JP2007194652A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007194652A
JP2007194652A JP2007045149A JP2007045149A JP2007194652A JP 2007194652 A JP2007194652 A JP 2007194652A JP 2007045149 A JP2007045149 A JP 2007045149A JP 2007045149 A JP2007045149 A JP 2007045149A JP 2007194652 A JP2007194652 A JP 2007194652A
Authority
JP
Japan
Prior art keywords
dielectric constant
semiconductor device
high dielectric
layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007045149A
Other languages
Japanese (ja)
Other versions
JP4713518B2 (en
Inventor
Yoshihisa Harada
佳尚 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JP2007194652A publication Critical patent/JP2007194652A/en
Application granted granted Critical
Publication of JP4713518B2 publication Critical patent/JP4713518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-k gate insulating layer having a long reliability life. <P>SOLUTION: The high-k gate insulating layer formed between an Si substrate 11 and a gate electrode 17 comprises an interface layer 15 formed on an interface with the Si substrate 11, and the high-k layer 16 which is formed on the interface layer 15 and has a relative dielectric constant higher than that of the interface layer 15. The thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 satisfy a relation of T1/(T1+T2)≤0.3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高誘電体からなるゲート絶縁膜を有する半導体装置に関する。   The present invention relates to a semiconductor device having a gate insulating film made of a high dielectric material.

近年の半導体装置における高集積化及び高速化に対する技術進展に伴い、MOSFETの微細化が進められている。微細化に伴いゲート絶縁膜の薄膜化を進めると、トンネル電流によるゲートリーク電流の増大等の問題が顕在化してくる。この問題を抑制するために、HfO、ZrO、La、TiO又はTa等の高誘電率材料を用いたゲート絶縁膜(以下、high-kゲート絶縁膜と称する)により、小さいSiO換算膜厚(以下、EOT(Equivalent Oxide Thickness)と称する)を実現しながら物理的膜厚を厚くするという手法が研究されている。 With the recent progress in technology for higher integration and higher speed in semiconductor devices, MOSFETs have been miniaturized. As the gate insulating film is made thinner with miniaturization, problems such as an increase in gate leakage current due to tunneling current become obvious. In order to suppress this problem, a gate insulating film using a high dielectric constant material such as HfO 2 , ZrO 2 , La 2 O 3 , TiO 2 or Ta 2 O 5 (hereinafter referred to as a high-k gate insulating film). Therefore, a method of increasing the physical film thickness while realizing a small SiO 2 equivalent film thickness (hereinafter referred to as EOT (Equivalent Oxide Thickness)) has been studied.

また、昨今のシステムLSIにおいては、演算処理を行なう内部回路、入出力を受け持つ周辺回路、及びDRAM等の複数の機能を持つ回路を1つのチップに集積することが一般的になっている。このようなシステムLSIを構成するMOSFETに対しては、高駆動力と低リーク電流とが求められる。   In recent system LSIs, it is common to integrate an internal circuit that performs arithmetic processing, a peripheral circuit that handles input and output, and a circuit having a plurality of functions such as a DRAM on a single chip. For a MOSFET constituting such a system LSI, high driving force and low leakage current are required.

従来のhigh-kゲート絶縁膜の形成方法として、特開2000-058832号公報(United States Patent 6,013,553 )に記載された方法が知られている。   As a conventional method for forming a high-k gate insulating film, a method described in JP 2000-058832 A (United States Patent 6,013,553) is known.

図5は、前記公報に開示された従来の半導体装置、具体的には、オキシ窒化ジルコニウム又はオキシ窒化ハフニウムよりなるhigh-kゲート絶縁膜を有するMOSFETの断面構成を示している。   FIG. 5 shows a cross-sectional structure of a conventional semiconductor device disclosed in the above publication, specifically, a MOSFET having a high-k gate insulating film made of zirconium oxynitride or hafnium oxynitride.

図5に示すように、Si基板1の上にエピタキシャルSi層2が形成されている。エピタキシャルSi層2の上部には不純物がドーピングされており、該上部は電圧印加時にチャネル領域3となる。チャネル領域3の上にはhigh-kゲート絶縁膜4を介して導電性のゲート電極5が形成されている。   As shown in FIG. 5, an epitaxial Si layer 2 is formed on the Si substrate 1. The upper portion of the epitaxial Si layer 2 is doped with impurities, and the upper portion becomes the channel region 3 when a voltage is applied. A conductive gate electrode 5 is formed on the channel region 3 via a high-k gate insulating film 4.

high-kゲート絶縁膜4の形成方法は次の通りである。すなわち、Si基板1の上に、チャネル領域3となる部分を含むエピタキシャルSi層2を形成した後、圧力1.33×10−1Pa程度の酸素雰囲気内で、Si基板1に対して600〜700℃程度の加熱処理を30秒間程度行なうことによって、厚さ1nm未満の酸化物層を形成する。その後、この酸化物層に対して、そのまま残存させるか、希釈HFにより取り除いてSi表面を水素終端させるか、又は、クラスターツールを用いた超高真空状態(1.33×10−6Pa程度)での780℃程度の加熱処理により昇華して原子的に平滑なSi表面を形成するかのいずれかの処理が行なわれる。酸化物層つまりシリコン酸化膜を残存させる代わりに、オキシ窒化シリコン膜の超薄膜よりなる保護障壁層を形成してもよい。 The formation method of the high-k gate insulating film 4 is as follows. That is, after forming an epitaxial Si layer 2 including a portion that becomes the channel region 3 on the Si substrate 1, the Si substrate 1 is subjected to 600 to 600 to the Si substrate 1 in an oxygen atmosphere at a pressure of about 1.33 × 10 −1 Pa. By performing heat treatment at about 700 ° C. for about 30 seconds, an oxide layer having a thickness of less than 1 nm is formed. Thereafter, the oxide layer is left as it is, or is removed by dilute HF, and the Si surface is hydrogen-terminated, or an ultra-high vacuum state (about 1.33 × 10 −6 Pa) using a cluster tool. Either a sublimation is performed by heating at about 780 ° C. to form an atomically smooth Si surface. Instead of leaving the oxide layer, that is, the silicon oxide film, a protective barrier layer made of an ultrathin silicon oxynitride film may be formed.

以上のようにクリーンなSi表面、酸化物層又は保護障壁層のいずれかを持つSi基板1を準備した後、Si基板1の上に、スパッタ法、蒸着法、化学的気相成長(CVD)法又はプラズマCVD法等により、ジルコニウム又はハフニウムよりなる金属層を堆積する。その後、該金属層に対して、NO若しくはNO等の酸素及び窒素を含むガスを用いた酸窒化処理、N及びOを用いた低温下での遠隔プラズマ処理(基板処理チャンバーとプラズマ生成チャンバーとが異なっている)、又は、NHを用いた遠隔プラズマ窒化処理及びそれに引き続く酸化処理を行なうこと等により、オキシ窒化ジルコニウム又はオキシ窒化ハフニウムよりなるhigh-kゲート絶縁膜4を形成する。 After preparing the Si substrate 1 having either a clean Si surface, an oxide layer, or a protective barrier layer as described above, a sputtering method, vapor deposition method, chemical vapor deposition (CVD) is performed on the Si substrate 1. A metal layer made of zirconium or hafnium is deposited by a method or a plasma CVD method. Thereafter, the metal layer is subjected to an oxynitriding treatment using a gas containing oxygen and nitrogen such as NO or N 2 O, a remote plasma treatment at a low temperature using N 2 and O 2 (substrate treatment chamber and plasma). The high-k gate insulating film 4 made of zirconium oxynitride or hafnium oxynitride is formed by performing a remote plasma nitridation process using NH 3 and subsequent oxidation process or the like. .

その後、Ar等の不活性ガス雰囲気中又は還元性ガス雰囲気中で、high-kゲート絶縁膜4に対して750℃程度のアニールを20秒間行なうことにより、high-kゲート絶縁膜4を緻密化する。このように形成されたhigh-kゲート絶縁膜4は非晶質又は多結晶であり、SiOの比誘電率と比べて著しく高い比誘電率を有する。
特開2000-058832号公報(United States Patent 6,013,553 )
Thereafter, the high-k gate insulating film 4 is densified by annealing the high-k gate insulating film 4 at about 750 ° C. for 20 seconds in an inert gas atmosphere such as Ar or a reducing gas atmosphere. To do. The high-k gate insulating film 4 formed in this way is amorphous or polycrystalline, and has a dielectric constant that is significantly higher than that of SiO 2 .
JP2000-058832 (United States Patent 6,013,553)

しかしながら、前述の従来のMOSFETにおいては、high-kゲート絶縁膜の信頼性寿命が短くなるという問題がある。   However, the above-described conventional MOSFET has a problem that the reliability life of the high-k gate insulating film is shortened.

前記に鑑み、本発明は、長い信頼性寿命を持つhigh-kゲート絶縁膜を実現することを目的とする。   In view of the above, an object of the present invention is to realize a high-k gate insulating film having a long reliability life.

