JP2007204858A - Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same - Google Patents

Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same Download PDF

Info

Publication number
JP2007204858A
JP2007204858A JP2006021969A JP2006021969A JP2007204858A JP 2007204858 A JP2007204858 A JP 2007204858A JP 2006021969 A JP2006021969 A JP 2006021969A JP 2006021969 A JP2006021969 A JP 2006021969A JP 2007204858 A JP2007204858 A JP 2007204858A
Authority
JP
Japan
Prior art keywords
fiber
photocatalyst
ptfe
polytetrafluoroethylene
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006021969A
Other languages
Japanese (ja)
Inventor
Tomio Kuwajima
富夫 桑嶋
Katsumi Takehara
勝己 竹原
Original Assignee
Toray Ind Inc
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Ind Inc, 東レ株式会社 filed Critical Toray Ind Inc
Priority to JP2006021969A priority Critical patent/JP2007204858A/en
Publication of JP2007204858A publication Critical patent/JP2007204858A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a photocatalyst-supporting PTFE fiber having excellent heat resistance and chemical resistance, a function of decomposing substances adsorbed on the surface by a photocatalytic action and a slight deterioration in strength even by a long-term use, and to provide a method for producing the same. <P>SOLUTION: The photocatalyst-supporting PTFE fiber is a fiber that is composed of a PTFE resin and selectively contains a metal compound having a photocatalytic function on the surface layer part in which at least a part of the metal composition is exposed to the surface of the fiber. The method for producing the same is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性、耐薬品性に優れ、かつ表面に吸着した物質を光触媒作用により分解する機能を有し、さらには長期にわたって使用しても強度劣化の少ないポリテトラフルオロエチレン繊維に関する。   The present invention relates to a polytetrafluoroethylene fiber which has excellent heat resistance and chemical resistance, has a function of decomposing a substance adsorbed on the surface by a photocatalytic action, and has little strength deterioration even when used over a long period of time.

酸化チタンをはじめとする光触媒粒子は、その物質の伝導帯と価電子帯の間のエネルギーギャップよりも大きなエネルギーを持つ光を照射されることにより、価電子帯中の電子が励起され、伝導帯に電子が、価電子帯に正孔が生成する。これらの電子および正孔が酸化還元反応を行うことで、接触する有機物などを分解する。このような現象を利用し、空気や水質の浄化、外装材等の防汚への応用が活発に行われている。   When photocatalyst particles such as titanium oxide are irradiated with light having an energy larger than the energy gap between the conduction band and the valence band of the substance, electrons in the valence band are excited and the conduction band is excited. Electrons are generated in the valence band and holes in the valence band. These electrons and holes undergo an oxidation-reduction reaction to decompose organic substances that come into contact therewith. Utilizing such a phenomenon, application to purification of air and water quality and antifouling of exterior materials and the like is being actively performed.

しかし、酸化チタン等の光触媒活性は非常に強力であり、表面に接触した有機物を分解すると同時に、担持体そのものも分解し、劣化させてしまうという問題点があった。例えば特許文献1では光触媒の表面を被覆することにより、繊維と光触媒の直接の接触を避け、繊維の劣化を抑えられると提案されているが、この被覆により光触媒自体の酸化還元の活性も低下してしまうという問題がある。   However, the photocatalytic activity of titanium oxide or the like is very strong, and there is a problem that the organic substance contacting the surface is decomposed and at the same time the support itself is decomposed and deteriorated. For example, Patent Document 1 proposes that the coating of the surface of the photocatalyst avoids direct contact between the fiber and the photocatalyst, thereby suppressing the deterioration of the fiber. However, this coating also reduces the redox activity of the photocatalyst itself. There is a problem that it ends up.

また特許文献2では、接着剤を用いて基材に光触媒性粒子を付着する方法が提案されているが、光触媒作用により接着剤が劣化してしまったり、またフッ素繊維の特性の一つである高い非粘着性のために、十分な担持が達成できず、長期使用する際に脱落するという問題がある。   Patent Document 2 proposes a method of attaching photocatalytic particles to a substrate using an adhesive, but the adhesive deteriorates due to photocatalytic action, and is one of the characteristics of fluorine fibers. Due to the high non-adhesiveness, sufficient loading cannot be achieved, and there is a problem of falling off during long-term use.

特許文献3では、光触媒性粒子を含むフッ素樹脂スラリーを金属板に塗布し焼成することでフィルムを得るという製法で作られているが、一度に生産される繊維の量が短いため生産性が悪く、現実的ではない。   In Patent Document 3, the film is obtained by applying a fluororesin slurry containing photocatalytic particles to a metal plate and baking it, but the productivity is poor because the amount of fibers produced at one time is short. Is not realistic.

また特許文献4では、フッ素樹脂と光触媒を混合し、押し出し成形後に圧延してシート状にし加熱焼成することで光触媒担持フッ素樹脂フィルムを形成する方法が提案されており、これをスリットすることで繊維と成すことは可能である。しかし、この方法では内部に含まれる数多くの光触媒粒子は、外部の分解すべき有機物と接触することができず、光触媒として作用しないだけでなく、成形品の強度が十分に得られないという問題がある。   Further, Patent Document 4 proposes a method of forming a photocatalyst-supported fluororesin film by mixing a fluororesin and a photocatalyst, rolling and extruding the sheet to form a sheet, and heating and firing. Is possible. However, in this method, a large number of photocatalyst particles contained in the interior cannot be brought into contact with an external organic substance to be decomposed and do not act as a photocatalyst, and the strength of the molded product cannot be sufficiently obtained. is there.

また特許文献5では、マトリックス紡糸法によるポリテトラフルオロエチレン繊維の製造において、光触媒を練りこむ方法が紹介されているが、練り込みの場合大半の光触媒は繊維内部に存在しているため、特許文献4の場合と同様に、内部に含まれる数多くの光触媒粒子は、外部の分解すべき有機物と接触することができず、光触媒として作用しないだけでなく、成形品の強度が十分に得られないという問題がある。   Patent Document 5 introduces a method of kneading a photocatalyst in the production of polytetrafluoroethylene fiber by a matrix spinning method. However, in the case of kneading, most of the photocatalyst is present inside the fiber. As in the case of No. 4, the large number of photocatalyst particles contained in the interior cannot be brought into contact with the organic matter to be decomposed outside, and not only act as a photocatalyst, but also cannot provide sufficient strength of the molded product. There's a problem.

