溶液に浸漬させて、交互に各前記塩橋を前記基準電極と接続する請求項1または2に記載の電位差計測装置。   The salt bridges are alternately immersed in the electrolyte solution by raising and lowering the level of the electrolyte solution in the container using centrifugal force, and the salt bridges are alternately connected to the reference electrode. The potential difference measuring device according to claim 1 or 2. 前記容器は、H字型構造またはU字型構造をとっており、2つの筒部を有する請求項1乃至5のいずれかに記載の電位差計測装置。   The potentiometer according to any one of claims 1 to 5, wherein the container has an H-shaped structure or a U-shaped structure and has two cylindrical portions. 各前記塩橋は、各前記筒部ごとに設置されており、空気圧により各前記筒部中の液面を交互に上昇・下降させることにより各前記塩橋を前記電解質溶液中に交互に浸漬させて、交互に各前記塩橋を前記基準電極と接続する請求項6に記載の電位差計測装置。   Each of the salt bridges is installed for each of the cylinder parts, and the salt bridges are alternately immersed in the electrolyte solution by alternately raising and lowering the liquid level in the cylinder parts by air pressure. The potential difference measuring device according to claim 6, wherein the salt bridges are alternately connected to the reference electrode. 前記容器は、少なくとも2つの筒部を有し、各前記筒部の下部に流出口が備え付けられており、前記流出口より前記電解質溶液を入出することで各前記筒部中の液面を交互に上昇・下降させることにより各前記塩橋を前記電解質溶液中に交互に浸漬させて、交互に各前記塩橋を前記基準電極と接続する請求項1または2に記載の電位差計測装置。   The container has at least two cylindrical portions, and an outlet is provided at a lower portion of each cylindrical portion, and the liquid level in each cylindrical portion is alternately changed by entering and exiting the electrolyte solution from the outlet. The potential difference measuring device according to claim 1 or 2, wherein the salt bridges are alternately immersed in the electrolyte solution by being raised and lowered to alternately connect the salt bridges to the reference electrode. 前記容器は、少なくとも2つの筒部を有しており、各前記筒部は、下部に弁を介して接続されており、前記弁を開閉することにより各前記塩橋を前記電解質溶液中に交互に浸漬させて、交互に各前記塩橋を前記基準電極と接続する請求項1または2に記載の電位差計測装置。   The container has at least two tube portions, and each tube portion is connected to a lower portion via a valve, and the salt bridges are alternately formed in the electrolyte solution by opening and closing the valve. The potential difference measuring device according to claim 1, wherein each of the salt bridges is alternately connected to the reference electrode. 前記塩橋のうち1本は分枝している請求項1または2に記載の電位差計測装置。   The potential difference measuring apparatus according to claim 1, wherein one of the salt bridges is branched. 各前記塩橋を止め具で交互に開閉することにより、交互に各前記塩橋を前記基準電極と接続する請求項1、2または10に記載の電位差計測装置。   The potential difference measuring device according to claim 1, 2 or 10, wherein each salt bridge is alternately connected to the reference electrode by alternately opening and closing each salt bridge with a stopper. 前記分枝している塩橋の分枝している箇所を前記止め具で開閉する請求項11に記載の電位差計測装置。   The potential difference measuring device according to claim 11, wherein the branching portion of the branched salt bridge is opened and closed by the stopper. 前記塩橋のうち分枝している箇所にそれぞれ絶縁物を入れ、熱源で前記絶縁物を膨張・収縮させることにより、前記塩橋の分枝している箇所を交互に絶縁、短絡させ、交互に前記基準電極と接続する請求項1、2または10に記載の電位差計測装置。   By inserting an insulator into each branching portion of the salt bridge and expanding and contracting the insulator with a heat source, the branching portion of the salt bridge is alternately insulated and short-circuited, and alternately The potential difference measuring device according to claim 1, wherein the potential difference measuring device is connected to the reference electrode. 前記容器内に絶縁物を発生させる絶縁物発生器が設置され、前記絶縁物発生器から発生した前記絶縁物が各前記塩橋と交互に接触させることで各前記塩橋を絶縁、短絡させ、交互に各前記塩橋を前記基準電極と接続する請求項1、2または10に記載の電位差計測装置。   An insulator generator for generating an insulator in the container is installed, and the insulator generated from the insulator generator is alternately contacted with each salt bridge to insulate and short-circuit each salt bridge, The potential difference measuring device according to claim 1, wherein the salt bridges are alternately connected to the reference electrode. 前記絶縁物は、泡または前記電解質溶液と混ざり合わない絶縁油である請求項14に記載の電位差計測装置。   The potential difference measuring apparatus according to claim 14, wherein the insulator is an insulating oil that does not mix with bubbles or the electrolyte solution. 0・01〜1000Hzで各前記塩橋を交互に前記基準電極と接続させる請求項1乃至15のいずれかに記載の電位差計測装置。   The potential difference measuring device according to any one of claims 1 to 15, wherein the salt bridges are alternately connected to the reference electrode at 0.01 to 1000 Hz. 請求項1乃至16のいずれかに記載の電位計測装置を使用した電位差計測方法。   A potential difference measuring method using the potential measuring device according to claim 1.
JP2006033404A 2006-02-10 2006-02-10 Potential difference measuring instrument and method Pending JP2007212326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033404A JP2007212326A (en) 2006-02-10 2006-02-10 Potential difference measuring instrument and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033404A JP2007212326A (en) 2006-02-10 2006-02-10 Potential difference measuring instrument and method