前記の目的を達成するため、本願発明者は、従来のhigh-kゲート絶縁膜の信頼性寿命が短くなる原因を検討した結果、次のような知見を得た。すなわち、前述の従来の方法を用いてシリコン基板上にhigh-kゲート絶縁膜を形成した場合、シリコン基板界面に、SiOの組成に近いシリケート(high-k材料(ジルコニウム酸化物等の金属酸化物)とシリコンとの3元系化合物)が形成される。一般的に、シリケートは、シリコンを含まない元のhigh-k材料よりも比誘電率が低い。また、high-kゲート絶縁膜堆積後のアニール(ゲート絶縁膜を緻密化するためのPDA(Post Deposition Anneal))によって、ゲート絶縁膜を構成するhigh-k材料の結晶化が進む結果、該high-k材料から結晶粒界を介して酸素がシリコン基板まで拡散し、それによりシリコン基板界面にSiOが形成されてしまう。すなわち、high-kゲート絶縁膜は、比誘電率の低いSiO又はSiOの組成に近いシリケートよりなる界面層と、比誘電率の高いhigh-k材料又はhigh-k材料の組成に近いシリケートよりなるhigh-k層との積層構造を持つ。ところが、このような積層構造においては、ゲート電極を介して電圧が印加されると低誘電率の界面層に電界集中が起こり、その結果、絶縁破壊が生じやすくなって、high-kゲート絶縁膜の重要な特性である信頼性が劣化してしまうと考えられる。 In order to achieve the above object, the present inventor has studied the cause of shortening of the reliability life of the conventional high-k gate insulating film, and as a result, has obtained the following knowledge. That is, when a high-k gate insulating film is formed on a silicon substrate using the above-described conventional method, a silicate (high-k material (metal oxide such as zirconium oxide) close to the composition of SiO 2 is formed at the silicon substrate interface. And a ternary compound of silicon). In general, silicates have a lower dielectric constant than the original high-k material that does not contain silicon. Further, as a result of the crystallization of the high-k material constituting the gate insulating film being advanced by annealing (PDA (Post Deposition Anneal) for densifying the gate insulating film) after the deposition of the high-k gate insulating film, Oxygen diffuses from the -k material through the grain boundaries to the silicon substrate, thereby forming SiO 2 at the silicon substrate interface. That is, the high-k gate insulating film has a low dielectric constant SiO 2 or an interface layer made of silicate close to the composition of SiO 2 and a high-k material having a high relative dielectric constant or a silicate close to the composition of the high-k material. It has a laminated structure with a high-k layer. However, in such a laminated structure, when a voltage is applied through the gate electrode, electric field concentration occurs in the interface layer having a low dielectric constant, and as a result, dielectric breakdown is likely to occur, resulting in a high-k gate insulating film. It is considered that the reliability, which is an important characteristic of, deteriorates.

そこで、本願発明者は、high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さのhigh-kゲート絶縁膜全体の厚さに対する比T1/(T1+T2)(但しT1は界面層の物理的厚さ、T2はhigh-k層の物理的厚さ)との相関をシミュレーションを用いて調べてみた。その結果を図1に示す。シミュレーションは、trap generation model(J.H.Stathis, Technical Digest of International Electron Device and Material (1998), p167.)をhigh-kゲート絶縁膜に応用することによって行なった。具体的には、high-kゲート絶縁膜について、リーク電流J、ストレス印加直後のリーク電流J、注入電荷当たりの欠陥生成率P(=絶縁破壊時の電流増加比ΔJ/J)、及び絶縁破壊に至るときの臨界欠陥密度Nbdのそれぞれの値を求め、これらの値に基づいて、high-kゲート絶縁膜における絶縁破壊寿命Tbd(=Nbd/P)を求めた。また、シュミュレーションにおいては、high-kゲート絶縁膜のEOTが常に1.5nmを保つように各物理的厚さT1及びT2を調整しながら比T1/(T1+T2)を変化させていった場合における、印加電圧1Vのストレス下(温度は室温)でのhigh-kゲート絶縁膜の信頼性寿命を算出した。但し、シュミュレーションにおいては、界面層の比誘電率ε1を3.9の一定値に固定したのに対して、high-k層の比誘電率ε2を8.0、12.0、18.0及び24.0の複数の値に変化させた。ここで、EOT=T1+(ε1/ε2)×T2の関係が成り立つ。 Accordingly, the inventor of the present application has determined that the reliability lifetime of the high-k gate insulating film and the ratio of the interface layer thickness to the total thickness of the high-k gate insulating film are T1 / (T1 + T2) (where T1 is the interface layer thickness). The correlation with the physical thickness (T2 is the physical thickness of the high-k layer) was examined using simulation. The result is shown in FIG. The simulation was performed by applying a trap generation model (JHStathis, Technical Digest of International Electron Device and Material (1998), p167.) To a high-k gate insulating film. Specifically, for the high-k gate insulating film, the leakage current J g , the leakage current J 0 immediately after stress application, the defect generation rate P g per injected charge (= current increase ratio ΔJ g / J 0 at the time of dielectric breakdown) ) And the critical defect density N bd at the time of dielectric breakdown, and the dielectric breakdown lifetime T bd (= N bd / P g ) in the high-k gate insulating film is obtained based on these values. It was. In the simulation, the ratio T1 / (T1 + T2) is changed while adjusting the physical thicknesses T1 and T2 so that the EOT of the high-k gate insulating film is always kept at 1.5 nm. The reliability lifetime of the high-k gate insulating film under a stress of 1 V applied voltage (temperature is room temperature) was calculated. However, in the simulation, the relative dielectric constant ε1 of the interface layer is fixed to a constant value of 3.9, whereas the relative dielectric constant ε2 of the high-k layer is 8.0, 12.0, 18.0. And multiple values of 24.0. Here, the relationship EOT = T1 + (ε1 / ε2) × T2 holds.

図1に示すように、比T1/(T1+T2)、つまりhigh-kゲート絶縁膜全体の厚さに対する界面層厚さの比が0.2以下である場合、high-kゲート絶縁膜の信頼性を高く維持できる。また、比T1/(T1+T2)が増加するに従い、high-kゲート絶縁膜の信頼性が劣化する傾向がある。さらに、図1の縦軸に対数目盛りを用いていることを考慮すると、比T1/(T1+T2)を0.2以下に設定することは、high-kゲート絶縁膜の信頼性を飛躍的に向上させる効果を持っていることが分かる。具体的には、比T1/(T1+T2)を0.2以下に設定することによって、例えば比T1/(T1+T2)が0.5程度である場合と比べて、信頼性寿命を3桁以上も長くすることができる。   As shown in FIG. 1, when the ratio T1 / (T1 + T2), that is, the ratio of the interface layer thickness to the total thickness of the high-k gate insulating film is 0.2 or less, the reliability of the high-k gate insulating film Can be kept high. Further, as the ratio T1 / (T1 + T2) increases, the reliability of the high-k gate insulating film tends to deteriorate. Furthermore, considering that the logarithmic scale is used for the vertical axis in FIG. 1, setting the ratio T1 / (T1 + T2) to 0.2 or less dramatically improves the reliability of the high-k gate insulating film. It turns out that it has the effect to make it. Specifically, by setting the ratio T1 / (T1 + T2) to 0.2 or less, for example, the reliability life is increased by three orders of magnitude or more compared to the case where the ratio T1 / (T1 + T2) is about 0.5. can do.

また、図1に示すように、比T1/(T1+T2)が0.0〜0.2である構造を持つゲート絶縁膜においては、high-k層の比誘電率ε2が8.0から12.0へ増加するに従って信頼性寿命の長さも増加し、ε2が12.0から18.0までの範囲で信頼性寿命の長さがほぼ飽和して最大値を示す。一方、ε2が18.0から24.0へ増加すると、信頼性寿命の長さは逆に減少してしまう。ところで、一般的に、high-k層における比誘電率ε2の値は厚さ方向に変化している。従って、high-k層における比誘電率ε2の平均値をε2avとしたときには、ε2avは12.0以上で且つ18.0以下であることが好ましい。また、high-k層として、一の金属とシリコンと酸素とを含むシリケート膜を用いた場合、high-k層の組成をMSiO(但しMは一の金属を表し、X>0、Y>0である)とすると、前述の12.0≦ε2av≦18.0の条件は、0.20≦Y/(X+Y)≦0.30の条件と等価である。すなわち、high-kゲート絶縁膜の信頼性の観点からは、high-k層の材料としてシリコンを含まない完全な金属酸化物を用いるよりも、0.20≦Y/(X+Y)≦0.30の関係を満たす、シリコン含有のシリケートMSiOを用いた方が好ましい。その理由は、high-k層と界面層との間の比誘電率の差を小さくすることによって、界面層への電界集中が緩和されるためと考えられる。尚、界面層もMSiOで表せるシリケートを含むことがあるが、このシリケートにおけるY/(X+Y)は0.90以上であって、組成的にはSiOとほぼ同等である。 Further, as shown in FIG. 1, in a gate insulating film having a structure where the ratio T1 / (T1 + T2) is 0.0 to 0.2, the high-k layer has a relative dielectric constant ε2 of 8.0 to 12.2. As the value increases to 0, the length of the reliability life increases, and in the range of ε2 from 12.0 to 18.0, the length of the reliability life is almost saturated and shows the maximum value. On the other hand, when ε2 increases from 18.0 to 24.0, the length of the reliability life decreases. Incidentally, in general, the value of the relative dielectric constant ε2 in the high-k layer changes in the thickness direction. Therefore, when the average value of the dielectric constant .epsilon.2 in high-k layer and .epsilon.2 av is, .epsilon.2 av is preferably at and 18.0 or less at 12.0 or higher. When a silicate film containing one metal, silicon, and oxygen is used as the high-k layer, the composition of the high-k layer is M X Si Y O (where M represents one metal and X> 0 , Y> 0), the aforementioned condition of 12.0 ≦ ε2 av ≦ 18.0 is equivalent to the condition of 0.20 ≦ Y / (X + Y) ≦ 0.30. That is, from the viewpoint of the reliability of the high-k gate insulating film, 0.20 ≦ Y / (X + Y) ≦ 0.30 rather than using a complete metal oxide containing no silicon as the material of the high-k layer. It is preferable to use a silicon-containing silicate M X Si Y O that satisfies the above relationship. The reason is considered to be that the electric field concentration on the interface layer is reduced by reducing the difference in relative dielectric constant between the high-k layer and the interface layer. The interface layer may also contain a silicate that can be expressed as M X Si Y O, but Y / (X + Y) in this silicate is 0.90 or more, and is compositionally equivalent to SiO 2 .

