JP2007211288A - Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method - Google Patents

Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method Download PDF

Info

Publication number
JP2007211288A
JP2007211288A JP2006032159A JP2006032159A JP2007211288A JP 2007211288 A JP2007211288 A JP 2007211288A JP 2006032159 A JP2006032159 A JP 2006032159A JP 2006032159 A JP2006032159 A JP 2006032159A JP 2007211288 A JP2007211288 A JP 2007211288A
Authority
JP
Japan
Prior art keywords
fine particles
metal magnetic
magnetic fine
particles
oleylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032159A
Other languages
Japanese (ja)
Inventor
Kenji Sumiyama
兼治 隅山
Toshihiro Kuzutani
俊博 葛谷
Sukemasu Yamamuro
佐益 山室
Shingo Sadamasa
伸吾 定政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2006032159A priority Critical patent/JP2007211288A/en
Publication of JP2007211288A publication Critical patent/JP2007211288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a new particle synthesis method with which reduction reaction using a boron hydride compound is performed in a nonaqueous (organic) solvent, and coarsening of particle sizes can be suppressed. <P>SOLUTION: A means by which, for dissolving a water soluble boron hydride compound into an organic solvent, it is temporarily mixed into an organic solvent having polarity similarly to water and is uniformized by ultrasonic wave irradiation, and is thereafter mixed into a reaction solution comprising metal ions, is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高飽和磁化ならびに優れた耐酸化特性を有する金属磁性微粒子の製造技術に関するものである。   The present invention relates to a technique for producing metal magnetic fine particles having high saturation magnetization and excellent oxidation resistance.

溶媒中に均一分散した磁性微粒子は外部磁場により制御することが可能であり,磁気機能性流体(磁性流体および磁気レオロジー流体等)あるいは磁気分離・薬剤搬送のための担体として応用・検討されている。従来、このような磁性微粒子の材質としては,優れた化学安定性を有する酸化鉄(マグネタイト)が主に用いられてきた。これらの酸化鉄微粒子を作製する際には特に困難を要する大きな問題はなく,これまでにも水溶液中での化学的還元反応を利用した作製例が数多く報告されている[非特許文献1]。   Magnetic fine particles uniformly dispersed in a solvent can be controlled by an external magnetic field, and are being applied and studied as carriers for magnetic functional fluids (magnetic fluids, magnetorheological fluids, etc.) or magnetic separation / drug delivery. . Conventionally, iron oxide (magnetite) having excellent chemical stability has been mainly used as a material for such magnetic fine particles. There are no major problems that require particular difficulty in producing these iron oxide fine particles, and many production examples utilizing chemical reduction reactions in aqueous solutions have been reported so far [Non-patent Document 1].

一方,応用の観点からは磁性微粒子の印加磁場への応答性を向上するとこが切望されており,酸化鉄に換えて大きな飽和磁化を有する磁性金属(鉄あるいはコバルト等)を使用することが検討されている。しかし,これら遷移金属イオンは通常の化学的手法では還元し難く,また生成した金属粒子は酸化雰囲気に弱いため安定に保持することが難しいという問題を抱えている。従来,難還元性である遷移金属イオンを還元する有力な手段として,水素化硼素化合物等の強力な還元剤が使用されてきた。例えば,有機相中に分散された微小水滴中での反応を利用した逆ミセル法により,FeやCoの金属磁性微粒子の作製例が報告されている[非特許文献2−4]。   On the other hand, from the viewpoint of application, it is desired to improve the responsiveness of magnetic fine particles to the applied magnetic field, and it is considered to use a magnetic metal (such as iron or cobalt) having a large saturation magnetization instead of iron oxide. Has been. However, these transition metal ions are difficult to reduce by ordinary chemical methods, and the generated metal particles have a problem that they are difficult to maintain stably because they are weak in an oxidizing atmosphere. Conventionally, a powerful reducing agent such as a boron hydride compound has been used as an effective means for reducing a transition metal ion which is difficult to reduce. For example, a production example of metal magnetic fine particles of Fe or Co has been reported by a reverse micelle method using a reaction in minute water droplets dispersed in an organic phase [Non-patent Documents 2-4].

