JP2007168048A - Working method of taper surface of part for continuously variable transmission - Google Patents

Working method of taper surface of part for continuously variable transmission Download PDF

Info

Publication number
JP2007168048A
JP2007168048A JP2005371922A JP2005371922A JP2007168048A JP 2007168048 A JP2007168048 A JP 2007168048A JP 2005371922 A JP2005371922 A JP 2005371922A JP 2005371922 A JP2005371922 A JP 2005371922A JP 2007168048 A JP2007168048 A JP 2007168048A
Authority
JP
Japan
Prior art keywords
tape
continuously variable
taper
taper surface
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005371922A
Other languages
Japanese (ja)
Inventor
Hirosaku Akizuki
啓作 秋月
Toshiyuki Kiyoto
俊之 清都
Masatoshi Ozaki
昌稔 尾崎
Toru Yamazaki
徹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Toyota Motor Hokkaido Inc
Original Assignee
Nachi Fujikoshi Corp
Toyota Motor Hokkaido Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Toyota Motor Hokkaido Inc filed Critical Nachi Fujikoshi Corp
Priority to JP2005371922A priority Critical patent/JP2007168048A/en
Publication of JP2007168048A publication Critical patent/JP2007168048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a working method to gradually inwardly reduce compression residual stress of a taper surface of a part of a continuously variable transmission, with the maximum stress acting in the neighborhood of a surface. <P>SOLUTION: The taper surface 3 of the part 2 having a sheave surface with which a metallic belt of the belt driving type continuously variable transmission makes contact is hardened, cut and worked by a cutting tool of cemented carbide, etc. and applied with tape lapping work to carry out finishing work by pressurizing and sliding an abrasive material covered tape 1 on a working surface after the cutting work. Additionally, the taper surface is finished and the tape lapping work is applied so that the compression residual stress between the taper surface and the depth of 30 μm from the taper surface comes to be within a region of -500 MPa to -1,200 MPa. The sliding direction of the working surface is in the rotating direction around a taper central axis 53a, and the working surface oscillates in the rectangular direction of the sliding direction. The abrasive material covered tape is an abrasive material covered polyester tape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は無段変速機用部品の製法、特に金属製ベルトの接触するシーブ面を有するようなベルト駆動式無段変速機用部品の加工方法に関する。   The present invention relates to a method of manufacturing a continuously variable transmission component, and more particularly to a method of processing a belt driven continuously variable transmission component having a sheave surface in contact with a metal belt.

従来、例えば特許文献1には、シーブ面にテーパを施した2枚のディスクによってプーリを形成しこのプーリの溝幅を油圧により減増して前記プーリに巻掛けられる金属製ベルトの回転半径を減増させ変速比を変化させるべく変速制御するベルト駆動式無段変速機用ディスクの製法が記載されている。このものは、ディスクの金属性ベルトの接触するシーブ面に数値制御旋盤によってプーリの回転中心と同心に約0.8〜0.4ミクロンの表面粗さにシーブ面の油の性状を一定に維持する螺旋状溝部を切削し、次に超仕上げ作業により残留応力を生じさせるべくディスクのシーブ面に研削を施している。即ち、無段変速機用部品の表面に焼入後、切削加工を行い、最後に超仕上げ(ラップ)を施して無段変速機用部品の表面に圧縮残留応力を付与している。   Conventionally, for example, in Patent Document 1, a pulley is formed by two disks having a tapered sheave surface, and the groove width of the pulley is increased by hydraulic pressure to reduce the rotation radius of a metal belt wound around the pulley. A method of manufacturing a disk for a belt-driven continuously variable transmission that performs speed control to increase the speed ratio and change the speed ratio is described. This one uses a numerically controlled lathe on the sheave surface where the metal belt of the disk comes into contact, and keeps the oil property of the sheave surface constant to a surface roughness of about 0.8 to 0.4 microns concentric with the rotation center of the pulley. The spiral groove portion to be cut is cut, and then the sheave surface of the disk is ground to generate a residual stress by a superfinishing operation. That is, after quenching the surface of the continuously variable transmission part, cutting is performed, and finally superfinishing (lapping) is applied to give a compressive residual stress to the surface of the continuously variable transmission part.

このものの超仕上げ作業として、ラップ仕上げの場合について述べられており、ラップ仕上げ作業は、研削機にディスクのシーブ面に合致する形状の研削具を装着し、この研削具によってシーブ面を研削形成することが開示され、残留応力の状態は図7に示すように表面から内部に行くに従って残留応力が大きくなり、数十μm程度の深さで最大値となり、以降は残留応力が漸減したものが開示されている。   The super-finishing work of this product is described in the case of lapping. In the lapping work, a grinding tool having a shape that matches the sheave surface of the disc is mounted on the grinding machine, and the sheave surface is ground by this grinding tool. As shown in FIG. 7, the residual stress increases from the surface to the inside as shown in FIG. 7, and reaches a maximum value at a depth of about several tens of μm. Thereafter, the residual stress gradually decreases. Has been.