特許文献6では、金属繊維または炭素繊維にポリテトラフルオロエチレン樹脂を介して光触媒を担持する方法が提案されており、繊維の光触媒による劣化は少ないものの、バインダーであるフッ素樹脂と基材である金属繊維や炭素繊維との相性により簡単に脱落してしまうという問題があり、また金属繊維や炭素繊維では紡績加工や不織布化が困難であるため、応用範囲に限界がある。
特開2004−195416号公報 特開平7−108138号公報 特開平10−230134号公報 特開平10−5545号公報 特開平10−57816号公報 特開平11−57346号公報
Patent Document 6 proposes a method of supporting a photocatalyst on a metal fiber or carbon fiber via a polytetrafluoroethylene resin. Although the fiber is less deteriorated by the photocatalyst, the binder is a fluororesin and the base material is a metal. There is a problem that it easily falls off due to compatibility with fibers and carbon fibers, and metal fibers and carbon fibers are difficult to be spun and made into nonwoven fabrics.
JP 2004-195416 A JP-A-7-108138 JP-A-10-230134 Japanese Patent Laid-Open No. 10-5545 JP-A-10-57816 Japanese Patent Laid-Open No. 11-57346

本発明の目的は、耐熱性、耐薬品性に優れ、かつ表面に吸着した物質を光触媒作用により分解する機能を有し、さらには長期にわたって使用しても強度劣化の少ないポリテトラフルオロエチレン繊維を提供することである。   An object of the present invention is to provide a polytetrafluoroethylene fiber that has excellent heat resistance and chemical resistance, has a function of decomposing a substance adsorbed on the surface by photocatalysis, and has little deterioration in strength even when used over a long period of time. Is to provide.

本発明は、上記課題を解決するにあたって以下のような手段を採用する。
すなわち、ポリテトラフルオロエチレン樹脂からなる繊維であって、光触媒機能を有する金属化合物を表層部に選択的に含有し、該金属化合物の少なくとも一部が繊維表面に露出していることを特徴とする光触媒担持ポリテトラフルオロエチレン繊維。
The present invention employs the following means in order to solve the above problems.
That is, it is a fiber made of a polytetrafluoroethylene resin, wherein a metal compound having a photocatalytic function is selectively contained in the surface layer portion, and at least a part of the metal compound is exposed on the fiber surface. Photocatalyst-supported polytetrafluoroethylene fiber.

本発明により、耐熱性、耐薬品性に優れ、かつ表面に吸着した物質を光触媒作用により分解する機能を有し、さらには長期にわたって使用しても強度劣化の少ないポリテトラフルオロエチレン繊維を提供することができる。   The present invention provides a polytetrafluoroethylene fiber that has excellent heat resistance and chemical resistance, has a function of decomposing a substance adsorbed on the surface by photocatalysis, and has little deterioration in strength even when used over a long period of time. be able to.

本発明はフッ素樹脂のひとつであるポリテトラフルオロエチレン(以下PTFEと略称することがある)樹脂からなる繊維に関するものである。   The present invention relates to a fiber made of polytetrafluoroethylene (hereinafter sometimes abbreviated as PTFE) resin, which is one of fluororesins.

フッ素系樹脂にはPTFEの他にPTFEに共重合した4フッ化エチレン−6フッ化プロピレン中剛体(FEP)、4フッ化エチレン−パーフロロアルコキシ基共重合体(PFA)、4フッ化エチレンオレフィン共重合体(ETFE)などがあり、これらは溶融紡糸により生産されている。しかしながら、本発明では耐熱性の点から最も優れるPTFE樹脂がもちいられる。   In addition to PTFE, fluororesin is copolymerized with PTFE in tetrafluoroethylene-6fluoropropylene medium rigid body (FEP), tetrafluoroethylene-perfluoroalkoxy copolymer (PFA), tetrafluoroethylene olefin There are copolymers (ETFE) and the like, which are produced by melt spinning. However, in the present invention, the PTFE resin that is most excellent in terms of heat resistance is used.

これまでPTFE繊維の製造方法にはマトリックス紡糸法(エマルジョン紡糸法とも呼ばれる)、スプリット剥離法、ペースト押出し法などが知られている。スプリット剥離法とはPTFEの粉末をシリンダ圧縮せしめた後、燒結、スプリット剥離させた後、延伸する製法である。ペースト押出し法はマトリックスポリマーを用いずにPTFEの粉末をワックス状潤滑剤と混練し、棒状もしくはフィルム状に成形した後、該潤滑剤を除去し、延伸、焼成(焼成しない場合もある)する製法である。しかしながら、これら2つの製法ではどうしてもその製法上細かく切り裂いて得られる最終繊維状物の断面は扁平形状であり、しかもランダムで均一性に劣り、特に短繊維としてフェルト加工する際にはネップなどが生成されやすいという欠点があった。   Conventionally, a matrix spinning method (also called an emulsion spinning method), a split peeling method, a paste extrusion method, and the like are known as methods for producing PTFE fibers. The split peeling method is a manufacturing method in which PTFE powder is compressed by cylinder, sintered, split peeled and then stretched. Paste extrusion method is a method in which PTFE powder is kneaded with a wax-like lubricant without using a matrix polymer, molded into a rod-like or film-like form, then removed, stretched and fired (may not be fired). It is. However, in these two production methods, the final fibrous material obtained by finely cutting the production method has a flat cross section, and it is random and inferior in uniformity. Nep, etc. are generated especially when felted as short fibers. There was a drawback that it was easy to be done.

本発明に係るPTFE繊維を得るにはマトリックス紡糸法の実施が好ましい。マトリックス紡糸法とは、ビスコースなどをマトリックスとしてPTFEの水分散液との混合液を凝固液中に吐出して繊維化し、次いで精練した後焼成を行う。ポリマー融点以上で焼成することで、マトリックスポリマーの大部分を焼成飛散させながら、PTFEを溶融し、粒子間を融着することではじめてその後の延伸性が付与される。焼成後、未延伸糸は直接1ステップもしくは2ステップに分けて延伸され、強度が実現する。またこの製法により得られるPTFE繊維は物性のバラツキが均一であり、特に短繊維としてフェルト加工する際、加工性が良好である。   In order to obtain the PTFE fiber according to the present invention, the matrix spinning method is preferably performed. In the matrix spinning method, viscose or the like is used as a matrix and a mixed solution of PTFE with an aqueous dispersion of PTFE is discharged into a coagulation liquid to form fibers, and then scoured and then fired. By baking at a polymer melting point or higher, PTFE is melted while the majority of the matrix polymer is fired and scattered, and the subsequent stretchability is imparted only by fusing the particles. After firing, the undrawn yarn is drawn directly in one or two steps to achieve strength. Further, the PTFE fiber obtained by this production method has uniform physical properties, and particularly has good workability when felted as a short fiber.

本発明において、PTFE繊維に担持される光触媒機能を有する金属化合物(以下「光触媒性金属化合物」という)とは、光を照射することによって物質表面で酸化還元が起こり、臭気成分や細菌、微生物等の有機化合物を分解する化合物である。このような化合物としては、酸化チタン、酸化亜鉛、酸化スズ、および酸化タングステンなどを適用することができる。その中でも比較的安価に入手できる二酸化チタン(TiO)が最も好適であり、その結晶構造は、ブルッカイト型、ルチル型、アナターゼ型の3種のうち、光触媒活性の高いアナターゼ型が特に好ましい。 In the present invention, a metal compound having a photocatalytic function carried on PTFE fiber (hereinafter referred to as “photocatalytic metal compound”) is oxidized and reduced on the surface of the substance by irradiation with light, and odor components, bacteria, microorganisms, etc. It is a compound that decomposes organic compounds. As such a compound, titanium oxide, zinc oxide, tin oxide, tungsten oxide, or the like can be applied. Of these, titanium dioxide (TiO 2 ), which can be obtained at a relatively low cost, is most suitable, and the crystal structure is particularly preferably an anatase type having a high photocatalytic activity among three types of brookite type, rutile type, and anatase type.