一方,生成粒子の酸化を防止する有効な手段は,酸素や水を介在させない非水溶媒中で反応を行うことである。代表的な手法としてポリオール法を挙げることができる。本手法は,弱還元剤である多価アルコール(例えばエチレングリコールなど)に溶媒・還元剤・界面活性剤の三役を担わせて粒子合成を行うものであり,CoやNi等の金属磁性微粒子の作製例が報告されている[非特許文献5]。
阿部正紀,松下伸広:日本応用磁気学会誌27, p.721-729 (2003).「水溶液中で作製したフェライト薄膜・超微粒子のマイクロ波/ナノバイオ応用 J.P. Chen et al., J. Appl. Phys. 76, p.6316-6318 (1994).“Magnetic properties of nanophase cobalt particles synthesize in inversed micelles” M.P. Pileni, J. Phys. Chem. B 105, p.3358-3371 (2001).“Magnetic properties of nanophase cobalt particles synthesize in inversed micelles” W. Zhou et al., J. Solid State Chem. 159, p.26-31 (2001).“Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly” T. Hinotsu et al., J. Appl. Phys. 95, p.7477-7479 (2004).“Size and structure control of magnetic nanoparticles by using a modified polyol process”
On the other hand, an effective means for preventing oxidation of the generated particles is to perform the reaction in a non-aqueous solvent that does not involve oxygen or water. A typical method is a polyol method. This method synthesizes particles by using a polyhydric alcohol (such as ethylene glycol), which is a weak reducing agent, as a solvent, a reducing agent, and a surfactant. An example of preparation of the above has been reported [Non-Patent Document 5].
Masaki Abe, Nobuhiro Matsushita: Journal of the Japan Society of Applied Magnetics 27, p.721-729 (2003). “Microwave / nanobio applications of ferrite thin films and ultrafine particles prepared in aqueous solution” JP Chen et al., J. Appl. Phys. 76, p.6316-6318 (1994). “Magnetic properties of nanophase cobalt particles synthesize in inversed micelles” MP Pileni, J. Phys. Chem. B 105, p.3358-3371 (2001). “Magnetic properties of nanophase cobalt particles synthesize in inversed micelles” W. Zhou et al., J. Solid State Chem. 159, p.26-31 (2001). “Gold-coated iron (Fe @ Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly” T. Hinotsu et al., J. Appl. Phys. 95, p.7477-7479 (2004). “Size and structure control of magnetic nanoparticles by using a modified polyol process”

上述したように,実用上の観点から金属磁性微粒子の作製が望まれており,それらを作製する幾つかの手法が開発されているが,先述した条件を兼備した粒子を効率よく作製することは難しい状態である。第一の課題は,水素化硼素化合物の還元力は強いものの,水溶性であるため粒子合成反応を水相中で行わなければならない点である。したがって反応に水が介在することになり,生成粒子の酸化防止の観点から問題がある。一方,ポリオール法では水を使用する必要はないが,界面活性剤としての役割を合わせ持つポリオール分子の粒子表面への吸着力が弱いため,生成中の粒子同士の融合を効果的に抑止することができず,粒子が粗大化しやすい。     As mentioned above, the production of metal magnetic fine particles is desired from a practical point of view, and several methods for producing them have been developed. However, efficient production of particles having the conditions described above is not possible. It is a difficult state. The first problem is that although the reducing power of boron hydride compounds is strong, the particle synthesis reaction must be carried out in an aqueous phase because of its water solubility. Therefore, water intervenes in the reaction, which is problematic from the viewpoint of preventing oxidation of the generated particles. On the other hand, the polyol method does not require the use of water, but it effectively suppresses the fusion of the particles that are being produced because the adsorption force of the polyol molecules that also serve as a surfactant to the particle surface is weak. Cannot be produced, and the particles are likely to become coarse.

以上のことから,非水(有機)溶媒中で水素化硼素化合物を用いた還元反応を行い,且つ粒子サイズの粗大化を抑制することが可能な新たな粒子合成法を開発する必要がある。   In view of the above, it is necessary to develop a new particle synthesis method capable of performing a reduction reaction using a boron hydride compound in a non-aqueous (organic) solvent and suppressing the coarsening of the particle size.