特許文献1でのラップ仕上げについては、前述した程度のことしか記載されておらず具体的にどのようなラップ盤かは明確ではない。かかるラップ装置は例えば、JIS B 0105に示される超仕上げ盤、ラップ盤に相当するものと思われる。JIS B 0105においては、超仕上げ盤とは「回転する工作物に、粒度の細かいといしを当て、軸方向に微小な振動を与えながら軸方向に送って工作物の表面を仕上げる工作機械」とされ、また、ラップ盤は「と粒及び加工液を混合したラップ剤を、ラップといわれる工具と工作物の間に入れ、両者に圧力を加えながら滑り動かし、工作物の加工面を滑らかに仕上げる工作機械。なお、と粒及びラップの代わりに、といしを使用するものもある」と定義されている。
特許第2686973号公報
Regarding the lapping in Patent Document 1, only the above-mentioned degree is described, and it is not clear what kind of lapping machine is concrete. Such a lapping device is considered to correspond to, for example, a superfinishing machine or a lapping machine shown in JIS B 0105. In JIS B 0105, a super-finishing machine is "a machine tool that applies a fine-grained wheel to a rotating workpiece and feeds it in the axial direction while applying minute vibrations in the axial direction to finish the surface of the workpiece." In addition, the lapping machine puts a lapping agent that mixes grains and machining fluid between a tool called a lapping and a workpiece, and slides them while applying pressure to both to finish the work surface of the workpiece smoothly. Machine tools, some of which use a wheel instead of grains and laps. "
Japanese Patent No. 2686973

ところで、無段変速機用部品は金属同士が接触するため、表面近傍の圧縮残留応力が最大になることが好ましい。また、圧縮残留応力のばらつきが少ないことが望ましい。しかし、図7に示した特許文献1の例では、圧縮応力の単位が不明であり、どの程度の圧縮応力を得られるか不明である。また、定性的に表面よりも数十μmの深さ位置に圧縮残留応力が最大となるように記載されており、かかる圧縮残留応力の分布は製品としては望ましくない。また、ラップ前、切削後の残留応力についての技術的な開示は全くない。   By the way, since the parts for continuously variable transmissions are in contact with each other, it is preferable that the compressive residual stress near the surface is maximized. Further, it is desirable that the variation in compressive residual stress is small. However, in the example of Patent Document 1 shown in FIG. 7, the unit of compressive stress is unknown, and it is unknown how much compressive stress can be obtained. Further, it is described qualitatively so that the compressive residual stress is maximized at a depth of several tens of μm from the surface, and the distribution of the compressive residual stress is not desirable as a product. There is no technical disclosure about residual stress before lapping and after cutting.

そこで、本発明者等は、切削後の残留応力について測定した。その結果を図5に示す。切削後の残留応力は、表面で+400MPa〜−300MPaであり、ばらつきが多く、表面からの深さが10μm〜20μmで残留応力が最大となっている。さらに、このばらつきはそのままラップ仕上げ後のばらつきに反映される傾向にあった。また、このようなばらつきについては特許文献1には全く開示されていない。   Therefore, the inventors measured the residual stress after cutting. The result is shown in FIG. The residual stress after cutting is +400 MPa to −300 MPa on the surface, and there are many variations, and the residual stress is maximum when the depth from the surface is 10 μm to 20 μm. Furthermore, this variation tends to be reflected in the variation after lapping as it is. Further, such variation is not disclosed at all in Patent Document 1.

本発明の課題はかかる問題点に鑑みて、無段変速機用部品のテーパ面の圧縮残留応力が表面近傍で最大となり、さらには、表面及び表面近傍の圧縮残留応力のばらつきが少ない加工方法を提供することである。   In view of such problems, the object of the present invention is to provide a machining method in which the compressive residual stress of the tapered surface of a continuously variable transmission component is maximized near the surface, and further, there is little variation in the compressive residual stress near the surface and the surface. Is to provide.

本発明者等は、鋭意研究の結果、前述したJIS B 0105に記載相当のラップ盤による加工では、前述したように、表面よりも数十μmの深さ位置に圧縮残留応力の最大値が発生し易く、また、切削後での圧縮残留応力にばらつきが残り易いのに対し、研磨材被覆テープを切削加工後の加工面に押圧かつ摺接させて仕上げ加工を行うテープラップ加工を用いて超仕上げを行うことにより、圧縮残留応力が表面近傍で最大になり、表面近傍の圧縮残留応力のばらつきが少なくなっていることを知得した。   As a result of diligent research, the present inventors have found that the maximum value of the compressive residual stress is generated at a depth position of several tens of μm from the surface, as described above, in the processing by the lapping machine corresponding to that described in JIS B 0105. In addition, the residual compressive residual stress after cutting tends to vary, but the abrasive coating tape is pressed and slidably contacted with the machined surface after cutting, and the tape lapping process is used. It was found that by performing the finishing, the compressive residual stress was maximized in the vicinity of the surface, and the variation in the compressive residual stress in the vicinity of the surface was reduced.