Publications (1)

Publication Number Publication Date
JP2007212326A true JP2007212326A (en) 2007-08-23

Family

ID=38490904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033404A Pending JP2007212326A (en) 2006-02-10 2006-02-10 Potential difference measuring instrument and method

Country Status (1)

Country Link
JP (1) JP2007212326A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182568A (en) * 1985-02-08 1986-08-15 Sumitomo Metal Mining Co Ltd Method for measuring local current in electrolytic cell
JPS61275649A (en) * 1985-05-31 1986-12-05 Toshiba Corp Electrolytic cell
JPH04507145A (en) * 1990-06-13 1992-12-10 マックス ― プランク ― インスティテュート・フュア・アイゼンフォルシュンク・ゲーエムベーハー Method for investigating coated metal surfaces
JP2002177228A (en) * 2000-12-13 2002-06-25 Shiseido Co Ltd Measuring method and device of potential state of skin surface
JP2004125668A (en) * 2002-10-03 2004-04-22 Shotaro Oka Oxidation-reduction potential measuring instrument
JP2005536633A (en) * 2002-07-12 2005-12-02 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for monitoring electrolysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182568A (en) * 1985-02-08 1986-08-15 Sumitomo Metal Mining Co Ltd Method for measuring local current in electrolytic cell
JPS61275649A (en) * 1985-05-31 1986-12-05 Toshiba Corp Electrolytic cell
JPH04507145A (en) * 1990-06-13 1992-12-10 マックス ― プランク ― インスティテュート・フュア・アイゼンフォルシュンク・ゲーエムベーハー Method for investigating coated metal surfaces
JP2002177228A (en) * 2000-12-13 2002-06-25 Shiseido Co Ltd Measuring method and device of potential state of skin surface
JP2005536633A (en) * 2002-07-12 2005-12-02 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for monitoring electrolysis
JP2004125668A (en) * 2002-10-03 2004-04-22 Shotaro Oka Oxidation-reduction potential measuring instrument

Similar Documents

Publication Publication Date Title
AU2007225560B2 (en) Electric field sensor for marine environments
JP2002513154A (en) Electrochemical sensor
US9696189B2 (en) Device and method for determining fluid streaming potential
US4181882A (en) Corrosion monitoring apparatus
CN111788478B (en) Corrosion measuring device
JP4137058B2 (en) Corrosion / corrosion protection evaluation method
JPH09196876A (en) Detecting method for corroded spot of steel material in concrete
JP2007212326A (en) Potential difference measuring instrument and method
RU2480734C2 (en) Measuring device of polarisation potential of pipelines
RU2471171C1 (en) Evaluation device of protection against corrosion as to value of deflection from natural potential
JP6833626B2 (en) Measuring device and measuring method
JP2009204593A (en) Probe for electrochemical measurement in electrolyte, electrochemical measuring device, and electrochemical measuring method using it
JP4099444B2 (en) Electrical conductivity measurement device over time
GB1589242A (en) Test sensor for measuring corrosion and cathodic protection of metal structures
JP3821004B2 (en) Sacrificial anode inspection method and inspection apparatus
JP2009156819A (en) Deterioration diagnostics method of lined piping
US6328877B1 (en) Reference electrode improvement
RU156869U1 (en) CONTROL CORROSION WIRE SENSOR
CN113015916A (en) Method for determining an electrical fault of a conductivity sensor and conductivity sensor
KR20200105708A (en) Device for capacitive measurements in multiphase media
RU149571U1 (en) BIMETALLIC ELECTRODE DEVICE FOR EVALUATING CORROSION SPEED
CN114609206B (en) Electrochemical testing method of abradable seal coating system
JP6291295B2 (en) Inspection method of laying pipe
EP3593115B1 (en) A method of detecting the locally generated corrosion of a metal element
RU2463576C1 (en) Bimetallic contact corrosion sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927