さらに、本願発明者は、high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k層の物理的厚さ)に対する比との相関を実験により調べてみた。その結果を図2に示す。尚、実験に用いた界面層は、組成がSiOに近いSiON膜(比誘電率ε1=3.9)であり、実験に用いたhigh-k層はCVD(chemical vapor deposition )法により形成されたSi膜(比誘電率ε2=7.5)である。また、実験においては、high-kゲート絶縁膜のEOTが常に3.0nmを保つように各物理的厚さT1及びT2を調整しながら比T1/(T1+T2)を変化させていった場合における、印加電圧3.5Vのストレス下(温度は100℃)で絶縁破壊が生じるまでに絶縁膜に注入された総電荷量(絶縁破壊総電荷量Qbd)を測定した。ここで、絶縁破壊総電荷量Qbdの大きさがhigh-kゲート絶縁膜の信頼性寿命の長さと対応する。 Further, the inventor of the present application has determined the reliability lifetime of the high-k gate insulating film and the total thickness (T1 + T2) of the high-k gate insulating film having the interface layer thickness T1 (where T2 is the physicality of the high-k layer). The correlation with the ratio to the thickness was determined experimentally. The result is shown in FIG. The interface layer used in the experiment is a SiON film (relative permittivity ε1 = 3.9) having a composition close to that of SiO 2 , and the high-k layer used in the experiment is formed by a chemical vapor deposition (CVD) method. Si 3 N 4 film (relative permittivity ε2 = 7.5). In the experiment, the ratio T1 / (T1 + T2) was changed while adjusting the physical thicknesses T1 and T2 so that the EOT of the high-k gate insulating film always kept 3.0 nm. The total amount of electric charge (dielectric breakdown total charge Q bd ) injected into the insulating film until dielectric breakdown occurred under stress of an applied voltage of 3.5 V (temperature is 100 ° C.) was measured. Here, the magnitude of the total dielectric breakdown Q bd corresponds to the reliability lifetime of the high-k gate insulating film.

図2に示すように、比T1/(T1+T2)が0.2以下である場合、high-kゲート絶縁膜の信頼性を高く維持できる一方、該比が0.3を越えると信頼性が急激に劣化することが実験的に実証された。また、図2の縦軸に対数目盛りを用いていることを考慮すると、比T1/(T1+T2)を0.2以下に設定することは、high-kゲート絶縁膜の信頼性を飛躍的に向上させる効果を持っていることが分かる。   As shown in FIG. 2, when the ratio T1 / (T1 + T2) is 0.2 or less, the reliability of the high-k gate insulating film can be maintained high. On the other hand, when the ratio exceeds 0.3, the reliability increases rapidly. It was experimentally proved to deteriorate. In addition, considering that the logarithmic scale is used on the vertical axis in FIG. 2, setting the ratio T1 / (T1 + T2) to 0.2 or less dramatically improves the reliability of the high-k gate insulating film. It turns out that it has the effect to make it.

以上のように、図1及び図2に示す結果から、high-kゲート絶縁膜の信頼性の観点からは、界面層厚さT1の全体厚さ(T1+T2)に対する比を0.3以下にすることが必須であり、また、比T1/(T1+T2)を0.2以下にすることがより好ましい。   As described above, from the results shown in FIGS. 1 and 2, from the viewpoint of the reliability of the high-k gate insulating film, the ratio of the interface layer thickness T1 to the total thickness (T1 + T2) is set to 0.3 or less. It is essential that the ratio T1 / (T1 + T2) is 0.2 or less.

本発明は、以上の知見に基づきなされたものであって、具体的には、本発明に係る半導体装置は、半導体基板上に形成された高誘電率絶縁膜を有する半導体装置を前提とし、高誘電率絶縁膜は、半導体基板との界面に形成された界面層と、界面層の上に形成され、界面層よりも比誘電率が高い高誘電率層とを有し、界面層の厚さT1及び高誘電率層の厚さT2は、T1/(T1+T2)≦0.3の関係を満たす。   The present invention has been made based on the above knowledge. Specifically, the semiconductor device according to the present invention is premised on a semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate. The dielectric constant insulating film has an interface layer formed at the interface with the semiconductor substrate, and a high dielectric constant layer formed on the interface layer and having a higher relative dielectric constant than the interface layer, and the thickness of the interface layer T1 and the thickness T2 of the high dielectric constant layer satisfy the relationship of T1 / (T1 + T2) ≦ 0.3.

本発明の半導体装置によると、高誘電率絶縁膜における界面層厚さT1の全体厚さ(T1+T2)に対する比を0.3以下にするため、高誘電率絶縁膜に電圧が印加された場合にも界面層への電界集中を抑制できる。従って、このような高誘電率絶縁膜を用いることによって、長い信頼性寿命を持つhigh-kゲート絶縁膜を実現することができる。また、このとき、比誘電率の低い界面層が薄く且つ比誘電率の高い高誘電率層が厚いので、high-kゲート絶縁膜のEOTを小さくすることができる。   According to the semiconductor device of the present invention, when the ratio of the interface layer thickness T1 to the total thickness (T1 + T2) in the high dielectric constant insulating film is set to 0.3 or less, the voltage is applied to the high dielectric constant insulating film. Also, the electric field concentration on the interface layer can be suppressed. Therefore, a high-k gate insulating film having a long reliability life can be realized by using such a high dielectric constant insulating film. At this time, since the interface layer having a low relative dielectric constant is thin and the high dielectric constant layer having a high relative dielectric constant is thick, the EOT of the high-k gate insulating film can be reduced.

本発明の半導体装置において、T1及びT2は、T1/(T1+T2)≦0.2の関係を満たすことが好ましい。   In the semiconductor device of the present invention, T1 and T2 preferably satisfy the relationship of T1 / (T1 + T2) ≦ 0.2.

このようにすると、高誘電率絶縁膜の信頼性をより向上させることができる。   In this way, the reliability of the high dielectric constant insulating film can be further improved.

本発明の半導体装置において、界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共に高誘電率層の比誘電率ε2は7.0よりも大きく、高誘電率層における比誘電率ε2の平均値ε2avは12.0以上で且つ18.0以下であることが好ましい。 In the semiconductor device of the present invention, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric layer is larger than 7.0. the ratio average value .epsilon.2 av dielectric .epsilon.2 is preferably at and 18.0 or less at 12.0 or higher.

このようにすると、高誘電率層と界面層との間の比誘電率の差が所定の範囲内に制限されるため、電圧印加時の界面層への電界集中がより緩和され、高誘電率絶縁膜の信頼性をより向上させることができる。   In this way, since the difference in relative dielectric constant between the high dielectric constant layer and the interface layer is limited within a predetermined range, the electric field concentration on the interface layer during voltage application is further relaxed, and the high dielectric constant The reliability of the insulating film can be further improved.

本発明の半導体装置において、界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共に高誘電率層の比誘電率ε2は7.0よりも大きく、高誘電率層は、一の金属とシリコンと酸素とを含むシリケートよりなり、高誘電率層の組成をMSiO(但し、Mは一の金属を表し、X>0、Y>0である)としたときに、X及びYは、0.20≦Y/(X+Y)≦0.30の関係を満たすことが好ましい。 In the semiconductor device of the present invention, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric layer is larger than 7.0. , Which is composed of a silicate containing one metal, silicon, and oxygen, and the composition of the high dielectric constant layer is M X Si Y O (where M represents one metal and X> 0, Y> 0). In some cases, X and Y preferably satisfy the relationship of 0.20 ≦ Y / (X + Y) ≦ 0.30.

このようにすると、高誘電率層の材料としてシリコンを含まない完全な金属酸化物を用いた場合と比べて、高誘電率層と界面層との間の比誘電率の差が小さくなるため、電圧印加時の界面層への電界集中がより緩和され、その結果、高誘電率絶縁膜の信頼性をより向上させることができる。   In this way, the relative dielectric constant difference between the high dielectric constant layer and the interface layer is reduced compared to the case where a complete metal oxide not containing silicon is used as the material of the high dielectric constant layer. Electric field concentration on the interface layer during voltage application is further relaxed, and as a result, the reliability of the high dielectric constant insulating film can be further improved.

本発明の半導体装置において、高誘電率層は、ハフニウム又はジルコニウムとシリコンと酸素とを含むシリケートよりなることが好ましい。   In the semiconductor device of the present invention, the high dielectric constant layer is preferably made of silicate containing hafnium or zirconium, silicon, and oxygen.

このようにすると、長い信頼性寿命を持つhigh-kゲート絶縁膜を確実に実現することができる。   In this way, a high-k gate insulating film having a long reliability life can be reliably realized.

本発明によると、high-kゲート絶縁膜における界面層厚さT1の全体厚さ(T1+T2)に対する比を0.3以下にするため、ゲート電圧印加時における界面層への電界集中を抑制できるので、high-kゲート絶縁膜の信頼性寿命を向上させることができる。   According to the present invention, since the ratio of the interfacial layer thickness T1 in the high-k gate insulating film to the total thickness (T1 + T2) is 0.3 or less, electric field concentration on the interfacial layer when a gate voltage is applied can be suppressed. The reliability lifetime of the high-k gate insulating film can be improved.

以下、本発明の一実施形態に係る半導体装置及びその製造方法について図面を参照しながら説明する。   Hereinafter, a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.

図3(a)〜(e)は本実施形態に係る半導体装置の製造方法の各工程を示す断面図である。   3A to 3E are cross-sectional views showing respective steps of the semiconductor device manufacturing method according to the present embodiment.

図3(a)に示すように、例えばSi(100)基板11上に素子分離用絶縁膜12を形成し、それによってデバイス領域Rを規定する。 As shown in FIG. 3A, for example, an element isolation insulating film 12 is formed on a Si (100) substrate 11, thereby defining a device region RD .

次に、Si基板11に対して、標準RCA洗浄及び希釈HF洗浄を順次行なった後、例えばNHガス中でSi基板11に対して600〜700℃程度の熱処理を行なう。これにより、図3(b)に示すように、デバイス領域RのSi基板11上にシリコン窒化膜(Si膜)13が形成される。 Next, after the standard RCA cleaning and the diluted HF cleaning are sequentially performed on the Si substrate 11, for example, heat treatment is performed on the Si substrate 11 at about 600 to 700 ° C. in NH 3 gas. Thereby, as shown in FIG. 3B, a silicon nitride film (Si 3 N 4 film) 13 is formed on the Si substrate 11 in the device region RD .