この知得により、本発明においては、ベルト駆動式無段変速機の金属製ベルトの接触するシーブ面を有する部品のテーパ表面を焼入後、超硬合金又はCBNからなる切削工具を用いたテーパ表面の切削加工により、油の性状を一定に保つための微少油溝を形成した後、前記切削加工後の加工面に研磨材被覆テープを押圧かつ摺接させて、仕上げ加工を行うテープラップ加工を施すといった、無段変速機用部品のテーパ面の加工方法を提供することにより前述した課題を解決した。なお、切削加工においては、超硬合金、CBN材料からなる切削工具の使用により加工精度の向上、加工時間の短縮、加工表面のばらつきを減少させることができる。   Based on this knowledge, in the present invention, after quenching the taper surface of the part having the sheave surface that the metal belt of the belt-driven continuously variable transmission contacts, a taper using a cutting tool made of cemented carbide or CBN is used. Tape lapping process that forms fine oil grooves to keep the properties of oil constant by cutting the surface, and then presses and slides the abrasive coating tape on the processed surface after the cutting process. The above-mentioned problems have been solved by providing a method for machining a tapered surface of a continuously variable transmission component. In the cutting process, the use of a cutting tool made of a cemented carbide or CBN material can improve machining accuracy, shorten the machining time, and reduce variations in the machined surface.

さらに、前記テープラップ加工により、前記テーパ表面を仕上げると共に、前記テーパ表面及び前記テーパ表面からの深さが30μmの間での圧縮残留応力が−500MPa〜−1200MPaの範囲にすることができる(請求項2)。   Further, the taper surface is finished by the tape lapping process, and the compressive residual stress when the depth from the taper surface and the taper surface is 30 μm can be in the range of −500 MPa to −1200 MPa. Item 2).

また、請求項3記載の発明においては、前記研磨材被覆テープに対する前記テーパ表面の加工面の摺接方向はテーパ中心軸回りの回転方向であり、かつ、前記摺接方向とは直角方向にオシレーションさせるのが好ましい。なお、引用文献1のものでは、オシレーションを与えることについては記載されておらず、また、引用文献1に記載の研削機にディスクのシーブ面に合致する形状の研削具を装着する旨の記載では、オシレーションを与える構成とすることは困難と思われる。これに対し、本発明においては、テープラップ装置を用いるのでオシレーションを容易に与えることができる。さらに、請求項4記載の発明においては、前記研磨材被覆テープは研磨材被覆ポリエステルテープとするのがよい。   According to a third aspect of the present invention, the sliding contact direction of the processed surface of the tapered surface with respect to the abrasive-coated tape is a rotational direction around the central axis of the taper and oscillates in a direction perpendicular to the sliding contact direction. Preferably. In addition, in the thing of the cited reference 1, it does not describe about giving an oscillation, and the description to mount | wear the grinding machine of the cited reference 1 with the grinding tool of the shape corresponding to the sheave surface of a disk is described. Then, it seems that it is difficult to set it as the structure which gives an oscillation. On the other hand, in this invention, since a tape wrap apparatus is used, oscillation can be given easily. Furthermore, in the invention of claim 4, the abrasive-coated tape is preferably an abrasive-coated polyester tape.

本発明においては、テーパ表面を焼入後、超硬合金又はCBNからなる切削工具を用いたテーパ表面の切削加工後、研磨材被覆テープを使用したテープラップ加工を施すので、無段変速機用部品の表面の面粗さを向上させると共に、圧縮残留応力を付与し、さらに表面近傍の圧縮残留応力を最大とできるものとなった。また、切削後の圧縮残留応力にばらつきがある場合でも、テープラップ加工後は表面近傍の圧縮残留応力のばらつきを低減できるものとなった。   In the present invention, after the taper surface is quenched, after the taper surface is cut using a cutting tool made of cemented carbide or CBN, tape wrap processing using an abrasive-coated tape is performed, so for a continuously variable transmission In addition to improving the surface roughness of the parts, it was possible to impart compressive residual stress and maximize the compressive residual stress in the vicinity of the surface. Moreover, even when there is a variation in the compressive residual stress after cutting, the variation in the compressive residual stress in the vicinity of the surface can be reduced after the tape lapping process.

また、テーパ表面を仕上げ、テーパ表面及びテーパ表面からの深さが30μmの間の圧縮残留応力を−500MPa〜−1200MPaの範囲としたので、無段変速機用部品のシーブ面を安定化し、摩耗を防止し、耐力を高め、長寿命化を図れるものとなった。   Further, the taper surface is finished, and the compressive residual stress between the taper surface and the depth from the taper surface of 30 μm is in the range of −500 MPa to −1200 MPa, so that the sheave surface of the continuously variable transmission parts is stabilized and worn. , Increased proof stress and extended life.

