JP2007203369A - Cooling facility and cooling method of steel plate - Google Patents

Cooling facility and cooling method of steel plate Download PDF

Info

Publication number
JP2007203369A
JP2007203369A JP2006227404A JP2006227404A JP2007203369A JP 2007203369 A JP2007203369 A JP 2007203369A JP 2006227404 A JP2006227404 A JP 2006227404A JP 2006227404 A JP2006227404 A JP 2006227404A JP 2007203369 A JP2007203369 A JP 2007203369A
Authority
JP
Japan
Prior art keywords
cooling water
steel sheet
rod
steel plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227404A
Other languages
Japanese (ja)
Other versions
JP4876781B2 (en
Inventor
Naoki Nakada
直樹 中田
Takashi Kuroki
高志 黒木
Teruo Fujibayashi
晃夫 藤林
Shogo Tomita
省吾 冨田
Shunichi Nishida
俊一 西田
Naoto Hirata
直人 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006227404A priority Critical patent/JP4876781B2/en
Publication of JP2007203369A publication Critical patent/JP2007203369A/en
Application granted granted Critical
Publication of JP4876781B2 publication Critical patent/JP4876781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling facility and a cooling method which can uniformly cool a steel plate at a high cooling rate when feeding cooling water on a top side of the hot steel plate. <P>SOLUTION: The cooling facility is provided with upper headers 21a, 21b connected to upper nozzles 22a, 22b for ejecting rod-shaped cooling water 23a, 23b of the water volume density of ≥4 m<SP>3</SP>/m<SP>2</SP>min above a hot steel plate 10. The upper nozzles 22a, 22b are arranged opposite to each other in the conveying direction of the hot steel plate 10 so that the angles θ1, θ2 of depression formed between the rod-shaped cooling water 23a, 23b and the hot steel plate 10 are 30-60°. Cooling water is fed on a top surface of the steel plate 10 while passing the steel plate 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼板の冷却設備および冷却方法に関するものである。   The present invention relates to a steel sheet cooling facility and a cooling method.

熱間圧延により鋼板を製造するプロセスでは、圧延温度を制御するのに冷却水を供給したり、空冷を行ったりするのが一般的であるが、近年、高い冷却速度を得て組織を微細化し、鋼板の強度を上げる技術の開発が盛んである。   In the process of manufacturing steel sheets by hot rolling, it is common to supply cooling water or air cooling to control the rolling temperature. Recently, however, the structure has been refined by obtaining a high cooling rate. The development of technology to increase the strength of steel sheets is thriving.

例えば、冷却水を供給して鋼板を冷却する技術として、特許文献1に記載された技術がある。これは、冷却水を鋼板の搬送方向に対向して噴射するスリットノズルユニットを昇降させるものであり、別に設けたラミナーノズルやスプレーノズルとともに使用することで、広範囲の冷却速度を確保できるとされている。   For example, there is a technique described in Patent Document 1 as a technique for cooling a steel sheet by supplying cooling water. This is to raise and lower a slit nozzle unit that sprays cooling water in the direction of steel sheet conveyance, and it is said that a wide range of cooling rates can be secured by using it together with a separately provided laminar nozzle and spray nozzle. Yes.

また、冷却水を供給して鋼板を冷却する別の技術として、特許文献2に記載された技術がある。これは、スリット状のノズルを有するヘッダを傾斜対向させて膜状の冷却水を噴射させるとともに、仕切板を設けて冷却水を鋼板と仕切板の間に充満させて高い冷却速度を得られるとされている。
特開昭62−260022号公報 特開昭59−144513号公報
Moreover, there exists a technique described in patent document 2 as another technique which cools a steel plate by supplying cooling water. This is because the header having slit-shaped nozzles is inclined to face and inject film-like cooling water, and a partition plate is provided to fill the cooling water between the steel plate and the partition plate to obtain a high cooling rate. Yes.
JP-A-62-260022 JP 59-144513 A

しかしながら、前記特許文献1、2に記載の技術は、冷却均一性の確保や設備コストなどに大きな問題点がある。   However, the techniques described in Patent Documents 1 and 2 have major problems in ensuring cooling uniformity and equipment costs.

すなわち、特許文献1に記載の技術では、スリットノズルユニットを鋼板に近づけなければならず、先端や尾端が反った鋼板を冷却する場合は、鋼板がスリットノズルユニットに衝突して、スリットノズルユニットを破損したり、鋼板が移動できなくなって製造ラインの停止や歩留の低下を招いたりすることがある。そこで、先端や尾端が通過する時に、昇降機構を作動させて、スリットノズルユニットを上方に退避させることも考えられるが、その場合は先尾端の冷却が足りず、目的とする材質が得られなくなる。さらに、昇降機構を設けるための設備コストがかかるという問題もある。   That is, in the technique described in Patent Document 1, the slit nozzle unit must be brought close to the steel plate, and when the steel plate with the tip or tail end warped is cooled, the steel plate collides with the slit nozzle unit, May be damaged, or the steel plate may not be able to move, causing the production line to stop or the yield to decrease. Therefore, it is conceivable that when the tip and tail ends pass, the lifting mechanism is operated to retract the slit nozzle unit upward. In this case, the leading and trailing ends are not sufficiently cooled, and the desired material is obtained. It becomes impossible. Furthermore, there is a problem that the equipment cost for providing the lifting mechanism is increased.

また、特許文献2に記載の技術では、ノズルを鋼板に近接させないと鋼板と仕切板との間に冷却水が充満しない。ノズルを鋼板に近接させると、特許文献1に記載の技術と同様に、先端や尾端が反った鋼板を冷却する場合に不都合が生じる。   In the technique described in Patent Document 2, the cooling water is not filled between the steel plate and the partition plate unless the nozzle is brought close to the steel plate. When the nozzle is brought close to the steel plate, similarly to the technique described in Patent Document 1, inconvenience occurs when cooling the steel plate with the tip and tail ends warped.

さらに、特許文献1、2に記載の技術では、スリット状のノズルを用いることが前提とされているが、噴出口が常に清浄な状態にメンテナンスされていないと、冷却水が膜状にならない。例えば、図13に示すように、スリットノズル52の噴出口に異物60が付着し詰まりが生じた場合には、冷却水膜53が破れる。また、冷却水を噴射領域内(冷却領域内)に堰き止めるためには高圧で噴射しなければならないが、膜状の冷却水53を高圧で噴射すると、噴射圧力のバランスが悪くなって冷却水膜53が破れやすいという問題があった。冷却水膜53がうまく形成されないと、冷却水が噴射領域の上流や下流方向に漏れ出てしまい、それが鋼板10上に滞留して鋼板10を部分的に冷やし、温度むらが発生するという問題がある。鋼板10上面に滞留する冷却水をサイドスプレーなどで排除する技術もあるが、冷却水量が多い場合には完全に排除しきれず、やはり温度むらを生じるという問題がある。   Furthermore, in the techniques described in Patent Documents 1 and 2, it is assumed that a slit-like nozzle is used. However, if the jet outlet is not always maintained in a clean state, the cooling water does not form a film. For example, as shown in FIG. 13, when the foreign matter 60 adheres to the jet nozzle of the slit nozzle 52 and clogging occurs, the cooling water film 53 is broken. Further, in order to keep the cooling water in the injection region (in the cooling region), it must be injected at a high pressure. However, if the film-like cooling water 53 is injected at a high pressure, the balance of the injection pressure becomes worse and the cooling water There was a problem that the film 53 was easily broken. If the cooling water film 53 is not formed well, the cooling water leaks in the upstream or downstream direction of the injection region, and it stays on the steel plate 10 to partially cool the steel plate 10 and cause temperature unevenness. There is. Although there is a technique for removing the cooling water staying on the upper surface of the steel plate 10 by side spraying or the like, there is a problem that when the amount of cooling water is large, it cannot be completely eliminated and temperature unevenness is caused.

本発明は、上記のような事情に鑑みてなされたものであり、熱鋼板の上面に冷却水を供給する場合において、鋼板を高冷却速度で均一にかつ安定して冷却することができる鋼板の冷却設備および冷却方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in the case of supplying cooling water to the upper surface of a hot steel plate, the steel plate can be cooled uniformly and stably at a high cooling rate. An object of the present invention is to provide a cooling facility and a cooling method.

上記の課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]鋼板の上方に4m/mmin以上の水量密度の棒状冷却水を噴射するノズルを接続したヘッダを設け、棒状冷却水と前記鋼板とのなす伏角が30°〜60°で、前記鋼板の搬送方向に互いに対向するように前記ノズルを配置してなることを特徴とする鋼板の冷却設備。 [1] A header connected to a nozzle for injecting bar-shaped cooling water having a water amount density of 4 m 3 / m 2 min or more is provided above the steel sheet, and the depression angle between the bar-shaped cooling water and the steel sheet is 30 ° to 60 °, The cooling equipment for steel sheets, wherein the nozzles are arranged so as to face each other in the conveying direction of the steel sheets.

[2]前記ノズルを鋼板の搬送方向に5列以上配列し、8m/s以上の速度で棒状冷却水を噴射することを特徴とする前記[1]に記載の鋼板の冷却設備。   [2] The steel sheet cooling equipment according to [1], wherein the nozzles are arranged in five or more rows in the steel plate conveyance direction, and the bar-shaped cooling water is injected at a speed of 8 m / s or more.

[3]棒状冷却水噴射方向の噴射実質長さの0〜35%が、鋼板の搬送方向成分に直角な鋼板幅方向外側に向かう成分の長さとなるように、棒状冷却水の噴射方向が設定されていることを特徴とする前記[1]または[2]に記載の鋼板の冷却設備。   [3] The injection direction of the rod-shaped cooling water is set so that 0 to 35% of the actual injection length in the rod-shaped cooling water injection direction is the length of the component that goes to the outside in the steel plate width direction perpendicular to the conveyance direction component of the steel plate. The steel sheet cooling equipment according to [1] or [2], wherein the steel sheet cooling equipment is provided.

[4]鋼板の幅方向に配列する全ノズル数の40〜60%が、鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数であることを特徴とする前記[1]乃至[3]のいずれかに記載の鋼板の冷却設備。   [4] 40 to 60% of the total number of nozzles arranged in the width direction of the steel sheet is the number of nozzles for injecting rod-shaped cooling water having a component directed to the outer side of the steel sheet width direction perpendicular to the conveying direction component of the steel sheet. The steel sheet cooling equipment according to any one of [1] to [3] above.

[5]鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数と、他の片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数が等しくなるように鋼板の幅方向にノズルを配列することを特徴とする前記[1]乃至[4]のいずれかに記載の鋼板の冷却設備。   [5] Number of nozzles for injecting rod-shaped cooling water having a component facing outward in one of the steel sheet width directions perpendicular to the conveying direction component of the steel plate, and the number of nozzles for injecting rod-shaped cooling water having a component facing outward in the other side Nozzles are arranged in the width direction of the steel sheet so that the two are equal to each other. The steel sheet cooling equipment according to any one of [1] to [4], wherein

[6]板状または幕状の遮蔽物を、対向噴射する最も内側の列の棒状冷却水または/および滞留冷却水の上方に備えていることを特徴とする前記[1]乃至[5]のいずれかに記載の鋼板の冷却設備。   [6] The above-mentioned [1] to [5], wherein a plate-like or curtain-like shield is provided above the innermost row of rod-like cooling water and / or stagnant cooling water that jets oppositely. The steel sheet cooling equipment according to any one of the above.

[7]前記対向噴射する最も内側の列の棒状冷却水の上方に備えた遮蔽物の最下端は、熱鋼板の上面から300〜500mm上方の位置であることを特徴とする前記[6]に記載の鋼板の冷却設備。   [7] In the above [6], the lowermost end of the shielding object provided above the rod-shaped cooling water in the innermost row that jets oppositely is a position 300 to 500 mm above the upper surface of the hot steel plate. The steel sheet cooling equipment described.

[8]鋼板の上方に4m/mmin以上の水量密度の棒状冷却水を噴射するノズルを接続したヘッダを設け、棒状冷却水と前記鋼板とのなす伏角が30°〜60°で、前記鋼板の搬送方向に互いに対向するように前記ノズルを配置して冷却を行うことを特徴とする鋼板の冷却方法。 [8] A header connected to a nozzle for injecting bar-shaped cooling water having a water amount density of 4 m 3 / m 2 min or more is provided above the steel sheet, and the depression angle between the bar-shaped cooling water and the steel sheet is 30 ° to 60 °, A cooling method for a steel sheet, wherein cooling is performed by arranging the nozzles so as to face each other in a conveying direction of the steel sheet.

[9]前記ノズルを鋼板の搬送方向に5列以上配列し、8m/s以上の速度で棒状冷却水を噴射することを特徴とする前記[8]に記載の鋼板の冷却方法。   [9] The method for cooling a steel sheet according to [8], wherein five or more rows of the nozzles are arranged in the conveying direction of the steel sheet, and the rod-shaped cooling water is injected at a speed of 8 m / s or more.

[10]棒状冷却水噴射方向の噴射実質長さの0〜35%が、鋼板の搬送方向成分に直角な鋼板幅方向外側に向かう成分の長さとなるように、棒状冷却水の噴射方向が設定されていることを特徴とする前記[8]または[9]に記載の鋼板の冷却方法。   [10] The injection direction of the rod-shaped cooling water is set so that 0 to 35% of the actual injection length in the rod-shaped cooling water injection direction becomes the length of the component that goes to the outside in the steel plate width direction perpendicular to the conveyance direction component of the steel plate. The method for cooling a steel sheet according to [8] or [9], wherein the steel sheet is cooled.

[11]鋼板の幅方向に配列する全ノズル数の40〜60%が、鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数であることを特徴とする前記[8]乃至[10]のいずれかに記載の鋼板の冷却方法。   [11] 40 to 60% of the total number of nozzles arranged in the width direction of the steel sheet is the number of nozzles for injecting rod-shaped cooling water having a component directed to the outer side of the steel sheet width direction perpendicular to the conveying direction component of the steel sheet. The method for cooling a steel sheet according to any one of [8] to [10], wherein:

[12]鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数と、他の片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数が等しくなるように鋼板の幅方向にノズルを配列することを特徴とする前記[8]乃至[10]のいずれかに記載の鋼板の冷却方法。   [12] Number of nozzles for injecting rod-shaped cooling water having a component facing outward in one side of the steel sheet width direction perpendicular to the conveying direction component of the steel plate, and number of nozzles for ejecting rod-shaped cooling water having a component facing outward in the other side The method for cooling a steel sheet according to any one of [8] to [10], wherein the nozzles are arranged in the width direction of the steel sheet so that the two are equal.

[13]板状または幕状の遮蔽物を、対向噴射する最も内側の列の棒状冷却水または/および滞留冷却水の上方に設けることを特徴とする前記[8]乃至[12]のいずれかに記載の鋼板の冷却方法。   [13] Any of the above [8] to [12], wherein a plate-like or curtain-like shielding object is provided above the innermost row of rod-like cooling water and / or stagnant cooling water to be opposedly jetted The cooling method of the steel plate as described in 2.

[14]前記対向噴射する最も内側の列の棒状冷却水の上方に備えた遮蔽物の最下端を、熱鋼板の上面から300〜500mm上方に位置させることを特徴とする前記[13]に記載の鋼板の冷却方法。   [14] The above-mentioned [13], wherein the lowermost end of the shield provided above the innermost row of rod-shaped cooling water that is jetted oppositely is positioned 300 to 500 mm above the upper surface of the hot steel plate. Cooling method for steel sheet.

本発明を用いることにより、鋼板を目標温度まで高冷却速度で均一に冷やすことができる。その結果、品質の高い鋼板を製造することができる。   By using the present invention, the steel sheet can be uniformly cooled to the target temperature at a high cooling rate. As a result, a high quality steel plate can be manufactured.

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態における鋼板の冷却設備の説明図である。
(First embodiment)
Drawing 1 is an explanatory view of the cooling equipment of the steel plate in the 1st embodiment of the present invention.

この第1の実施形態に係る冷却設備は、鋼板の熱間圧延ライン上に設置される通過式の冷却設備であり、図1に示した冷却ユニット20を1個または複数個備えている。冷却ユニット20は、鋼板10の上面に向けて冷却水を供給するための一対の上ヘッダ(第1上ヘッダ21a、第2上ヘッダ21b)と、鋼板10の下面に向けて冷却水を供給するための2個の下ヘッダ31を備えている。なお、図1中、13はテーブルローラである。   The cooling facility according to the first embodiment is a passage-type cooling facility installed on a hot rolling line for steel plates, and includes one or a plurality of cooling units 20 shown in FIG. The cooling unit 20 supplies a pair of upper headers (first upper header 21 a and second upper header 21 b) for supplying cooling water toward the upper surface of the steel plate 10, and supplies cooling water toward the lower surface of the steel plate 10. Two lower headers 31 are provided. In FIG. 1, reference numeral 13 denotes a table roller.

そして、第1上ヘッダ21aと第2上ヘッダ21bのそれぞれに複数列の円管ノズル22a、22b(ここでは、鋼板10の搬送方向に6列)が取り付けられており、第1上ヘッダ21aの円管ノズル(第1上ノズル)22aと第2上ヘッダ21bの円管ノズル(第2上ノズル)22bとは、それぞれから供給する棒状の冷却水23a、23bが鋼板10の搬送方向に互いに対向するように配列されている。すなわち、第1上ノズル22aはθ1の伏角(噴射角度)で棒状冷却水23aを噴射し、第2上ノズル22bはθ2の伏角(噴射角度)で棒状冷却水23bを噴射するようになっている。   A plurality of rows of circular tube nozzles 22a and 22b (here, six rows in the conveying direction of the steel plate 10) are attached to the first upper header 21a and the second upper header 21b, respectively. The circular tube nozzle (first upper nozzle) 22a and the circular tube nozzle (second upper nozzle) 22b of the second upper header 21b are opposed to each other in the conveying direction of the steel plate 10 by rod-shaped cooling water 23a, 23b supplied from each. Are arranged to be. That is, the first upper nozzle 22a ejects the rod-shaped cooling water 23a at an inclination angle (injection angle) of θ1, and the second upper nozzle 22b injects the rod-shaped cooling water 23b at an inclination angle (injection angle) of θ2. .

したがって、互いの上ヘッダから最も遠い側の列(最外側の列)の円管ノズルからの冷却水が鋼板10に衝突する位置同士に挟まれた領域が冷却領域ということになる。   Therefore, the region sandwiched between the positions where the cooling water from the circular tube nozzles in the row farthest from the upper header (outermost row) collides with the steel plate 10 is the cooling region.

その際に、第1上ノズル22aからの棒状冷却水23aの噴射線と第2上ノズル22bからの棒状冷却水23bの噴射線が交差しないように第1上ヘッダ21aと第2上ヘッダ21bをある程度離して配置すれば、図1に示すような滞留冷却水24の水膜が安定して形成される。これによって、互いの上ヘッダに最も近い側の列(最内側の列)の円管ノズルからの冷却水は滞留冷却水24の水膜に向かって噴射されることになり、お互いに他方の棒状冷却水23a、23bを壊すことがないので好ましい。そして、最内側の列の円管ノズルからの冷却水が鋼板10に衝突する位置同士の間隔を滞留域長さと呼ぶこととすると、滞留域長さを1.5m以内とすれば、滞留する冷却水が鋼板10を冷やす割合は比較的少ないので、鋼板10の最先端や最尾端が非定常な状態で通過する場合に冷え方が大きく変化することを防ぐことができる。   At that time, the first upper header 21a and the second upper header 21b are arranged so that the injection line of the rod-like cooling water 23a from the first upper nozzle 22a and the injection line of the rod-like cooling water 23b from the second upper nozzle 22b do not intersect. If it arrange | positions to some extent, the water film of the staying cooling water 24 as shown in FIG. 1 will be formed stably. As a result, the cooling water from the circular tube nozzles in the row closest to the upper header (innermost row) is jetted toward the water film of the staying cooling water 24, and the other rod-like shape is mutually attached. It is preferable because the cooling water 23a and 23b are not broken. And if the interval between the positions where the cooling water from the circular tube nozzles in the innermost row collides with the steel plate 10 is called the staying area length, if the staying area length is within 1.5 m, the staying cooling Since the rate at which water cools the steel plate 10 is relatively small, it is possible to prevent the cooling method from changing greatly when the leading edge or the rearmost end of the steel plate 10 passes in an unsteady state.

図3(a)、(b)は、上ヘッダ21a、21bに取り付けられている円管ノズル22a、22bの配置例を示したものである。前述したように、円管ノズル22a、22bが鋼板10の搬送方向に6列配置されている。また、板幅方向には、通過する鋼板10の全幅に冷却水を供給できるように取り付けられている。また、ここでは上ヘッダを2つ設けたが、これらが一体となったようなヘッダを1つ設けて、それに円管ノズル22a、22bを配列しても構わない。   FIGS. 3A and 3B show examples of the arrangement of the circular tube nozzles 22a and 22b attached to the upper headers 21a and 21b. As described above, the circular tube nozzles 22 a and 22 b are arranged in six rows in the conveying direction of the steel plate 10. Moreover, it is attached so that cooling water can be supplied to the full width of the passing steel plate 10 in the plate width direction. In addition, although two upper headers are provided here, one header that is integrated with these may be provided, and the circular tube nozzles 22a and 22b may be arranged thereon.

一方、下ヘッダ31については、ここでは、2個の下ヘッダ31が配置されており、それぞれに円管ノズル32が取り付けられ、テーブルローラ13の隙間から棒状の冷却水33を噴射して、通過する鋼板10の全幅に冷却水を供給するようになっている。   On the other hand, with respect to the lower header 31, here, two lower headers 31 are arranged, and circular nozzles 32 are attached to each of the lower headers 31. The cooling water is supplied to the entire width of the steel plate 10 to be performed.

そして、冷却ユニット20は、鋼板10の上面に向けて上ヘッダ21a、21bから4m/mmin以上の水量密度で冷却水を供給し、鋼板10の下面に向けて下ヘッダ31から同じく4m/mmin以上の水量密度で冷却水を供給するようになっている。 And the cooling unit 20 supplies cooling water with the water density of 4 m < 3 > / m < 2 > min or more from the upper headers 21a and 21b toward the upper surface of the steel plate 10, and is similarly 4 m from the lower header 31 toward the lower surface of the steel plate 10. Cooling water is supplied at a water density of 3 / m 2 min or more.

ここで、水量密度を4m/mmin以上としている理由について説明する。図1に示す滞留冷却水24は供給する棒状冷却水23a、23bによって堰き止められて形成される。このとき水量密度が小さいと堰き止めること自体ができず、水量密度がある量よりも大きくなると堰き止めることができる滞留冷却水24の量は増加し、板幅端部から排出される冷却水と供給される冷却水の量が釣り合って滞留冷却水24は一定に維持される。厚鋼板の場合、一般的な板幅は2〜5mであり、4m/mmin以上の水量密度で冷却すれば、これらの板幅において滞留冷却水を一定に維持できて、圧延中の鋼板10を通過させながら所望の温度降下量を得ることができる。 Here, the reason why the water density is set to 4 m 3 / m 2 min or more will be described. The staying cooling water 24 shown in FIG. 1 is formed to be blocked by the rod-shaped cooling waters 23a and 23b to be supplied. At this time, if the water density is small, damming itself cannot be performed, and if the water density becomes larger than a certain amount, the amount of the staying cooling water 24 that can be dammed increases, and the cooling water discharged from the end of the plate width The amount of the cooling water supplied is balanced and the retained cooling water 24 is kept constant. In the case of a thick steel plate, the general plate width is 2 to 5 m, and if it is cooled with a water density of 4 m 3 / m 2 min or more, the retained cooling water can be kept constant at these plate widths, A desired amount of temperature drop can be obtained while passing the steel plate 10.

水量密度を4m/mmin以上大きくすればするほど冷却待ちを解消する制御圧延材が多くなる。例えば、水量密度が小さいと板厚が薄い圧延材でしか冷却待ちを解消できないが、水量密度を増やしていけば、ある程度板厚が厚い圧延材でも冷却待ちを解消できるようになる。しかし、水量を増やしたことに対する冷却待ち時間短縮の効果は、水量密度を増やしていくほど徐々に小さくなっていくので、水量密度は、冷却待ち時間などの短縮効果と設備コストを勘案して、決定することが好ましい。さらに好ましい水量密度は4〜10m/mminである。 The larger the water density is 4 m 3 / m 2 min or more, the more control rolled material that eliminates the waiting for cooling. For example, if the water density is small, the waiting for cooling can be solved only with a rolled material having a thin plate thickness. However, if the water density is increased, the waiting for cooling can be solved even for a rolled material having a certain thickness. However, the effect of shortening the cooling waiting time for increasing the water volume gradually decreases as the water density increases, so the water density takes into account the shortening effect such as the cooling waiting time and the equipment cost. It is preferable to determine. A more preferable water density is 4 to 10 m 3 / m 2 min.

そして、この冷却ユニット20では、第1上ノズル22aから噴射される棒状冷却水23aと第2上ノズル22bから噴射される棒状冷却水23bが鋼板10の搬送方向に互いに対向するようにして4m/mmin以上の大きな水量密度で冷却水を供給しているので、鋼板10上面の滞留冷却水24が鋼板10の搬送方向に移動しようとするのを、噴射された棒状冷却水23a、23b自身が堰き止める。これによって、安定した冷却領域が得られ、均一な冷却を行うことができる。 In this cooling unit 20, the rod-shaped cooling water 23a ejected from the first upper nozzle 22a and the rod-shaped cooling water 23b ejected from the second upper nozzle 22b are 4 m 3 so as to face each other in the conveying direction of the steel plate 10. Since the cooling water is supplied at a large water amount density of / m 2 min or more, the stagnant cooling water 24 on the upper surface of the steel plate 10 is about to move in the conveying direction of the steel plate 10, and the injected rod-like cooling water 23a, 23b I dam up myself. Thereby, a stable cooling region can be obtained, and uniform cooling can be performed.

なお、上ノズル22a、22bから噴射する冷却水を例えばスリットノズルを使った膜状冷却水ではなく棒状冷却水としているのは、棒状冷却水の方が安定的に水流が形成され、滞留冷却水を堰き止める力が大きいからである。また、膜状冷却水を斜めに噴射する場合、鋼板からノズルまでの距離が遠くなると鋼板近傍の水膜が薄くなって、ますます壊れやすくなるからでもある。   Note that the cooling water sprayed from the upper nozzles 22a and 22b is, for example, a rod-shaped cooling water instead of a film-shaped cooling water using a slit nozzle. This is because the power to dam is large. In addition, when the film-like cooling water is injected obliquely, the water film near the steel sheet becomes thin and becomes more fragile as the distance from the steel sheet to the nozzle increases.

ちなみに、本発明の棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口から噴射される冷却水のことを指している。また、本発明の棒状冷却水は、スプレー状の噴流や膜状のラミナーフローでなく、ノズル噴出口から鋼板に衝突するまでの水流の断面がほぼ円形に保たれ、連続性で直進性のある水流の冷却水をいう。   Incidentally, the rod-shaped cooling water of the present invention refers to cooling water that is injected from a circular (including elliptical or polygonal) nozzle outlet. In addition, the rod-shaped cooling water of the present invention is not a spray-like jet or a film-like laminar flow, but the cross section of the water flow from the nozzle outlet to the steel plate is maintained in a substantially circular shape, and is continuous and straight. Refers to water cooling water.

その際に、第1上ノズル22aの噴射角度θ1と、第2上ノズル22bの噴射角度θ2は、30°〜60°とするのが好ましい。噴射角度θ1、θ2が30°より小さいと、第1上ノズル22aと第2上ノズル22bを遠く離さなくてはならず、設備長が長くなってしまうとともに、棒状冷却水23a、23bの鉛直方向速度成分が小さくなって、鋼板10への衝突が弱くなり、冷却能力が低下するからである。一方、噴射角度θ1、θ2が60°より大きいと、棒状冷却水23a、23bの搬送方向速度成分が小さくなって、冷却水を堰き止める力が弱くなり、冷却水が冷却領域外に流れ出て大きな温度むらが発生するからである。なお、噴射角度θ1と噴射角度θ2は必ずしも等しくする必要はない。さらに好ましい噴射角度θ1、θ2は40°〜50°である。   At that time, the injection angle θ1 of the first upper nozzle 22a and the injection angle θ2 of the second upper nozzle 22b are preferably set to 30 ° to 60 °. If the injection angles θ1 and θ2 are smaller than 30 °, the first upper nozzle 22a and the second upper nozzle 22b must be separated from each other, the equipment length becomes longer, and the vertical direction of the rod-shaped cooling waters 23a and 23b This is because the velocity component becomes small, the collision with the steel plate 10 becomes weak, and the cooling capacity decreases. On the other hand, when the injection angles θ1 and θ2 are larger than 60 °, the conveying direction speed component of the rod-shaped cooling water 23a and 23b becomes small, the force for damming the cooling water becomes weak, and the cooling water flows out of the cooling region and becomes large. This is because temperature unevenness occurs. The injection angle θ1 and the injection angle θ2 are not necessarily equal. Further preferable injection angles θ1 and θ2 are 40 ° to 50 °.

また、各ノズル列から噴射する棒状冷却水に、搬送方向外側に漏れようとする冷却水を堰き止める壁のような働きをさせるためには、ノズル列は多いほどよく、噴射速度は速いほど好ましい。具体的には、ノズル列が少なくとも鋼板の搬送方向に5列以上で、噴射速度が8m/s以上であれば、冷却水を堰き止める力が十分ある。ノズル列数の上限は、冷却する鋼板のサイズ、搬送速度、目標とする温度降下量などによって適宜決定すればよい。また、噴射速度が30m/sを超えると、圧損が大きくなり、ノズル内面の磨耗が増加する問題が生じ、設備コストも増加するので、30m/s以下とするのは好ましい。   Moreover, in order to make rod-like cooling water sprayed from each nozzle row act like a wall that dams up the cooling water that leaks outward in the conveying direction, the more nozzle rows are better, the faster the jet speed is better. . Specifically, if the nozzle rows are at least 5 rows in the conveying direction of the steel plate and the injection speed is 8 m / s or more, the force for blocking the cooling water is sufficient. The upper limit of the number of nozzle rows may be appropriately determined depending on the size of the steel sheet to be cooled, the conveyance speed, the target temperature drop amount, and the like. In addition, when the injection speed exceeds 30 m / s, the pressure loss increases, causing the problem of increased wear on the inner surface of the nozzle, and the equipment cost also increases.

そして、ノズルが詰まりにくく、かつ冷却水の噴射速度を確保するためには、ノズル内径は3〜8mmの範囲内であればよい。また、棒状冷却水の隙間から冷却水が流れ出ないようにするためには、板幅方向に引いた仮想線上で隣り合うノズルの間隔をノズル内径の10倍以内とすればよい。   And in order to ensure that the nozzle is not clogged and the injection speed of the cooling water is ensured, the inner diameter of the nozzle may be in the range of 3 to 8 mm. Further, in order to prevent the cooling water from flowing out from the gap between the rod-shaped cooling waters, the interval between the nozzles adjacent to each other on the imaginary line drawn in the plate width direction may be within 10 times the nozzle inner diameter.

図3の(a)は、隣り合うノズルの間隔を40mmとして搬送方向に6列設けた配列を示し、(b)は、隣り合うノズルの間隔を40mmとした列を搬送方向に4列設け、隣り合うノズルの間隔を20mmとした列を搬送方向に2列設けた配列の例を示す。   (A) of FIG. 3 shows an arrangement in which six rows are provided in the carrying direction with an interval between adjacent nozzles of 40 mm, and (b) is four rows in the carrying direction in which the interval between adjacent nozzles is 40 mm. An example of an arrangement in which two rows in which the interval between adjacent nozzles is 20 mm is provided in the transport direction is shown.

さらに、鋼板10の反り等によって上ノズル22a、22bが損傷するのを防止するために、上ノズル22a、22bの先端の位置をパスラインから離すようにするのがよいが、あまり離すと冷却水が分散して棒状でなくなり冷却水を堰き止める作用がなくなるので、上ノズル22a、22bの先端とパスラインの距離を500mm〜1800mmとするのが好ましい。   Further, in order to prevent the upper nozzles 22a and 22b from being damaged by warpage of the steel plate 10, the positions of the tips of the upper nozzles 22a and 22b are preferably separated from the pass line. Is dispersed and becomes rod-shaped, and the action of blocking the cooling water is lost. Therefore, the distance between the tip of the upper nozzles 22a and 22b and the pass line is preferably 500 mm to 1800 mm.

また、図4、図5に示すが、棒状冷却水23a、23bの噴射方向の速度成分の0〜35%が鋼板幅方向外側に向かう速度成分となるように、棒状冷却水23a、23bの噴射方向を設定すると、上ノズル22a、22bから鋼板10上面に噴射された冷却水は、図4、図5中の矢印Aに示すように、合流して速やかに鋼板10の幅端から落下するようになり、棒状冷却水23a、23bが鋼板幅方向外側に向かう成分を有していない場合に比べて、低い圧力や少ない水量で滞留冷却水24を堰き止めて水切りができるようになるので、経済的な設備設計を行う上で好ましい。より好ましい範囲は10〜35%である。ちなみに、35%を超えると冷却水の板幅方向の飛散防止に設備コストがかかる上に、棒状冷却水の鉛直方向成分が小さくなって、冷却能力が低下する。   Moreover, as shown in FIGS. 4 and 5, the injection of the rod-shaped cooling water 23a, 23b is performed so that 0 to 35% of the velocity component in the injection direction of the rod-shaped cooling water 23a, 23b becomes the velocity component toward the outside in the steel plate width direction. When the direction is set, the cooling water sprayed from the upper nozzles 22a and 22b onto the upper surface of the steel plate 10 merges and quickly drops from the width end of the steel plate 10 as shown by an arrow A in FIGS. Compared with the case where the rod-shaped cooling water 23a, 23b does not have a component toward the outer side in the width direction of the steel sheet, the accumulated cooling water 24 can be dammed up and drained with a low pressure and a small amount of water. It is preferable when designing a general facility. A more preferable range is 10 to 35%. By the way, if it exceeds 35%, it takes equipment cost to prevent scattering of the cooling water in the plate width direction, and the vertical component of the rod-shaped cooling water becomes small, and the cooling capacity is lowered.

また、鋼板の幅方向に配列する全ノズル数の40〜60%が、鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向かう成分を持つ棒状冷却水を噴射するノズル数であることが好ましい。一方の外側に向いているノズル数が全体の60%以上であり、板端からの冷却水排出に偏りが生じれば、滞留冷却水の厚みが厚くなったところで棒状冷却水が滞留冷却水を堰き止められなくなり、幅方向の温度むらが発生する可能性があるからである。また、片方の外側で飛散水が極端に多くなると、これを防止するための設備コストが高くなるからでもある。   Further, 40 to 60% of the total number of nozzles arranged in the width direction of the steel sheet is the number of nozzles for injecting rod-shaped cooling water having a component directed to the outside of one side in the steel sheet width direction perpendicular to the conveying direction component of the steel sheet. preferable. If the number of nozzles facing one outside is 60% or more of the whole and the cooling water discharge from the end of the plate is biased, the rod-shaped cooling water will be used as the stagnant cooling water when the thickness of the stagnant cooling water increases. This is because there is a possibility that unevenness in temperature in the width direction may occur because the dams cannot be stopped. Moreover, it is also because the equipment cost for preventing this will become high when splashed water increases extremely on the outer side of one side.

ところで、図4に示すように幅方向外側を向かずに噴射するノズルを板幅中央部に設置したとしても、その数を全体の20%以内とし、残りのうち両外側に向けるノズル数をほぼ等しくすれば、滞留冷却水の排出は円滑に行われる。滞留冷却水を堰き止めて水切りを行うのには、最も好適である。   By the way, as shown in FIG. 4, even if nozzles that spray without facing the width direction outside are installed in the central portion of the plate width, the number thereof is within 20% of the whole, and the remaining number of nozzles facing both outsides is almost the same. If equal, the accumulated cooling water is discharged smoothly. It is most suitable for draining off the retained cooling water.

ここで、上記の棒状冷却水の噴射方向の設定について、図6を用いて具体的に説明する。図6は、棒状冷却水の噴射方向を示したものであり、棒状冷却水の噴射線と鋼板とがなす角度(実質の伏角)をβ、搬送方向に対する伏角をθ、鋼板幅方向外側に向かう角度(外向き角)をαとして示している。そして、棒状冷却水の噴射方向の速度成分の0〜35%が鋼板幅方向外側に向かう速度成分となるようにするということは、冷却水の噴射実質長さLに対する搬送方向に直角な鋼板幅方向成分の長さLwの比Lw/L(幅方向速度成分比率)が0〜35%となるようにすることを意味する。表1に、ノズルの噴射口高さhを900mm、搬送方向に対する伏角θを45°、50°とした場合の計算結果を示す。幅方向速度成分比率が0〜35%となるのは、搬送方向に対する伏角θが45°では外向き角αが0〜25°、搬送方向に対する伏角θが50°では外向き角αが0〜30°の場合である。   Here, the setting of the injection direction of the rod-shaped cooling water will be specifically described with reference to FIG. FIG. 6 shows the injection direction of the rod-shaped cooling water. The angle formed by the rod-shaped cooling water injection line and the steel plate (substantial dip angle) is β, the dip angle with respect to the transport direction is θ, and the steel plate width direction is outward. The angle (outward angle) is shown as α. And, 0 to 35% of the velocity component in the jet direction of the rod-shaped cooling water is a velocity component that goes outward in the steel plate width direction, which means that the steel plate width perpendicular to the conveyance direction with respect to the cooling water jet substantial length L It means that the ratio Lw / L (width direction speed component ratio) of the length Lw of the direction component is 0 to 35%. Table 1 shows the calculation results when the nozzle ejection height h is 900 mm and the dip angle θ with respect to the conveying direction is 45 ° and 50 °. The width direction velocity component ratio is 0 to 35% when the dip angle θ with respect to the transport direction is 45 °, the outward angle α is 0 to 25 °, and when the dip angle θ with respect to the transport direction is 50 °, the outward angle α is 0 to 0%. This is the case of 30 °.

Figure 2007203369
Figure 2007203369

そして、前述した図4は、上記に基づいて上ノズル22a、22bを設置した場合の一例を示す平面図である。ここでは、鋼板幅方向中央のノズルからの棒状冷却水は外向き角αが0°とし、ノズルの設置位置が鋼板幅方向外側に向かうにつれて外向き角αが順次大きくなるようにしている。また、棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔(例えば、60mmピッチ)となるように各ノズルを設置している。   And FIG. 4 mentioned above is a top view which shows an example at the time of installing upper nozzle 22a, 22b based on the above. Here, the rod-shaped cooling water from the nozzle in the center in the steel sheet width direction has an outward angle α of 0 °, and the outward angle α gradually increases as the nozzle installation position goes outward in the steel sheet width direction. Moreover, each nozzle is installed so that the position at which the rod-shaped cooling water collides with the steel plate is at equal intervals (for example, 60 mm pitch) in the steel plate width direction.

また、前述した図5は、上記に基づいて上ノズル22a、22bを設置した場合の他の例を示す平面図である。ここでは、冷却水噴射の外向き角αを一定(例えば、20°)とし、棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔(例えば、60mmピッチ)となるように各ノズルを設置している。その際、鋼板幅方向中央付近では、左右の両外側に向けて噴射するノズルを設置しなくてはならないので、ノズルを取り付ける穴の加工が可能となるように、一方の鋼板幅方向外側に向けて噴射するノズル列(例えば、図5中の上方向に噴射速度成分をもつノズル列)と他方の鋼板幅方向外側に向けて噴射するノズル列(例えば、図5中の下方向に噴射速度成分をもつノズル列)を、搬送方向に交互に所定間隔(例えば、20mm)ずらして設置し、鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数と、他の片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数が等しくなるようにしている。   Moreover, FIG. 5 mentioned above is a top view which shows the other example at the time of installing upper nozzle 22a, 22b based on the above. Here, the outward angle α of the cooling water jet is constant (for example, 20 °), and the nozzles are arranged so that the positions where the rod-shaped cooling water collides with the steel sheet are equally spaced (for example, 60 mm pitch) in the steel sheet width direction. It is installed. At that time, in the vicinity of the center in the width direction of the steel plate, nozzles that spray toward both the left and right sides must be installed, so that the hole for attaching the nozzle can be machined toward the outside in the width direction of one steel plate. Nozzle row (for example, a nozzle row having an injection velocity component in the upward direction in FIG. 5) and nozzle row (for example, an injection velocity component in the downward direction in FIG. Nozzles with nozzles) are alternately shifted in the transport direction by a predetermined interval (for example, 20 mm), and nozzles for injecting rod-shaped cooling water having a component directed outward in one of the steel plate width directions perpendicular to the steel plate transport direction component The number and the number of nozzles for injecting rod-shaped cooling water having a component facing the other side are made equal.

なお、外向き角αを大きくすれば、より少ない水量での水切りが可能となるが、図5に示すように、鋼板幅方向中央付近でノズル密度が大きくなる範囲が広がる。鋼板幅方向で均一な流量分布が得られるように、ヘッダに送水するポンプの能力や配管の太さなどを考慮して、外向き角αを決定すればよい。   If the outward angle α is increased, draining with a smaller amount of water becomes possible, but as shown in FIG. 5, the range in which the nozzle density increases near the center of the steel sheet width direction widens. The outward angle α may be determined in consideration of the ability of the pump that supplies water to the header, the thickness of the piping, and the like so that a uniform flow rate distribution can be obtained in the steel plate width direction.

そして、上記のような冷却設備の両外側には、防水壁や排水口などを設けることが好ましい。冷却水が設備外に漏れたり、設備内で飛散して新たな滞留水となったりすることを防ぐために有効であるからである。   And it is preferable to provide a waterproof wall, a drain outlet, etc. in the both outer sides of the above cooling facilities. This is because it is effective to prevent the cooling water from leaking out of the facility or being scattered inside the facility to become new accumulated water.

ただし、外向き角αが30°を超える場合、冷却水の飛散防止に設備コストがかかる上に、棒状冷却水の鉛直方向成分が小さくなって、冷却能力が低下するので好ましくない。   However, when the outward angle α exceeds 30 °, it is not preferable because it costs equipment costs to prevent scattering of the cooling water, and the vertical component of the rod-shaped cooling water becomes small and the cooling capacity is lowered.

なお、上記の実施形態においては、図1に示したような、一対の上ヘッダ21a、21bを有する冷却ユニット20を1個以上備えるようにしているが、冷却ユニットをある程度まとめてより大きな冷却能力を得ようとするならば、図2に示すように、一対の上ヘッダ21a、21bの間に中間ヘッダ21cを設けることも可能であり、その数はいくつであってもよい。   In the above-described embodiment, one or more cooling units 20 having a pair of upper headers 21a and 21b as shown in FIG. 1 are provided. 2, as shown in FIG. 2, it is possible to provide intermediate headers 21c between the pair of upper headers 21a and 21b, and the number thereof may be any number.

このようにして、この実施形態においては、熱鋼板10の上方に4m/mmin以上の水量密度の棒状冷却水を噴射する上ノズル22a、22bを接続した上ヘッダ21a、21bを設け、棒状冷却水23a、23bと熱鋼板10とのなす伏角θ1、θ2が30°〜60°で、熱鋼板10の搬送方向に互いに対向するように上ノズル22a、22bを配置して、鋼板10を通過させながら鋼板10の上面に冷却水を供給するようにしているので、厚鋼板や薄鋼板の熱間圧延ラインに設置することによって、鋼板を目標温度まで高冷却速度で均一にかつ安定に冷やすことができる。その結果、品質の高い鋼板を製造することができる。 Thus, in this embodiment, the upper headers 21a and 21b connected to the upper nozzles 22a and 22b for injecting bar-shaped cooling water having a water density of 4 m 3 / m 2 min or more are provided above the thermal steel plate 10, The upper nozzles 22a and 22b are arranged so that the slant angles θ1 and θ2 formed by the rod-shaped cooling waters 23a and 23b and the hot steel plate 10 are 30 ° to 60 ° and face each other in the conveying direction of the hot steel plate 10, and the steel plate 10 Since cooling water is supplied to the upper surface of the steel sheet 10 while passing, the steel sheet is cooled uniformly and stably at a high cooling rate to a target temperature by installing it in a hot rolling line for thick steel sheets and thin steel sheets. be able to. As a result, a high quality steel plate can be manufactured.

(第2の実施形態)
上記の第1の実施形態において、対向する上ノズル22a、22bから噴射される棒状冷却水23a、23bの速度が速い場合、例えば10m/s以上である場合は、棒状冷却水23a、23bは鋼板10に衝突後、お互いにぶつかりあって上方に飛散する。この飛散冷却水が滞留冷却水24上に落下すれば問題ないが、図11に示すように、飛散冷却水25が斜め上方に飛散して棒状冷却水23a、23b上に落下すると、飛散冷却水25が棒状冷却水23a、23b間の隙間から漏れて、完全な水切りができなくなる場合がある。特に、滞留域長さLが200mm以内である場合に、その問題が発生しやすい。さらに、冷却水の噴射速度が速い場合には、飛散冷却水24が上ヘッダ21a、21bの上を飛び越えて鋼板10上に落下することもある。
(Second Embodiment)
In said 1st Embodiment, when the speed of the rod-shaped cooling water 23a, 23b injected from the opposing upper nozzles 22a, 22b is high, for example, when it is 10 m / s or more, the rod-shaped cooling water 23a, 23b is a steel plate. After hitting 10, they collide with each other and scatter upward. If the scattered cooling water falls on the stagnant cooling water 24, there is no problem. However, as shown in FIG. 11, when the scattered cooling water 25 splashes obliquely upward and falls on the rod-shaped cooling waters 23a and 23b, the scattered cooling water. 25 may leak from the gap between the rod-shaped cooling waters 23a and 23b, and complete draining may not be possible. In particular, when the staying area length L is within 200 mm, the problem is likely to occur. Further, when the cooling water injection speed is high, the scattered cooling water 24 may jump over the upper headers 21 a and 21 b and fall on the steel plate 10.

それに対して、この第2の実施形態に係る冷却設備は、第1の実施形態において用いた図1の冷却ユニット20に替えて、図7に側面図、図8に図7のA−A矢視図を示すように、最内側の列の棒状冷却水の上方に遮蔽板26a、26bが追加された冷却ユニット40を用いるようにしている。   On the other hand, in the cooling facility according to the second embodiment, instead of the cooling unit 20 of FIG. 1 used in the first embodiment, a side view in FIG. 7 and an AA arrow in FIG. As shown in the view, a cooling unit 40 in which shielding plates 26a and 26b are added above the rod-shaped cooling water in the innermost row is used.

これによって、飛散冷却水25が斜め上方に飛散した場合でも、落下する飛散冷却水25は遮蔽板26a、26bに遮られ、棒状冷却水23a、23b上に落下することなく、滞留冷却水24上に落下するようになる。したがって、的確に水切りを行うことができるようになる。   As a result, even when the scattered cooling water 25 is scattered obliquely upward, the falling scattered cooling water 25 is blocked by the shielding plates 26a and 26b, and does not fall on the rod-shaped cooling water 23a and 23b. To fall into. Therefore, it becomes possible to drain water accurately.

なお、遮蔽板26a、26bは、シリンダ27a、27bによって昇降できるようになっており、遮蔽板26a、26bを必要とする製品製造時にのみ使用し、それ以外の時には、上方の退避位置に引き上げておけばよい。   The shield plates 26a and 26b can be moved up and down by the cylinders 27a and 27b. The shield plates 26a and 26b are used only when manufacturing the products that require the shield plates 26a and 26b. Just keep it.

ちなみに、遮蔽板26a、26bを使用する際には、遮蔽板26a、26bの最下端が鋼板10の上面から300〜500mm上方に位置するようにするのが好ましい。すなわち、鋼板10の上面から300mm以上上方に位置するようにしておけば、先端または尾端に上反りが発生した鋼板が進入してきても、衝突することがない。しかし、鋼板10の上面から500mmを超えて高くすると、飛散冷却水25を充分に遮蔽することができなくなる。   Incidentally, when using the shielding plates 26 a and 26 b, it is preferable that the lowermost ends of the shielding plates 26 a and 26 b be positioned 300 to 500 mm above the upper surface of the steel plate 10. In other words, if the steel plate 10 is positioned at least 300 mm above the upper surface of the steel plate 10, it will not collide even if a steel plate with a warp at the tip or tail end enters. However, if the height of the steel plate 10 is increased beyond 500 mm, the scattered cooling water 25 cannot be sufficiently shielded.

また、図7、図8における遮蔽板26a、26bに替えて、図9に示すように、軽くて表面が滑らかな遮蔽幕28a、28bを用いるようにしてもよい。遮蔽幕28a、28bは、通常は垂れ下がった状態で待機しており、棒状冷却水23a、23bの噴射が開始されると、最内側の列の棒状冷却水に沿って持ち上がる。その際、棒状冷却水23a、23bは勢いよく噴射されるので、その流れが乱れるということはない。   Further, instead of the shielding plates 26a and 26b in FIGS. 7 and 8, shielding curtains 28a and 28b having a light and smooth surface may be used as shown in FIG. The shielding curtains 28a and 28b are normally in a suspended state and are lifted along the rod-shaped cooling water in the innermost row when the injection of the rod-shaped cooling water 23a and 23b is started. At that time, since the rod-shaped cooling water 23a and 23b are jetted vigorously, the flow is not disturbed.

さらに、前述したように、冷却水の噴射速度が速く、飛散冷却水が上ヘッダ21a、21bの上を飛び越えて鋼板10上に落下しようとする場合には、図10に示すような、上ヘッダ21aと上ヘッダ21bに跨がり、滞留冷却水24の上方に位置するような遮蔽板29を用いてもよい。このような遮蔽板29を用いれば、上ヘッダ21a、21bの上を飛び越えて鋼板10上に落下しようとする飛散冷却水を的確に遮蔽することができる。しかも、遮蔽板29に当たった飛散冷却水は、落下する際に、横方向に飛散しようとする飛散冷却水を巻き込んで一緒に滞留冷却水24上に落下するので効果的である。   Furthermore, as described above, when the cooling water injection speed is fast and the scattered cooling water jumps over the upper headers 21a and 21b and falls on the steel plate 10, the upper header as shown in FIG. You may use the shielding board 29 which straddles 21a and the upper header 21b, and is located above the staying cooling water 24. FIG. By using such a shielding plate 29, it is possible to accurately shield the scattered cooling water that jumps over the upper headers 21a and 21b and falls on the steel plate 10. In addition, the scattered cooling water hitting the shielding plate 29 is effective because it scatters the scattered cooling water to be scattered in the lateral direction and falls onto the staying cooling water 24 together.

本発明の実施例1を以下に述べる。   Example 1 of the present invention will be described below.

図12は、本発明の実施例1に用いた厚鋼板の熱間圧延ラインと、そこでの搬送パターンを示す図である。   FIG. 12 is a diagram showing a hot rolling line for thick steel plates used in Example 1 of the present invention and a conveyance pattern there.

この厚鋼板の熱間圧延ラインは、加熱炉11、可逆式圧延機12、第1冷却装置14、ホットレベラ15、第2冷却装置16を備えている。   The thick steel plate hot rolling line includes a heating furnace 11, a reversible rolling mill 12, a first cooling device 14, a hot leveler 15, and a second cooling device 16.

そして、搬送パターンAは、仕上圧延後に加速冷却を行うものであり、加熱炉11から抽出されたスラブを可逆式圧延機12によって、粗圧延、仕上圧延を行って板厚を25mmとした後に、ホットレベラ15を通し、第2冷却装置16において温度降下量150℃の加速冷却を行う。   And conveyance pattern A performs accelerated cooling after finish rolling, and after carrying out rough rolling and finish rolling the slab extracted from heating furnace 11 by reversible rolling machine 12, and making plate thickness 25mm, Through the hot leveler 15, the second cooling device 16 performs accelerated cooling with a temperature drop of 150 ° C.

また、搬送パターンBは、制御圧延前に温度調整冷却を行うものであり、加熱炉11から抽出されたスラブを可逆式圧延機12での粗圧延で板厚を60mmとした後に、第1冷却装置14において温度降下量80℃の調整冷却を行い、次いで低温仕上圧延、すなわち制御圧延を行う。   Moreover, the conveyance pattern B performs temperature adjustment cooling before controlled rolling, and after the slab extracted from the heating furnace 11 is rough-rolled by the reversible rolling machine 12 to have a plate thickness of 60 mm, the first cooling is performed. The apparatus 14 performs the adjustment cooling with a temperature drop of 80 ° C., and then performs low temperature finish rolling, that is, controlled rolling.

上記のもとで、本発明例1として、前述の第1の実施形態に基づいて、図1に示した冷却ユニット20を、第1冷却設備14に1ユニット、第2冷却設備16に6ユニット設置して、搬送パターンAおよび搬送パターンBの搬送を行った。その際、上ノズル22a、22bは、ノズル先端の高さ位置をテーブルローラから1.2mとし、図3(a)に示した配列で、ノズル内径を6mmとし、水量密度を6m/mmin、棒状冷却水の噴射角度θ1、θ2を45°、噴射速度を8m/sとした。 Based on the first embodiment described above, the cooling unit 20 shown in FIG. 1 is replaced with 1 unit for the first cooling facility 14 and 6 units for the second cooling facility 16 under the above. It installed and the conveyance pattern A and the conveyance pattern B were conveyed. At that time, the upper nozzles 22a and 22b have a nozzle tip height position of 1.2 m from the table roller, an arrangement shown in FIG. 3A, a nozzle inner diameter of 6 mm, and a water amount density of 6 m 3 / m 2. min, the injection angles θ1 and θ2 of the rod-shaped cooling water were 45 °, and the injection speed was 8 m / s.

また、本発明例2として、図5に示したノズル配列で、ノズル先端の高さ位置やノズル内径、水量密度、噴射角度θ1、θ2、噴射速度は本発明例1と同じにし、棒状冷却水の外向き角αを20°一定とする冷却ユニットを、第1冷却設備14に1ユニット、第2冷却設備16に6ユニット設置して、搬送パターンAおよび搬送パターンBの搬送を行った。   Further, as Invention Example 2, in the nozzle arrangement shown in FIG. 5, the height position of the nozzle tip, the nozzle inner diameter, the water density, the injection angles θ1, θ2, and the injection speed are the same as in Example 1, and the rod-shaped cooling water is used. 1 unit of cooling units and 6 units of second cooling facility 16 were installed in the first cooling facility 14 and the transport pattern A and transport pattern B were transported.

なお、本発明例1と2において、棒状冷却水が鋼板に衝突する位置は鋼板幅方向に60mmピッチとなるようにした。   In the inventive examples 1 and 2, the position where the rod-shaped cooling water collides with the steel plate was set to a 60 mm pitch in the steel plate width direction.

これに対して、比較例1として、第1冷却設備14および第2冷却設備16を従来のごく一般的なシャワー冷却装置にして、搬送パターンAおよび搬送パターンBの搬送を行った。   On the other hand, as Comparative Example 1, the first cooling facility 14 and the second cooling facility 16 were changed to conventional conventional shower cooling devices, and the transport pattern A and the transport pattern B were transported.

また、比較例2として、第1冷却設備14および第2冷却設備16を、膜状冷却水を対向させて噴射する前記特許文献2に記載の冷却装置にして、搬送パターンAおよび搬送パターンBの搬送を行った。   Further, as Comparative Example 2, the first cooling facility 14 and the second cooling facility 16 are the cooling devices described in Patent Document 2 that inject film-like cooling water so as to face each other. Carried.

そして、それぞれの場合において、冷却後(十分に復熱した後)に、放射温度計を用いて鋼板幅方向温度を連続的に測定して、鋼板上面の温度分布を調べた。最先端、最尾端、幅方向板端部を除く定常部での温度のばらつき(最高温度と最低温度の差)を温度むらとして定義し、これを比較した。温度むらの大小は、引張強度など製品の機械的性質のばらつきとほぼ対応した。生産能率と歩留は、比較例1を基準として比較した。   In each case, after cooling (after sufficiently recuperating), the steel plate width direction temperature was continuously measured using a radiation thermometer, and the temperature distribution on the upper surface of the steel plate was examined. The temperature variation (difference between the highest temperature and the lowest temperature) in the stationary part excluding the cutting edge, the tail edge, and the width direction plate edge was defined as temperature unevenness and compared. The size of the temperature unevenness almost corresponded to the variation in mechanical properties of the product such as tensile strength. The production efficiency and the yield were compared on the basis of Comparative Example 1.

その結果を、表2に示す。   The results are shown in Table 2.

Figure 2007203369
Figure 2007203369

まず、比較例1はシャワー冷却であり、鋼板上に滞留する冷却水の影響により、温度むらは搬送パターンA(仕上圧延後の加速冷却)では80℃、搬送パターンB(制御圧延前の温度調整冷却)では40℃となり、製品の強度ばらつきも大きかった。   First, Comparative Example 1 is shower cooling, and due to the influence of cooling water staying on the steel plate, temperature unevenness is 80 ° C. in conveyance pattern A (accelerated cooling after finish rolling), and conveyance pattern B (temperature adjustment before controlled rolling). In cooling, the temperature was 40 ° C., and the strength variation of the product was large.

次に、比較例2では、ノズルを鋼板に近接させなければならなかったので、鋼板の反りが発生した時に設備が破損することがあった。設備に衝突した鋼板は、製品にならないので、比較例1と比べて製品の歩留が低下した。また、設備破損の修理にかなりの時間を要したので、生産能率も低下した。また、膜状冷却水を供給したのでノズル噴出口に異物が付着して膜状冷却水が形成されず、冷却水を噴射領域内(冷却領域内)に堰き止められない場合があった。そのため、鋼板上に滞留する冷却水の影響により、温度むらは搬送パターンA(仕上圧延後の加速冷却)では80℃、搬送パターンB(制御圧延前の温度調整冷却)では40℃となり、製品の強度ばらつきも大きかった。   Next, in Comparative Example 2, since the nozzle had to be brought close to the steel plate, the equipment might be damaged when the warpage of the steel plate occurred. Since the steel plate that collided with the equipment did not become a product, the yield of the product decreased compared to Comparative Example 1. In addition, since it took a considerable amount of time to repair the damaged equipment, the production efficiency also declined. Further, since the film-like cooling water is supplied, foreign matter adheres to the nozzle outlet and the film-like cooling water is not formed, and the cooling water may not be dammed in the injection region (in the cooling region). Therefore, due to the influence of the cooling water staying on the steel plate, the temperature unevenness becomes 80 ° C. in the conveyance pattern A (accelerated cooling after finish rolling), and 40 ° C. in the conveyance pattern B (temperature adjustment cooling before control rolling). The intensity variation was also large.

これに対して、本発明例1では、ノズル先端の高さ位置を1.2mと高くしたので、鋼板の反りが発生しても設備が破損することはなく、トラブルによる歩留低下はなく生産能率は向上した。さらに、棒状冷却水を対向させて高速で噴射したので、冷却水を完全に冷却領域内に堰き止めることができ、温度むらも8〜15℃と極めて低い値に抑えることができた。   On the other hand, in Example 1 of the present invention, the height position of the nozzle tip was increased to 1.2 m, so that the equipment was not damaged even if the steel plate was warped, and the yield was not reduced by trouble. Efficiency has improved. Furthermore, since the rod-shaped cooling water was jetted at high speed while facing the cooling water, the cooling water could be completely dammed in the cooling region, and the temperature unevenness could be suppressed to an extremely low value of 8 to 15 ° C.

また、本発明例2では、上ノズル22a、22bから鋼板10上面に噴射された冷却水は、図5中の矢印Aに示すように、合流して速やかに鋼板10幅端から落下し、外向き角αがない場合に比べて少ない水量で滞留冷却水24を堰き止めて水切りを行うことができ、温度むらも6〜12℃と極めて低い値に抑えて均一に冷却することができた。さらに、流量や圧力を多少低くしても冷却水を堰き止めることができたので、設備にはそれほど高い圧力や多くの水量を要することがなくなり、経済的な設備設計を行うことができた。   Further, in Invention Example 2, the cooling water sprayed from the upper nozzles 22a and 22b onto the upper surface of the steel plate 10 merges and quickly falls from the width end of the steel plate 10 as indicated by the arrow A in FIG. The stagnant cooling water 24 can be dammed up and drained with a smaller amount of water than when there is no orientation angle α, and the temperature unevenness was suppressed to a very low value of 6 to 12 ° C., and cooling was possible uniformly. Furthermore, since the cooling water could be dammed even if the flow rate and pressure were slightly reduced, the equipment did not require so much pressure and a large amount of water, and an economical equipment design could be performed.

上記の結果により、本発明の有効性が確認された。   From the above results, the effectiveness of the present invention was confirmed.

図12に示した厚鋼板の熱間圧延ラインにおいて、前述の第2の実施形態に基づいて、図7または図9に示した冷却ユニット40を、第1冷却設備14に6ユニット、第2冷却設備16に1ユニット設置して、鋼板の冷却を行った。その際、棒状冷却水の噴射角度θ1、θ2を45°、噴射速度を12m/sとした。また、滞留域長さLを0mmとした。   In the hot rolling line for thick steel plates shown in FIG. 12, based on the second embodiment, the cooling unit 40 shown in FIG. 7 or FIG. One unit was installed in the facility 16 to cool the steel plate. At that time, the injection angles θ1 and θ2 of the rod-shaped cooling water were 45 °, and the injection speed was 12 m / s. Moreover, the residence area length L was set to 0 mm.

そして、本発明例3は、図7に示した遮蔽板26a、26bを備えた冷却ユニット40を用いた場合である。その際、遮蔽板26a、26bが最内側の列の棒状冷却水の上方50mmの位置となるように設定した。そして、遮蔽板26a、26bの最下端の位置と最内側の列の棒状冷却水が鋼板10と衝突する地点との搬送方向の距離(図7中のδ)が100mmとなるようにした。   And the example 3 of this invention is a case where the cooling unit 40 provided with the shielding plates 26a and 26b shown in FIG. 7 is used. At that time, the shielding plates 26a and 26b were set to be positioned 50 mm above the rod-shaped cooling water in the innermost row. And the distance ((delta) in FIG. 7) of the conveyance direction with the position where the rod-shaped cooling water of the innermost row | line | column collides with the steel plate 10 was made into 100 mm.

また、本発明例4は、図9に示した遮蔽幕28a、28bを備えた冷却ユニット40を用いた場合である。その際、棒状冷却水の噴射によって持ち上がる遮蔽幕28a、28bの最下端の位置と最内側の列の棒状冷却水が鋼板10と衝突する地点との搬送方向距離(図9中のδ)が100mmとなるようにした。   In addition, Example 4 of the present invention is a case where the cooling unit 40 including the shielding curtains 28a and 28b shown in FIG. 9 is used. At that time, the conveyance direction distance (δ in FIG. 9) between the position of the lowermost end of the shielding curtains 28a and 28b lifted by the injection of the rod-shaped cooling water and the point where the rod-shaped cooling water in the innermost row collides with the steel plate 10 is 100 mm. It was made to become.

その結果、本発明例3、4ともに、鋼板10に衝突して上方に飛散した飛散冷却水25が棒状冷却水23a、23b上に落下することを的確に防止することができた。これにより、冷却の均一性を保持することができた。   As a result, both the inventive examples 3 and 4 were able to accurately prevent the scattered cooling water 25 that collided with the steel plate 10 and scattered upward from falling onto the rod-shaped cooling waters 23a and 23b. Thereby, the uniformity of cooling was able to be maintained.

本発明の第1の実施形態に係る冷却設備の説明図である。It is explanatory drawing of the cooling equipment which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る他の冷却設備の説明図である。It is explanatory drawing of the other cooling equipment which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態における上ヘッダのノズル配置例を示した図である。It is the figure which showed the nozzle arrangement example of the upper header in the 1st Embodiment of this invention. 本発明の第1の実施形態における上ノズルの噴射方向の設定の一例を示した図である。It is the figure which showed an example of the setting of the injection direction of the upper nozzle in the 1st Embodiment of this invention. 本発明の第1の実施形態における上ノズルの噴射方向の設定の他の例を示した図である。It is the figure which showed the other example of the setting of the injection direction of the upper nozzle in the 1st Embodiment of this invention. 棒状冷却水の噴射方向の設定についての説明図である。It is explanatory drawing about the setting of the injection direction of rod-shaped cooling water. 本発明の第2の実施形態に係る冷却設備の説明図である。It is explanatory drawing of the cooling equipment which concerns on the 2nd Embodiment of this invention. 図7のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の第2の実施形態に係る他の冷却設備の説明図である。It is explanatory drawing of the other cooling facility which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る他の冷却設備の説明図である。It is explanatory drawing of the other cooling facility which concerns on the 2nd Embodiment of this invention. 飛散冷却水を説明するための図である。It is a figure for demonstrating scattering cooling water. 本発明の実施例における厚鋼板の熱間圧延ラインと搬送パターンの説明図である。It is explanatory drawing of the hot rolling line and conveyance pattern of the thick steel plate in the Example of this invention. 従来技術の問題点を示した図である。It is the figure which showed the trouble of the prior art.

符号の説明Explanation of symbols

10 鋼板
11 加熱炉
12 可逆式圧延機
13 テーブルローラ
14 第1冷却設備
15 ホットレベラ
16 第2冷却設備
20 冷却ユニット
21a 第1上ヘッダ
21b 第2上ヘッダ
22a 第1上ノズル
22b 第2上ノズル
23a 棒状冷却水
23b 棒状冷却水
24 滞留冷却水
25 飛散冷却水
26a 遮蔽板
26b 遮蔽板
27a シリンダ
27b シリンダ
28a 遮蔽幕
28b 遮蔽幕
29 遮蔽板
31 下ヘッダ
32 下ノズル
33 棒状冷却水
40 冷却ユニット
51 冷却ヘッダ
52 スリットノズル
53 冷却水膜
60 付着物
DESCRIPTION OF SYMBOLS 10 Steel plate 11 Heating furnace 12 Reversible rolling mill 13 Table roller 14 1st cooling equipment 15 Hot leveler 16 2nd cooling equipment 20 Cooling unit 21a 1st top header 21b 2nd top header 22a 1st top nozzle 22b 2nd top nozzle 23a Rod shape Cooling water 23b Bar-shaped cooling water 24 Stagnating cooling water 25 Spattering cooling water 26a Shield plate 26b Shield plate 27a Cylinder 27b Cylinder 28a Shield screen 28b Shield screen 29 Shield plate 31 Lower header 32 Lower nozzle 33 Rod-shaped coolant 40 Cooling unit 51 Cooling header 52 Slit nozzle 53 Cooling water film 60 Deposit

Claims (14)

鋼板の上方に4m/mmin以上の水量密度の棒状冷却水を噴射するノズルを接続したヘッダを設け、棒状冷却水と前記鋼板とのなす伏角が30°〜60°で、前記鋼板の搬送方向に互いに対向するように前記ノズルを配置してなることを特徴とする鋼板の冷却設備。 The header which connected the nozzle which injects the rod-shaped cooling water of the water amount density of 4m < 3 > / m < 2 > min or more above the steel plate is provided, and the depression angle which rod-shaped cooling water and the said steel plate make is 30 degrees-60 degrees, A steel sheet cooling facility, wherein the nozzles are arranged so as to face each other in the transport direction. 前記ノズルを鋼板の搬送方向に5列以上配列し、8m/s以上の速度で棒状冷却水を噴射することを特徴とする請求項1に記載の鋼板の冷却設備。   The said nozzle is arranged in 5 or more rows in the conveyance direction of a steel plate, and rod-shaped cooling water is injected at a speed | rate of 8 m / s or more, The cooling equipment of the steel plate of Claim 1 characterized by the above-mentioned. 棒状冷却水噴射方向の噴射実質長さの0〜35%が、鋼板の搬送方向成分に直角な鋼板幅方向外側に向かう成分の長さとなるように、棒状冷却水の噴射方向が設定されていることを特徴とする請求項1または2に記載の鋼板の冷却設備。   The injection direction of the rod-shaped cooling water is set so that 0 to 35% of the actual injection length in the rod-shaped cooling water injection direction is the length of the component that goes to the outside in the steel plate width direction perpendicular to the conveyance direction component of the steel plate. The steel sheet cooling equipment according to claim 1, wherein the steel sheet cooling equipment is provided. 鋼板の幅方向に配列する全ノズル数の40〜60%が、鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数であることを特徴とする請求項1乃至3のいずれかに記載の鋼板の冷却設備。   40 to 60% of the total number of nozzles arranged in the width direction of the steel sheet is the number of nozzles for injecting rod-shaped cooling water having a component directed to the outside of the steel sheet width direction perpendicular to the conveying direction component of the steel sheet. The steel sheet cooling equipment according to any one of claims 1 to 3. 鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数と、他の片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数が等しくなるように鋼板の幅方向にノズルを配列することを特徴とする請求項1乃至4のいずれかに記載の鋼板の冷却設備   The number of nozzles that eject rod-shaped cooling water having a component facing outward in one direction in the width direction of the steel sheet perpendicular to the conveying direction component of the steel sheet is equal to the number of nozzles ejecting rod-shaped cooling water having a component facing outward in the other side 5. The steel sheet cooling equipment according to claim 1, wherein the nozzles are arranged in the width direction of the steel sheet as described above. 板状または幕状の遮蔽物を、対向噴射する最も内側の列の棒状冷却水または/および滞留冷却水の上方に備えていることを特徴とする請求項1乃至5のいずれかに記載の鋼板の冷却設備。   The steel plate according to any one of claims 1 to 5, wherein a plate-like or curtain-like shielding object is provided above the innermost row of rod-like cooling water and / or stagnant cooling water to be opposedly jetted. Cooling equipment. 前記対向噴射する最も内側の列の棒状冷却水の上方に備えた遮蔽物の最下端は、鋼板の上面から300〜500mm上方の位置であることを特徴とする請求項1乃至6のいずれに記載の鋼板の冷却設備。   The bottom end of the shield provided above the rod-shaped cooling water in the innermost row that jets oppositely is a position 300 to 500 mm above the top surface of the steel plate. Steel sheet cooling equipment. 鋼板の上方に4m/mmin以上の水量密度の棒状冷却水を噴射するノズルを接続したヘッダを設け、棒状冷却水と前記鋼板とのなす伏角が30°〜60°で、前記鋼板の搬送方向に互いに対向するように前記ノズルを配置して冷却を行うことを特徴とする鋼板の冷却方法。 The header which connected the nozzle which injects the rod-shaped cooling water of the water amount density of 4m < 3 > / m < 2 > min or more above the steel plate is provided, and the depression angle which rod-shaped cooling water and the said steel plate make is 30 degrees-60 degrees, A cooling method for a steel sheet, wherein cooling is performed by arranging the nozzles so as to face each other in a conveying direction. 前記ノズルを鋼板の搬送方向に5列以上配列し、8m/s以上の速度で棒状冷却水を噴射することを特徴とする請求項8に記載の鋼板の冷却方法。   9. The steel sheet cooling method according to claim 8, wherein five or more rows of the nozzles are arranged in a conveying direction of the steel sheet, and the rod-shaped cooling water is sprayed at a speed of 8 m / s or more. 棒状冷却水噴射方向の噴射実質長さの0〜35%が、鋼板の搬送方向成分に直角な鋼板幅方向外側に向かう成分の長さとなるように、棒状冷却水の噴射方向が設定されていることを特徴とする請求項8または9に記載の鋼板の冷却方法。   The injection direction of the rod-shaped cooling water is set so that 0 to 35% of the actual injection length in the rod-shaped cooling water injection direction is the length of the component that goes to the outside in the steel plate width direction perpendicular to the conveyance direction component of the steel plate. The steel sheet cooling method according to claim 8 or 9, wherein the steel sheet is cooled. 鋼板の幅方向に配列する全ノズル数の40〜60%が、鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数であることを特徴とする請求項8乃至10のいずれかに記載の鋼板の冷却方法。   40 to 60% of the total number of nozzles arranged in the width direction of the steel sheet is the number of nozzles for injecting rod-shaped cooling water having a component directed to the outside of the steel sheet width direction perpendicular to the conveying direction component of the steel sheet. The method for cooling a steel sheet according to any one of claims 8 to 10. 鋼板の搬送方向成分に直角な鋼板幅方向片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数と、他の片方の外側に向う成分を持つ棒状冷却水を噴射するノズル数が等しくなるように鋼板の幅方向にノズルを配列することを特徴とする請求項8乃至11のいずれかに記載の鋼板の冷却方法。   The number of nozzles that eject rod-shaped cooling water that has a component facing outward in one direction in the width direction of the steel sheet perpendicular to the conveying direction component of the steel plate is equal to the number of nozzles that eject rod-shaped cooling water that has a component facing outward in the other side The method for cooling a steel sheet according to any one of claims 8 to 11, wherein the nozzles are arranged in the width direction of the steel sheet. 板状または幕状の遮蔽物を、対向噴射する最も内側の列の棒状冷却水または/および滞留冷却水の上方に設けることを特徴とする請求項5または6に記載の鋼板の冷却方法。   The method for cooling a steel sheet according to claim 5 or 6, wherein a plate-like or curtain-like shield is provided above the innermost row of bar-like cooling water and / or stagnant cooling water that is jetted oppositely. 前記対向噴射する最も内側の列の棒状冷却水の上方に備えた遮蔽物の最下端を、鋼板の上面から300〜500mm上方に位置させることを特徴とする請求項8乃至13のいずれかに記載の鋼板の冷却方法。   14. The lowermost end of the shield provided above the innermost row of rod-shaped cooling water that jets oppositely is positioned 300 to 500 mm above the upper surface of the steel sheet. Cooling method for steel sheet.
JP2006227404A 2005-08-30 2006-08-24 Steel sheet cooling equipment and cooling method Active JP4876781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227404A JP4876781B2 (en) 2005-08-30 2006-08-24 Steel sheet cooling equipment and cooling method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005249061 2005-08-30
JP2005249061 2005-08-30
JP2006001567 2006-01-06
JP2006001567 2006-01-06
JP2006227404A JP4876781B2 (en) 2005-08-30 2006-08-24 Steel sheet cooling equipment and cooling method

Publications (2)

Publication Number Publication Date
JP2007203369A true JP2007203369A (en) 2007-08-16
JP4876781B2 JP4876781B2 (en) 2012-02-15

Family

ID=38483285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227404A Active JP4876781B2 (en) 2005-08-30 2006-08-24 Steel sheet cooling equipment and cooling method

Country Status (1)

Country Link
JP (1) JP4876781B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013318A1 (en) * 2006-07-27 2008-01-31 Jfe Steel Corporation Cooler and cooling method of hot rolled steel band
JP2008049397A (en) * 2006-07-27 2008-03-06 Jfe Steel Kk System and method for cooling hot-rolled steel strip
JP2008073766A (en) * 2006-08-21 2008-04-03 Jfe Steel Kk Cooler and cooling method of hot rolled steel band
JP2008073765A (en) * 2006-08-21 2008-04-03 Jfe Steel Kk Cooler and cooling method of hot rolled steel band
WO2008117552A1 (en) * 2007-02-26 2008-10-02 Jfe Steel Corporation Device and method for cooling hot-rolled steel strip
CN103635267A (en) * 2011-07-21 2014-03-12 新日铁住金株式会社 Cooling device, hot-rolled steel sheet manufacturing apparatus, and hot-rolled steel sheet manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150410A (en) * 1994-11-28 1996-06-11 Hitachi Ltd Equipment for cooling hot rolled steel sheet
JPH10291021A (en) * 1997-04-17 1998-11-04 Nkk Corp Method for cooling high-temperature steel sheet and device for cooling high-temperature steel sheet
JP2001286925A (en) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd Device and method for water-cooling steel sheet
WO2004014577A1 (en) * 2002-08-08 2004-02-19 Jfe Steel Corporation Cooling device, manufacturing method, and manufacturing line for hot rolled steel band

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150410A (en) * 1994-11-28 1996-06-11 Hitachi Ltd Equipment for cooling hot rolled steel sheet
JPH10291021A (en) * 1997-04-17 1998-11-04 Nkk Corp Method for cooling high-temperature steel sheet and device for cooling high-temperature steel sheet
JP2001286925A (en) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd Device and method for water-cooling steel sheet
WO2004014577A1 (en) * 2002-08-08 2004-02-19 Jfe Steel Corporation Cooling device, manufacturing method, and manufacturing line for hot rolled steel band

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013318A1 (en) * 2006-07-27 2008-01-31 Jfe Steel Corporation Cooler and cooling method of hot rolled steel band
JP2008049397A (en) * 2006-07-27 2008-03-06 Jfe Steel Kk System and method for cooling hot-rolled steel strip
JP4518107B2 (en) * 2006-07-27 2010-08-04 Jfeスチール株式会社 Apparatus and method for cooling hot-rolled steel strip
US8353191B2 (en) 2006-07-27 2013-01-15 Jfe Steel Corporation Cooling device and cooling method for hot strip
JP2008073766A (en) * 2006-08-21 2008-04-03 Jfe Steel Kk Cooler and cooling method of hot rolled steel band
JP2008073765A (en) * 2006-08-21 2008-04-03 Jfe Steel Kk Cooler and cooling method of hot rolled steel band
JP4518116B2 (en) * 2006-08-21 2010-08-04 Jfeスチール株式会社 Apparatus and method for cooling hot-rolled steel strip
JP4518117B2 (en) * 2006-08-21 2010-08-04 Jfeスチール株式会社 Apparatus and method for cooling hot-rolled steel strip
WO2008117552A1 (en) * 2007-02-26 2008-10-02 Jfe Steel Corporation Device and method for cooling hot-rolled steel strip
US8404062B2 (en) 2007-02-26 2013-03-26 Jfe Steel Corporation Device and method for cooling hot strip
CN103635267A (en) * 2011-07-21 2014-03-12 新日铁住金株式会社 Cooling device, hot-rolled steel sheet manufacturing apparatus, and hot-rolled steel sheet manufacturing method

Also Published As

Publication number Publication date
JP4876781B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
KR100973691B1 (en) Cooling facility and cooling method of steel plate, and hot rolling facility and hot rolling method using the same
JP4449991B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4779749B2 (en) Steel plate cooling method and cooling equipment
US8881568B2 (en) Cooling equipment and cooling method for hot rolled steel plate
JP4876781B2 (en) Steel sheet cooling equipment and cooling method
JP2011167759A (en) Device for cooling hot-rolled steel sheet
JP4774887B2 (en) Steel sheet cooling equipment and manufacturing method
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
JP5720714B2 (en) Manufacturing method and equipment for thick steel plate
JP5962849B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP4905180B2 (en) Steel cooling device and cooling method
JP4888124B2 (en) Steel cooling device and cooling method
JP4876783B2 (en) Steel sheet cooling equipment and cooling method
JP5597916B2 (en) Steel cooling equipment
JP6264464B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP5387093B2 (en) Thermal steel sheet cooling equipment
JP2006212666A (en) Apparatus and method for cooling thick steel plate
JP5246075B2 (en) Thermal steel sheet cooling equipment and cooling method
JP2010284680A (en) Cooling facility for thick steel plate and cooling method thereof
JP5347781B2 (en) Thermal steel sheet cooling equipment and cooling method
JP6108041B2 (en) Thick steel plate manufacturing method
JP2009202184A (en) Method and system for cooling undersurface of hot-rolled steel strip
JP2008142743A (en) Cooling facility and cooling method of steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250