水溶性である水素化硼素化合物を有機溶媒へ溶解させるために,水と同様に極性を有する有機溶剤へ一旦混合して超音波照射により均一化した後に,金属イオンを含んだ反応溶液中に混合する手法を用いた。具体的には,水素化硼素化合物を溶解させる極性有機溶剤として,オレイルアミンあるいはオレイン酸を用いた。これらの溶剤は界面活性剤としても機能し,遷移金属粒子表面に強く吸着して粒子同士の融合を効果的に抑制する作用も併せ持つ。   In order to dissolve the water-soluble boron hydride compound in an organic solvent, it is once mixed in an organic solvent with polarity similar to water and homogenized by ultrasonic irradiation, and then mixed in a reaction solution containing metal ions. I used the technique to do. Specifically, oleylamine or oleic acid was used as a polar organic solvent for dissolving the boron hydride compound. These solvents also function as surfactants, and have a function of effectively adsorbing to the surface of the transition metal particles and effectively suppressing the fusion of the particles.

本発明で用いた粒子合成法では、強い還元力を有する水素化硼素化合物(水素化硼素ナトリウム,水素化硼素カリウム等)を用いて,有機溶媒中で目的の金属イオンを還元して金属微粒子を形成する。反応の際に酸化の原因となる水や空気を一切介在させないため,酸化雰囲気に弱い遷移金属微粒子の合成が可能になる。   In the particle synthesis method used in the present invention, a metal fine particle is obtained by reducing a target metal ion in an organic solvent using a boron hydride compound (sodium borohydride, potassium borohydride, etc.) having a strong reducing power. Form. Since no water or air that causes oxidation is present during the reaction, it is possible to synthesize transition metal particles that are weak in an oxidizing atmosphere.

水素化硼素化合物はイオン性の物質であるため,極性溶媒中では乖離して比較的溶解しやすくなる。この性質を利用して,オレイルアミンあるいはオレイン酸等の極性有機溶剤中に一旦混合し,超音波照射により均一化した後に,それを反応溶液の主体となる無極性の有機溶媒中へ混合することにより,水素化硼素化合物の無極性有機溶媒中への可溶度を高めた。   Since boron hydride compounds are ionic substances, they dissociate in polar solvents and are relatively easy to dissolve. Utilizing this property, once mixed in a polar organic solvent such as oleylamine or oleic acid, homogenized by ultrasonic irradiation, and then mixed in a nonpolar organic solvent that is the main component of the reaction solution. The solubility of boron hydride compounds in nonpolar organic solvents was increased.

オレイルアミンあるいはオレイン酸等の極性有機溶剤は、還元剤を溶かす溶剤としてだけではなく、界面活性剤としての機能も担う。これらの分子は長いアルキル鎖を有するため,粒子表面に吸着すると,その立体障害により粒子同士の融合を効果的に抑制するという特徴を有する。   A polar organic solvent such as oleylamine or oleic acid not only serves as a solvent for dissolving the reducing agent but also serves as a surfactant. Since these molecules have long alkyl chains, when adsorbed on the particle surface, they have a feature of effectively suppressing the fusion of particles due to steric hindrance.

以上の3点の手法を利用して,有機溶媒中での水素化硼素化合物の使用を実現し,且つ粒子の粗大化を抑えることに成功した。   Using the above three methods, we succeeded in realizing the use of boron hydride compounds in organic solvents and suppressing grain coarsening.

水の存在下では鉄の酸化反応は促進され,金属鉄微粒子を作製することは難しい。本発明で述べた手法を用いれば,水を排除した有機液相中で合成反応を行うため,上記の問題が解決される。   In the presence of water, the oxidation reaction of iron is accelerated and it is difficult to produce metallic iron particles. If the method described in the present invention is used, the above-mentioned problem is solved because the synthesis reaction is performed in an organic liquid phase excluding water.

また,還元剤として水素化硼素化合物をすることに起因して生成粒子中にボロンが混入され,純粋な鉄に比べて格段に耐酸化性に優れた鉄微粒子が合成可能である。   In addition, boron particles are mixed in the generated particles due to the boron hydride compound as a reducing agent, and iron fine particles having much better oxidation resistance than pure iron can be synthesized.