また、請求項3に記載の発明によれば、オシレーションさせることにより、圧縮残留応力の平均化、均一化がさらに、向上するので、圧縮残留応力の表面及び深さ方向のばらつきもより少ないものとなった。さらに、請求項4に記載の発明によれば、テープラップにより研磨量、面粗さの向上が図れるものとなった。   Further, according to the invention described in claim 3, since the average and uniformization of the compressive residual stress is further improved by the oscillation, there is less variation in the surface and the depth direction of the compressive residual stress. It became. Furthermore, according to the invention described in claim 4, the amount of polishing and surface roughness can be improved by tape wrapping.

本発明を実施するための最良の形態の一例を図面を参照して説明する。図1は本発明のテープラップ加工をするためのテープラップ装置に被加工物を取付けた要部正面図、図2は図1のA方向からみた要部側面図、図3(a)はテープラップ装置のテープ部装着部の全体構成を示す概略正面図、(b)は(a)のB−B線に沿った概略断面図で、説明の便宜上シュー組立体、シリンダー及び本体の各部分の駆動連結関係を要部概略ブロック図で示す。図4は図3(a)のA方向からみて一部を切り欠いた概略側面図である。   An example of the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a front view of a main part in which a workpiece is attached to a tape wrap apparatus for tape wrap processing of the present invention, FIG. 2 is a side view of the main part when viewed from the direction A in FIG. 1, and FIG. The schematic front view which shows the whole structure of the tape part mounting part of a lap | wrap apparatus, (b) is a schematic sectional drawing in alignment with the BB line of (a), For convenience of explanation, each part of a shoe assembly, a cylinder, and a main body is demonstrated. The drive connection relationship is shown in the main part schematic block diagram. FIG. 4 is a schematic side view with a part cut away when viewed from the A direction of FIG.

図1乃至図4に示すように、テープラップ装置は、比較的非圧縮性の研磨材被覆テープ1と、テープ1研磨材被覆面を被加工物(ベルト駆動式無段変速機の金属製ベルトの接触するシーブ面を有する部品)2のテーパ表面3に接触させ押圧する比較的剛性の先端面4を有するシュー組立体5と、本体6に支持されシュー組立体を往復動させる移動装置11とから構成されている。シュー組立体5の先端面4は、シュー組立体5に設けた回転される加工面である被加工物2表面3の半径方向に離隔した位置の2個の穴35、35’(3個以上の穴であってもよい)にそれぞれ挿入されたスプリング37、37’によって付勢されたピストン36、36’に支持されたものである。被加工物2は、図示しないテープラップ装置に取り付けられた本体6に取り付けられた(図示しない)ヘッドストックに回転可能に支持されたヘッドセンター52と、テールストック50に回転可能に支持されたテールセンター51とにより、センタリングされ、回転軸53a回りに回転(矢印53)される。   As shown in FIGS. 1 to 4, the tape wrap apparatus includes a relatively incompressible abrasive-coated tape 1 and a tape 1 abrasive-coated surface on a workpiece (a metal belt of a belt-driven continuously variable transmission). A shoe assembly 5 having a relatively rigid tip surface 4 that contacts and presses against the tapered surface 3 of the component 2, and a moving device 11 that is supported by the body 6 and reciprocates the shoe assembly. It is composed of The distal end surface 4 of the shoe assembly 5 has two holes 35, 35 '(three or more) at positions spaced apart in the radial direction of the surface 2 of the workpiece 2 that is a processed surface to be rotated provided on the shoe assembly 5. These holes may be supported by pistons 36 and 36 'biased by springs 37 and 37' inserted into the holes, respectively. The workpiece 2 includes a head center 52 rotatably supported by a head stock (not shown) attached to a main body 6 attached to a tape wrap device (not shown), and a tail rotatably supported by a tail stock 50. Centered by the center 51 and rotated around the rotation shaft 53a (arrow 53).

シュー組立体5の先端面4は、回転される加工面である被加工物2表面3に対し半径方向に離隔した2個の穴35、35’(3個以上の穴であってもよい)に挿入されたスプリング37、37’によって付勢されたピストン36、36’に支持され、内周部39と外周部40との周速に差によらず、内周部39と外周部40とで研磨材被覆テープの加工面の表面に対する押し付け圧力を均等に制御され、効率的に均一な表面に仕上げることができるようにされている。   The tip surface 4 of the shoe assembly 5 has two holes 35 and 35 '(three or more holes may be spaced apart) in the radial direction with respect to the surface 2 of the workpiece 2 that is a processed surface to be rotated. The inner peripheral portion 39 and the outer peripheral portion 40 are supported by the pistons 36 and 36 ′ biased by the springs 37 and 37 ′ inserted into the inner peripheral portion 39 and the outer peripheral portion 40 regardless of the peripheral speed between the inner peripheral portion 39 and the outer peripheral portion 40. Thus, the pressure applied to the surface of the processing surface of the abrasive-coated tape is uniformly controlled so that it can be efficiently finished to a uniform surface.

