JP2007212095A - Air temperature control method and control system - Google Patents

Air temperature control method and control system Download PDF

Info

Publication number
JP2007212095A
JP2007212095A JP2006034399A JP2006034399A JP2007212095A JP 2007212095 A JP2007212095 A JP 2007212095A JP 2006034399 A JP2006034399 A JP 2006034399A JP 2006034399 A JP2006034399 A JP 2006034399A JP 2007212095 A JP2007212095 A JP 2007212095A
Authority
JP
Japan
Prior art keywords
temperature
air
heat exchanger
heat
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006034399A
Other languages
Japanese (ja)
Other versions
JP4547630B2 (en
Inventor
Makoto Tanaka
真 田中
Ryusuke Gotoda
龍介 後藤田
Hiroyuki Gamo
弘行 蒲生
Masataka Miyawaki
正孝 宮脇
Yoshito Hosokawa
義人 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006034399A priority Critical patent/JP4547630B2/en
Publication of JP2007212095A publication Critical patent/JP2007212095A/en
Application granted granted Critical
Publication of JP4547630B2 publication Critical patent/JP4547630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To precisely control the temperature of air to be supplied to a clean room. <P>SOLUTION: Air 25 is moved through an inlet 11A to an air-conditioner 11. The temperature of the air 25 at a dry coil outlet 12B is measured by a thermometer 17 and the air 25 is passed through a low pass filter 33, and then an air temperature signal W1 is formed. The signal W1 is transmitted to a main loop PID computer 31. A main loop current value or controlled variable Z2 having a difference from an air temperature set value D1 is transmitted to a sub loop PID controller 32. The temperature of cold water to be supplied to a dry coil 12 is measured by a thermometer 18 to form a cold water temperature signal W2 which is transmitted to a computer 32. The computer 32 calculates a sub loop operation variable Z1 from the value and transmits it to a heater 15. In accordance with the result, the heater 15 precisely controls the temperature of the cold water to keep the temperature of the dry coil 12 constant. The temperature of the air 25 is set constant in heat exchange with the dry coil 12, and then the air 25 is supplied through the outlet 11B to the clean room. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気温度制御方法及び制御システムに係り、より詳しくは精密加工・計測分野に用いられる様々な室に供給される空気の空気温度制御方法及び制御システムに関するものである。   The present invention relates to an air temperature control method and control system, and more particularly to an air temperature control method and control system for air supplied to various chambers used in the field of precision machining and measurement.

半導体の大規模集積化に伴い、精密加工・計測精度の環境因子である空気温度を高度制御した精密環境チャンバ(例えば、クリーンルームなど)などの要求が高まっている。これら空気温度制御では、チャンバ内の熱負荷除去や、チャンバ内に取り入れる外気温度変化を吸収するため、空気を冷却したり、加熱したりする必要がある。冷却方法としては、冷水を用いたドライコイルを有する熱交換器に冷水を循環させる方法がよく用いられている。しかしながら、その際の冷水温度や流量の変動が、空気温度変動の大きな要因の一つとなっている。よって空気温度の高度制御においては、冷水制御やドライコイルによる温度制御の高性能化が課題の一つとなっている(例えば、非特許文献1参照。)。   With the integration of semiconductors on a large scale, there is an increasing demand for a precision environment chamber (for example, a clean room) that highly controls the air temperature, which is an environmental factor for precision processing and measurement accuracy. In these air temperature controls, it is necessary to cool or heat the air in order to remove the heat load in the chamber and absorb changes in the outside air temperature introduced into the chamber. As a cooling method, a method of circulating cold water through a heat exchanger having a dry coil using cold water is often used. However, the chilled water temperature and flow rate fluctuations at that time are one of the major causes of air temperature fluctuations. Therefore, in the advanced control of the air temperature, high performance of the cold water control or the temperature control by the dry coil is one of the problems (for example, see Non-Patent Document 1).