次に、図3(c)に示すように、例えばCVD法を用いて、Si膜13の上にHfO膜14を形成する。具体的には、液体HfソースであるHf t-butoxide (C1636HfO)中にN等のキャリアガスを吹き込んでバブリングを行なう。これにより、液体Hfソースを気体状態にして該ソースガスをキャリアガスと共に反応炉内に導入し、500℃程度の温度下でRT−CVD(Rapid Thermal CVD )処理を使用してHfO膜14を形成する。このとき、HfO膜14の成長速度又は膜質の向上のために乾燥Oガスを反応炉内に導入する。このように形成されたHfO膜14に対して組成分析を行なったところ、Hfソース中にHf、O、C及びHが含まれているため、HfO膜14の内部に1〜2原子%程度以下の微量なC及びHが含有されていた。尚、反応炉内にはNガスも導入されるが、500℃程度の温度下ではNガスは非常に不活性であるため、Nガスの寄与は非常に小さい。 Next, as shown in FIG. 3C, the HfO 2 film 14 is formed on the Si 3 N 4 film 13 by using, for example, a CVD method. Specifically, bubbling is performed by blowing a carrier gas such as N 2 into Hft-butoxide (C 16 H 36 HfO 4 ), which is a liquid Hf source. As a result, the liquid Hf source is made into a gaseous state, the source gas is introduced into the reaction furnace together with the carrier gas, and the HfO 2 film 14 is formed using RT-CVD (Rapid Thermal CVD) processing at a temperature of about 500 ° C. Form. At this time, dry O 2 gas is introduced into the reaction furnace in order to improve the growth rate or film quality of the HfO 2 film 14. Was subjected to a composition analysis with respect to the HfO 2 film 14 thus formed, Hf in Hf source, O, because they contain C and H, the interior of the HfO 2 film 14 1-2 atomic% A trace amount of C and H of less than or equal to that was contained. Although N 2 gas is also introduced into the reactor, N 2 gas is very inert at a temperature of about 500 ° C., so the contribution of N 2 gas is very small.

次に、例えばNガス中で、HfO膜14に対して600〜800℃程度のPDA処理を30秒間程度行なう。これにより、Si基板11の酸化、HfO膜14からの水素の脱離、HfO膜14の緻密化及び微結晶化、並びに、Si基板11又はSi膜13とHfO膜14との間におけるSi及びHfの相互拡散等の反応が生じる。その結果、HfO膜14の堆積当初(図3(c)参照)における、Si基板11上にSi膜13が形成され且つSi膜13上にHfO膜14が形成された構造は、最終的に、図3(d)に示すように、Si基板11上に比誘電率の低い界面層15が形成され且つ界面層15上に比誘電率の高いhigh-k層16が形成された構造に変化する。ここで、界面層15はSiO又はSiOの組成に近いシリケートよりなり、high-k層16はHfO又はHfOの組成に近いシリケートよりなる。また、界面層15及びhigh-k層16にはそれぞれ微量のNが含まれる。 Next, a PDA treatment at about 600 to 800 ° C. is performed for about 30 seconds on the HfO 2 film 14 in N 2 gas, for example. Thus, oxidation of the Si substrate 11, desorption of hydrogen from the HfO 2 film 14, densification and crystallite of the HfO 2 film 14, and a Si substrate 11 or Si 3 N 4 film 13 and the HfO 2 film 14 Reaction such as interdiffusion of Si and Hf occurs between the two. As a result, in the initial deposition of the HfO 2 film 14 (see FIG. 3 (c)), the HfO 2 film 14 is formed on the Si 3 N 4 film 13 is formed and the Si 3 N 4 film 13 on the Si substrate 11 Finally, as shown in FIG. 3 (d), the interface layer 15 having a low relative dielectric constant is formed on the Si substrate 11 and the high-k layer 16 having a high relative dielectric constant is formed on the interface layer 15. Changes to the structure formed. Here, the interface layer 15 is made of silicate close to the composition of SiO 2 or SiO 2 , and the high-k layer 16 is made of silicate close to the composition of HfO 2 or HfO 2 . Further, the interface layer 15 and the high-k layer 16 each contain a small amount of N.

次に、図3(e)に示すように、界面層15とhigh-k層16との積層構造を有するhigh-kゲート絶縁膜の上に、例えばポリシリコンよりなるゲート電極17を形成する。具体的には、SiHを用いて540℃程度の蒸着温度でポリシリコン膜を形成した後、該ポリシリコン膜に対して例えば5×1015cmー2のドーズ量でPイオンを注入し、その後、イオン注入されたポリシリコン膜をパターン化することによりゲート電極17を形成する。これにより、nMOSFET構造が完成する。尚、ゲート電極17に注入された不純物に対する活性化アニールは、乾燥Nガス中における900℃、30秒間のRTP(Rapid Thermal Process )により行なった。 Next, as shown in FIG. 3E, a gate electrode 17 made of, for example, polysilicon is formed on the high-k gate insulating film having a laminated structure of the interface layer 15 and the high-k layer 16. Specifically, after forming a polysilicon film using SiH 4 at a deposition temperature of about 540 ° C., P ions are implanted into the polysilicon film at a dose of 5 × 10 15 cm −2, for example. Thereafter, the gate electrode 17 is formed by patterning the ion-implanted polysilicon film. Thereby, the nMOSFET structure is completed. The activation annealing for the impurity implanted into the gate electrode 17 was performed by RTP (Rapid Thermal Process) at 900 ° C. for 30 seconds in dry N 2 gas.

本実施形態の特徴は、例えばHfO膜14の形成前にSi基板11上にSi膜13を形成することにより、又は例えばHfO膜14に対するPDAの処理温度を低めに設定したり若しくは該PDAの処理時間を短めに設定すること等により、high-kゲート絶縁膜全体の厚さに対する界面層15の厚さの比を所定の範囲内に設定することである。具体的には、high-kゲート絶縁膜全体の厚さ、つまり界面層15の厚さT1とhigh-k層16の厚さT2との合計厚さ(T1+T2)に対する界面層15の厚さT1の比を0.3以下、より好ましくは0.2以下に設定することである。これにより、本実施形態においては、ゲート電圧印加時にも界面層15への電界集中を抑制できるので、長い信頼性寿命を持つhigh-kゲート絶縁膜を実現することができる。また、界面層15とhigh-k層16とが積層されてなるゲート絶縁膜を有するMOSキャパシタに対して、LCR(inductance - capacitance - resistance )メータを用いてCV(capacitance - voltage )測定を行ない、その測定結果に基づいて、ゲート電極の空乏化又は基板の量子化効果等を考慮して、シミュレーションプログラムによりゲート絶縁膜のEOTを算出したところ、十分に小さなEOTが得られた。すなわち、本実施形態においては、比誘電率の低い界面層15が薄く且つ比誘電率の高いhigh-k層16が厚いので、high-kゲート絶縁膜のEOTを小さくすることができる。 The feature of this embodiment is that, for example, the Si 3 N 4 film 13 is formed on the Si substrate 11 before the HfO 2 film 14 is formed, or the processing temperature of the PDA for the HfO 2 film 14 is set lower, for example. Alternatively, the ratio of the thickness of the interface layer 15 to the total thickness of the high-k gate insulating film is set within a predetermined range by setting the PDA processing time short. Specifically, the thickness T1 of the interface layer 15 with respect to the total thickness of the high-k gate insulating film, that is, the total thickness (T1 + T2) of the thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 Is set to 0.3 or less, more preferably 0.2 or less. Thereby, in this embodiment, since electric field concentration on the interface layer 15 can be suppressed even when a gate voltage is applied, a high-k gate insulating film having a long reliability life can be realized. Further, CV (capacitance-voltage) measurement is performed using a LCR (inductance-capacitance-resistance) meter for a MOS capacitor having a gate insulating film in which the interface layer 15 and the high-k layer 16 are laminated, When the EOT of the gate insulating film was calculated by a simulation program in consideration of the depletion of the gate electrode or the quantization effect of the substrate based on the measurement result, a sufficiently small EOT was obtained. That is, in the present embodiment, since the interface layer 15 having a low relative dielectric constant is thin and the high-k layer 16 having a high relative dielectric constant is thick, the EOT of the high-k gate insulating film can be reduced.

図4(a)は、本実施形態の半導体装置、つまりHfプレカーサーを用いて形成されたHfO誘電体をhigh-k材料とするゲート絶縁膜を備えたMOSFETの高分解能断面TEM(transmission electron microscope)像を示している。図4(a)に示すように、本実施形態の半導体装置におけるhigh-kゲート絶縁膜の全体厚さ(界面層15の厚さT1とhigh-k層16の厚さT2との合計(T1+T2))は3.0〜3.3nm程度である。また、界面層15の厚さT1は0.4〜0.5nm程度である。すなわち、high-kゲート絶縁膜全体の厚さに対する界面層15の厚さの比T1/(T1+T2)は0.12〜0.17程度であり、本発明で推奨する関係:T1/(T1+T2)≦0.3(より好ましくはT1/(T1+T2)≦0.2)を十分に満たしている。 FIG. 4A shows a high-resolution cross-sectional TEM (transmission electron microscope) of the semiconductor device of this embodiment, that is, a MOSFET provided with a gate insulating film using a HfO 2 dielectric formed by using an Hf precursor as a high-k material. ) Shows an image. As shown in FIG. 4A, the total thickness of the high-k gate insulating film in the semiconductor device of this embodiment (the sum of the thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 (T1 + T2 )) Is about 3.0 to 3.3 nm. Further, the thickness T1 of the interface layer 15 is about 0.4 to 0.5 nm. That is, the ratio T1 / (T1 + T2) of the thickness of the interface layer 15 to the total thickness of the high-k gate insulating film is about 0.12 to 0.17, and the relationship recommended in the present invention: T1 / (T1 + T2) ≦ 0.3 (more preferably T1 / (T1 + T2) ≦ 0.2) is sufficiently satisfied.