研磨材被覆テープ1は比較的非圧縮性の研磨材被覆テープとし、ここでは研磨材被覆ポリエステルテープを使用した。なお、テープを被加工物2表面3に接触させ押圧する比較的剛性の先端面を有するシュー組立体5として剛性表面は90デュロメータAの値を超える硬度を有し、かつ精密に加工されたホーニング砥石材料で形成されたインサートストーンを使用した先端面4を有するシュー組立体5を設けるようにすると好ましい。加工面3はテーパ面であるが、平面であってもよい。   The abrasive-coated tape 1 was a relatively incompressible abrasive-coated tape. Here, an abrasive-coated polyester tape was used. In addition, as the shoe assembly 5 having a relatively rigid front end surface that presses the tape in contact with the surface 3 of the workpiece 2, the rigid surface has a hardness exceeding the value of 90 durometer A and is precisely machined honing. It is preferable to provide a shoe assembly 5 having a tip surface 4 using an insert stone made of a grinding stone material. The processing surface 3 is a tapered surface, but may be a flat surface.

テープラップ装置のテープ装着装置は、図3(a)、(b)、図4に示すように、それぞれ本体6に支持された、テープ供給ホルダ7、テープ巻取ホルダ8及びシュー組立体5を往復動させる移動装置11と、本体6に軸方向に移動可能に支持され、かつスプリング10bに押されてシュー組立体端部5’に当接する移動軸10を有し、シュー組立体5が移動装置11により往動するとき、シュー組立体5の比較的剛性の先端面4が研磨材被覆テープ1を介して被加工物2表面3を押圧するようにされ、シュー組立体5が移動装置11により復動したとき、移動軸10はシュー組立体端部5’に押されて、スプリング10bに抗して移動して、移動軸11に設けた第1のスプライン12と第2のスプライン13(図4)と噛み合う第1の歯車14と第2の歯車15(図4)を介してテープ巻送り軸43a,43b及びテープ巻取ホルダ8をそれぞれ回転させて、テープ巻送り軸43a,43bにより所定の長さだけの研磨材被覆テープ1を巻送らせた後、テープ巻取ホルダ8に巻取らせるようにされている。   As shown in FIGS. 3A, 3B, and 4, the tape loading device of the tape wrap device includes a tape supply holder 7, a tape take-up holder 8, and a shoe assembly 5 supported by the main body 6, respectively. A moving device 11 that reciprocates and a moving shaft 10 that is supported by the main body 6 so as to be movable in the axial direction and that is pressed by the spring 10b and abuts against the shoe assembly end portion 5 ′ are provided, and the shoe assembly 5 moves. When moving forward by the device 11, the relatively rigid tip surface 4 of the shoe assembly 5 is pressed against the surface 3 of the workpiece 2 via the abrasive coating tape 1, and the shoe assembly 5 is moved by the moving device 11. , The moving shaft 10 is pushed by the shoe assembly end 5 ′ and moves against the spring 10b, and the first spline 12 and the second spline 13 ( First gear meshing with FIG. 4 and the second gear 15 (FIG. 4), the tape feed shafts 43a and 43b and the tape take-up holder 8 are respectively rotated, and the tape feed shafts 43a and 43b are coated with an abrasive material of a predetermined length. After the tape 1 is wound, it is wound on the tape winding holder 8.

図1(a)、(b)に示すように、移動装置11はシリンダであり、シリンダ11を支持するシリンダ支持体111は本体6に固定され、シリンダ11のシリンダロッド11a端部がシュー組立体5に固定され、シュー組立体5はシリンダ支持体111に設けたスライド穴9’、9’に往復動可能に支持された案内スライド9、9上をシリンダロッド11aにより往復動可能にされている。シリンダ11のピストン11bが図示しない空圧装置の空気圧を受けて11b’に示す位置まで進むとき、シュー組立体5の先端面4は4’の位置までy方向に前進して、先端面4’がテープ1を介して被加工物2表面3を押圧するようにされ、被加工物2表面3が研磨材被覆テープ1によって極めて精密にミクロ仕上げされる。図3(b)に示すように、シリンダ支持体111は本体6に固定されたリニアスライド21のオシレーションスライド22上にシュー組立体5と共に搭載され、シュー組立体5の先端面4を横方向x方向に往復動させるオシレーション運動をさせるオシレーション装置20のオシレーション連結棒21がシリンダ支持体111に連結され、オシレーション連結棒21を介してリニアスライド22のオシレーションスライド23、シリンダ支持体111、シリンダ11及びシュー組立体5を全体として回転軸(x)方向(表面3を摺接する先端面4の摺接方向とは直角方向)にオシレーション運動をさせる。   As shown in FIGS. 1A and 1B, the moving device 11 is a cylinder, a cylinder support 111 that supports the cylinder 11 is fixed to the main body 6, and the end of the cylinder rod 11a of the cylinder 11 is a shoe assembly. The shoe assembly 5 is reciprocally moved by a cylinder rod 11a on guide slides 9 and 9 supported in slide holes 9 'and 9' provided in the cylinder support 111 so as to be reciprocally movable. . When the piston 11b of the cylinder 11 receives air pressure from a pneumatic device (not shown) and advances to a position indicated by 11b ', the distal end surface 4 of the shoe assembly 5 advances to the 4' position in the y direction, and the distal end surface 4 ' Presses the surface 3 of the workpiece 2 through the tape 1, and the surface 3 of the workpiece 2 is microfinished with the abrasive coating tape 1 very precisely. As shown in FIG. 3 (b), the cylinder support 111 is mounted together with the shoe assembly 5 on the oscillation slide 22 of the linear slide 21 fixed to the main body 6, and the tip end surface 4 of the shoe assembly 5 is laterally moved. An oscillation connecting rod 21 of the oscillation device 20 that reciprocates in the x direction is connected to the cylinder support 111, and the oscillation slide 23 of the linear slide 22 and the cylinder support are connected via the oscillation connecting rod 21. 111, the cylinder 11 and the shoe assembly 5 as a whole are caused to oscillate in the direction of the rotation axis (x) (in a direction perpendicular to the sliding contact direction of the front end surface 4 slidably contacting the surface 3).