ドライコイルを用いた空気温度制御で一般に採用される方法の一つに、図3に示す空気温度制御システム100が挙げられる。空調機101内には、ドライコイル102、ファン103、温度計107などが設けられている。空調機101にはドライコイル102内を循環させる冷水を製造する冷水製造装置104が、ポンプ(図示しない)及び三方弁110を介して接続している。そして、空調機入口101Aから空気115が空調機101内に送られる。そして、空気温度変化や冷水製造装置104の冷水の温度変動によって発生する空調機出口101Bでの空気105の温度変動を制御するために、ドライコイル102に流入する冷水流量を三方弁110により調節している。調節は、温度計107でドライコイル出口102Bの空気115の温度を測定する。その測定値を空気温度信号S1としてコントローラ109に入力する。また、コントローラ109には空気温度設定値S2も入力される。これらS1,S2の差からPID演算器109Aにより三方弁110の開度値S3を求める。開度値S3を三方弁110に信号として送信して、三方弁110の開度を調整するという手順を繰り返して行われる。   One method generally employed in air temperature control using a dry coil is an air temperature control system 100 shown in FIG. In the air conditioner 101, a dry coil 102, a fan 103, a thermometer 107, and the like are provided. The air conditioner 101 is connected with a cold water production apparatus 104 for producing cold water circulating in the dry coil 102 via a pump (not shown) and a three-way valve 110. Then, air 115 is sent into the air conditioner 101 from the air conditioner inlet 101A. Then, in order to control the temperature fluctuation of the air 105 at the air conditioner outlet 101B caused by the air temperature change or the temperature fluctuation of the chilled water in the chilled water production apparatus 104, the flow rate of the chilled water flowing into the dry coil 102 is adjusted by the three-way valve 110. ing. In the adjustment, the temperature of the air 115 at the dry coil outlet 102B is measured by a thermometer 107. The measured value is input to the controller 109 as the air temperature signal S1. The controller 109 also receives an air temperature set value S2. An opening value S3 of the three-way valve 110 is obtained from the difference between S1 and S2 by the PID calculator 109A. The procedure of transmitting the opening degree value S3 as a signal to the three-way valve 110 and adjusting the opening degree of the three-way valve 110 is repeated.

また、他の空調システムとしては、最適化制御器を用いて、冷水製造装置の動力、ファンの動力、冷水をドライコイルに循環させるポンプなどの空調所要動力が最小となるように制御するものが知られている。この空調システムにはローカル制御器が設けられており、ドライコイル温度と冷水温度とが最適目標値となるように制御している(例えば、特許文献1参照。)。
空気調和・衛生工学会発行「空気調和・衛生工学第65巻第9号」、平成3年8月、557頁〜561頁 特開2004−069134号公報
As another air conditioning system, an optimization controller is used to control the power required for the cold water production apparatus, the power of the fan, and the power required for air conditioning such as a pump for circulating the cold water through the dry coil. Are known. This air conditioning system is provided with a local controller, which controls the dry coil temperature and the chilled water temperature to be optimum target values (see, for example, Patent Document 1).
Published by the Society for Air Conditioning and Sanitation Engineering, “Air Conditioning and Hygiene Engineering Vol. 65, No. 9”, August 1991, pages 557-561 JP 2004-0669134 A

図3の空気温度制御システム100による空気115の温度変動を模式的に図4に示す。空調機出口101Bの空気温度((c)参照)は空調機入口101Aの温度変化((a)参照)に関わらず、ある一定の範囲内で制御できている。しかしながら、冷水で発生した温度変動((b)参照)の影響を受けていることが分かる。このような冷水温度変動に起因する空気温度変化は周期が短く、電気ヒータなどで制御することが困難であり、高精度な温度制御を要求される設備では致命的な問題となる。この問題は、特許文献1に記載の空調システムは、空調所要動力の最小化を目的としているため必ずしも改善されている訳ではない。   FIG. 4 schematically shows the temperature fluctuation of the air 115 by the air temperature control system 100 of FIG. The air temperature at the air conditioner outlet 101B (see (c)) can be controlled within a certain range regardless of the temperature change at the air conditioner inlet 101A (see (a)). However, it turns out that it is influenced by the temperature fluctuation (refer to (b)) generated in cold water. Such a change in the air temperature due to the chilled water temperature fluctuation has a short cycle and is difficult to control with an electric heater or the like, which is a fatal problem in facilities that require high-accuracy temperature control. This problem is not necessarily improved because the air conditioning system described in Patent Document 1 aims to minimize the power required for air conditioning.

本発明の目的は、熱媒体を用いる熱交換器による空気温度の制御性能を向上させる空気温度制御方法及び制御システムを提供することである。   The objective of this invention is providing the air temperature control method and control system which improve the control performance of the air temperature by the heat exchanger using a heat medium.