図4(b)は、比較例としての半導体装置、つまり本実施形態と同様の方法により形成されたHfO誘電体をhigh-k材料とするゲート絶縁膜を備えた他のMOSFETの高分解能断面TEM像を示している。図4(b)に示すように、比較例の半導体装置においては、図4(a)に示す本実施形態のMOSキャパシタ構造と対応するように、Si基板21上に、界面層25とhigh-k層26との積層構造からなるゲート絶縁膜を介して、Poly−Siよりなるゲート電極27が形成されている。また、比較例の半導体装置においては、high-kゲート絶縁膜の全体厚さ(界面層25の厚さT1’とhigh-k層26の厚さT2’との合計(T1’+T2’))は3.0〜3.3nm程度である。また、界面層25の厚さT1’は1.0nm程度である。すなわち、high-kゲート絶縁膜全体の厚さに対する界面層25の厚さの比T1’/(T1’+T2’)は0.30〜0.33程度であり、前述の本発明で推奨する関係を満たしていない。 FIG. 4B shows a high-resolution cross section of a semiconductor device as a comparative example, that is, another MOSFET provided with a gate insulating film made of a HfO 2 dielectric made of the same method as that of the present embodiment and using a high-k material. A TEM image is shown. As shown in FIG. 4B, in the semiconductor device of the comparative example, the interface layer 25 and the high-layer are formed on the Si substrate 21 so as to correspond to the MOS capacitor structure of this embodiment shown in FIG. A gate electrode 27 made of Poly-Si is formed through a gate insulating film having a laminated structure with the k layer 26. In the semiconductor device of the comparative example, the total thickness of the high-k gate insulating film (the total of the thickness T1 ′ of the interface layer 25 and the thickness T2 ′ of the high-k layer 26 (T1 ′ + T2 ′)) Is about 3.0 to 3.3 nm. Further, the thickness T1 ′ of the interface layer 25 is about 1.0 nm. That is, the ratio T1 ′ / (T1 ′ + T2 ′) of the thickness of the interface layer 25 to the total thickness of the high-k gate insulating film is about 0.30 to 0.33, and the relationship recommended in the present invention described above. Does not meet.

図4(a)に示す本実施形態のMOSキャパシタ構造、及び、図4(b)に示す比較例のMOSキャパシタ構造のそれぞれについて、ゲート面積を5000μmとして、印加電圧3.0V(ゲート電極側が低電位)のストレス下(温度は室温)でのゲート絶縁膜の信頼性寿命を算出した。その結果、界面層の相対厚さが小さい本実施形態のゲート絶縁膜の信頼性寿命は1×10秒程度であり、界面層の相対厚さが大きい比較例のゲート絶縁膜の信頼性寿命は1×10秒程度であった。すなわち、high-kゲート絶縁膜全体の厚さに対する界面層の厚さの比T1/(T1+T2)が0.2以下であると、high-kゲート絶縁膜の信頼性寿命が劇的に向上する。これは、Si基板表面に形成される低誘電率の界面層を薄くできると、該界面層に集中する強い電界強度に起因して信頼性劣化が生じる事態を回避できるためと考えられる。 For each of the MOS capacitor structure of the present embodiment shown in FIG. 4A and the comparative example of the MOS capacitor structure shown in FIG. 4B, the gate area is 5000 μm 2 and the applied voltage is 3.0 V (the gate electrode side is The reliability lifetime of the gate insulating film under a low potential stress (temperature is room temperature) was calculated. As a result, the reliability life of the gate insulating film of this embodiment having a small relative thickness of the interface layer is about 1 × 10 4 seconds, and the reliability life of the gate insulating film of the comparative example having a large relative thickness of the interface layer. Was about 1 × 10 2 seconds. That is, when the ratio T1 / (T1 + T2) of the interface layer thickness to the total thickness of the high-k gate insulating film is 0.2 or less, the reliability life of the high-k gate insulating film is dramatically improved. . This is presumably because if the low dielectric constant interface layer formed on the surface of the Si substrate can be made thin, it is possible to avoid the occurrence of reliability degradation due to the strong electric field strength concentrated on the interface layer.

ところで、図4(a)及び(b)に示すように、high-kゲート絶縁膜の高分解能断面TEM像においては、界面層の像はhigh-k層の像と比べて明らかに白くなる。ここで、high-kゲート絶縁膜の組成をHfSiO(但しX>0、Y>0)とすると、Y/(X+Y)=0.90が界面層とhigh-k層との境界に対応する。尚、high-kゲート絶縁膜の組成は、Si基板側から次第にSi組成が減少するように、言い換えると、Y/(X+Y)の値が1.0から次第に減少するように変化する。すなわち、0.90≦Y/(X+Y)≦1.0の関係を満たす範囲が界面層であり、Y/(X+Y)<0.90の関係を満たす範囲がhigh-k層である。このとき、界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共にhigh-k層の比誘電率ε2は7.0よりも大きい。 Incidentally, as shown in FIGS. 4A and 4B, in the high-resolution cross-sectional TEM image of the high-k gate insulating film, the image of the interface layer is clearly white compared to the image of the high-k layer. Here, when the composition of the high-k gate insulating film is Hf X Si Y O (where X> 0, Y> 0), Y / (X + Y) = 0.90 is the boundary between the interface layer and the high-k layer. Corresponding to Note that the composition of the high-k gate insulating film changes so that the Si composition gradually decreases from the Si substrate side, in other words, the value of Y / (X + Y) gradually decreases from 1.0. That is, the range satisfying the relationship of 0.90 ≦ Y / (X + Y) ≦ 1.0 is the interface layer, and the range satisfying the relationship of Y / (X + Y) <0.90 is the high-k layer. At this time, the relative dielectric constant ε1 of the interface layer is not less than 3.9 and not more than 7.0, and the relative dielectric constant ε2 of the high-k layer is larger than 7.0.

尚、本実施形態において、Si基板11上にSi膜13を介してHfO膜14を形成した後、HfO膜14に対してPDA処理を行ない、それにより、界面層15とhigh-k層16との積層構造を有するhigh-kゲート絶縁膜を形成したが、このとき、窒素原子がゲート絶縁膜のいずれかの部分(基板近傍、電極近傍、膜中央部等)に含まれていてもよい。また、PDA処理条件は特に限定されるものではないが、PDA処理温度は800℃程度以下であり、PDA処理温度は30秒程度以下であることが好ましい。 In the present embodiment, after forming the HfO 2 film 14 via the Si 3 N 4 film 13 on the Si substrate 11, performs PDA processing on the HfO 2 film 14, whereby the interfacial layer 15 high A high-k gate insulating film having a laminated structure with the -k layer 16 is formed, but at this time, nitrogen atoms are included in any part of the gate insulating film (the vicinity of the substrate, the vicinity of the electrode, the center of the film, etc.) It may be. PDA processing conditions are not particularly limited, but the PDA processing temperature is preferably about 800 ° C. or lower, and the PDA processing temperature is preferably about 30 seconds or lower.

また、本実施形態において、液体HfソースであるHf t-butoxide を用いてHfO膜14を形成したが、HfO膜14の形成方法は特に限定されるものではない。具体的には、例えば固体原料であるHf nitrato(Hf(NO)を加熱して液体状態にすると共に該液状の原料中にAr等のキャリアガスを吹き込んでバブリングを行なった後、気化した原料をキャリアガスと共に、基板ヒーターとコールドウォールとを有するCVD装置の反応炉内に導入し、その後、200℃程度の温度下でRT−CVD処理を使用してHfO膜14を形成してもよい。このとき、HfO膜14の成長速度又は膜質の向上のために乾燥Oガスを反応炉内に導入する。このように形成されたHfO膜14に対して組成分析を行なった場合、Hfソース中にHf、O、及びNが含まれているため、HfO膜14の内部に1〜2原子%程度以下の微量なNが含有される。尚、反応炉内にはArガスも導入されるが、200℃程度の温度下ではArガスは非常に不活性であるため、Arガスの寄与は非常に小さい。 In the present embodiment, the HfO 2 film 14 is formed using Hft-butoxide, which is a liquid Hf source, but the method for forming the HfO 2 film 14 is not particularly limited. Specifically, for example, Hf nitrato (Hf (NO 3 ) 4 ), which is a solid raw material, is heated to a liquid state, and a carrier gas such as Ar is blown into the liquid raw material, and then vaporization is performed. The raw material is introduced into a reaction furnace of a CVD apparatus having a substrate heater and a cold wall together with a carrier gas, and then an HfO 2 film 14 is formed using RT-CVD at a temperature of about 200 ° C. Also good. At this time, dry O 2 gas is introduced into the reaction furnace in order to improve the growth rate or film quality of the HfO 2 film 14. Case of performing composition analysis with respect to the HfO 2 film 14 thus formed, because it contains Hf, O, and N is in the Hf source, internal to about 1-2 atomic percent of the HfO 2 film 14 The following trace amounts of N are contained. Ar gas is also introduced into the reactor, but Ar gas is very inactive at a temperature of about 200 ° C., so the contribution of Ar gas is very small.

また、本実施形態において、high-kゲート絶縁膜(つまりその中のhigh-k層16)の材料としてHfOを用いた。しかし、これに代えて、他の金属酸化物、具体的には、Hfと同様の性質を持つZrの酸化物(ZrO)、TiO、Ta、La又はAl等を用いた場合にも、界面層15の厚さT1及びhigh-k層16の厚さT2がT1/(T1+T2)≦0.3の関係(より好ましくはT1/(T1+T2)≦0.2の関係)を満たす限り、high-kゲート絶縁膜の信頼性寿命について本実施形態と同様の劇的な向上効果が生じる。特に、界面層の比誘電率ε1が3.9以上で且つ7.0以下であると共にhigh-k層16の比誘電率ε2が7.0よりも大きく、さらに、high-k層16における比誘電率ε2の平均値ε2avが12.0以上で且つ18.0以下である場合には、次のような特別な効果が得られる。すなわち、high-k層16と界面層15との間の比誘電率の差が所定の範囲内に制限されるため、電圧印加時の界面層15への電界集中がより緩和され、high-kゲート絶縁膜の信頼性をより向上させることができる。 In the present embodiment, HfO 2 is used as a material for the high-k gate insulating film (that is, the high-k layer 16 therein). However, instead of this, other metal oxides, specifically, Zr oxide (ZrO 2 ), TiO 2 , Ta 2 O 5 , La 2 O 3 or Al 2 O having the same properties as Hf are used. 3 or the like, the relationship between the thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 is T1 / (T1 + T2) ≦ 0.3 (more preferably T1 / (T1 + T2) ≦ 0. As long as the relationship (2) is satisfied, a dramatic improvement effect similar to that of the present embodiment occurs in the reliability lifetime of the high-k gate insulating film. In particular, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high-k layer 16 is larger than 7.0. If the average value .epsilon.2 av dielectric .epsilon.2 is and 18.0 or less at 12.0 or more, special effects such as the following are obtained. That is, since the relative dielectric constant difference between the high-k layer 16 and the interface layer 15 is limited within a predetermined range, the electric field concentration on the interface layer 15 during voltage application is further relaxed, and the high-k layer The reliability of the gate insulating film can be further improved.