また、これら光触媒性金属化合物の表面にさらに金属粒子を付加担持させることで光触媒反応の速度をさらに増大させ得ることが知られており、付加させる金属粒子の材質としては、白金、ルテニウム、パラジウム、ロジウム、タンタル、銀、ニッケル、銅、ジルコニウム、クロム、バナジウム、酸化スズ、酸化マンガン、酸化ニッケル、酸化ルテニウムなどがある。   In addition, it is known that the photocatalytic reaction rate can be further increased by further supporting metal particles on the surface of these photocatalytic metal compounds, and the materials of the metal particles to be added include platinum, ruthenium, palladium, Examples include rhodium, tantalum, silver, nickel, copper, zirconium, chromium, vanadium, tin oxide, manganese oxide, nickel oxide, and ruthenium oxide.

光触媒性金属化合物の粒径は、平均粒子径で0.5μm以下であることが好ましく、0.01μm以下であることがさらに好ましい。これは、粒径が小さくなるほど表面積が増大し、臭気や有害成分を分解する活性点が多く存在するためである。通常粒径の下限値は0.001μmである。   The particle size of the photocatalytic metal compound is preferably 0.5 μm or less, more preferably 0.01 μm or less in terms of average particle size. This is because the surface area increases as the particle size decreases, and there are many active sites that decompose odors and harmful components. Usually, the lower limit of the particle size is 0.001 μm.

本発明における、光触媒性金属化合物の担持形態は、繊維の表層部に選択的に含有されることを特徴とする。繊維の表層部とは、繊維表面及び、表面から5μmの範囲を指す。本発明の光触媒性金属化合物は、好ましくは表面からの深さが1.0μm以下の位置、さらに好ましくは表面のみに付着していることを指す。表層部から1.0μmよりも深い位置、すなわち表面からの深さが1.0μm以上の位置に光触媒性金属化合物を含有させた場合、分解すべき臭気や有害成分と接することができず光触媒作用が得られないだけでなく、繊維内の不純物になり、強度低下の原因となる。   In the present invention, the supported form of the photocatalytic metal compound is selectively contained in the surface layer portion of the fiber. The surface layer portion of the fiber refers to the fiber surface and a range of 5 μm from the surface. The photocatalytic metal compound of the present invention preferably indicates that it is attached to a position having a depth of 1.0 μm or less from the surface, more preferably only to the surface. When the photocatalytic metal compound is contained at a position deeper than 1.0 μm from the surface layer, that is, at a depth of 1.0 μm or more from the surface, it cannot come into contact with odors or harmful components to be decomposed and is photocatalytic. Is not obtained, it becomes an impurity in the fiber, causing a decrease in strength.

さらには、光触媒性金属化合物は少なくともその一部が繊維表面に露出していることが必要である。表面に露出していることにより、外部の臭気や有害成分を効率的に分解することが可能になる。   Furthermore, it is necessary that at least a part of the photocatalytic metal compound is exposed on the fiber surface. By being exposed on the surface, it is possible to efficiently decompose external odors and harmful components.

PTFE繊維表層部に光触媒性金属化合物とともにガス吸着剤を共存させることもできる。ガス吸着剤としては、ゼオライトなどの無機多孔質物質が上げられるが、なかでも安価な活性炭が好ましい。このガス吸着剤により、夜間等の光が光触媒性金属化合物に照射されないときには汚染物質が吸着され、光が照射されたときに光触媒分解をすることができる。また、吸着により、汚染物質と光触媒性金属化合物との接触時間を長くすることができるため、光触媒を一層効果的に作用させることができる。   A gas adsorbent can coexist with the photocatalytic metal compound in the PTFE fiber surface layer. As the gas adsorbent, inorganic porous materials such as zeolite can be used, and among them, inexpensive activated carbon is preferable. With this gas adsorbent, pollutants can be adsorbed when the photocatalytic metal compound is not irradiated with light at night or the like, and photocatalytic decomposition can be performed when irradiated with light. In addition, since the contact time between the contaminant and the photocatalytic metal compound can be increased by adsorption, the photocatalyst can be made to act more effectively.

本発明の光触媒担持PTFE繊維の繊度は、1.5dtex以上、18.0dtex以下であることが好ましく、2.0dtex以上、10.0dtex以下であることがさらに好ましい。繊度が1.5dtex未満であると、繊維の表面積が増大し、光触媒作用は向上するが、繊維径が細いために光触媒担持PTFE繊維の強度が十分に得られない。また、18.0dtexを超える繊度の場合、繊維の表面積が十分に得られないだけでなく、風合いが低下し、またフィルター用途などに用いる場合十分なダスト捕集性能が得られない場合がある。   The fineness of the photocatalyst-carrying PTFE fiber of the present invention is preferably 1.5 dtex or more and 18.0 dtex or less, and more preferably 2.0 dtex or more and 10.0 dtex or less. When the fineness is less than 1.5 dtex, the surface area of the fiber is increased and the photocatalytic action is improved. However, since the fiber diameter is small, the strength of the photocatalyst-carrying PTFE fiber cannot be sufficiently obtained. In addition, when the fineness exceeds 18.0 dtex, not only the surface area of the fiber cannot be sufficiently obtained, but also the texture is lowered and sufficient dust collecting performance may not be obtained when it is used for filter applications.

次に本発明の光触媒担持PTFE繊維の繊度バラツキは該繊維の繊度の10%以下であることが好ましく、5%以下であることがさらに好ましい。繊度バラツキは該繊維の繊度の10%を超えると、安定した加工を行うことが困難となり好ましくない。なお前述した通り、スプリット剥離法やペースト押出し法で得られる繊維の断面はランダムでその繊度も不均一である。したがってその繊度バラツキも非常に大きい。そのため、フェルト加工時にネップなどが生じやすく加工が困難という欠点があったが、本発明のように繊度バラツキは該繊維の繊度の10%以下に抑えることにより問題が解消される。   Next, the fineness variation of the photocatalyst-supported PTFE fiber of the present invention is preferably 10% or less, more preferably 5% or less of the fineness of the fiber. When the fineness variation exceeds 10% of the fineness of the fiber, it is difficult to perform stable processing, which is not preferable. As described above, the cross section of the fiber obtained by the split peeling method or paste extrusion method is random and the fineness is not uniform. Therefore, the fineness variation is very large. For this reason, there has been a drawback that a nep or the like is likely to occur during felt processing, and the processing is difficult. However, as in the present invention, the problem is solved by suppressing the fineness variation to 10% or less of the fineness of the fiber.