以下、本発明を具体化した実施例を図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

図1に,具体的な粒子合成手順のフローチャートを示す。使用した試薬類は、下記の通りである。
・Fe原子供給源:鉄(III)アセチルアセトナート(以下Fe(acac)3と表記、純度98%)
・還元剤:水素化硼素ナトリウム(純度90%)
・界面活性剤:オレイン酸(純度60%)単体、オレイルアミン(純度70%)単体,あるいはオレイン酸とオレイルアミンの混合体
・溶媒:ジオクチルエーテル(純度99%)
FIG. 1 shows a flowchart of a specific particle synthesis procedure. The reagents used are as follows.
-Fe atom supply source: Iron (III) acetylacetonate (hereinafter referred to as Fe (acac) 3 ; purity 98%)
・ Reducing agent: Sodium borohydride (purity 90%)
・ Surfactant: Oleic acid (purity 60%) alone, oleylamine (purity 70%) alone, or a mixture of oleic acid and oleylamine ・ Solvent: Dioctyl ether (purity 99%)

以下,典型的な条件における粒子合成法について述べる。まず上記試薬のうち,Fe(acac)3(0.5 mmol),界面活性剤(0.5-5 mmol),ジオクチルエーテル(20 mL)を秤量し,フラスコ(300 mL)に充填する。ここで界面活性剤としては,オレイン酸単体,オレイルアミン単体,あるいはこれら二つの混合物のいずれかを用いる。その後,フラスコ内を不活性(アルゴン)ガスで置換しながら,マントルヒーターにて混合溶液を150 ℃で60分間加熱撹拌する。本操作により,溶液中の溶存酸素および水を除去する。これとは別に,小さなバイアル瓶中で先述したものと同種の界面活性剤(0.5-5 mmol)に水素化硼素ナトリウムを添加し,約10分間超音波照射を行い均一に溶解させたものを用意する。本溶液を,150 ℃・60分間加熱したフラスコ中の混合溶液に,ピペットを用いて素早く添加する。これらの両操作を通じてフラスコに充填する界面活性剤の総量は,1-10 mmolである。その後,290 ℃まで急速に昇温し(15 ℃/min),その温度で60分間保持して粒子形成を行う。反応終了後は,反応溶液を室温まで空冷した後に,モレキュラーシーブにより脱水したエタノールおよびメタノールを加えて粒子を沈殿させ,遠心分離により粒子のみを分離・抽出した。本洗浄操作を2~3回繰り返した後に,最終的に生成粒子を無水ヘキサン中に分散させた。 The particle synthesis method under typical conditions is described below. First, weigh Fe (acac) 3 (0.5 mmol), surfactant (0.5-5 mmol), and dioctyl ether (20 mL) from the above reagents and fill the flask (300 mL). Here, as the surfactant, oleic acid alone, oleylamine alone, or a mixture of these two is used. Then, heat and stir the mixed solution at 150 ° C for 60 minutes with a mantle heater while replacing the inside of the flask with inert (argon) gas. This operation removes dissolved oxygen and water from the solution. Separately, add sodium borohydride to the same type of surfactant (0.5-5 mmol) as described above in a small vial, and prepare a solution uniformly dissolved by ultrasonic irradiation for about 10 minutes. To do. Using a pipette, quickly add this solution to the mixed solution in a flask heated at 150 ° C for 60 minutes. The total amount of surfactant charged into the flask through both of these operations is 1-10 mmol. After that, the temperature is rapidly raised to 290 ° C (15 ° C / min) and held at that temperature for 60 minutes to form particles. After completion of the reaction, the reaction solution was air-cooled to room temperature, ethanol and methanol dehydrated with molecular sieves were added to precipitate the particles, and only the particles were separated and extracted by centrifugation. After repeating this washing operation 2 to 3 times, the produced particles were finally dispersed in anhydrous hexane.

図2に,上記手法で生成した代表的なFe粒子の透過電子顕微鏡(TEM)写真を示す。粒子内は,中心付近のコントラストの濃い部分と,表面付近のコントラストの薄い部分とに識別され,いわゆるコア・シェル構造を有していることがわかる。X線回折結果から,結晶性のよい金属鉄のピークが確認され(図3),先述した結晶性の良いコア粒子部分が金属鉄,表面のコントラストの薄い部分が酸化鉄被膜と考えられる。また,XPSおよび原子吸光による元素分析結果から,粒子は30 at%程度の硼素を内包していることが判明した。通常,10 nm程度のサイズの鉄粒子では,大気中において酸化が一気に進行するため,金属鉄相を保持することが難しいことが知られている。粒子への硼素の混入と不働態化した表面酸化被膜が,粒子の耐酸化特性を向上している要因と考えられる。   FIG. 2 shows a transmission electron microscope (TEM) photograph of a typical Fe particle produced by the above method. It can be seen that the inside of the particle has a so-called core-shell structure, which is classified into a dark portion near the center and a thin portion near the surface. From the X-ray diffraction results, a peak of metallic iron with good crystallinity was confirmed (FIG. 3), and the core particle portion with good crystallinity described above is considered to be metallic iron, and the portion with a low surface contrast is considered to be an iron oxide coating. The results of elemental analysis by XPS and atomic absorption revealed that the particles contained about 30 at% boron. In general, iron particles with a size of about 10 nm are known to be difficult to maintain a metallic iron phase because oxidation proceeds at once in the atmosphere. The inclusion of boron in the particles and the passivated surface oxide film are considered to be the factors that improve the oxidation resistance of the particles.

図4に,室温(300 K)と低温(5 K)における典型的な磁化曲線を示す。原子吸光により求めた鉄の量を用いて鉄の単位質量当たりの飽和磁化を求めると,5Kにおいて約100-140 emu/g程度と,通常の酸化鉄(約90 emu/g)に比べて高い値が得られた。室温においては超常磁性の影響により多少飽和磁化が低減するものの、100 emu/g以上の飽和磁化を保持している(室温における酸化鉄の飽和磁化は約80 emu/g)。これは,飽和磁化の高い金属鉄が安定に保持されていることの証左である。   Figure 4 shows typical magnetization curves at room temperature (300 K) and low temperature (5 K). When the saturation magnetization per unit mass of iron is determined using the amount of iron determined by atomic absorption, it is about 100-140 emu / g at 5K, which is higher than normal iron oxide (about 90 emu / g). A value was obtained. Although saturation magnetization is somewhat reduced at room temperature due to the influence of superparamagnetism, saturation magnetization of 100 emu / g or more is maintained (saturation magnetization of iron oxide at room temperature is about 80 emu / g). This is proof that metallic iron with high saturation magnetization is held stably.

図5に,界面活性剤として用いたオレイルアミンとオレイン酸の混合比を変えて作製した粒子のTEM写真を示す。オレイルアミン単体の場合には生成した鉄粒子は比較的良好な結晶性を示すが,オレイン酸を混合することにより非晶質の金属鉄粒子が形成される(図6)。   FIG. 5 shows a TEM photograph of particles produced by changing the mixing ratio of oleylamine and oleic acid used as the surfactant. In the case of oleylamine alone, the produced iron particles show relatively good crystallinity, but amorphous metal iron particles are formed by mixing oleic acid (FIG. 6).

図7は,乾燥した粒子を大気中・室温にて保持した場合の酸化過程をX線回折によって調べたものである。試料作製後,2ヶ月以上経過した後も,X線回折パターンには顕著な変化はなく,金属鉄微粒子が安定に保持されていることがわかる。一方,大気中で温度を変えて30分間加熱した場合,200 ℃以上の温度において徐々に酸化が進行していく(図8)。   FIG. 7 is an X-ray diffraction study of the oxidation process when the dried particles are kept in the atmosphere at room temperature. Even after two months have passed since the preparation of the sample, the X-ray diffraction pattern does not change significantly, indicating that the metal iron fine particles are held stably. On the other hand, when heating for 30 minutes at different temperatures in the atmosphere, oxidation proceeds gradually at temperatures above 200 ° C (Figure 8).

還元剤として,水素化硼素ナトリウムのほかに,水素化硼素リチウム,水素化硼素カリウムの使用も可能である。   In addition to sodium borohydride, lithium borohydride and potassium borohydride can be used as the reducing agent.

界面活性剤として,オレイルアミンおよびオレイン酸のほかに,アルキル鎖長の異なる液体状のアルキルアミンおよび脂肪酸の使用も可能である。   In addition to oleylamine and oleic acid, liquid alkylamines and fatty acids with different alkyl chain lengths can be used as surfactants.

金属供給源として、鉄(III)アセチルアセトナートのほかに、ニッケル(II)アセチルアセトナートを使用することにより、ニッケル微粒子の製造も可能である。   By using nickel (II) acetylacetonate in addition to iron (III) acetylacetonate as a metal supply source, nickel fine particles can be produced.

鉄微粒子の合成手順を示す。The synthesis procedure of iron fine particles is shown. 代表的なFe粒子の透過電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of typical Fe particles. X線回折結果(オレイルアミン:オレイン酸=7:0 mmol)である。It is an X-ray diffraction result (oleylamine: oleic acid = 7: 0 mmol). 室温(300 K)と低温(5 K)における鉄微粒子の磁化曲線(オレイルアミン:オレイン酸=7:0 mmol)である。It is a magnetization curve (oleylamine: oleic acid = 7: 0 mmol) of iron fine particles at room temperature (300 K) and low temperature (5 K). オレイルアミンとオレイン酸の混合比を変えて作製した鉄微粒子のTEM写真である。It is a TEM photograph of iron fine particles produced by changing the mixing ratio of oleylamine and oleic acid. オレイルアミンとオレイン酸の混合比を変えて作製した鉄微粒子のX線回折結果である。It is an X-ray diffraction result of iron fine particles produced by changing the mixing ratio of oleylamine and oleic acid. 大気中・室温にて保持した鉄微粒子の酸化過程(X線回折パターンの経時変化)(オレイルアミン:オレイン酸=3.5:0 mmol)である。This is an oxidation process of iron fine particles held in the atmosphere at room temperature (change with time in X-ray diffraction pattern) (oleylamine: oleic acid = 3.5: 0 mmol). 大気中で加熱した鉄微粒子の酸化過程(X線回折パターンの加熱温度による変化)(オレイルアミン:オレイン酸=3.5:0 mmol)である。It is an oxidation process of iron fine particles heated in the atmosphere (change of X-ray diffraction pattern with heating temperature) (oleylamine: oleic acid = 3.5: 0 mmol).

Claims (5)

水素化硼素化合物を水と同様の極性を有する有機溶剤へ混合して超音波照射により均一化した後に,金属イオンを含んだ反応溶液中に混合することを特徴とする金属磁性微粒子の製造方法。 A method for producing metal magnetic fine particles, comprising mixing a boron hydride compound in an organic solvent having the same polarity as water, homogenizing the mixture by ultrasonic irradiation, and then mixing the mixture in a reaction solution containing metal ions. 請求項1の水素化硼素化合物が、水素化硼素ナトリウム,水素化硼素カリウム等であることを特徴とする請求項1記載の金属磁性微粒子の製造方法。 2. The method for producing metal magnetic fine particles according to claim 1, wherein the boron hydride compound according to claim 1 is sodium borohydride, potassium borohydride or the like. 請求項1の水と同様の極性を有する有機溶剤としてオレイルアミン及び/又はオレイン酸を用いることを特徴とする請求項1又は2記載の金属磁性微粒子の製造方法。 The method for producing metal magnetic fine particles according to claim 1 or 2, wherein oleylamine and / or oleic acid is used as the organic solvent having the same polarity as the water of claim 1. 請求項3のオレイルアミンとオレイン酸混合物が界面活性剤としての役割を持ちその混合比を変えることにより,結晶質ならびに非晶質を有する金属磁性微粒子を作り分けることができることを特徴とする請求項1乃至3記載の金属磁性微粒子の製造方法。 The oleylamine and oleic acid mixture according to claim 3 has a role as a surfactant, and by changing the mixing ratio thereof, metallic magnetic fine particles having crystalline and amorphous properties can be made separately. A method for producing metal magnetic fine particles according to any one of claims 1 to 3. 請求項1乃至4記載の金属磁性微粒子の製造方法により製造された金属磁性微粒子のサイズが30 nm以下、特に10 nmオーダーの金属磁性微粒子であることを特徴とする金属磁性微粒子。 Metal magnetic fine particles, wherein the size of the metal magnetic fine particles produced by the method for producing metal magnetic fine particles according to claim 1 is 30 nm or less, particularly 10 nm order.
JP2006032159A 2006-02-09 2006-02-09 Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method Pending JP2007211288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032159A JP2007211288A (en) 2006-02-09 2006-02-09 Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032159A JP2007211288A (en) 2006-02-09 2006-02-09 Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method

Publications (1)

Publication Number Publication Date
JP2007211288A true JP2007211288A (en) 2007-08-23

Family

ID=38489989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032159A Pending JP2007211288A (en) 2006-02-09 2006-02-09 Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method

Country Status (1)

Country Link
JP (1) JP2007211288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161414A (en) * 2008-01-10 2009-07-23 Nagoya Institute Of Technology Method for manufacturing magnetic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125605A (en) * 1986-11-14 1988-05-28 Daido Steel Co Ltd Production of fine metal powder
JP2004027347A (en) * 2002-06-28 2004-01-29 Toda Kogyo Corp Metal colloid organosol and method for manufacturing the same
JP2004285455A (en) * 2003-03-25 2004-10-14 Fujitsu Ltd Antiferromagnetic fine particle and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125605A (en) * 1986-11-14 1988-05-28 Daido Steel Co Ltd Production of fine metal powder
JP2004027347A (en) * 2002-06-28 2004-01-29 Toda Kogyo Corp Metal colloid organosol and method for manufacturing the same
JP2004285455A (en) * 2003-03-25 2004-10-14 Fujitsu Ltd Antiferromagnetic fine particle and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161414A (en) * 2008-01-10 2009-07-23 Nagoya Institute Of Technology Method for manufacturing magnetic material

Similar Documents

Publication Publication Date Title
Abbas et al. Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process
Teng et al. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles
Ahmed et al. Bimetallic Cu–Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni)
Wu et al. Monodispersed FeNi 2 alloy nanostructures: solvothermal synthesis, magnetic properties and size-dependent catalytic activity
Shen et al. Chemical synthesis of magnetic nanoparticles for permanent magnet applications
Yamauchi et al. Magnetic Cu–Ni (core–shell) nanoparticles in a one-pot reaction under microwave irradiation
Li et al. Gold nanorod@ iron oxide core–shell heterostructures: synthesis, characterization, and photocatalytic performance
JP2008117855A (en) Manufacturing method of nano-composite magnet
EP2140957A1 (en) Process for producing core/shell composite nanoparticle
WO2003086660A1 (en) Magnetic nanoparticles having passivated metallic cores
JP5766637B2 (en) bcc-type FeCo alloy particles, method for producing the same, and magnet
CA2503320A1 (en) Methods for the fabrication of gold-covered magnetic nanoparticles
JP5558826B2 (en) Method for producing iron or iron oxide nanopowder particles
JP4938285B2 (en) Method for producing core / shell composite nanoparticles
Wang et al. Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method
JP2015513780A (en) Non-rare earth magnetic nanoparticles
Zhao et al. Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate
Tago et al. Effect of silica-coating on crystal structure and magnetic properties of metallic nickel particles
JP2015212415A (en) CORE-SHELL-SHELL FeCo/SiO2/MnBi NANOPARTICLE PREPARATION METHOD AND CORE-SHELL-SHELL FeCo/SiO2/MnBi NANOPARTICLE
Rahimi et al. Controlling of saturation of magnetization of Nd–Fe–B nanoparticles fabricated by chemical method
JP2008133504A (en) METHOD FOR PRODUCING MAGNETIC PARTICLE OF FePt-Fe-BASED NANOCOMPOSITE METAL
JP2011132581A (en) Method for producing nanoparticle of nickel-iron alloy with high saturation magnetization, and nanoparticle of nickel-iron alloy with high saturation magnetization
JP2007211288A (en) Method for producing metal magnetic particulate and metal magnetic particulate produced by using the method
Stepanov et al. Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition
Najarzadegan et al. The effect of reduction process parameters on magnetic and structural properties of SmCo/Co nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510