また、本実施形態において、high-kゲート絶縁膜(つまりその中のhigh-k層16)の材料として、組成がMSiO(但しMは一の金属を表し、X>0、Y>0である)で表される金属シリケート(金属、シリコン及び酸素以外の元素を含んでいてもよい)、例えばHfシリケート(HfSi)又はZrシリケート(ZrSi)等を用いた場合にも、比T1/(T1+T2)≦0.3の関係(好ましくはT1/(T1+T2)≦0.2の関係)を満たす限り、high-kゲート絶縁膜の信頼性寿命について本実施形態と同様の劇的な向上効果が生じる。特に、界面層の比誘電率ε1が3.9以上で且つ7.0以下であると共にhigh-k層16の比誘電率ε2が7.0よりも大きく、さらに、high-k層16が0.20≦Y/(X+Y)≦0.30の関係を満たす金属シリケートMSiOである場合には、次のような特別な効果が得られる。すなわち、シリコンを含まない完全な金属酸化物を用いた場合と比べて、high-k層16と界面層15との間の比誘電率の差が小さくなるため、電圧印加時の界面層15への電界集中がより緩和され、その結果、high-kゲート絶縁膜の信頼性をより向上させることができる。 In the present embodiment, as a material of the high-k gate insulating film (that is, the high-k layer 16 therein), the composition is M X Si Y O (where M represents one metal, X> 0, Y > 0)) (which may contain elements other than metal, silicon and oxygen), such as Hf silicate (Hf X Si Y O 2 ) or Zr silicate (Zr X Si Y O 2 ) As long as the relationship of the ratio T1 / (T1 + T2) ≦ 0.3 (preferably the relationship of T1 / (T1 + T2) ≦ 0.2) is satisfied, the reliability lifetime of the high-k gate insulating film is The dramatic improvement effect similar to this embodiment is produced. In particular, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, the relative dielectric constant ε2 of the high-k layer 16 is larger than 7.0, and the high-k layer 16 is 0. In the case of the metal silicate M X Si Y O satisfying the relationship of 20 ≦ Y / (X + Y) ≦ 0.30, the following special effects can be obtained. That is, the relative dielectric constant difference between the high-k layer 16 and the interface layer 15 is smaller than when a complete metal oxide not containing silicon is used. As a result, the reliability of the high-k gate insulating film can be further improved.

ところで、本実施形態のHfO膜14に代えて例えばHfシリケート膜を形成する場合、次のような方法を用いることができる。すなわち、液体HfソースであるHf t-butoxide (C1636HfO)及びSiソースであるTDEAS(Tetrakis Diethyl Amino Silicon:Si[N(CH)])を気化して、キャリアガスであるNガスと共に反応炉内に導入した後、300〜500℃程度の温度下でCVD処理を行なうことにより、Hfシリケート膜を形成できる。このとき、HfソースとSiソースとの混合比、又はCVD処理の温度を調節することによって、Hfシリケート膜の組成を変化させることができる。また、Hfシリケート膜の成長速度又は膜質の向上のために、乾燥Oガスを反応炉内に導入してもよい。 By the way, when forming an Hf silicate film, for example, instead of the HfO 2 film 14 of the present embodiment, the following method can be used. That is, Hft-butoxide (C 16 H 36 HfO 4 ) which is a liquid Hf source and TDEAS (Tetrakis Diethyl Amino Silicon: Si [N (C 2 H 5 ) 2 ] 4 ) which is a Si source are vaporized, and the carrier An Hf silicate film can be formed by introducing the N 2 gas, which is a gas, into the reaction furnace and then performing a CVD process at a temperature of about 300 to 500 ° C. At this time, the composition of the Hf silicate film can be changed by adjusting the mixing ratio of the Hf source and the Si source or the temperature of the CVD process. Further, in order to improve the growth rate or film quality of the Hf silicate film, dry O 2 gas may be introduced into the reaction furnace.

また、本実施形態において、基板としてSi基板11を用いたが、これに代えて、他の半導体基板、例えばSiGe基板又はSiC基板等を用いてもよい。   In the present embodiment, the Si substrate 11 is used as the substrate, but instead of this, another semiconductor substrate such as a SiGe substrate or a SiC substrate may be used.

また、本実施形態において、ゲート電極17としてPoly−Siゲート電極を用いたが、これに代えて、メタルゲート電極を用いてもよい。具体的には、例えばArスパッタによるPVD(physical vapor deposition )法を用いて、TiN膜とAl膜との積層構造、又はTaN膜の単層構造を有するメタルゲート電極を形成してもよい。   In the present embodiment, a Poly-Si gate electrode is used as the gate electrode 17, but a metal gate electrode may be used instead. Specifically, a metal gate electrode having a laminated structure of a TiN film and an Al film or a single layer structure of a TaN film may be formed by using, for example, PVD (physical vapor deposition) by Ar sputtering.

本発明を高誘電体からなるゲート絶縁膜を有する半導体装置に適用した場合、非常に有用である。   The present invention is very useful when applied to a semiconductor device having a gate insulating film made of a high dielectric material.

high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k層の物理的厚さ)に対する比との相関をシミュレーションを用いて調べた結果を示す図である。The reliability lifetime of the high-k gate insulating film and the ratio of the interface layer thickness T1 to the total thickness of the high-k gate insulating film (T1 + T2) (where T2 is the physical thickness of the high-k layer) It is a figure which shows the result of having investigated the correlation of these using simulation. high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k層の物理的厚さ)に対する比との相関を実験により調べた結果を示す図である。The reliability lifetime of the high-k gate insulating film and the ratio of the interface layer thickness T1 to the total thickness of the high-k gate insulating film (T1 + T2) (where T2 is the physical thickness of the high-k layer) It is a figure which shows the result of having investigated this correlation by experiment. (a)〜(e)は本発明の一実施形態に係る半導体装置の製造方法の各工程を示す断面図である。(A)-(e) is sectional drawing which shows each process of the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. (a)は本発明の一実施形態に係る半導体装置の高分解能断面TEM像を示す図であり、(b)は比較例に係る半導体装置の高分解能断面TEM像を示す図である。(A) is a figure which shows the high-resolution cross-sectional TEM image of the semiconductor device which concerns on one Embodiment of this invention, (b) is a figure which shows the high-resolution cross-sectional TEM image of the semiconductor device which concerns on a comparative example. 従来の半導体装置の断面図である。It is sectional drawing of the conventional semiconductor device.

符号の説明Explanation of symbols

11 Si基板
12 素子分離用絶縁膜
13 Si
14 HfO
15 界面層
16 high-k層
17 ゲート電極
21 Si基板
25 界面層
26 high-k層
27 ゲート電極
デバイス領域
DESCRIPTION OF SYMBOLS 11 Si substrate 12 Element isolation insulating film 13 Si 3 N 4 film 14 HfO 2 film 15 Interface layer 16 high-k layer 17 Gate electrode 21 Si substrate 25 Interface layer 26 high-k layer 27 Gate electrode RD device region

Claims (37)