光触媒性金属化合物を含有せしめる方法としては以下のような方法が挙げられるが、特に限定されない。   Examples of the method for incorporating the photocatalytic metal compound include the following methods, but are not particularly limited.

マトリックス紡糸法によりPTFE繊維を製造する工程で、焼成する前のPTFE繊維の表面に、光触媒機能を有する金属化合物粒子を粉末状もしくは分散液状にて付与した後、焼成、延伸する方法である。この方法によると光触媒性金属化合物が繊維内部に含有されず、表面のみに担持されるため、効果的な光触媒作用が得られるため、この方法を用いることが特に好ましい。   In the process of producing PTFE fibers by the matrix spinning method, the metal compound particles having a photocatalytic function are applied in the form of powder or dispersion on the surface of PTFE fibers before firing, and then fired and stretched. According to this method, since the photocatalytic metal compound is not contained in the fiber and is supported only on the surface, an effective photocatalytic action can be obtained. Therefore, it is particularly preferable to use this method.

また、次のような方法を用いることもできる。すなわち、マトリックス紡糸法により得られたPTFE繊維の表面に、光触媒機能を有する金属化合物の粒子を含むPTFE樹脂分散液を塗布した後、PTFE樹脂の融点以上の温度で加熱焼成することで表層部が形成される。ここで使用する光触媒性金属化合物粒子とPTFE樹脂との分散液の濃度や、光触媒性金属化合物粒子とPTFE樹脂の比率、塗布する量を調整することにより、目的の光触媒担持PTFE繊維が得られる。   The following method can also be used. That is, after applying a PTFE resin dispersion containing particles of a metal compound having a photocatalytic function to the surface of PTFE fibers obtained by matrix spinning, the surface layer portion is formed by heating and firing at a temperature equal to or higher than the melting point of the PTFE resin. It is formed. By adjusting the concentration of the dispersion of the photocatalytic metal compound particles and PTFE resin used here, the ratio of the photocatalytic metal compound particles and the PTFE resin, and the amount to be applied, the target photocatalyst-supporting PTFE fiber can be obtained.

別の方法としては、芯鞘口金を用い、以下に示す[A]成分が芯部、[B]成分が鞘部として紡糸した後、焼成、延伸工程を経ることにより表層部に選択的に光触媒性金属化合物粒子が付与されたPTFE繊維が得られる。
[A]PTFE樹脂分散液およびマトリックスポリマーの混合液
[B]PTFE樹脂分散液および光触媒性金属化合物粒子、マトリックスポリマーの混合液。
As another method, a core-sheath base is used, and the following [A] component is spun as a core part and [B] component is a sheath part, and then a photocatalyst is selectively applied to the surface layer part through a firing and stretching process. PTFE fiber provided with conductive metal compound particles is obtained.
[A] Mixed solution of PTFE resin dispersion and matrix polymer [B] Mixed solution of PTFE resin dispersion, photocatalytic metal compound particles and matrix polymer.

ここで芯鞘口金の構成や、[B]成分の構成を調節することにより目的の光触媒担持PTFE繊維が得られる。   Here, the target photocatalyst-supported PTFE fiber can be obtained by adjusting the configuration of the core-sheath cap and the configuration of the component [B].

本発明の光触媒担持PTFE繊維の破断強度は0.4cN/dtex以上であることが好ましい。破断強度が0.4cN/dtex未満の場合、加工する際に糸が容易に切れてしまい工程通過性が悪化するだけでなく、毛羽発生による品位低下、フライ発生による作業環境の悪化などの問題が発生する。   The breaking strength of the photocatalyst-supported PTFE fiber of the present invention is preferably 0.4 cN / dtex or more. When the breaking strength is less than 0.4 cN / dtex, not only the yarn breaks easily during processing, but the process passability deteriorates, and there are problems such as deterioration in quality due to fluffing and deterioration of working environment due to the occurrence of frying. appear.

本発明の光触媒担持PTFE繊維の断面形状は特に限定されるものではないが、例えば丸断面、扁平断面、レンズ型断面、三葉断面、マルチローバル断面その他の公知の異型断面でもよい。   The cross-sectional shape of the photocatalyst-supported PTFE fiber of the present invention is not particularly limited, and may be, for example, a round cross-section, a flat cross-section, a lens mold cross-section, a trilobal cross-section, a multi-loval cross-section, or other known irregular cross-sections.

本発明の光触媒担持PTFE繊維は、公知の方法により加工を行い二次製品とすることができる。織物にしたてる場合は、本発明の光触媒担持PTFE繊維を縦糸および/又は横糸に用いることにより得ることができる。その際、他の天然繊維、化学繊維、金属繊維と交織することも可能である。   The photocatalyst-carrying PTFE fiber of the present invention can be processed into a secondary product by processing by a known method. In the case of forming a woven fabric, it can be obtained by using the photocatalyst-supported PTFE fiber of the present invention for warp and / or weft. At that time, it is also possible to interweave with other natural fibers, chemical fibers and metal fibers.


以下、実施例を挙げて本発明をさらに具体的に説明する。本発明はこれらに限定されるものではない。なお、繊維の各物性の評価方法は以下のとおりである。

Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these. In addition, the evaluation method of each physical property of a fiber is as follows.

(1)繊度バラツキ
PTFE延伸糸からサンプルをランダムに抜き取り、下に記す包埋法により断面写真を撮影した。その上でそれぞれの断面写真を切り取り、重量を測定することで断面積を求め、PTFEの比重2.3g/cmを用いて繊度を算出した。ランダムに30本測定し、平均値を求め、その平均値と最小繊度、最大繊度の大きい方のバラツキの程度を測定した。
(1) Samples were randomly drawn from the fineness variation PTFE drawn yarn, and a cross-sectional photograph was taken by the embedding method described below. Then, each cross-sectional photograph was cut out, the cross-sectional area was obtained by measuring the weight, and the fineness was calculated using a specific gravity of PTFE of 2.3 g / cm 3 . Thirty (30) samples were randomly measured to determine an average value, and the average value, the minimum fineness, and the degree of variation in the larger maximum fineness were measured.

<包埋法>サンプル糸を形成枠にやや張力を加えセロハンテープで固定する。200℃で加熱してパラフィンとステアリン酸の混合物を溶融させる。130℃になったらエチルセルロースを少量ずつ加え、撹拌しながら1時間保温して泡を抜く。100℃まで落とした後、形成枠に流しこむ。冷却・固化させた後、適当な大きさのブロックに切り分ける。ミクロトームを用いて、ブロックから切片(厚さ7μm程度)を切りだし、スライドグラスの上にのせる。この時、スライドグラス上にアルブメンを薄く塗り伸ばしておく(アルブメンは卵の白身とグリセリン等量、防腐剤としてサリチル酸ソーダ1wt%添加したもの)。70℃に保った乾燥機に20分放置して熱処理を行い乾燥させた後、酢酸イソアミル浴に約1時間浸し、脱包埋を行い、その後風乾する。スライドグラスの上に流動パラフィンを一滴つけ、空気が入らないようにカバーグラスを静かに載せ、顕微鏡を用いて写真を撮影する。
◎(優秀):5%未満
○(良好):5%以上、10%未満
△(不良):10%以上、15%未満
×(不良):15%以上
<Embedding method> Slightly apply tension to the forming frame and fix it with cellophane tape. Heat at 200 ° C. to melt the mixture of paraffin and stearic acid. When the temperature reaches 130 ° C., ethyl cellulose is added little by little, and the mixture is kept warm for 1 hour with stirring to remove bubbles. After dropping to 100 ° C., pour into the forming frame. After cooling and solidifying, cut into blocks of appropriate size. Using a microtome, cut a section (thickness of about 7 μm) from the block and place it on a slide glass. At this time, thinly spread arbumen on the slide glass (albumen is an egg white and glycerin equivalent, 1% by weight of sodium salicylate added as a preservative). It is left to stand in a drier kept at 70 ° C. for 20 minutes, heat-treated and dried, then immersed in an isoamyl acetate bath for about 1 hour, decapsulated, and then air-dried. Put a drop of liquid paraffin on the slide glass, place the cover glass gently so that air does not enter, and take a picture using a microscope.
◎ (excellent): less than 5% ○ (good): 5% or more, less than 10% △ (defect): 10% or more, less than 15% × (defect): 15% or more

(2)カード通過性
室内温度30℃、相対湿度60℃とし、カード機に2g/mの原綿を投入しつつ、ウェブの様子を目視で観察し、3分間のネップの発生数を以下のように評価した。
◎(優秀):ネップが発生しない
○(良好):3分間でネップが1〜5個発生する
△(不良):3分間でネップが6〜20個発生する
×(不良):3分間でネップが20個以上発生する
(2) Card passage room temperature is set to 30 ° C. and relative humidity is 60 ° C. While the raw cotton of 2 g / m is put into the card machine, the state of the web is visually observed, and the number of occurrences of neps for 3 minutes is as follows: Evaluated.
◎ (Excellent): Nep does not occur ○ (Good): 1-5 neps occur in 3 minutes Δ (Bad): 6-20 neps occur in 3 minutes x (Bad): Neps in 3 minutes 20 or more occur

(3)光触媒性能−1
光触媒製品協議会の光触媒性能評価試験法の、ガスバッグA法に準拠して、アセトアルデヒドの分解実験を行い、紫外線照射開始後2時間でのアセトアルデヒド除去率について以下のように評価した。
◎(優秀):90%以上
○(良好):80%以上、90%未満
△(不良):70%以上、80%未満
×(不良):70%未満。
(3) Photocatalytic performance-1
In accordance with the gas bag A method of the photocatalyst performance evaluation test method of the Photocatalyst Products Association, an acetaldehyde decomposition experiment was performed, and the acetaldehyde removal rate after 2 hours from the start of ultraviolet irradiation was evaluated as follows.
(Excellent): 90% or more ○ (good): 80% or more, less than 90% Δ (defect): 70% or more, less than 80% x (defect): less than 70%.

(4)強度
JIS L 1015:1999に準拠してステープルの強度を測定し、以下のように評価した。
◎(優秀):1.0cN/dtex以上
○(良好):0.7cN/dtex以上、1.0cN/dtex未満
△(不良):0.5cN/dtex以上、0.7cN/dtex未満
×(不良):0.5cN/dtex未満。
(4) Strength The strength of the staple was measured according to JIS L 1015: 1999 and evaluated as follows.
(Excellent): 1.0 cN / dtex or more ○ (good): 0.7 cN / dtex or more, less than 1.0 cN / dtex Δ (defect): 0.5 cN / dtex or more, less than 0.7 cN / dtex × (defect) ): Less than 0.5 cN / dtex.

実施例1
マトリックスとして塩点8.0、セルロース濃度9.0重量%のビスコースを用い、濃度60重量%のPTFE水分散液と混合した後、硫酸濃度10%、硫酸ソーダ濃度11%を含有する凝固浴に複数の口金孔から吐出し、マトリックス紡糸法で紡糸した後、80℃の温水で精練した。その後、光触媒性酸化チタン水分散液(酸化チタンと純水を重量比4:6で混合し、撹拌しながら水酸化カリウムを添加してpH12に調整したもの)を溜めた浴槽に浸漬し、ニップローラーで絞った後1〜5%のリラックスを与えながら80℃以上320℃未満の温度で半焼成し、320℃〜380℃の温度で焼成を行い、PTFE未延伸糸を得た。その後、2つの速度の異なるローラー間で330℃の熱ピンに接触させながら7.5倍に延伸し、光触媒粒子を担持したPTFE延伸糸を得た。得られたPTFE延伸糸を合糸し、捲縮をかけた後、カットして光触媒粒子を担持したPTFEステープルを得た。該繊維の断面写真を観察すると、光触媒粒子が繊維表面にめり込んだ形で担持されており、全ての粒子が繊維表面に存在しており、繊維表面から5μm以内に存在していた。から上述の評価を行ったところ、表1に示すように良好な性能を示した。
Example 1
A coagulation bath containing viscose having a salt point of 8.0 and a cellulose concentration of 9.0% by weight as a matrix, mixed with an aqueous PTFE dispersion having a concentration of 60% by weight, and containing 10% sulfuric acid and 11% sodium sulfate. After discharging from a plurality of die holes and spinning by a matrix spinning method, scouring was performed with hot water at 80 ° C. Thereafter, the photocatalytic titanium oxide aqueous dispersion (titanium oxide and pure water mixed at a weight ratio of 4: 6, and adjusted to pH 12 by adding potassium hydroxide while stirring) was immersed in a nip. After squeezing with a roller, half-baking was performed at a temperature of 80 ° C. or higher and lower than 320 ° C. while giving relaxation of 1 to 5%, and baking was performed at a temperature of 320 ° C. to 380 ° C. to obtain a PTFE undrawn yarn. Thereafter, the PTFE drawn yarn carrying the photocatalyst particles was obtained by drawing it 7.5 times while being in contact with a heat pin at 330 ° C. between two rollers having different speeds. The obtained PTFE drawn yarns were combined, crimped, and then cut to obtain PTFE staples carrying photocatalyst particles. When a cross-sectional photograph of the fiber was observed, the photocatalyst particles were supported in a form of being embedded in the fiber surface, and all the particles were present on the fiber surface, and were present within 5 μm from the fiber surface. From the above evaluation, good performance was shown as shown in Table 1.

実施例2
実施例1と同様のビスコースおよびPTFE水分散液の混合物を吐出、精練した後、ニップローラーで絞り、1〜5%のリラックスを与えながら80℃以上320℃未満の温度で半焼成し、320℃〜380℃の温度で焼成を行い、PTFE未延伸糸を得た。続いて2つの速度の異なるローラー間で実施例1と同様に延伸し、PTFE延伸糸を得た。その後、光触媒性酸化チタンとPTFEの混合水分散液(酸化チタンとPTFE粒子と純水を重量比3:3:4で混合し、撹拌しながら水酸化カリウムを添加してpH12に調整したもの)を溜めた浴槽に浸漬し、ニップローラーで絞り、1〜5%のリラックスを与えながら320℃〜380℃の温度で再び焼成を行い、光触媒粒子を担持したPTFE延伸糸を得た。実施例1と同様に合糸、捲縮、カットしステープルとして、該繊維の断面写真を観察すると、光触媒粒子が繊維表面から1.0μm以内の深さに担持されており、上述の評価を行ったところ、表1に示すように良好な性能を示した。
Example 2
The mixture of the viscose and PTFE aqueous dispersion similar to Example 1 was discharged and scoured, then squeezed with a nip roller, and semi-baked at a temperature of 80 ° C. or higher and lower than 320 ° C. while giving relaxation of 1 to 5%. Firing was performed at a temperature of 380 ° C. to 380 ° C. to obtain a PTFE undrawn yarn. Then, it extended | stretched similarly to Example 1 between the rollers from which two speeds differ, and obtained the PTFE draw yarn. Thereafter, a mixed water dispersion of photocatalytic titanium oxide and PTFE (titanium oxide, PTFE particles and pure water mixed at a weight ratio of 3: 3: 4, and adjusted to pH 12 by adding potassium hydroxide while stirring) Was immersed in a bathtub in which water was accumulated, squeezed with a nip roller, fired again at a temperature of 320 ° C. to 380 ° C. while giving relaxation of 1 to 5%, and a PTFE drawn yarn carrying photocatalyst particles was obtained. When the cross-sectional photograph of the fiber was observed as staple, crimped, cut and stapled as in Example 1, the photocatalyst particles were supported at a depth within 1.0 μm from the fiber surface, and the above evaluation was performed. As a result, good performance was shown as shown in Table 1.

実施例3
実施例1と同様のビスコースおよびPTFE水分散液の混合物Aを用意した。それとは別にビスコース、PTFE水分散液および光触媒性酸化チタン水分散液の混合液Bを用意した。芯鞘口金を用いて、混合物Aを芯部、混合物Bを鞘部になるように吐出し、精練した後、ニップローラーで絞り、1〜5%のリラックスを与えながら80℃以上320℃未満の温度で半焼成し、320℃〜380℃の温度で焼成を行い、PTFE未延伸糸を得た。続いて2つの速度の異なるローラー間で実施例1と同様に延伸し、PTFE延伸糸を得た。該PTFE延伸糸を、合糸、捲縮、カットしステープルとして、繊維の断面写真を観察すると、光触媒粒子が繊維表面から1.0μm以内の深さに担持されており、上述の評価を行ったところ、表1に示すように良好な性能を示した。
Example 3
The same mixture A of viscose and PTFE aqueous dispersion as in Example 1 was prepared. Separately, a mixed solution B of viscose, PTFE aqueous dispersion, and photocatalytic titanium oxide aqueous dispersion was prepared. Using a core-sheath base, the mixture A is discharged into the core part and the mixture B is made into a sheath part, and after scouring, it is squeezed with a nip roller, and 80 ° C. or more and less than 320 ° C. while giving 1-5% relaxation. Semi-fired at a temperature and fired at a temperature of 320 ° C. to 380 ° C. to obtain a PTFE undrawn yarn. Then, it extended | stretched similarly to Example 1 between the rollers from which two speeds differ, and obtained the PTFE draw yarn. When the PTFE drawn yarn was combined, crimped, cut, and stapled, and a cross-sectional photograph of the fiber was observed, the photocatalyst particles were supported at a depth of 1.0 μm or less from the fiber surface, and the above evaluation was performed. However, good performance was shown as shown in Table 1.

実施例4
実施例1と同様のビスコースとPTFE水分散液の混合液を、実施例1と同様の方法で紡糸、精練した。その後、光触媒性酸化チタンと活性炭の水分散液(酸化チタン、活性炭と純水を重量比2:2:6で混合し、撹拌しながら水酸化カリウムを添加してpH12に調整したもの)を溜めた浴槽に浸漬し、ニップローラーで絞った後実施例1と同様の方法で半焼成、焼成を行い、次いで合糸、捲縮、カット工程を経て光触媒粒子と活性炭粒子を担持したPTFEステープルを得た。該繊維の断面写真を観察すると、光触媒粒子および活性炭粒子が繊維表面にめり込んだ形で担持され、全ての粒子が繊維表面に存在しており、繊維表面から5μm以内に存在していた。上述の評価を行ったところ、表1に示すように良好な性能を示した。
Example 4
The same viscose and PTFE aqueous dispersion as in Example 1 was spun and scoured in the same manner as in Example 1. Then, an aqueous dispersion of photocatalytic titanium oxide and activated carbon (titanium oxide, activated carbon and pure water mixed at a weight ratio of 2: 2: 6, adjusted to pH 12 by adding potassium hydroxide while stirring) is stored. After being immersed in a bathtub and squeezed with a nip roller, semi-firing and firing were performed in the same manner as in Example 1, and then PTFE staple carrying photocatalyst particles and activated carbon particles was obtained through a process of combining, crimping and cutting. It was. When a cross-sectional photograph of the fiber was observed, the photocatalyst particles and the activated carbon particles were supported in the form of being embedded in the fiber surface, and all the particles were present on the fiber surface, and were present within 5 μm from the fiber surface. When the above evaluation was performed, good performance was shown as shown in Table 1.

比較例1
PTFEステープル(東レ・ファインケミカル社製“トヨフロン”)を用いて上述同様の評価を行ったところ、表1に示すように加工性良好ながら、光触媒性は全く見られなかった。
Comparative Example 1
When the same evaluation as described above was performed using PTFE staple (“Toyoflon” manufactured by Toray Fine Chemical Co., Ltd.), as shown in Table 1, no photocatalytic property was seen at all.

比較例2
実施例1と同様のビスコース、PTFE水分散液および光触媒性酸化チタン水分散液を用い、その混合物を吐出し、精練した後、ニップローラーで絞り、1〜5%のリラックスを与えながら80℃以上320℃未満の温度で半焼成し、320℃〜380℃の温度で焼成を行い、PTFE未延伸糸を得た。続いて2つの速度の異なるローラー間で実施例1と同様に延伸し、PTFE延伸糸を得た。続いて2つの速度の異なるローラー間で実施例1と同様に延伸し、PTFE延伸糸を得た。該PTFE延伸糸を、合糸、捲縮、カットしステープルとして、繊維の断面写真を観察すると、光触媒粒子が均一に練りこまれており、上述の評価を行ったところ、表1に示すように光触媒性は低く、また強度が低い、カード通過時にネップが発生するという結果となった。
Comparative Example 2
Using the same viscose, PTFE aqueous dispersion and photocatalytic titanium oxide aqueous dispersion as in Example 1, the mixture was discharged and scoured, and then squeezed with a nip roller to give a relaxation of 1 to 5% at 80 ° C. Semi-fired at a temperature lower than 320 ° C. and fired at a temperature of 320 ° C. to 380 ° C. to obtain a PTFE undrawn yarn. Then, it extended | stretched similarly to Example 1 between the rollers from which two speeds differ, and obtained the PTFE draw yarn. Then, it extended | stretched similarly to Example 1 between the rollers from which two speeds differ, and obtained the PTFE draw yarn. When the PTFE drawn yarn was combined, crimped, cut and stapled, and a cross-sectional photograph of the fiber was observed, the photocatalyst particles were uniformly kneaded. As a result of the above evaluation, as shown in Table 1, As a result, the photocatalytic property was low and the strength was low.

また、吸着剤を使用した実施例を挙げて本発明をさらに具体的に説明する。本発明はこれらに限定されるものではない。吸着剤を使用した繊維の評価方法は前述の(1)〜(4)に加え、次の項目も評価した。   In addition, the present invention will be described more specifically with reference to examples using an adsorbent. The present invention is not limited to these. In addition to the above (1) to (4), the evaluation method of the fiber using the adsorbent evaluated the following items.

(5)光触媒性能−2
光触媒製品協議会の光触媒性能評価試験法の、ガスバッグA法に準拠して、アセトアルデヒドの分解実験を行った。試験は開始後0〜2時間は暗室で、続く2〜4時間を紫外線照射下で実施し、2時間後および4時間後のアセトアルデヒド除去率を以下のように評価した。
◎(優秀):90%以上
○(良好):80%以上、90%未満
△(不良):70%以上、80%未満
×(不良):70%未満。
(5) Photocatalytic performance-2
An acetaldehyde decomposition experiment was performed in accordance with the gas bag A method of the photocatalyst performance evaluation test method of the Photocatalyst Products Association. The test was carried out in the dark for 0 to 2 hours after the start, and then for 2 to 4 hours under ultraviolet irradiation, and the acetaldehyde removal rate after 2 hours and 4 hours was evaluated as follows.
(Excellent): 90% or more ○ (good): 80% or more, less than 90% Δ (defect): 70% or more, less than 80% x (defect): less than 70%.

実施例4
実施例1と同様のビスコースとPTFE水分散液の混合液を、実施例1と同様の方法で紡糸、精練した。その後、光触媒性酸化チタンと活性炭の水分散液(酸化チタン、活性炭と純水を重量比2:2:6で混合し、撹拌しながら水酸化カリウムを添加してpH12に調整したもの)を溜めた浴槽に浸漬し、ニップローラーで絞った後、実施例1と同様の方法で半焼成、焼成を行い、次いで合糸、捲縮、カット工程を経て光触媒粒子と活性炭粒子を担持したPTFEステープルを得た。該繊維の断面写真を観察すると、光触媒粒子および活性炭粒子が繊維表面にめり込んだ形で担持され、全ての粒子が繊維表面に存在しており、繊維表面から5μm以内に存在していた。上述の評価を行ったところ、表2に示すように、暗室でも分解対象物質を吸着しており、続く紫外線照射による光触媒分解によって分解対象物質を効率良く除去できるため、非常に良好な性能を示した。
Example 4
The same viscose and PTFE aqueous dispersion as in Example 1 was spun and scoured in the same manner as in Example 1. Then, an aqueous dispersion of photocatalytic titanium oxide and activated carbon (titanium oxide, activated carbon and pure water mixed at a weight ratio of 2: 2: 6, adjusted to pH 12 by adding potassium hydroxide while stirring) is stored. After squeezing into a bathtub and squeezing with a nip roller, semi-firing and firing are performed in the same manner as in Example 1, and then PTFE staple carrying photocatalyst particles and activated carbon particles is passed through a combination yarn, crimping and cutting steps. Obtained. When a cross-sectional photograph of the fiber was observed, the photocatalyst particles and the activated carbon particles were supported in the form of being embedded in the fiber surface, and all the particles were present on the fiber surface, and were present within 5 μm from the fiber surface. When the above evaluation was performed, as shown in Table 2, the substance to be decomposed was adsorbed even in a dark room, and the substance to be decomposed can be efficiently removed by the photocatalytic decomposition by the subsequent ultraviolet irradiation. It was.

比較例3
実施例1と同様に紡糸、精練した後、活性炭の水分散液(活性炭と純水を重量比4:6で混合し、撹拌しながら水酸化カリウムを添加してpH12に調整したもの)を溜めた浴槽に浸漬し、ニップローラーで絞った後、実施例1と同様の方法で半焼成、焼成を行い、次いで合糸、捲縮、カット工程を経て活性炭粒子を担持したPTFEステープルを得た。該繊維の断面写真を観察すると、活性炭粒子が繊維表面にめり込んだ形で担持され、全ての粒子が繊維表面に存在しており、繊維表面から5μm以内に存在していた。上述の評価を行ったところ、表2に示すように、暗室でも分解対象物質を吸着していたが、その吸着量は十分ではなく、また光触媒性能は無いため、満足できる除去率は得られなかった。
Comparative Example 3
After spinning and scouring in the same manner as in Example 1, an aqueous dispersion of activated carbon (mixed activated carbon and pure water at a weight ratio of 4: 6, adjusted to pH 12 by adding potassium hydroxide while stirring) was stored. After being immersed in a tub and squeezed with a nip roller, semi-firing and calcination were performed in the same manner as in Example 1, and then PTFE staples carrying activated carbon particles were obtained through a process of combining, crimping and cutting. When a cross-sectional photograph of the fiber was observed, the activated carbon particles were supported in the form of being embedded in the fiber surface, and all the particles were present on the fiber surface, and were present within 5 μm from the fiber surface. When the above evaluation was performed, as shown in Table 2, the substance to be decomposed was adsorbed even in the dark room, but the amount of adsorption was not sufficient and there was no photocatalytic performance, so a satisfactory removal rate could not be obtained. It was.

本発明は、触媒や吸着剤として利用できるだけでなく、これらの機能を付与したフィルターなどとしても利用できる。特に、本発明で得られる無機粒子担持PTFE繊維は高温雰囲気下でも実用に耐えうるという効果を奏する。   The present invention can be used not only as a catalyst or an adsorbent but also as a filter having these functions. In particular, the inorganic particle-carrying PTFE fiber obtained in the present invention has an effect that it can withstand practical use even in a high temperature atmosphere.

Claims (8)

ポリテトラフルオロエチレン樹脂からなる繊維であって、光触媒機能を有する金属化合物を表層部に選択的に含有し、該金属化合物の少なくとも一部が繊維表面に露出していることを特徴とする光触媒担持ポリテトラフルオロエチレン繊維。   A fiber made of polytetrafluoroethylene resin, which selectively contains a metal compound having a photocatalytic function in the surface layer portion, and at least a part of the metal compound is exposed on the fiber surface. Polytetrafluoroethylene fiber. 光触媒機能を有する金属化合物が繊維表面から1.0μmの深さにのみ含有されていることを特徴とする請求項1記載の光触媒担持ポリテトラフルオロエチレン繊維。   The photocatalyst-supported polytetrafluoroethylene fiber according to claim 1, wherein the metal compound having a photocatalytic function is contained only at a depth of 1.0 µm from the fiber surface. 表層部にさらにガス吸着剤を含有する請求項1または2記載の光触媒担持ポリテトラフルオロエチレン繊維。   The photocatalyst-supported polytetrafluoroethylene fiber according to claim 1 or 2, further comprising a gas adsorbent in the surface layer portion. 繊維の繊度ばらつきが10%以下であることを特徴とする請求項1〜3いずれかに記載の光触媒担持ポリテトラフルオロエチレン繊維。   The photocatalyst-supported polytetrafluoroethylene fiber according to any one of claims 1 to 3, wherein the variation in fineness of the fiber is 10% or less. マトリックス紡糸法によって製造することを特徴とする請求項1記載の光触媒担持ポリテトラフルオロエチレン繊維の製造方法。   2. The method for producing a photocatalyst-supported polytetrafluoroethylene fiber according to claim 1, wherein the photocatalyst-supported polytetrafluoroethylene fiber is produced by a matrix spinning method. 焼成する前のポリテトラフルオロエチレン繊維の表面に、光触媒機能を有する金属化合物粒子を付与した後、焼成、延伸することを特徴とする請求項1記載の光触媒担持ポリテトラフルオロエチレン繊維の製造方法。   The method for producing a photocatalyst-supported polytetrafluoroethylene fiber according to claim 1, wherein the metal compound particles having a photocatalytic function are imparted to the surface of the polytetrafluoroethylene fiber before firing, followed by firing and stretching. ポリテトラフルオロエチレン樹脂繊維の表面に、光触媒機能を有する金属化合物の粒子とポリテトラフルオロエチレン樹脂を含む分散液を塗布した後、ポリテトラフルオロエチレン樹脂の融点以上の温度で焼成することで表層部が形成されることを特徴とする請求項1記載の光触媒担持ポリテトラフルオロエチレン繊維の製造方法。   After applying a dispersion containing a metal compound particle having a photocatalytic function and a polytetrafluoroethylene resin on the surface of the polytetrafluoroethylene resin fiber, the surface layer portion is baked at a temperature equal to or higher than the melting point of the polytetrafluoroethylene resin. The method for producing a photocatalyst-supported polytetrafluoroethylene fiber according to claim 1, wherein: 以下の2成分[A]および[B]を、芯鞘口金を用いて[A]が芯部、[B]が鞘部として紡糸した後、焼成、延伸を経て製造されることを特徴とする請求項1記載の光触媒担持ポリテトラフルオロエチレン繊維の製造方法。
[A]ポリテトラフルオロエチレン樹脂分散液およびマトリックスポリマーの混合液
[B]ポリテトラフルオロエチレン樹脂分散液および光触媒機能を有する金属化合物粒子、マトリックスポリマーの混合液
The following two components [A] and [B] are produced through spinning and stretching after spinning using [A] as a core part and [B] as a sheath part using a core-sheath base. The method for producing a photocatalyst-supported polytetrafluoroethylene fiber according to claim 1.
[A] Mixed liquid of polytetrafluoroethylene resin dispersion and matrix polymer [B] Mixed liquid of polytetrafluoroethylene resin dispersion, metal compound particles having photocatalytic function, and matrix polymer
JP2006021969A 2006-01-31 2006-01-31 Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same Pending JP2007204858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021969A JP2007204858A (en) 2006-01-31 2006-01-31 Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021969A JP2007204858A (en) 2006-01-31 2006-01-31 Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007204858A true JP2007204858A (en) 2007-08-16

Family

ID=38484567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021969A Pending JP2007204858A (en) 2006-01-31 2006-01-31 Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007204858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121245A (en) * 2008-11-20 2010-06-03 Teijin Fibers Ltd Deodorizing sheath-core conjugate fiber and method for producing the same
CN102926197A (en) * 2012-11-15 2013-02-13 杭州水处理技术研究开发中心有限公司 Manufacturing method of support cloth for preparation of ion exchange membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121245A (en) * 2008-11-20 2010-06-03 Teijin Fibers Ltd Deodorizing sheath-core conjugate fiber and method for producing the same
CN102926197A (en) * 2012-11-15 2013-02-13 杭州水处理技术研究开发中心有限公司 Manufacturing method of support cloth for preparation of ion exchange membrane
CN102926197B (en) * 2012-11-15 2014-05-07 杭州水处理技术研究开发中心有限公司 Manufacturing method of support cloth for preparation of ion exchange membrane

Similar Documents

Publication Publication Date Title
RU2500841C2 (en) Ultra-thin thread containing deodorant and method for production thereof
JPWO2004091785A1 (en) Catalyst-supporting fiber structure and method for producing the same
KR20000069242A (en) Fibrous materials of fluororesins and deodorant and antibacterial fabrics made by using the same
JP2007100230A (en) Inorganic particle-bearing polytetrafluoroethylene fiber and method for producing the same
JP2008101315A (en) Porous body and method for producing the same
JP2007204858A (en) Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same
JP2007014851A (en) Porous product
JP4560778B2 (en) Functional fiber with photocatalytic activity
JP2008138307A (en) Photocatalyst-supporting polytetrafluoroethylene fiber and method for producing the same
TWI337632B (en)
JP2008088591A (en) Acrylic synthetic fiber and method for producing the same
JP2006207097A (en) Method for producing polytetrafluoroethylene fiber having small fineness and fabric using the same
JP5385085B2 (en) Deodorant functional agent-containing ultrafine fiber and method for producing the same
JPH09256217A (en) Polytetrafluoroethylene fiber and its production
KR20120129858A (en) Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
JP6225576B2 (en) Process for producing photocatalyst particle-supported polytetrafluoroethylene fiber
KR20120097969A (en) Ag-photocatalyst-carbon nano fiber complex, method for producing the same, and filter comprising the same
JP2004316053A (en) Functional fiber structure using nanoporous fiber
JP3979545B2 (en) Functional fiber and production method thereof
JP2007167771A (en) Filter medium for air filter and air filter unit
JP2007196182A (en) Bag filter cloth and bag filter
JP4396549B2 (en) Polytetrafluoroethylene fiber mixed with different fineness and fabric using the same
JP2007167771A5 (en)
JPH05163681A (en) Deodorant fabric
JP2007177344A (en) Fluororesin-based fiber structure and method for producing the same