無段変速機の部品2のテーパ表面3を焼入後、CBNからなる切削工具を用いて、テーパ表面に切削加工を施した無段変速機用部品を、図1乃至図4に示すテープラップ装置に取付け、研磨材被覆テープ1をテーパ表面3に押圧かつ摺接させながらオシレーションさせて仕上げ加工を行った。図5は、本発明の切削加工後のテーパ表面の圧縮残留応力と表面からの深さの関係を示す図であり、図6は本発明のテープラップ加工後のテーパ表面の圧縮残留応力と表面からの深さの関係を示す図である。図5に示すように、切削加工後のテーパ面の圧縮残留応力は、テーパ表面で約+400MPa〜−300MPaであり、深さが約10μm〜20μm位置で約−900〜−1100MPaと最大値となり、それ以降は深さが深くなるに従って漸減している。また、表面は+の残留応力、即ち引張残留応力がかかっており、テーパ表面近傍の強度を著しく減じさせる。   A tape wrap shown in FIG. 1 to FIG. 4 is a continuously variable transmission component having a taper surface 3 cut by using a cutting tool made of CBN after quenching the tapered surface 3 of the component 2 of the continuously variable transmission. It was attached to the apparatus, and the abrasive coating tape 1 was oscillated while being pressed and slidably contacted with the taper surface 3 for finishing. FIG. 5 is a diagram showing the relationship between the compressive residual stress of the taper surface after cutting and the depth from the surface according to the present invention, and FIG. 6 shows the compressive residual stress and surface of the taper surface after tape wrap processing of the present invention. It is a figure which shows the relationship of the depth from. As shown in FIG. 5, the compressive residual stress of the tapered surface after cutting is about +400 MPa to −300 MPa on the tapered surface, and has a maximum value of about −900 to −1100 MPa at a depth of about 10 μm to 20 μm, After that, it gradually decreases as the depth increases. Further, the surface is subjected to + residual stress, that is, tensile residual stress, and remarkably reduces the strength in the vicinity of the tapered surface.

これに対し、図6に示すように、本発明のテープラップ加工後のテーパ面は、テーパ表面及びテーパ表面から30μmの間で約−600MPa〜−1100MPaと、切削加工後よりも高い圧縮残留応力となり、ばらつきも小さく、さらには、表面近傍で最大の圧縮残留応力を示し、その後は深くなるに従ってほぼ漸減している。また、深さ30μmより深い位置では、図5の切削後の残留応力とほぼ同じであり、本発明テープラップ加工においては、深さ30μm程度までの表面改質が行われ、より深い位置では影響が少ないものといえる。これに対して、従来の特許文献1のものでは、単位が不明であるが、100又は200μmという深い位置でも研削の場合と比べ残留応力に差が生じている。この点から見て、特許文献1のラップ加工は、かなり深い位置まで影響を受けており、本発明のテープラップ加工による作用・効果とは全く異なるものといえる。   On the other hand, as shown in FIG. 6, the taper surface after the tape lapping process of the present invention is about −600 MPa to −1100 MPa between the taper surface and 30 μm from the taper surface, which is higher compressive residual stress than after the cutting process. Thus, the variation is small, and the maximum compressive residual stress is shown in the vicinity of the surface. Further, in the position deeper than 30 μm, the residual stress after cutting in FIG. 5 is almost the same. In the tape wrap processing of the present invention, surface modification is performed up to a depth of about 30 μm, and the effect is deeper at deeper positions. It can be said that there are few. On the other hand, although the unit is unknown in the conventional patent document 1, there is a difference in residual stress even at a deep position of 100 or 200 μm as compared with the case of grinding. From this point of view, the lapping process of Patent Document 1 is influenced to a considerably deep position, and can be said to be completely different from the action and effect of the tape lapping process of the present invention.

このように、本発明の加工方法によれば、テーパ表面の圧縮残留応力を切削後より大きくできるとともに、テーパ表面近傍での圧縮残留応力のばらつきが小さくなり、また、表面近傍で最大の圧縮残留応力を示し、その後は深さが深くなるに従ってほぼ漸減し、均一で安定した分布となることがわかる。従って、応力勾配も小さいので、内部クラック等の発生も少なく長寿命の部品を提供することができるものとなった。   As described above, according to the processing method of the present invention, the compressive residual stress on the taper surface can be increased after cutting, the variation in the compressive residual stress in the vicinity of the taper surface is reduced, and the maximum compressive residual stress in the vicinity of the surface is obtained. It can be seen that the stress is shown and then gradually decreases with increasing depth, resulting in a uniform and stable distribution. Accordingly, since the stress gradient is small, it is possible to provide a long-life component with less occurrence of internal cracks and the like.

なお、本発明の実施の形態においては、切削後にテープラップ加工を行うようにしたが、切削後残留応力が大きく変化しない程度にペーパラップ、研磨等により面粗さを向上させた後、最終仕上げに、残留応力を与える本発明のテープラップ加工を施こすようにしてもよい。   In the embodiment of the present invention, tape wrap processing is performed after cutting, but after finishing the surface roughness by paper wrap, polishing, etc. to the extent that the residual stress after cutting does not change significantly, final finishing is performed. The tape lapping process of the present invention that gives residual stress may be applied.

本発明のテープラップ加工をするためのテープラップ装置に被加工物を取付けた要部正面図である。It is the principal part front view which attached the to-be-processed object to the tape wrap apparatus for performing the tape wrap process of this invention. 図1のA方向からみた要部側面図である。It is a principal part side view seen from the A direction of FIG. (a)はテープラップ装置のテープ部装着部の全体構成を示す概略正面図、(b)は(a)のB−B線にそった概略断面図で、説明の便宜上シュー組立体、シリンダー及び本体の各部分の駆動連結関係を要部概略ブロック図で示す。(A) is a schematic front view which shows the whole structure of the tape part mounting part of a tape wrap apparatus, (b) is a schematic sectional drawing in alignment with the BB line of (a), For convenience of explanation, a shoe assembly, a cylinder, and The drive connection relationship of each part of a main body is shown with a principal part schematic block diagram. 図3(a)のA方向からみて一部を切り欠いた概略側面図である。It is the schematic side view which notched a part seeing from the A direction of Fig.3 (a). 本発明の切削加工後の切削後のテーパ表面の圧縮残留応力と表面からの深さの関係を示す図である。It is a figure which shows the relationship between the compression residual stress of the taper surface after the cutting after the cutting of this invention, and the depth from the surface. 本発明のテープラップ加工後のテーパ表面の圧縮残留応力と表面からの深さの関係を示す図である。It is a figure which shows the relationship between the compression residual stress of the taper surface after the tape lapping process of this invention, and the depth from the surface. 従来のラップ加工後のテーパ表面の圧縮残留応力と表面からの深さの関係を示す図である。It is a figure which shows the relationship between the compression residual stress of the taper surface after the conventional lapping, and the depth from the surface.

符号の説明Explanation of symbols

1 研磨材被覆テープ
2 ベルト駆動式無段変速機の金属製ベルトの接触するシーブ面を有する部品
3 テーパ表面
53a テーパ中心軸(回転軸)

DESCRIPTION OF SYMBOLS 1 Abrasive-coated tape 2 Part which has sheave surface which metal belt of belt drive type continuously variable transmission contacts 3 Tapered surface 53a Tapered central axis (rotating shaft)

Claims (4)

ベルト駆動式無段変速機の金属製ベルトの接触するシーブ面を有する部品のテーパ表面を焼入後、超硬合金又はCBNからなる切削工具を用いたテーパ表面の切削加工により、油の性状を一定に保つための微少油溝を形成した後、前記切削加工後の加工面に研磨材被覆テープを押圧かつ摺接させて仕上げ加工を行うテープラップ加工を施したことを特徴とする無段変速機用部品のテーパ面の加工方法。 After quenching the taper surface of the part with the sheave surface that the metal belt of the belt-driven continuously variable transmission contacts, the properties of the oil are obtained by cutting the taper surface using a cutting tool made of cemented carbide or CBN. A continuously variable transmission characterized in that after forming a minute oil groove to keep constant, a tape lapping process is performed for finishing by pressing and sliding the abrasive coating tape on the processed surface after the cutting process. Machining method of taper surface of machine parts. 前記テープラップ加工により、前記テーパ表面を仕上げると共に、前記テーパ表面及び前記テーパ表面からの深さが30μmの間での圧縮残留応力が−500MPa〜−1200MPaの範囲となるように、テープラップ加工を施したことを特徴とする請求項1記載の無段変速機用部品のテーパ面の加工方法。   Tape wrap processing is performed so that the taper surface is finished by the tape wrap processing, and the compressive residual stress between the taper surface and the depth from the taper surface is within a range of −500 MPa to −1200 MPa. The method for processing a tapered surface of a continuously variable transmission component according to claim 1, wherein the taper surface is processed. 前記研磨材被覆テープに対する前記テーパ表面の加工面の摺接方向はテーパ中心軸回りの回転方向であり、かつ、前記摺接方向とは直角方向にオシレーションされていることを特徴とする請求項1又は2記載の無段変速機用部品のテーパ面の加工方法。 The sliding contact direction of the processing surface of the tapered surface with respect to the abrasive coating tape is a rotation direction around a taper central axis, and is oscillated in a direction perpendicular to the sliding contact direction. A method for machining a tapered surface of a continuously variable transmission part according to 1 or 2. 前記研磨材被覆テープは研磨材被覆ポリエステルテープであることを特徴とする請求項1又は2又は3記載の無段変速機用部品のテーパ面の加工方法。
4. The method for processing a tapered surface of a continuously variable transmission component according to claim 1, wherein the abrasive-coated tape is an abrasive-coated polyester tape.
JP2005371922A 2005-12-26 2005-12-26 Working method of taper surface of part for continuously variable transmission Pending JP2007168048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371922A JP2007168048A (en) 2005-12-26 2005-12-26 Working method of taper surface of part for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371922A JP2007168048A (en) 2005-12-26 2005-12-26 Working method of taper surface of part for continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2007168048A true JP2007168048A (en) 2007-07-05

Family

ID=38295275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371922A Pending JP2007168048A (en) 2005-12-26 2005-12-26 Working method of taper surface of part for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2007168048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190097A (en) * 2008-02-12 2009-08-27 Seibu Jido Kiki Kk Superfinishing method and grinding machine
JP2009270589A (en) * 2008-04-30 2009-11-19 Nippon Steel Corp Pulley having improved fatigue characteristic, and fatigue characteristic improving method for its sheave face
JP2016068159A (en) * 2014-09-26 2016-05-09 ジヤトコ株式会社 Processing method for sheave surface
CN112192391A (en) * 2020-09-30 2021-01-08 陈佳佳 Drilling and polishing mechanism for fresh air system shell assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190097A (en) * 2008-02-12 2009-08-27 Seibu Jido Kiki Kk Superfinishing method and grinding machine
JP2009270589A (en) * 2008-04-30 2009-11-19 Nippon Steel Corp Pulley having improved fatigue characteristic, and fatigue characteristic improving method for its sheave face
JP2016068159A (en) * 2014-09-26 2016-05-09 ジヤトコ株式会社 Processing method for sheave surface
CN112192391A (en) * 2020-09-30 2021-01-08 陈佳佳 Drilling and polishing mechanism for fresh air system shell assembly

Similar Documents

Publication Publication Date Title
WO2002006007A1 (en) Micro-burnishing apparatus using ultrasonic vibration
US20090170411A1 (en) Micropolishing assembly for micropolishing piston rings
JP2008023596A (en) Method for processing minute concave portion
US5695391A (en) Super finishing machine
JP2007168048A (en) Working method of taper surface of part for continuously variable transmission
CN103648719A (en) Superfinishing whetstone, superfinishing method using same, and ball bearing
US20210101244A1 (en) Narrow shoe journal microfinishing apparatus and method
US20040082272A1 (en) Traction drive rolling element and method of forming the same
US6852015B2 (en) Method and apparatus for grinding workpiece surfaces to super-finish surface with micro oil pockets
JP4687285B2 (en) Polishing processing method and polishing processing apparatus
JP2005169530A (en) Grinding machine and grinding method
JP3627824B2 (en) Lapping tool lapping structure
JP3985700B2 (en) Roller burnishing method
RU2201331C2 (en) Flexible embracing abrasive tool for working eccentric shafts and screws
CN106573357B (en) Polishing tool
RU2203172C2 (en) Method for combination abrasive treatment by means of lengthwise-intermittent grinding discs
JP2020171972A (en) Burnishing device and burnishing method
JP7064661B2 (en) Grinding and polishing grindstone with outer diameter increase / decrease control and grinding / polishing / honing processing method with this outer diameter increase / decrease control grinding and polishing grindstone
JP2008114346A (en) Finishing method and device of fine recessed part
US20240042569A1 (en) Honing bar, method of producing a honing bar and honing tool
JP4699022B2 (en) Honing method
RU2120368C1 (en) Method of combined quasiintermittent finishing
JPS62282852A (en) Grinding method
RU2203798C2 (en) Apparatus for abrasive working of screws by embracing tool
RU2200077C1 (en) Method for abrasive working of screws by embracing tool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020