半導体基板上に形成された高誘電率絶縁膜を有する半導体装置であって、
前記高誘電率絶縁膜は、
前記半導体基板との界面に形成された界面層と、
前記界面層の上に形成され、前記界面層よりも比誘電率が高い高誘電率層とを有し、
前記界面層の厚さT1及び前記高誘電率層の厚さT2は、
T1/(T1+T2)≦0.3の関係を満たし、
前記高誘電率層は、第1の金属と窒素とを含むことを特徴とする半導体装置。
A semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate,
The high dielectric constant insulating film is
An interface layer formed at the interface with the semiconductor substrate;
A high dielectric constant layer formed on the interface layer and having a higher dielectric constant than the interface layer;
The interface layer thickness T1 and the high dielectric constant layer thickness T2 are:
Satisfies the relationship of T1 / (T1 + T2) ≦ 0.3,
The semiconductor device, wherein the high dielectric constant layer includes a first metal and nitrogen.
半導体基板上に形成された高誘電率絶縁膜を有する半導体装置であって、
前記高誘電率絶縁膜は、
前記半導体基板との界面に形成された界面層と、
前記界面層の上に形成され、前記界面層よりも比誘電率が高い高誘電率層とを有し、
前記界面層の厚さT1及び前記高誘電率層の厚さT2は、
T1/(T1+T2)≦0.3の関係を満たし、
前記高誘電率層は、Hf、Zr若しくはその他の第1の金属のいずれかと、炭素及び水素とを含み、
前記高誘電率層のSiO2 換算膜厚は3.0nm以下であることを特徴とする半導体装置。
A semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate,
The high dielectric constant insulating film is
An interface layer formed at the interface with the semiconductor substrate;
A high dielectric constant layer formed on the interface layer and having a higher dielectric constant than the interface layer;
The interface layer thickness T1 and the high dielectric constant layer thickness T2 are:
Satisfies the relationship of T1 / (T1 + T2) ≦ 0.3,
The high dielectric constant layer includes any one of Hf, Zr, or other first metal, and carbon and hydrogen,
The high dielectric constant layer has a SiO 2 equivalent film thickness of 3.0 nm or less.
前記界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共に前記高誘電率層の比誘電率ε2は7.0よりも大きいことを特徴とする請求項1又は2に記載の半導体装置。   The relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric layer is larger than 7.0. The semiconductor device described. 前記高誘電率層の比誘電率ε2は7.0より大きく且つ18.0以下であることを特徴とする請求項3に記載の半導体装置。   4. The semiconductor device according to claim 3, wherein a relative dielectric constant ε2 of the high dielectric constant layer is greater than 7.0 and 18.0 or less. 前記高誘電率層の比誘電率ε2は12.0以上で且つ18.0以下であることを特徴とする請求項4に記載の半導体装置。   5. The semiconductor device according to claim 4, wherein a relative dielectric constant ε <b> 2 of the high dielectric constant layer is 12.0 or more and 18.0 or less. 前記高誘電率層は前記第1の金属の酸化物を含むことを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the high dielectric constant layer includes an oxide of the first metal. 前記高誘電率層は、シリコンと酸素とをさらに含むシリケートであることを特徴とする請求項1〜6のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the high dielectric constant layer is a silicate further including silicon and oxygen. 前記高誘電率層の組成をMX SiY O(Mは前記第1の金属、X>0、Y>0)としたときに、X及びYは、0.20≦Y/(X+Y)≦0.30の関係を満たすことを特徴とする請求項7に記載の半導体装置。 When the composition of the high dielectric constant layer is M X Si Y O (M is the first metal, X> 0, Y> 0), X and Y are 0.20 ≦ Y / (X + Y) ≦ The semiconductor device according to claim 7, wherein a relationship of 0.30 is satisfied. 前記第1の金属はHf又はZrであることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first metal is Hf or Zr. 前記第1の金属は、Ti、Ta、La又はAlであることを特徴とする請求項1〜8のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first metal is Ti, Ta, La, or Al. 前記高誘電率層は窒素を含むことを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the high dielectric constant layer contains nitrogen. 前記高誘電率層の窒素濃度は原子数比で4/7以下であることを特徴とする請求項1又は11に記載の半導体装置。   The semiconductor device according to claim 1, wherein the high dielectric constant layer has a nitrogen concentration of 4/7 or less in terms of an atomic ratio. 前記高誘電率層の窒素濃度は2原子%以下であることを特徴とする請求項12に記載の半導体装置。   The semiconductor device according to claim 12, wherein the high dielectric constant layer has a nitrogen concentration of 2 atomic% or less. 前記高誘電率層の上面近傍の窒素濃度は、前記高誘電率層の下面近傍の窒素濃度よりも高いことを特徴とする請求項1又は11に記載の半導体装置。   The semiconductor device according to claim 1, wherein a nitrogen concentration in the vicinity of the upper surface of the high dielectric constant layer is higher than a nitrogen concentration in the vicinity of the lower surface of the high dielectric constant layer. T1及びT2は、
T1/(T1+T2)≦0.2の関係を満たすことを特徴とする請求項1〜14のいずれか1項に記載の半導体装置。
T1 and T2 are
The semiconductor device according to claim 1, wherein a relationship of T1 / (T1 + T2) ≦ 0.2 is satisfied.
前記界面層は窒素を含むことを特徴とする請求項1〜15のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the interface layer contains nitrogen. 前記界面層の窒素濃度は原子数比で4/7以下であることを特徴とする請求項16に記載の半導体装置。   The semiconductor device according to claim 16, wherein the nitrogen concentration in the interface layer is 4/7 or less in terms of atomic ratio. 前記高誘電率層は炭素及び水素を含むことを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the high dielectric constant layer contains carbon and hydrogen. 前記高誘電率層における炭素及び水素のそれぞれの濃度は2原子%以下であることを特徴とする請求項2又は18に記載の半導体装置。   19. The semiconductor device according to claim 2, wherein the concentration of carbon and hydrogen in the high dielectric constant layer is 2 atomic% or less. 前記高誘電率層のSiO2 換算膜厚は3.0nm程度であることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the high dielectric constant layer has a SiO 2 equivalent film thickness of about 3.0 nm. 前記高誘電率層のSiO2 換算膜厚は3.0nm以下であることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the high dielectric constant layer has a SiO 2 equivalent film thickness of 3.0 nm or less. 前記高誘電率層のSiO2 換算膜厚は1.5nm以上で且つ3.0nm以下であることを特徴とする請求項2又は21に記載の半導体装置。 The semiconductor device according to claim 2 or 21, wherein the high dielectric constant layer has a SiO 2 equivalent film thickness of 1.5 nm or more and 3.0 nm or less. 前記高誘電率層のSiO2 換算膜厚は1.5nm程度であることを特徴とする請求項2又は21に記載の半導体装置。 The semiconductor device according to claim 2 or 21, wherein the high dielectric constant layer has a SiO 2 equivalent film thickness of about 1.5 nm. 前記高誘電率層のSiO2 換算膜厚は1.5nm未満であることを特徴とする請求項2又は21に記載の半導体装置。 The semiconductor device according to claim 2, wherein the high dielectric constant layer has a SiO 2 equivalent film thickness of less than 1.5 nm. 前記高誘電率絶縁膜の厚さは3.3nm以下であることを特徴とする請求項1〜24のいずれか1項に記載の半導体装置。   25. The semiconductor device according to claim 1, wherein the high dielectric constant insulating film has a thickness of 3.3 nm or less. 前記高誘電率絶縁膜の厚さは3.0nm以上で且つ3.3nm以下であることを特徴とする請求項25に記載の半導体装置。   26. The semiconductor device according to claim 25, wherein a thickness of the high dielectric constant insulating film is not less than 3.0 nm and not more than 3.3 nm. 前記高誘電率絶縁膜の厚さは3.0nm以下であることを特徴とする請求項25に記載の半導体装置。   26. The semiconductor device according to claim 25, wherein a thickness of the high dielectric constant insulating film is 3.0 nm or less. 前記高誘電率絶縁膜の上にポリシリコンを含むゲート電極をさらに備えていることを特徴とする請求項1〜27のいずれか1項に記載の半導体装置。   28. The semiconductor device according to claim 1, further comprising a gate electrode containing polysilicon on the high dielectric constant insulating film. 前記高誘電率絶縁膜の上にメタルゲート電極をさらに備えていることを特徴とする請求項1〜27のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, further comprising a metal gate electrode on the high dielectric constant insulating film. 前記メタルゲート電極はTi、Al又はTaの少なくとも1つを含むことを特徴とする請求項29に記載の半導体装置。   30. The semiconductor device according to claim 29, wherein the metal gate electrode includes at least one of Ti, Al, or Ta. 前記メタルゲート電極はTiNを含むことを特徴とする請求項29に記載の半導体装置。   30. The semiconductor device according to claim 29, wherein the metal gate electrode includes TiN. 前記メタルゲート電極はTaNを含むことを特徴とする請求項29に記載の半導体装置。   30. The semiconductor device according to claim 29, wherein the metal gate electrode contains TaN. 前記半導体基板はSi基板であることを特徴とする請求項1〜32のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor substrate is a Si substrate. 前記半導体基板はSiC基板であることを特徴とする請求項1〜32のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor substrate is a SiC substrate. 前記半導体基板はGeを含むことを特徴とする請求項1〜32のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor substrate contains Ge. 前記半導体基板はSiGe基板であることを特徴とする請求項35に記載の半導体装置。   36. The semiconductor device according to claim 35, wherein the semiconductor substrate is a SiGe substrate. 前記高誘電率層は、結晶化した部分と結晶粒界とを有することを特徴とする請求項1〜36のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the high dielectric constant layer has a crystallized portion and a crystal grain boundary.
JP2007045149A 2001-06-21 2007-02-26 Semiconductor device Expired - Fee Related JP4713518B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29947801P 2001-06-21 2001-06-21
US60/299,478 2001-06-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002163983A Division JP4047075B2 (en) 2001-06-21 2002-06-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2007194652A true JP2007194652A (en) 2007-08-02
JP4713518B2 JP4713518B2 (en) 2011-06-29

Family

ID=23154975

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2001395734A Expired - Lifetime JP3773448B2 (en) 2001-06-21 2001-12-27 Semiconductor device
JP2002015066A Expired - Lifetime JP4165076B2 (en) 2001-06-21 2002-01-24 Semiconductor device having high dielectric constant insulating film
JP2002163983A Expired - Lifetime JP4047075B2 (en) 2001-06-21 2002-06-05 Semiconductor device
JP2006001334A Expired - Lifetime JP4712560B2 (en) 2001-06-21 2006-01-06 Manufacturing method of semiconductor device
JP2007045149A Expired - Fee Related JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device
JP2007271175A Pending JP2008078675A (en) 2001-06-21 2007-10-18 Semiconductor device having high permittivity insulating film
JP2010198973A Pending JP2011018926A (en) 2001-06-21 2010-09-06 Semiconductor device manufacturing method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2001395734A Expired - Lifetime JP3773448B2 (en) 2001-06-21 2001-12-27 Semiconductor device
JP2002015066A Expired - Lifetime JP4165076B2 (en) 2001-06-21 2002-01-24 Semiconductor device having high dielectric constant insulating film
JP2002163983A Expired - Lifetime JP4047075B2 (en) 2001-06-21 2002-06-05 Semiconductor device
JP2006001334A Expired - Lifetime JP4712560B2 (en) 2001-06-21 2006-01-06 Manufacturing method of semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2007271175A Pending JP2008078675A (en) 2001-06-21 2007-10-18 Semiconductor device having high permittivity insulating film
JP2010198973A Pending JP2011018926A (en) 2001-06-21 2010-09-06 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (7) JP3773448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032948A (en) * 2004-07-10 2006-02-02 Samsung Electronics Co Ltd Method of forming composite dielectric film and method of manufacturing semiconductor device using said composite dielectric film
US9362487B2 (en) 2012-09-10 2016-06-07 Kabushiki Kaisha Toshiba Ferroelectric memory and manufacturing method of the same
JP2017022388A (en) * 2011-06-27 2017-01-26 クリー インコーポレイテッドCree Inc. Wet chemistry process for manufacturing semiconductor device with increased channel mobility
WO2017077780A1 (en) * 2015-11-06 2017-05-11 株式会社デンソー Silicon carbide semiconductor device