請求項1の発明は、前記目的を達成するために、室内温度を調整するために供給される空気の温度制御を、熱交換器による熱交換によって行う空気温度制御方法において、前記熱交換がなされた空気温度を主ループの現在値又は制御量とし、前記主ループの現在値又は制御量に基づき規定される前記熱交換器内の熱媒体温度を副ループの目標値としたときに、前記熱交換器内に流入させる熱媒体の温度を前記副ループの目標値となるようにカスケード制御方法により前記空気の温度制御をさせることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is the air temperature control method in which the temperature of the air supplied to adjust the room temperature is controlled by heat exchange using a heat exchanger. The air temperature is the current value or control amount of the main loop, and the heat medium temperature in the heat exchanger defined based on the current value or control amount of the main loop is the target value of the sub-loop. The temperature of the air is controlled by a cascade control method so that the temperature of the heat medium flowing into the exchanger becomes a target value of the sub-loop.

請求項1によれば、前記主ループで熱交換器入口側の空気の温度変動を抑制でき、前記副ループで前記熱媒体の温度変動を抑制できるため空気温度の制御性能が向上する。   According to the first aspect, the temperature fluctuation of the air at the inlet side of the heat exchanger can be suppressed in the main loop, and the temperature fluctuation of the heat medium can be suppressed in the sub loop, so that the air temperature control performance is improved.

請求項2の発明においては、前記熱交換器が、ドライコイルを備えることが好ましい。   In the invention of claim 2, the heat exchanger preferably includes a dry coil.

請求項3の発明においては、前記熱交換器内に流入させる熱媒体の温度調整は、前記熱媒体を混合タンクに通し、前記熱媒体を加熱機又は冷却機に通し、前記熱媒体の温度を測定し、前記熱媒体温度に基づき前記加熱機又は冷却機の温度制御させることが好ましい。請求項3によれば、前記熱媒体の温度制御を精密に行うことが可能となる。   In a third aspect of the invention, the temperature adjustment of the heat medium flowing into the heat exchanger is performed by passing the heat medium through a mixing tank, passing the heat medium through a heater or a cooler, and adjusting the temperature of the heat medium. It is preferable to measure and control the temperature of the heater or the cooler based on the temperature of the heat medium. According to claim 3, it is possible to precisely control the temperature of the heat medium.

請求項4の発明においては、前記熱交換がなされた空気の温度を測定し、その結果をローパスフィルタに通すことによりノイズを低減させて、前記主ループの現在値又は制御量とすることが好ましい。請求項4によれば、センサのノイズや、本制御方式では追従できないような急激な温度変化を除去し、制御を安定させることができる。   According to a fourth aspect of the present invention, it is preferable that the temperature of the air subjected to the heat exchange is measured, and the result is passed through a low-pass filter to reduce noise to obtain the current value or control amount of the main loop. . According to the fourth aspect, it is possible to remove the noise of the sensor and the rapid temperature change that cannot be followed by this control method, and to stabilize the control.

請求項5の発明は、前記目的を達成するために、室内温度を調整するために供給される空気を熱交換器による熱交換によって温度制御する空気温度制御システムにおいて、前記熱交換器の温度制御を行うために、前記熱交換器により熱交換された空気温度を現在値又は制御量とする主ループと、前記熱交換器内の熱媒体の温度を現在値又は制御量とし、目標温度が前記主ループの操作量により規定される副ループと、を有するカスケード制御システムを備え、前記熱交換器内に流入させる熱媒体の温度を制御する熱媒体温度制御手段を有することを特徴とする。請求項5によれば、前記主ループで熱交換器入口側の空気の温度変動を抑制でき、前記副ループで前記熱媒体の温度変動を抑制できるため空気温度の制御性能が向上する。   According to a fifth aspect of the present invention, there is provided an air temperature control system for controlling the temperature of air supplied for adjusting a room temperature by heat exchange using a heat exchanger, in order to achieve the above object, the temperature control of the heat exchanger. In order to perform the above, the main loop having the air temperature heat exchanged by the heat exchanger as a current value or a controlled variable, and the temperature of the heat medium in the heat exchanger as the current value or the controlled variable, the target temperature is the A cascade control system having a sub-loop defined by an operation amount of the main loop, and a heat medium temperature control means for controlling the temperature of the heat medium flowing into the heat exchanger. According to the fifth aspect, the temperature fluctuation of the air on the inlet side of the heat exchanger can be suppressed in the main loop, and the temperature fluctuation of the heat medium can be suppressed in the sub loop, so that the air temperature control performance is improved.

本発明によれば、例えば精密加工・計測用環境チャンバなどのための室内(例えばクリーンルーム)に供給される空気の空気温度の制御性能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the control performance of the air temperature of the air supplied into the room | chamber interior (for example, clean room) for the environmental chambers for precision processing / measurement etc. can be improved, for example.

以下添付図面に従って本発明に係る空調空気温度の制御方法及び制御システムの好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of an air-conditioning air temperature control method and control system according to the present invention will be described in detail with reference to the accompanying drawings.

本発明に係る空気温度制御システム10を図1に示す。空気温度制御システム10における空調機11には、冷水製造装置14が配管などを介して接続され、更にコントローラ19が接続されている。コントローラ19は、主ループPID演算器31と副ループPID演算器32とローパスフィルタ33とを備えている。また、空調機11内には、熱交換器の一部であるドライコイル12と、ファン13と温度計17とが備えられている。なお、空調機11内に備えられる熱交換器は特に限定されるものではないが、ドライコイルを備えるものを用いることが好ましい。空調機入口11Aから空調機11内に入った空気25は、ドライコイル12で冷却されて空調機出口11Bから、例えば精密加工・計測用環境チャンバなどのための室内(図示せず)に送り出される。   An air temperature control system 10 according to the present invention is shown in FIG. The air conditioner 11 in the air temperature control system 10 is connected to a chilled water production apparatus 14 via a pipe or the like, and is further connected to a controller 19. The controller 19 includes a main loop PID calculator 31, a sub-loop PID calculator 32, and a low pass filter 33. In the air conditioner 11, a dry coil 12, a fan 13, and a thermometer 17 that are part of a heat exchanger are provided. In addition, although the heat exchanger provided in the air conditioner 11 is not specifically limited, It is preferable to use the thing provided with a dry coil. The air 25 that has entered the air conditioner 11 from the air conditioner inlet 11A is cooled by the dry coil 12 and sent out from the air conditioner outlet 11B to a room (not shown) for, for example, an environmental chamber for precision processing and measurement. .

冷水製造装置14は、冷水混合タンク16とヒータ(加熱機)15と温度計18及び配管などによりドライコイル12と接続しており、ドライコイル12内に熱媒体である冷水を供給する。なお、本発明において、熱媒体は冷水に限定されるものではない。また、ヒータに代えて温度調整用に冷却機が用いられる場合もある。さらに、温度計17,18も特に限定されるものではなく、各種のセンサを用いても良い。   The cold water production apparatus 14 is connected to the dry coil 12 by a cold water mixing tank 16, a heater (heater) 15, a thermometer 18, piping, and the like, and supplies cold water as a heat medium into the dry coil 12. In the present invention, the heat medium is not limited to cold water. Further, a cooler may be used for temperature adjustment instead of the heater. Furthermore, the thermometers 17 and 18 are not particularly limited, and various sensors may be used.

ドライコイル12に流入する冷水の流量は常に一定であるが、冷水温度は冷水混合タンク16及びヒータ15により制御される。冷水は冷水製造装置14で製造された後に、冷水混合タンク16で混合されて温度が略一定となる。更にヒータ15により精密な温度制御がなされる。   The flow rate of cold water flowing into the dry coil 12 is always constant, but the cold water temperature is controlled by the cold water mixing tank 16 and the heater 15. After the cold water is produced by the cold water production apparatus 14, the cold water is mixed in the cold water mixing tank 16 and the temperature becomes substantially constant. Further, precise temperature control is performed by the heater 15.

冷水の温度制御の方法は以下の手順による。温度計17でドライコイル出口12Bの空気25の温度を測定する。その測定結果を空気温度信号W1’としてローパスフィルタ33に送信する。ローパスフィルタ33で空気温度信号W1’のノイズを除去した後に、ノイズ除去空気温度信号W1として主ループPID制御器31に送信する。なお、本発明において、コントローラ19にローパスフィルタ33を配置することを省略することもできる。しかしながら、ドライコイル出口12Bの空気25の温度のノイズを除去したり、例外的に急激な空気温度変化の影響を取り除いたりするために、コントローラ19内に備えられていることが好ましい。   The method for controlling the temperature of the cold water is as follows. The temperature of the air 25 at the dry coil outlet 12 </ b> B is measured with the thermometer 17. The measurement result is transmitted to the low-pass filter 33 as an air temperature signal W1 '. After the noise of the air temperature signal W <b> 1 ′ is removed by the low-pass filter 33, it is transmitted to the main loop PID controller 31 as the noise-removed air temperature signal W <b> 1. In the present invention, the arrangement of the low-pass filter 33 in the controller 19 can be omitted. However, it is preferably provided in the controller 19 in order to remove noise of the temperature of the air 25 at the dry coil outlet 12B or to remove the influence of an exceptionally rapid change in air temperature.

コントローラ19では、ノイズ除去空気温度信号W1と、室内に供給する空気温度設定値D1との差が、主ループPID制御器31に入力される。そして、主ループPID制御器31により、冷水温度の目標値が算出され、副ループのPID制御器32に送信される。主ループPID制御器31から出力される値を主ループの現在値又は制御量Z2とする。また、温度計18でドライコイル12に供給される冷水の温度が測定される。その測定結果を冷水温度信号W2とする。主ループ現在値又は制御量Z2と、副ループの現在値である冷水温度信号W2との差が、副ループPID制御器32に入力される。そして、副ループPID制御器32によりヒータ15に送信される副ループの操作量Z1が算出される。副ループの操作量Z1はヒータ15のコントローラ(図示しない)に送信されて、その値に基づきコントローラがヒータ15の温度調節を行う。そして、ヒータ15によりドライコイル12に供給される冷水の温度が所望の温度であり且つ一定値に保持されるように制御される。   In the controller 19, the difference between the noise-removed air temperature signal W <b> 1 and the air temperature set value D <b> 1 supplied to the room is input to the main loop PID controller 31. Then, the target value of the cold water temperature is calculated by the main loop PID controller 31 and transmitted to the PID controller 32 of the sub loop. The value output from the main loop PID controller 31 is set as the current value of the main loop or the control amount Z2. Further, the temperature of the cold water supplied to the dry coil 12 is measured by the thermometer 18. The measurement result is defined as a cold water temperature signal W2. The difference between the main loop current value or control amount Z2 and the chilled water temperature signal W2 that is the current value of the sub loop is input to the sub loop PID controller 32. Then, the sub-loop operation amount Z <b> 1 transmitted to the heater 15 is calculated by the sub-loop PID controller 32. The operation amount Z1 of the auxiliary loop is transmitted to a controller (not shown) of the heater 15, and the controller adjusts the temperature of the heater 15 based on the value. The temperature of the cold water supplied to the dry coil 12 by the heater 15 is controlled to be a desired temperature and maintained at a constant value.

本発明に係る空気温度制御システム10による空気25の温度制御の結果の模式図を図2に示す。冷水温度は、副ループPID制御器32で精密な温度を副ループ現在値又は制御量Z1としてヒータ15に送信して温度制御をしているため、図4(c)で見られたような空調機出口10Bにおける空気25の急激な温度変動は見られない((c)参照)。更に、主ループPID制御器31による主ループ制御により空調機入口11Aの空気温度((a)参照)の変動を抑制するように冷水温度が変化していることが分かる((b)参照)。すなわち、空調機入口11Aの空気温度が上昇すると、冷水温度を低下させるように制御されている。結果として空調機出口11Bでの空気25の温度が高精度で制御されていることとなる((c)参照)。   The schematic diagram of the result of the temperature control of the air 25 by the air temperature control system 10 which concerns on this invention is shown in FIG. The chilled water temperature is controlled by the sub-loop PID controller 32 by sending a precise temperature to the heater 15 as the sub-loop current value or the control amount Z1, so that the air conditioning as seen in FIG. There is no sudden temperature fluctuation of the air 25 at the machine outlet 10B (see (c)). Further, it can be seen that the chilled water temperature is changed so as to suppress the fluctuation of the air temperature at the air conditioner inlet 11A (see (a)) by the main loop control by the main loop PID controller 31 (see (b)). That is, when the air temperature at the air conditioner inlet 11A rises, the cold water temperature is controlled to be lowered. As a result, the temperature of the air 25 at the air conditioner outlet 11B is controlled with high accuracy (see (c)).

本発明に係る空気温度制御システム10では、主ループPID制御器31が対象とする空調機入口11Aの空気25の温度変動と、副ループPID制御器32が対象とする冷水製造装置14から出た冷水温度変動とでは、支配的な温度変動の周期が大きく異なる。そのため、副ループPID制御器32による冷水の温度制御の方が、周期が短い温度変動を対象としている。更に冷水混合タンク16とヒータ15と温度計18とにより構成される熱媒体温度制御手段の速応性は十分高く、冷水温度変動を十分に制御できる。主ループ現在値又は制御量Z1は、主ループPID制御器31によって変化するが、その変化は副ループPID制御器32においては、十分に遅い変化であり、副ループ(信号;W2〜Z1)の制御性能に悪影響を及ぼさない。そのため、主ループ(信号;W1’〜Z2)で空調機入口11Aの空気25の温度変動を抑制することが可能となる。また、副ループ(信号;W2〜Z1)で冷水温度変動を抑制することが可能となる。   In the air temperature control system 10 according to the present invention, the temperature fluctuation of the air 25 at the air conditioner inlet 11A targeted by the main loop PID controller 31 and the cold water production apparatus 14 targeted by the sub loop PID controller 32 are output. The period of the dominant temperature fluctuation is greatly different from the cold water temperature fluctuation. Therefore, the temperature control of the cold water by the sub-loop PID controller 32 targets a temperature fluctuation with a short cycle. Further, the heat medium temperature control means constituted by the cold water mixing tank 16, the heater 15, and the thermometer 18 has a sufficiently high speed and can sufficiently control the cold water temperature fluctuation. The main loop current value or the control amount Z1 is changed by the main loop PID controller 31, but the change is sufficiently slow in the sub loop PID controller 32, and the change of the sub loop (signal; W2 to Z1). Does not adversely affect control performance. Therefore, it becomes possible to suppress the temperature fluctuation of the air 25 at the air conditioner inlet 11A in the main loop (signals; W1 'to Z2). Moreover, it becomes possible to suppress a chilled water temperature fluctuation | variation by a subloop (signal; W2-Z1).

本発明に係る空気温度制御システムの概略図である。It is the schematic of the air temperature control system which concerns on this invention. 本発明に係る空気温度制御システムを用いる場合の各温度の変化を示す模式図である。It is a schematic diagram which shows the change of each temperature in the case of using the air temperature control system which concerns on this invention. 従来の空気温度制御システムの概略図である。It is the schematic of the conventional air temperature control system. 従来の空気温度制御システムを用いる場合の各温度の変化を示す模式図である。It is a schematic diagram which shows the change of each temperature in the case of using the conventional air temperature control system.

符号の説明Explanation of symbols

10…空気温度制御システム、12…ドライコイル、14…冷水製造装置、15…ヒータ、16…冷水混合タンク、19…コントローラ、31…主ループPID制御器、32…副ループPID制御器、33…ローパスフィルタ DESCRIPTION OF SYMBOLS 10 ... Air temperature control system, 12 ... Dry coil, 14 ... Cold water manufacturing apparatus, 15 ... Heater, 16 ... Cold water mixing tank, 19 ... Controller, 31 ... Main loop PID controller, 32 ... Sub loop PID controller, 33 ... Low pass filter

Claims (5)

室内温度を調整するために供給される空気の温度制御を、熱交換器による熱交換によって行う空気温度制御方法において、
前記熱交換がなされた空気温度を主ループの現在値又は制御量とし、
前記主ループの現在値又は制御量に基づき規定される前記熱交換器内の熱媒体温度を副ループの目標値としたときに、
前記熱交換器内に流入させる熱媒体の温度を前記副ループの目標値となるようにカスケード制御方法により前記空気の温度制御をさせることを特徴とする空気温度制御方法。
In the air temperature control method in which the temperature control of the air supplied to adjust the room temperature is performed by heat exchange using a heat exchanger,
The air temperature that has undergone the heat exchange is the current value or control amount of the main loop,
When the heat medium temperature in the heat exchanger defined based on the current value or control amount of the main loop is the target value of the sub-loop,
An air temperature control method, wherein the temperature of the air is controlled by a cascade control method so that the temperature of the heat medium flowing into the heat exchanger becomes a target value of the sub-loop.
前記熱交換器が、ドライコイルを備えることを特徴とする請求項1に記載の空気温度制御方法。   The air temperature control method according to claim 1, wherein the heat exchanger includes a dry coil. 前記熱交換器内に流入させる熱媒体の温度調整は、
前記熱媒体を混合タンクに通し、前記熱媒体を加熱機又は冷却機に通し、前記熱媒体の温度を測定し、前記熱媒体温度に基づき前記加熱機又は冷却機の温度制御させることを特徴とする請求項1又は2に記載の空気温度制御方法。
The temperature adjustment of the heat medium flowing into the heat exchanger is as follows:
The heating medium is passed through a mixing tank, the heating medium is passed through a heater or a cooler, the temperature of the heating medium is measured, and the temperature of the heating machine or the cooler is controlled based on the temperature of the heating medium. The air temperature control method according to claim 1 or 2.
前記熱交換がなされた空気の温度を測定し、その結果をローパスフィルタに通すことによりノイズを低減させて、前記主ループの現在値又は制御量とすることを特徴とする請求項1ないし3何れか1項に記載の空気温度制御方法。   4. The temperature of the air subjected to the heat exchange is measured, and the result is passed through a low-pass filter to reduce noise, thereby obtaining the current value or control amount of the main loop. The air temperature control method according to claim 1. 室内温度を調整するために供給される空気を熱交換器による熱交換によって温度制御する空気温度制御システムにおいて、
前記熱交換器の温度制御を行うために、前記熱交換器により熱交換された空気温度を現在値又は制御量とする主ループと、
前記主ループの現在値又は制御量に基づき規定される値を前記熱交換器内の熱媒体の目標温度とする副ループと、を有するカスケード制御システムを備え、
前記熱交換器内に流入させる熱媒体の温度を制御する熱媒体温度制御手段を有することを特徴とする空気温度制御システム。
In an air temperature control system that controls the temperature of air supplied to adjust the indoor temperature by heat exchange using a heat exchanger,
In order to perform temperature control of the heat exchanger, a main loop having a current value or a control amount as an air temperature heat-exchanged by the heat exchanger;
A cascade control system having a secondary loop having a value defined based on a current value or a control amount of the main loop as a target temperature of the heat medium in the heat exchanger,
An air temperature control system comprising heat medium temperature control means for controlling the temperature of the heat medium flowing into the heat exchanger.
JP2006034399A 2006-02-10 2006-02-10 Air temperature control method and control system Active JP4547630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034399A JP4547630B2 (en) 2006-02-10 2006-02-10 Air temperature control method and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034399A JP4547630B2 (en) 2006-02-10 2006-02-10 Air temperature control method and control system

Publications (2)

Publication Number Publication Date
JP2007212095A true JP2007212095A (en) 2007-08-23
JP4547630B2 JP4547630B2 (en) 2010-09-22

Family

ID=38490704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034399A Active JP4547630B2 (en) 2006-02-10 2006-02-10 Air temperature control method and control system

Country Status (1)

Country Link
JP (1) JP4547630B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083517A1 (en) * 2010-01-08 2011-07-14 ダイキン工業株式会社 Radiator
JP2011163758A (en) * 2011-05-02 2011-08-25 Hitachi Plant Technologies Ltd Cooling system for electronic device
ES2382402A1 (en) * 2009-02-13 2012-06-08 Airzone, S.L. Ventiloconvector for air conditioning system. (Machine-translation by Google Translate, not legally binding)
CN103091994A (en) * 2011-11-02 2013-05-08 上海微电子装备有限公司 Gas precise temperature control device
US8839638B2 (en) 2008-02-13 2014-09-23 Hitachi, Ltd. Cooling system for electronic equipment
CN104713196A (en) * 2014-12-22 2015-06-17 青岛海尔空调器有限总公司 Control method and device for variable frequency air conditioner refrigeration and variable frequency air conditioner
CN112327605A (en) * 2020-10-27 2021-02-05 武汉智能装备工业技术研究院有限公司 Temperature control system and method for constant temperature device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510566A (en) * 1991-07-03 1993-01-19 Matsushita Seiko Co Ltd Controller for air conditioner
JPH10292942A (en) * 1997-04-18 1998-11-04 Sanken Setsubi Kogyo Kk Automatic control method for air conditioning installation
JPH11173631A (en) * 1997-12-15 1999-07-02 Shinko Kogyo Co Ltd Air conditioner controller
JP2001194040A (en) * 1999-10-29 2001-07-17 Komatsu Ltd Circulation heating/cooling system
JP2004183999A (en) * 2002-12-04 2004-07-02 Daikin Ind Ltd Refrigerating plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510566A (en) * 1991-07-03 1993-01-19 Matsushita Seiko Co Ltd Controller for air conditioner
JPH10292942A (en) * 1997-04-18 1998-11-04 Sanken Setsubi Kogyo Kk Automatic control method for air conditioning installation
JPH11173631A (en) * 1997-12-15 1999-07-02 Shinko Kogyo Co Ltd Air conditioner controller
JP2001194040A (en) * 1999-10-29 2001-07-17 Komatsu Ltd Circulation heating/cooling system
JP2004183999A (en) * 2002-12-04 2004-07-02 Daikin Ind Ltd Refrigerating plant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839638B2 (en) 2008-02-13 2014-09-23 Hitachi, Ltd. Cooling system for electronic equipment
ES2382402A1 (en) * 2009-02-13 2012-06-08 Airzone, S.L. Ventiloconvector for air conditioning system. (Machine-translation by Google Translate, not legally binding)
WO2011083517A1 (en) * 2010-01-08 2011-07-14 ダイキン工業株式会社 Radiator
JP2011163758A (en) * 2011-05-02 2011-08-25 Hitachi Plant Technologies Ltd Cooling system for electronic device
CN103091994A (en) * 2011-11-02 2013-05-08 上海微电子装备有限公司 Gas precise temperature control device
CN103091994B (en) * 2011-11-02 2016-02-03 上海微电子装备有限公司 A kind of gas temperature control apparatus
CN104713196A (en) * 2014-12-22 2015-06-17 青岛海尔空调器有限总公司 Control method and device for variable frequency air conditioner refrigeration and variable frequency air conditioner
CN104713196B (en) * 2014-12-22 2017-04-19 青岛海尔空调器有限总公司 Control method and device for variable frequency air conditioner refrigeration and variable frequency air conditioner
CN112327605A (en) * 2020-10-27 2021-02-05 武汉智能装备工业技术研究院有限公司 Temperature control system and method for constant temperature device
CN112327605B (en) * 2020-10-27 2023-02-28 武汉微环控技术有限公司 Temperature control system and method for constant temperature device

Also Published As

Publication number Publication date
JP4547630B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4547630B2 (en) Air temperature control method and control system
JP6324628B2 (en) Heat pump utilization system control device and heat pump utilization system including the same
WO2016035121A1 (en) Air conditioning system control device and air conditioning system control method
CN103092229A (en) Temperature stabilizing and controlling system of laser
JP4620746B2 (en) Supply air temperature control system for clean rooms
TWI407060B (en) Air conditioner controlling apparatus and method
JP2008256258A (en) Air conditioning system control device
WO2018006596A1 (en) Method of adjusting electronic expansion valve of outdoor unit of air-conditioner
Homod et al. Hybrid PID-cascade control for HVAC system
JP2013170753A (en) Refrigerator system
JP5214572B2 (en) Engine coolant control device and engine bench test system
KR20160051596A (en) Air-conditioning system
JP2010243002A (en) Air conditioning system
JP2019008787A (en) Building control system having decoupler for independently controlling interacting feedback loop
Homod et al. PID-cascade for HVAC system control
JP2006153429A (en) Constant-temperature fluid supply system
JP2008075978A (en) Air-conditioning control system
CN203135201U (en) Device for controlling temperature of excimer gas laser discharge chamber
JP2001241735A (en) Air conditioning system and its controlling method
CN116294087A (en) Energy-saving control method and system for intelligent building
RU2570784C2 (en) Method and plant of temperature regulation in building
JP4498041B2 (en) Control method for air conditioning system
JP2008032285A (en) Refrigerating machine, temperature adjusting device or its control method
JP5048999B2 (en) Temperature control system for machine tools
JP2007085712A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4547630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250