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773448B2 (en) * 2001-06-21 2006-05-10 松下電器産業株式会社 Semiconductor device
JP3688631B2 (en) * 2001-11-22 2005-08-31 株式会社東芝 Manufacturing method of semiconductor device
JP4090346B2 (en) * 2002-02-28 2008-05-28 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP4643884B2 (en) 2002-06-27 2011-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
AU2003281112A1 (en) 2002-07-16 2004-02-02 Nec Corporation Semiconductor device, production method and production device thereof
JPWO2004073072A1 (en) * 2003-02-17 2006-06-01 独立行政法人産業技術総合研究所 MIS type semiconductor device and method for manufacturing MIS type semiconductor device
WO2004082011A1 (en) * 2003-03-13 2004-09-23 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
CN100352017C (en) * 2003-03-17 2007-11-28 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device
JP4748927B2 (en) * 2003-03-25 2011-08-17 ローム株式会社 Semiconductor device
JP2004311782A (en) * 2003-04-08 2004-11-04 Tokyo Electron Ltd Method and device for forming film
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
JP4140768B2 (en) * 2003-04-24 2008-08-27 株式会社日立国際電気 Semiconductor raw materials
JP4499374B2 (en) * 2003-05-14 2010-07-07 富士通株式会社 Semiconductor device and manufacturing method thereof
JP4742867B2 (en) * 2003-05-29 2011-08-10 日本電気株式会社 Semiconductor device provided with MIS field effect transistor
JP2005079223A (en) 2003-08-29 2005-03-24 Toshiba Corp Semiconductor device and its manufacturing method
WO2005038929A1 (en) * 2003-10-15 2005-04-28 Nec Corporation Method for manufacturing semiconductor device
TW200526804A (en) 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium
US20050101147A1 (en) * 2003-11-08 2005-05-12 Advanced Micro Devices, Inc. Method for integrating a high-k gate dielectric in a transistor fabrication process
JP2005191482A (en) * 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc Semiconductor device and its manufacturing method
JP5235260B2 (en) * 2004-04-12 2013-07-10 三星電子株式会社 Method for manufacturing metal-insulator-metal capacitor with seed layer containing nitrogen
JP4919586B2 (en) 2004-06-14 2012-04-18 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
WO2006009025A1 (en) * 2004-07-20 2006-01-26 Nec Corporation Semiconductor device and semiconductor device manufacturing method
JPWO2006022175A1 (en) * 2004-08-23 2008-05-08 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP4966490B2 (en) * 2004-11-15 2012-07-04 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP4185057B2 (en) 2005-01-28 2008-11-19 富士通株式会社 Manufacturing method of semiconductor device
KR100702027B1 (en) * 2005-03-21 2007-03-30 후지쯔 가부시끼가이샤 Semiconductor device and method for manufacturing semiconductor device
JP2006269520A (en) * 2005-03-22 2006-10-05 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006319091A (en) * 2005-05-12 2006-11-24 Renesas Technology Corp Manufacturing method of semiconductor device
KR100644724B1 (en) * 2005-07-26 2006-11-14 삼성전자주식회사 Semiconductor device and method of manufacturing the same
JP2008010801A (en) * 2005-08-17 2008-01-17 Kobe Steel Ltd Source/drain electrode, thin-film transistor substrate and manufacture method thereof, and display device
US7655994B2 (en) * 2005-10-26 2010-02-02 International Business Machines Corporation Low threshold voltage semiconductor device with dual threshold voltage control means
US8053849B2 (en) * 2005-11-09 2011-11-08 Advanced Micro Devices, Inc. Replacement metal gate transistors with reduced gate oxide leakage
US7436034B2 (en) * 2005-12-19 2008-10-14 International Business Machines Corporation Metal oxynitride as a pFET material
JP2006140514A (en) * 2005-12-19 2006-06-01 Fujitsu Ltd Semiconductor device and its manufacturing method
JP4792132B2 (en) * 2009-02-27 2011-10-12 キヤノンアネルバ株式会社 Dielectric and semiconductor device manufacturing method, program, and recording medium
CN105097952B (en) 2009-12-25 2018-12-21 株式会社理光 Insulating film forms ink, insulation film manufacturing method and semiconductor making method
JP5149936B2 (en) * 2010-04-28 2013-02-20 パナソニック株式会社 SEMICONDUCTOR DEVICE HAVING FIELD EFFECT TRANSISTOR HAVING HIGH DIELECTRIC GATE INSULATION FILM AND METHOD FOR MANUFACTURING SAME
JP5816539B2 (en) 2011-12-05 2015-11-18 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
DE102012205977B4 (en) 2012-04-12 2017-08-17 Globalfoundries Inc. Semiconductor device with ferroelectric elements and fast transistors with metal gates with large ε and manufacturing method
JP2014187238A (en) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Mis semiconductor device manufacturing method
JP2015069989A (en) * 2013-09-26 2015-04-13 三菱電機株式会社 Method of manufacturing silicon carbide semiconductor device
JP6341077B2 (en) 2014-12-09 2018-06-13 豊田合成株式会社 Manufacturing method of semiconductor device
KR20220157302A (en) 2021-05-20 2022-11-29 캐논 가부시끼가이샤 Film, element, and equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286356A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH06291041A (en) * 1993-03-31 1994-10-18 Toshiba Corp Thin-film formation method and device
JP2001044140A (en) * 1996-12-23 2001-02-16 Lucent Technol Inc Integrated circuit
JP2001185548A (en) * 1999-12-22 2001-07-06 Fujitsu Ltd Semiconductor device and manufacturing method thereof
WO2002023614A1 (en) * 2000-09-18 2002-03-21 Tokyo Electron Limited Method for film formation of gate insulator, apparatus for film formation of gate insulator, and cluster tool
JP2003059926A (en) * 2001-06-21 2003-02-28 Matsushita Electric Ind Co Ltd Semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677402A (en) * 1992-07-02 1994-03-18 Natl Semiconductor Corp <Ns> Dielectric structure for semiconductor device and its manufacture
JPH07211902A (en) * 1994-01-19 1995-08-11 Sony Corp Mis type transistor and its manufacture
JP4160167B2 (en) * 1997-06-30 2008-10-01 株式会社東芝 Manufacturing method of semiconductor device
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
JP3523093B2 (en) * 1997-11-28 2004-04-26 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3357861B2 (en) * 1998-06-04 2002-12-16 株式会社東芝 MIS semiconductor device and nonvolatile semiconductor memory device
JP2000058832A (en) * 1998-07-15 2000-02-25 Texas Instr Inc <Ti> Oxyzirconium nitride and/or hafnium gate dielectrics
JP2000106432A (en) * 1998-09-29 2000-04-11 Nec Corp Manufacture of gate insulating film and semiconductor device using that
JP2000208508A (en) * 1999-01-13 2000-07-28 Texas Instr Inc <Ti> Vacuum deposition of high-dielectric material made of silicate
KR100768642B1 (en) * 1999-07-08 2007-10-18 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device and method for producing the same
US6337289B1 (en) * 1999-09-24 2002-01-08 Applied Materials. Inc Method and apparatus for integrating a metal nitride film in a semiconductor device
US6291319B1 (en) * 1999-12-17 2001-09-18 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
US6287897B1 (en) * 2000-02-29 2001-09-11 International Business Machines Corporation Gate dielectric with self forming diffusion barrier
JP2002134739A (en) * 2000-10-19 2002-05-10 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2002314072A (en) * 2001-04-19 2002-10-25 Nec Corp Semiconductor device with high dielectric thin film and manufacturing method therefor, and film-forming method for dielectric film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286356A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH06291041A (en) * 1993-03-31 1994-10-18 Toshiba Corp Thin-film formation method and device
JP2001044140A (en) * 1996-12-23 2001-02-16 Lucent Technol Inc Integrated circuit
JP2001185548A (en) * 1999-12-22 2001-07-06 Fujitsu Ltd Semiconductor device and manufacturing method thereof
WO2002023614A1 (en) * 2000-09-18 2002-03-21 Tokyo Electron Limited Method for film formation of gate insulator, apparatus for film formation of gate insulator, and cluster tool
JP2003059926A (en) * 2001-06-21 2003-02-28 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032948A (en) * 2004-07-10 2006-02-02 Samsung Electronics Co Ltd Method of forming composite dielectric film and method of manufacturing semiconductor device using said composite dielectric film
JP2017022388A (en) * 2011-06-27 2017-01-26 クリー インコーポレイテッドCree Inc. Wet chemistry process for manufacturing semiconductor device with increased channel mobility
US9362487B2 (en) 2012-09-10 2016-06-07 Kabushiki Kaisha Toshiba Ferroelectric memory and manufacturing method of the same
WO2017077780A1 (en) * 2015-11-06 2017-05-11 株式会社デンソー Silicon carbide semiconductor device
JP2017092191A (en) * 2015-11-06 2017-05-25 株式会社デンソー Silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP4713518B2 (en) 2011-06-29
JP2003008011A (en) 2003-01-10
JP2003008005A (en) 2003-01-10
JP4165076B2 (en) 2008-10-15
JP2008078675A (en) 2008-04-03
JP4712560B2 (en) 2011-06-29
JP3773448B2 (en) 2006-05-10
JP2011018926A (en) 2011-01-27
JP2003059926A (en) 2003-02-28
JP2006165589A (en) 2006-06-22
JP4047075B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4713518B2 (en) Semiconductor device
US6642131B2 (en) Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
US7473994B2 (en) Method of producing insulator thin film, insulator thin film, method of manufacturing semiconductor device, and semiconductor device
CN100367513C (en) Semiconductor device and its manufacturing method
JP5456150B2 (en) Semiconductor device and manufacturing method thereof
KR100687153B1 (en) Semiconductor device and manufacturing method thereof
KR20050025243A (en) Semiconductor apparatus
JP2006344837A (en) Semiconductor apparatus and manufacturing method thereof
US7397094B2 (en) Semiconductor device and manufacturing method thereof
EP1363333B1 (en) Semiconductor device
JP5050351B2 (en) Manufacturing method of semiconductor device
WO2005038929A1 (en) Method for manufacturing semiconductor device
JPWO2004086484A1 (en) Semiconductor device and manufacturing method thereof
KR100791197B1 (en) Dielectric film forming method, semiconductor device and manufacturing method therefor
US20080203499A1 (en) Semiconductor device having gate insulator including high-dielectric-constant materials and manufacture method of the same
US20070232004A1 (en) Semiconductor device and manufacturing method thereof
JPWO2004073072A1 (en) MIS type semiconductor device and method for manufacturing MIS type semiconductor device
US7838439B2 (en) Method of manufacturing an insulating film containing hafnium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091008

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees