JP2007157631A - Fuel cell system, fuel cell vehicle - Google Patents

Fuel cell system, fuel cell vehicle Download PDF

Info

Publication number
JP2007157631A
JP2007157631A JP2005354812A JP2005354812A JP2007157631A JP 2007157631 A JP2007157631 A JP 2007157631A JP 2005354812 A JP2005354812 A JP 2005354812A JP 2005354812 A JP2005354812 A JP 2005354812A JP 2007157631 A JP2007157631 A JP 2007157631A
Authority
JP
Japan
Prior art keywords
leakage
fuel cell
vehicle
cell system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005354812A
Other languages
Japanese (ja)
Other versions
JP4853004B2 (en
Inventor
Tetsuya Yamazaki
哲也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005354812A priority Critical patent/JP4853004B2/en
Publication of JP2007157631A publication Critical patent/JP2007157631A/en
Application granted granted Critical
Publication of JP4853004B2 publication Critical patent/JP4853004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/32Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To identify a detailed leaking part when a ground fault is detected in a fuel cell system. <P>SOLUTION: In a fuel cell vehicle 10, power generated by a fuel cell 20 is supplied to a high-voltage component such as an air conditioner 40 and an air compressor 50. Further, the intermediate potential of a terminal 30 of the fuel cell 20 is grounded to a body 12 through resistors 102, 104. A ground fault detector 100 detects that the leakage of a current has occurred in one of a plurality of the high-voltage components based on a leaking current flowing in this route. Then, a component identification part 112 isolates each high-voltage component temporarily from the circuit by carrying out in order the separation and the connection of relays 42, 52, ..., when the ground fault detector detects the leakage of the current. Then, it identifies the isolated high-voltage component as a leaking source based on whether or not leakage is detected during this time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池を使用したシステム、特に、このシステムにおける漏電検出についての技術に関する。   The present invention relates to a system using a fuel cell, and more particularly to a technique for detecting leakage in this system.

燃料電池で発電した電力を、電気部品(装置)に供給する燃料電池システムにおいては、漏電の有無を検出して、安全を確保することが望ましい。   In a fuel cell system that supplies power generated by a fuel cell to an electrical component (device), it is desirable to detect the presence or absence of electric leakage to ensure safety.

下記特許文献1には、燃料電池車等の漏電を検出する技術が開示されている。ここでは、燃料電池の中間電位がグラウンド接続され、この接続経路を流れる漏電電流に基づいて、漏電の検出を行っている。   Patent Document 1 below discloses a technique for detecting electric leakage in a fuel cell vehicle or the like. Here, the intermediate potential of the fuel cell is grounded, and leakage detection is performed based on the leakage current flowing through this connection path.

特開2004−55384号公報JP 2004-55384 A

漏電の発生箇所の検査や修理を行うためには、漏電箇所を特定することが必要となる。しかし、上記特許文献1の技術は、漏電箇所を特定するものではない。また、燃料電池システムを搭載した燃料電池車では、漏電が発生した場合に、直ちに走行を禁止したのでは、修理工場への自力走行などができず不便である。つまり、安全性を確保できるのであれば、燃料電池システムの運転を継続可能とすることが望ましいと言える。   In order to inspect and repair the location of leakage, it is necessary to identify the location of leakage. However, the technique of the above-mentioned Patent Document 1 does not specify the location of electric leakage. In addition, in a fuel cell vehicle equipped with a fuel cell system, it is inconvenient that it is not possible to run on its own to a repair shop if it immediately prohibits traveling when a leakage occurs. In other words, if safety can be ensured, it can be said that it is desirable that the operation of the fuel cell system can be continued.

本発明の目的は、燃料電池システムにおいて漏電箇所を特定する新たな技術を確立することにある。   An object of the present invention is to establish a new technique for identifying a leakage point in a fuel cell system.

本発明の目的は、燃料電池システムに漏電が発生した場合に、安全性を確認できる範囲で、その運転を実施できるようにすることにある。   An object of the present invention is to enable operation of a fuel cell system within a range in which safety can be confirmed when a leakage occurs.

本発明の燃料電池システムは、電力を発電する燃料電池と、燃料電池により発電された電力が供給される複数の電気部品と、この複数の電気部品のいずれかにおいて漏電が発生したことを、その漏電に伴う漏電電流に基づいて検出する漏電検出器と、漏電検出器が漏電を検出した場合に、この漏電検出器を利用して、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する特定手段と、を備える。   The fuel cell system according to the present invention includes a fuel cell that generates electric power, a plurality of electric components to which electric power generated by the fuel cell is supplied, and that leakage has occurred in any of the plurality of electric components. The leakage detector that detects the leakage based on the leakage current that accompanies the leakage, and when the leakage detector detects a leakage, this leakage detector is used to determine which portion of the electrical components has the leakage. Specifying means for specifying.

燃料電池は、アノードガス(例えば水素)とカソードガス(例えば酸素)を化学反応させ、その過程で電力を取り出すことで、発電を行う装置である。燃料電池で発電した電力は、複数の電気部品、つまり電気を使用する装置に供給され、その動作に使用される。電気部品は、もちろん比較的低電圧で動作するものであってもよい。しかし、漏電対策の有用性を考慮すると、比較的高電圧で動作する高電圧部品を対象とすることが一層適当であると言える。比較的高電圧とは、漏電時の安全性の観点からすると、少なくとも50V程度以上の電圧をいい、典型的には100V程度以上の電圧をいう。すなわち、例えば車両に通常搭載される補機電源系(12VバッテリとDC/DCコンバータ等により構成される)の電圧はここでの対象外である。また、燃料電池の出力を基準とする観点からは、燃料電池の出力電圧が直接印可される電気部品、昇圧されて印可される電気部品、あるいは、それほど低圧化されずに(例えば、出力電圧の50%以上、少なくとも、出力電圧の20%以上)印可される電気部品などを高電圧部品と呼ぶこともできよう。   A fuel cell is a device that generates electricity by chemically reacting an anode gas (for example, hydrogen) and a cathode gas (for example, oxygen) and taking out electric power in the process. The electric power generated by the fuel cell is supplied to a plurality of electric components, that is, devices using electricity, and used for its operation. Of course, the electrical component may operate at a relatively low voltage. However, considering the usefulness of countermeasures against electric leakage, it can be said that it is more appropriate to target high-voltage components that operate at a relatively high voltage. The relatively high voltage means a voltage of at least about 50 V, typically a voltage of about 100 V or more, from the viewpoint of safety during leakage. That is, for example, the voltage of the auxiliary power supply system (configured by a 12V battery and a DC / DC converter or the like) normally mounted on the vehicle is out of scope here. Further, from the viewpoint of the output of the fuel cell as a reference, the electrical component to which the output voltage of the fuel cell is directly applied, the electrical component to be applied by being boosted, or the voltage is not reduced so much (for example, the output voltage An electric component that is applied (50% or more, at least 20% or more of the output voltage) may be called a high-voltage component.

漏電検出器は、漏電電流に基づいて、電気部品の漏電を検出する装置である。つまり、漏電電流の検出、あるいは、漏電電流に付随する電圧や磁界の変化といった電磁気的現象の検出に基づいて、漏電を検出する。また、この漏電検出器は、電気部品毎に専用に設けられるのではなく、複数の電気部品を対象として、そのいずれかの部分で漏電が発生したことを監視しうるものである。燃料電池システム内には、典型的には一つの漏電検出器が設けられるが、二つ以上設けられてもよい。なお、漏電とは、本来流れるべきでない箇所への通電をいう。通電の具体例としては、回路にかけられた水を通じて電流が漏れる例、絶縁部材の劣化によって絶縁が破れ電流が漏れる例、あるいは、電気部品が異常に高電圧化して絶縁が破れ電流が漏れる例などを挙げることができる。   The leakage detector is a device that detects a leakage of an electrical component based on a leakage current. That is, the leakage is detected based on the detection of the leakage current or the detection of an electromagnetic phenomenon such as a change in voltage or magnetic field associated with the leakage current. Moreover, this leakage detector is not provided for every electric component, but can monitor the occurrence of electric leakage in any part of a plurality of electric components. In the fuel cell system, one leakage detector is typically provided, but two or more may be provided. In addition, electric leakage means the electricity supply to the location which should not flow originally. Specific examples of energization include an example in which current leaks through water applied to the circuit, an example in which insulation breaks due to deterioration of the insulation member, or an example in which electrical components abnormally increase in voltage and insulation breaks and current leaks. Can be mentioned.

特定手段は、漏電検出器が漏電を検出した場合に、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する。複数の電気部品におけるいずれの部分であるかを特定するとは、例えば、漏電を現に発生させた一又は二以上の電気部品を特定すること、漏電を現に発生させた一又は二以上の電気部品におけるさらに細部の箇所を特定すること、漏電を現に発生させた電気部品と発生させていない電気部品とを含み全体として漏電発生箇所を含む電気部品群を特定すること、上記電気部品群におけるさらに細部の箇所を特定すること、などを例示することができる。特定手段による漏電部位の特定にあたっては、漏電検出器が利用される。その利用は様々に行うことが可能であり、例えば、漏電検出器が漏電を検出した際の漏電電流について、その電流、電圧、磁場などの値や時間変化情報などを取得し、各電気部品に関して予め行われ記録された漏電テスト結果と比較したり、各電気部品の漏電時刻における動作異常の情報と比較したりする例が考えられる。また、最初に漏電検出器が漏電を検出した後で、電気部品に対する電力供給量を制限(停止や減少)して再度漏電検出器に漏電検出を行わせ、その結果を解析することも有効であろう。   The specifying means specifies in which part of the plurality of electrical components the leakage has occurred when the leakage detector detects the leakage. Identifying which part of a plurality of electrical components is, for example, identifying one or more electrical components that actually caused a leakage, or in one or more electrical components that actually caused a leakage Furthermore, specifying a detailed location, specifying an electrical component group including an electrical component that has actually caused a leakage and an electrical component that has not caused a leakage, and including a leakage occurrence location as a whole, It can be exemplified that the location is specified. A leakage detector is used to identify the leakage site by the specifying means. It can be used in various ways. For example, for the leakage current when the leakage detector detects leakage, the value of current, voltage, magnetic field, etc. and time change information are obtained. An example of comparing with a leakage test result performed and recorded in advance, or comparing with information on abnormal operation at the leakage time of each electrical component can be considered. It is also effective to limit the amount of power supplied to the electrical components (stop or reduce) and let the leak detector detect the leak again and analyze the result after the leak detector first detects the leak. I will.

この構成によれば、漏電検出器が漏電を検出した場合に、この漏電検出器が検出対象とする電気部品よりも狭い範囲で、漏電部位を特定することが可能となる。これにより、漏電の検査や修理が容易化できる利点が生じる。また、漏電箇所がシステムにとってどの程度深刻であるかの判断や、漏電箇所の切り離しも可能となる。特定された漏電箇所の情報は、必要に応じて、メモリに記憶したり、ユーザに伝達したりすればよい。   According to this configuration, when the leakage detector detects a leakage, it is possible to specify a leakage portion in a narrower range than the electrical component that is detected by the leakage detector. As a result, there is an advantage that the inspection and repair of leakage can be facilitated. In addition, it is possible to determine how serious the leakage point is for the system and to disconnect the leakage point. The information on the identified leakage point may be stored in a memory or transmitted to a user as necessary.

なお、特定手段による処理は、漏電を検出した際に、直ちに実施するようにしてもよいが、緊急を要しないような場合には適当なタイミングを待ってから実施するようにしてもよい。特に、特定手段による処理が、通常の燃料電池システムの運転を不可能なものとする場合には、システム状態を、通常運転モードではなく、特定手段による処理を行うための特定処理モードに設定する必要がある。したがって、例えば、許容範囲の微少な漏電電流が検出されているに過ぎないような場合には、燃料電池システムの停止直前や、次回起動時などに特定処理モードに移行するようにしても良いであろう。   Note that the processing by the specifying unit may be performed immediately upon detection of a leakage, but may be performed after waiting for an appropriate timing when urgent is not required. In particular, when the processing by the specifying unit makes the normal operation of the fuel cell system impossible, the system state is set to the specific processing mode for performing the processing by the specifying unit instead of the normal operation mode. There is a need. Therefore, for example, when only a small leakage current in the allowable range is detected, the process may be shifted to the specific processing mode immediately before the fuel cell system is stopped or at the next startup. I will.

本発明の燃料電池システムの一態様においては、複数の電気部品の一部を電力の供給線から切り離す切離手段を備え、特定手段は、切離手段による切り離しを行った場合に漏電検出器が漏電を検出するか否かに基づいて、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する。切離手段は、例えば、電磁リレーや半導体スイッチなどによって実現することができる。また、本発明の燃料電池システムの一態様においては、切離手段は、各電気部品をそれぞれ電力の供給線から切り離す機能を備え、特定手段は、切離手段による切り離しを行った場合に漏電検出器が漏電を検出するか否かに基づいて、いずれの電気部品において漏電が発生したかを特定する。   In one aspect of the fuel cell system of the present invention, the fuel cell system includes a disconnecting unit that disconnects a part of the plurality of electrical components from the power supply line, and the specifying unit is configured to detect the leakage detector when the disconnecting unit performs disconnection. Based on whether or not the leakage is detected, it is specified in which part of the plurality of electrical components the leakage has occurred. The disconnecting means can be realized by, for example, an electromagnetic relay or a semiconductor switch. Further, in one aspect of the fuel cell system of the present invention, the disconnecting unit has a function of disconnecting each electrical component from the power supply line, and the specifying unit detects leakage when the disconnecting unit performs disconnection. Based on whether the leakage is detected by the device, it is specified in which electrical component the leakage has occurred.

本発明の燃料電池システムの一態様においては、燃料電池は、その中間電位が抵抗を介してグラウンドに接続され、漏電検出器は、この抵抗に流れる漏電電流に基づいて、複数の電気部品のいずれかとグラウンドとの間で漏電が発生したことを検出する。一般に、燃料電池においては、低電圧の電力を発電する多数のセルが直列接続され、これにより高電圧の電力が得られる。中間電位とは、直列接続されたあるセル間で得られる電位であり、燃料電池の正端子の電位よりも低く負端子の電位よりも高い。中間電位としては、正端子の電位と負端子の電位の中間値またその近傍値(正端子と負端子の電圧幅を100%として、例えば、中間値の前後各10%程度以内)の電位が用いられると、正端子及び負端子の両方と大きな電位差が確保できるので特に望ましい。しかし、中間電位として、中間値から大きくずれた電位を採用した場合にも、少なくとも一方の端子と大きな電位差を確保できるので十分に実用的なものとなる。   In one aspect of the fuel cell system of the present invention, the fuel cell has an intermediate potential connected to the ground via a resistor, and the leakage detector detects any of a plurality of electrical components based on the leakage current flowing through the resistor. Detects that a leakage has occurred between the ground and ground. In general, in a fuel cell, a large number of cells that generate low-voltage power are connected in series, thereby obtaining high-voltage power. The intermediate potential is a potential obtained between certain cells connected in series and is lower than the potential at the positive terminal of the fuel cell and higher than the potential at the negative terminal. The intermediate potential is an intermediate value between the potential of the positive terminal and the potential of the negative terminal or a value in the vicinity thereof (with the voltage width of the positive terminal and the negative terminal being 100%, for example, within 10% before and after the intermediate value) When used, it is particularly desirable because a large potential difference can be secured between both the positive terminal and the negative terminal. However, even when a potential greatly deviating from the intermediate value is adopted as the intermediate potential, a large potential difference from at least one of the terminals can be secured, which is sufficiently practical.

本発明の燃料電池システムの一態様においては、燃料電池は、その中間電位が抵抗を介してグラウンドに接続され、漏電検出器は、この抵抗に流れる漏電電流に基づいて、複数の電気部品のいずれかとグラウンドとの間で漏電が発生したことを検出し、特定手段は、漏電電流の極性に基づいて、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する。つまり、漏電の際に抵抗に流れる漏電電流の向きに基づいて、正端子側の回路で漏電が発生したか、負端子側の回路で漏電が発生したかなどの情報を特定することができる。   In one aspect of the fuel cell system of the present invention, the fuel cell has an intermediate potential connected to the ground via a resistor, and the leakage detector detects any of a plurality of electrical components based on the leakage current flowing through the resistor. It is detected that a leakage has occurred between the ground and the ground, and the specifying means specifies in which part of the plurality of electrical components the leakage has occurred, based on the polarity of the leakage current. That is, based on the direction of the leakage current flowing through the resistor at the time of leakage, it is possible to specify information such as whether leakage has occurred in the circuit on the positive terminal side or whether leakage has occurred in the circuit on the negative terminal side.

本発明の燃料電池車は、前記燃料電池システムと、この燃料電池システムを搭載した車両と、前記燃料電池により発電された電力を用いて車両を駆動する駆動機構と、特定手段により漏電部分として特定された電気部品が車両の走行に不可欠ではない場合に、その電気部品を電気的に切り離した状態で車両を走行させる手段と、を備える。この構成によれば、燃料電池車において漏電が発生した場合であっても、安全性を確認できる範囲で、その走行が可能となる。走行に不可欠ではない場合の例としては、2系統以上用意された電気部品、走行に使用しない電気部品、走行に使用しないと性能低下を招くものの走行自体は可能である電気部品などが挙げられる。なお、電気部品を切り離した場合には、必要に応じて、その電気部品が使用できない旨をユーザ(ドライバ)に伝達すればよい。   The fuel cell vehicle of the present invention is specified as an electric leakage portion by the fuel cell system, a vehicle equipped with the fuel cell system, a drive mechanism that drives the vehicle using the electric power generated by the fuel cell, and a specifying unit. Means for causing the vehicle to travel in a state where the electrical component is electrically disconnected when the electrical component is not indispensable for traveling of the vehicle. According to this configuration, even when electric leakage occurs in the fuel cell vehicle, the vehicle can travel within a range where safety can be confirmed. Examples of cases that are not indispensable for traveling include electrical components prepared in two or more systems, electrical components that are not used for traveling, and electrical components that are capable of traveling even though performance is degraded if not used for traveling. Note that when an electrical component is disconnected, the user (driver) may be informed that the electrical component cannot be used if necessary.

図1は、本実施の形態にかかる燃料電池車10の構成の概略を示す図である。燃料電池車10は、車体12及び車輪14を含む車両に、燃料電池システムを搭載したものである。図においては、車両走行用の一般的な部品等は省略し、本実施の形態に特徴的な構成要素を中心に記している。   FIG. 1 is a diagram schematically illustrating the configuration of a fuel cell vehicle 10 according to the present embodiment. The fuel cell vehicle 10 is obtained by mounting a fuel cell system on a vehicle including a vehicle body 12 and wheels 14. In the figure, general components for traveling the vehicle are omitted, and the components characteristic to the present embodiment are mainly described.

燃料電池車10には、主たる構成要素として、燃料電池20、空調機40、エアコンプレッサ50、パワステ機構60、2次電池80、漏電検出器100、及び制御部110が含まれている。   The fuel cell vehicle 10 includes a fuel cell 20, an air conditioner 40, an air compressor 50, a power steering mechanism 60, a secondary battery 80, a leakage detector 100, and a control unit 110 as main components.

燃料電池20は、水素と酸素を供給され、この化学反応を利用して小電圧の電力を取り出すセルを多数備えている。これらのセルは直列に積層されて二つのスタック22,24を形成し、さらに両スタック22,24は直列接続されている。これにより、負側のスタック22から引き出された負極端子26と、正側のスタック24から引き出された正極端子28からは、約400Vの高圧の電力が得られる。両スタック22,24の間には、その電位(中間電位と呼ばれる)を出力するための端子30が設けられている。また、負極端子26と正極端子28からは、負線路32及び正線路34がそれぞれ引き出されている。この負線路32及び正線路34は、車両走行用のモータをはじめとする各種高電圧部品に電力を供給する。   The fuel cell 20 is provided with a large number of cells that are supplied with hydrogen and oxygen and take out low-voltage power using this chemical reaction. These cells are stacked in series to form two stacks 22 and 24, which are further connected in series. As a result, high-voltage power of about 400 V is obtained from the negative terminal 26 drawn from the negative stack 22 and the positive terminal 28 drawn from the positive stack 24. A terminal 30 for outputting the potential (referred to as an intermediate potential) is provided between the stacks 22 and 24. A negative line 32 and a positive line 34 are drawn out from the negative terminal 26 and the positive terminal 28, respectively. The negative line 32 and the positive line 34 supply power to various high-voltage components such as a vehicle running motor.

空調機40、エアコンプレッサ50、パワステ機構60は、負線路32及び正線路34から電力供給を受ける高電圧部品である。車両には、この他にも様々な高電圧部品が搭載されるが、ここではその代表例として、上記三つの高電圧部品を図示している。空調機40は、燃料電池車10の室内の空調を行う装置である。空調機40では、接続と切離が可能に構成されたリレー42を介して、正線路34に正引込線44が接続され、負線路32に負引込線46が接続されている。正引込線44と負引込線46は、空調機40の電気回路を構成する線路であり、これにより、空調機40には燃料電池20により発電された高電圧の電力が供給される。   The air conditioner 40, the air compressor 50, and the power steering mechanism 60 are high-voltage components that receive power supply from the negative line 32 and the positive line 34. Various other high-voltage components are mounted on the vehicle, but the three high-voltage components are shown here as representative examples. The air conditioner 40 is a device that air-conditions the interior of the fuel cell vehicle 10. In the air conditioner 40, a positive lead-in line 44 is connected to the positive line 34 and a negative lead-in line 46 is connected to the negative line 32 via a relay 42 that can be connected and disconnected. The positive lead-in line 44 and the negative lead-in line 46 are lines that constitute an electric circuit of the air conditioner 40, and thus, the high voltage power generated by the fuel cell 20 is supplied to the air conditioner 40.

エアコンプレッサ50は、空気を圧縮して燃料電池20のカソードに供給する装置である。エアコンプレッサ50に対しても、同様に、リレー52を介して正引込線54及び負引込線56が正線路34と負線路32にそれぞれ接続され、電力の供給が行われる。また、パワステ機構60は、燃料電池車10のステアリングに与えられるドライバの回転力を増幅して、車輪14の操舵を行う装置である。パワステ機構60も、同様に、リレー62を通じて、正引込線64と負引込線66に高電圧の電力供給を受け、高電圧部品として動作する。   The air compressor 50 is a device that compresses air and supplies it to the cathode of the fuel cell 20. Similarly, for the air compressor 50, the positive lead-in line 54 and the negative lead-in line 56 are connected to the positive line 34 and the negative line 32 through the relay 52, respectively, and power is supplied. The power steering mechanism 60 is a device that amplifies the rotational force of the driver given to the steering of the fuel cell vehicle 10 and steers the wheel 14. Similarly, the power steering mechanism 60 receives a high-voltage power supply to the positive lead-in line 64 and the negative lead-in line 66 through the relay 62, and operates as a high-voltage component.

2次電池80は、鉛蓄電池などを利用して形成された補助的な電池である。2次電池80では、両極が電解液に浸されたセル群82が直列接続されて高電圧の電力供給を可能にしている。回路中に設けられたリレー84は、2次電池80による電力供給や充電の実行及び停止を制御するスイッチである。2次電池80の負極端子86及び正極端子88からは、それぞれ、負線路90及び正線路92が伸びている。この負線路90及び正線路92は、リレー48を介して空調機40に接続されている。これにより、燃料電池20の運転停止中などにおいても空調機40を動作させることが可能となる。同様にして、2次電池80による電力は、リレー58,68を介してそれぞれエアコンプレッサ50とパワステ機構60に供給される。   The secondary battery 80 is an auxiliary battery formed using a lead storage battery or the like. In the secondary battery 80, a cell group 82 in which both electrodes are immersed in an electrolyte is connected in series to enable high-voltage power supply. A relay 84 provided in the circuit is a switch that controls power supply and charging execution and stopping by the secondary battery 80. A negative line 90 and a positive line 92 extend from the negative terminal 86 and the positive terminal 88 of the secondary battery 80, respectively. The negative line 90 and the positive line 92 are connected to the air conditioner 40 via the relay 48. Thereby, the air conditioner 40 can be operated even when the operation of the fuel cell 20 is stopped. Similarly, the electric power from the secondary battery 80 is supplied to the air compressor 50 and the power steering mechanism 60 via the relays 58 and 68, respectively.

漏電検出器100は、高電圧部品群に発生した漏電を検出する装置である。すなわち、燃料電池車10に別途設けられた補機電源系(通常は12Vバッテリと、必要に応じて設けられるDC/DCコンバータからなる)から電力供給される室内照明や速度メータなどの低電圧部品群ではなく、これらよりも高電圧な部品群を対象として漏電を検知する。漏電検出器100では、燃料電池20の端子30から中間電位が入力され、抵抗102に接続されている。そして、抵抗102の他端は、抵抗104を介して車体12の接続部105にグラウンド接続されている他、電圧検出部106にも接続されている。電圧検出部106は、抵抗102と抵抗104間の電圧を検出する装置であり、これにより、抵抗102と抵抗104を結ぶ回路に漏電電流が流れたこと、及びその電流量と流れ方向を検出することができる。電圧検出部106が漏電を検出した場合、その情報は警告出力部108に出力される。そして、警告出力部108は、制御部110に漏電を検出した旨の警告情報を出力する。   The leakage detector 100 is a device that detects a leakage generated in the high-voltage component group. That is, low voltage components such as indoor lighting and a speed meter supplied with power from an auxiliary power supply system (usually composed of a 12V battery and a DC / DC converter provided as necessary) provided separately in the fuel cell vehicle 10 Leakage is detected not for the group but for a group of components having a higher voltage than these. In the leakage detector 100, an intermediate potential is input from the terminal 30 of the fuel cell 20 and is connected to the resistor 102. The other end of the resistor 102 is connected to the voltage detection unit 106 in addition to being connected to the connection unit 105 of the vehicle body 12 via the resistor 104. The voltage detection unit 106 is a device that detects the voltage between the resistor 102 and the resistor 104, and thereby detects that a leakage current has flowed through the circuit connecting the resistor 102 and the resistor 104, and the current amount and the flow direction. be able to. When the voltage detector 106 detects a leakage, the information is output to the warning output unit 108. Then, the warning output unit 108 outputs warning information indicating that a leakage has been detected to the control unit 110.

制御部110は、燃料電池車10の走行や搭載部品についての制御を行う装置である。制御部110は、演算機能を備えたハードウエアと、その動作を規定するソフトウエア(プログラム)によって制御を実施する。制御部110には、部品特定部112と走行設定部114が含まれている。   The control unit 110 is a device that controls the travel of the fuel cell vehicle 10 and mounted components. The control unit 110 performs control by hardware having a calculation function and software (program) that defines the operation thereof. The control unit 110 includes a component specifying unit 112 and a travel setting unit 114.

部品特定部112は、漏電検出器100から漏電を検出した旨の警告通知を受けた場合に、その漏電がどの高電圧部品に発生したかを特定するための処理を行うものである。具体的には、その処理では、各高電圧部品に対し、順次、燃料電池20からの一時的な切離と再接続とを行う。そして、その高電圧部品を切離した間に、漏電検出器100からの漏電警告が停止したか否かを確認する。その結果、漏電が停止した場合には、その高電圧部品が漏電の原因であると判定する。また、部品特定部112は、漏電検出器100によって検出された漏電電流の極性(流れ方向)情報をもとに、その高電圧部品のどのあたりの部分(正極側か負極側かなど)で漏電が発生したかも判定することができる。   When the component identification unit 112 receives a warning notification that the leakage has been detected from the leakage detector 100, the component identification unit 112 performs processing for identifying in which high-voltage component the leakage has occurred. Specifically, in the process, temporary disconnection and reconnection from the fuel cell 20 are sequentially performed on each high-voltage component. Then, it is confirmed whether or not the leakage warning from the leakage detector 100 is stopped while the high voltage component is disconnected. As a result, when the leakage is stopped, it is determined that the high voltage component is the cause of the leakage. In addition, the component identification unit 112 detects the leakage current in which part of the high-voltage component (positive side or negative side) based on the information on the polarity (flow direction) of the leakage current detected by the leakage detector 100. It can also be determined whether or not.

走行設定部114は、部品特定部112が、漏電の原因となった高電圧部品を特定した場合に、その高電圧部品を除いて車両の走行を行えるか判定し、行える場合にはその設定を実施するものである。すなわち、走行設定部114には、使用しなくても車両の走行を行うことができる高電圧部品についてのリストが予め記憶されており、そのリストを参照して走行の可否を判定する。そして、車両の走行にあたっては、漏電した高電圧部品のリレーを切断状態に保つように制御を行う。これにより、漏電した高電圧部品を隔離して安全を確保した上での車両の走行が可能となる。走行設定部114における処理は、一般に、燃料電池車10の走行中には行うことができない。したがって、車両の走行を行うための通常の処理モードとは別のモードとして実施されることになる。   The travel setting unit 114 determines whether or not the vehicle can travel without the high voltage component when the component identifying unit 112 identifies the high voltage component that has caused the leakage, and if so, sets the setting. To implement. That is, the travel setting unit 114 stores in advance a list of high-voltage components that can travel the vehicle without being used, and refers to the list to determine whether travel is possible. When the vehicle travels, control is performed so that the relay of the high-voltage component that has leaked is kept in a disconnected state. As a result, it becomes possible to run the vehicle while ensuring safety by isolating the high-voltage components that have leaked electricity. Generally, the processing in the travel setting unit 114 cannot be performed while the fuel cell vehicle 10 is traveling. Therefore, it is implemented as a mode different from the normal processing mode for running the vehicle.

ここで、漏電が発生した場合の現象について説明する。漏電が発生していない場合、漏電検出器100には、漏電電流は流れない。燃料電池20における中間電位をもつ端子30は、漏電検出器100内の抵抗102,104を経由して、車体12の接続部105にグラウンド接続されている。車体12は、電気容量が大きく、また、車輪14を通じて地面に接続されているため、「接地」しているということができる。この車体12と高電圧部品の回路とは、通常状態では絶縁が確保されている。つまり、抵抗102,104と、高電圧部品の回路とは、一部が切断された状態にあり、回路を形成しない。   Here, a phenomenon in the case where a leakage occurs will be described. When there is no leakage, no leakage current flows through the leakage detector 100. The terminal 30 having an intermediate potential in the fuel cell 20 is grounded to the connection portion 105 of the vehicle body 12 via the resistors 102 and 104 in the leakage detector 100. Since the vehicle body 12 has a large electric capacity and is connected to the ground through the wheels 14, it can be said to be “grounded”. Insulation between the vehicle body 12 and the circuit of the high voltage component is ensured in a normal state. That is, the resistors 102 and 104 and the circuit of the high voltage component are in a partially disconnected state and do not form a circuit.

しかし、漏電が発生した場合には、抵抗102,104と、高電圧部品の回路とを含む回路が形成される。例えば、高電圧部品としてのパワステ機構60において、負引込線66と車体12との間に水濡れが発生し、漏電部130を通って漏電が発生したとする。この場合、漏電部130と、金属性の車体12に形成された電流の流路132とを介して、負引込線66と接続部105とが電気的に接続される。このため、漏電検出器の抵抗102,104、燃料電池20の端子30、負側のスタック22及び負極端子26、並びに負線路32を含む大きな回路が形成される。そして、この回路に起電力をもたらすスタック22によって、漏電電流が流されることとなる。   However, when leakage occurs, a circuit including the resistors 102 and 104 and a circuit of a high voltage component is formed. For example, in the power steering mechanism 60 as a high-voltage component, it is assumed that water wettability occurs between the negative lead-in wire 66 and the vehicle body 12, and electric leakage occurs through the electric leakage unit 130. In this case, the negative lead-in wire 66 and the connection part 105 are electrically connected via the electric leakage part 130 and the current flow path 132 formed in the metallic vehicle body 12. Therefore, a large circuit including the resistors 102 and 104 of the leakage detector, the terminal 30 of the fuel cell 20, the negative stack 22 and the negative terminal 26, and the negative line 32 is formed. Then, a leakage current is caused to flow by the stack 22 that provides an electromotive force to the circuit.

続いて、図2を参照しながら、図1の電池自動車で行われる処理について説明する。図2は、漏電検出と、それに引き続く制御部の処理の流れを説明するフローチャートである。   Next, processing performed in the battery car of FIG. 1 will be described with reference to FIG. FIG. 2 is a flowchart for explaining the detection flow and the subsequent processing flow of the control unit.

燃料電池車10を起動する場合や、漏電検査を行う場合などにおいては、まず燃料電池20を起動する必要がある。この燃料電池20の起動にあたっては、その起動に必要となるなどの理由から、通常、全ての高電圧部品のリレーが接続される(S10)。図1の例では、2次電池80の電力などを利用して、空調機40、エアコンプレッサ50、パワステ機構60のリレー42,52,62が接続状態に設定される。続いて、燃料電池20が起動され(S12)、必要に応じて暖気がなされた後に、十分な電力を高電圧部品に供給する。   When starting the fuel cell vehicle 10 or performing a leakage check, it is necessary to start the fuel cell 20 first. When the fuel cell 20 is activated, all the high-voltage component relays are normally connected for the reason that it is necessary for the activation (S10). In the example of FIG. 1, the relays 42, 52, and 62 of the air conditioner 40, the air compressor 50, and the power steering mechanism 60 are set to the connected state using the power of the secondary battery 80. Subsequently, after the fuel cell 20 is started (S12) and warmed up as necessary, sufficient power is supplied to the high voltage components.

この時、漏電が発生したとする。すると、漏電検出器100の電圧検出部106は漏電電流を検出し、警告出力部108は制御部110へと漏電発生の警告を出力する(S14)。   At this time, it is assumed that a leakage occurs. Then, the voltage detection unit 106 of the leakage detector 100 detects a leakage current, and the warning output unit 108 outputs a warning of leakage occurrence to the control unit 110 (S14).

制御部110は、警告が通知された場合、部品特定部112による漏電箇所を特定する処理を行う。この処理では、順次各高圧部品の一時的な切り離しが行われる。そこで、まず、リレー42が切離され、空調機40が燃料電池20の回路から隔離される(S16)。そして、漏電検出器100が漏電の検出を持続しているか否かが調べられる(S18)。漏電が検出されない場合、隔離された空調機40が漏電の原因であったと確定され、その情報が制御部110内のメモリなどに記録される(S20)。   When the warning is notified, the control unit 110 performs a process of identifying a leakage point by the component identifying unit 112. In this process, each high-pressure component is temporarily separated sequentially. Therefore, first, the relay 42 is disconnected, and the air conditioner 40 is isolated from the circuit of the fuel cell 20 (S16). Then, it is checked whether or not leakage detector 100 continues to detect the leakage (S18). When the leakage is not detected, it is determined that the isolated air conditioner 40 is the cause of the leakage, and the information is recorded in a memory or the like in the control unit 110 (S20).

続いて、制御部110内の走行設定部114が、この空調機40は燃料電池車10の走行に不可欠な機器であるか否かを判定する(S22)。空調機40は、ドライバが室内の暑さを我慢しさえすれば、燃料電池車10の走行には必要とされず、予め記憶されているリストには走行に不要なものとして登録されている。したがって、空調機40は隔離された状態に保たれ、ドライバに対しては、空調機40が漏電のため使用できない旨の警告がなされる(S24)。こうして、漏電検出にかかる処理が終了し(S26)、制御部110における処理は、燃料電池車10を走行させるためのモードへと移行する。このモードでは、空調機40を切り離した状態での燃料電池車10の走行が可能となる。   Subsequently, the traveling setting unit 114 in the control unit 110 determines whether or not the air conditioner 40 is an indispensable device for traveling of the fuel cell vehicle 10 (S22). The air conditioner 40 is not required for traveling of the fuel cell vehicle 10 as long as the driver withstands the heat in the room, and is registered in the list stored in advance as unnecessary for traveling. Therefore, the air conditioner 40 is kept in an isolated state, and a warning is given to the driver that the air conditioner 40 cannot be used due to electric leakage (S24). In this way, the process for detecting electric leakage is completed (S26), and the process in the control unit 110 shifts to a mode for causing the fuel cell vehicle 10 to travel. In this mode, the fuel cell vehicle 10 can travel with the air conditioner 40 disconnected.

なお、空調機40が走行に必要なものである場合には、切り離しての走行は許されない。そこで、車両の走行は禁止され(S28)、この漏電検出にかかる処理モードが終了する(S30)。したがって、この場合には、制御部110の処理が走行モードになった場合にも、燃料電池車10を走行させることはできない。ドライバに対しては、その旨の通知が行われる。   When the air conditioner 40 is necessary for traveling, separate traveling is not allowed. Therefore, traveling of the vehicle is prohibited (S28), and the processing mode for detecting leakage is terminated (S30). Therefore, in this case, the fuel cell vehicle 10 cannot be run even when the processing of the control unit 110 is in the running mode. The driver is notified to that effect.

ステップS18で漏電が検出されつづけた場合には、空調機40は、漏電の原因ではないと判定される。したがって、リレー42が再接続され、空調機40への電力供給が再開される(S32)。続いて、次の高電圧装置としてのエアコンプレッサ50についての漏電確認が行われる。すなわち、エアコンプレッサ50に電力供給を行うためのリレー52が切り離され(S34)、この場合に漏電が持続して検出されるか否かが判定される(S36)。そして、空調機40の場合と同様の処理が繰り返される。   If leakage is continuously detected in step S18, it is determined that the air conditioner 40 is not the cause of leakage. Therefore, the relay 42 is reconnected and the power supply to the air conditioner 40 is resumed (S32). Subsequently, a leakage check is performed on the air compressor 50 as the next high-voltage device. That is, the relay 52 for supplying power to the air compressor 50 is disconnected (S34), and in this case, it is determined whether or not the leakage is detected continuously (S36). And the process similar to the case of the air conditioner 40 is repeated.

以下、各高電圧部品について同様の処理が繰り返される。そして、漏電が検出された高電圧部品に対しては、燃料電池車10の走行に不可欠ではない限り、それを切り離しての走行を可能とする対処がなされる。   Thereafter, the same processing is repeated for each high voltage component. Then, for the high-voltage component in which the electric leakage is detected, a measure is taken to enable the traveling with the fuel cell vehicle 10 disconnected unless it is indispensable for the traveling of the fuel cell vehicle 10.

ここで、燃料電池車の高電圧部品であって、その走行に不可欠ではないものの例を挙げておく。そのような例としては、まず、2系統用意された高電圧部品が挙げられる。2系統用意される高電圧部品は、一般に、1系統が使用できない場合にも燃料電池車10の走行が可能となるように設計されている。   Here, examples of high-voltage components of a fuel cell vehicle that are not indispensable for traveling are given. As such an example, first, there are high voltage components prepared in two systems. The two high-voltage components prepared are generally designed so that the fuel cell vehicle 10 can run even when one system cannot be used.

1系統しか用意されていない高電圧部品であっても、燃料電池車の走行に不可欠ではないものの例としては、例えば、燃料電池に圧縮空気を供給するエアコンプレッサを挙げることができる。エアコンプレッサを使用しない場合、燃料電池の出力が低下するものの走行は不可能とはならない。ステアリングの回転を補助するパワステ機構も、使用しなければステアリング操作が重たくなるものの、車輪の操舵には支障を来さない。また、燃料電池を冷却するためのウォータポンプやファンなども、燃料電池が過剰に高温化しない限りは、使用しなくても構わない。さらに、モータからの回生電力の消費に使用される放熱器も、走行に不可欠なものではない。   An example of a high-voltage component that is prepared for only one system but is not indispensable for the traveling of the fuel cell vehicle is an air compressor that supplies compressed air to the fuel cell. When the air compressor is not used, the fuel cell output is reduced, but traveling is not impossible. The power steering mechanism that assists the rotation of the steering wheel, if not used, makes the steering operation heavy, but does not hinder the wheel steering. Also, a water pump or a fan for cooling the fuel cell may not be used as long as the fuel cell is not excessively heated. Furthermore, a radiator used for consumption of regenerative power from the motor is not indispensable for traveling.

本実施の形態にかかる燃料電池車の構成を示す概略図である。It is the schematic which shows the structure of the fuel cell vehicle concerning this Embodiment. 漏電検出にかかる処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the process concerning a leak detection.

符号の説明Explanation of symbols

10 燃料電池車、12 車体、14 車輪、20 燃料電池、22,24 スタック、26 負極端子、28 正極端子、30 端子、32 負線路、34 正線路、40 空調機、42,48,52,58,62,68,84 リレー、44,54,64 正引込線、46,56,66 負引込線、50 エアコンプレッサ、60 パワステ機構、80 2次電池、82 セル群、86 負極端子、88 正極端子、90 負線路、92 正線路、100 漏電検出器、102,104 抵抗、105 接続部、106 電圧検出部、108 警告出力部、110 制御部、112 部品特定部、114 走行設定部、130 漏電部、132 流路。   DESCRIPTION OF SYMBOLS 10 Fuel cell vehicle, 12 Car body, 14 Wheel, 20 Fuel cell, 22, 24 Stack, 26 Negative terminal, 28 Positive terminal, 30 Terminal, 32 Negative track, 34 Positive track, 40 Air conditioner, 42, 48, 52, 58 , 62, 68, 84 Relay, 44, 54, 64 Positive lead-in wire, 46, 56, 66 Negative lead-in wire, 50 Air compressor, 60 Power steering mechanism, 80 Secondary battery, 82 Cell group, 86 Negative electrode terminal, 88 Positive electrode terminal, 90 Negative line, 92 Positive line, 100 Earth leakage detector, 102, 104 Resistance, 105 Connection part, 106 Voltage detection part, 108 Warning output part, 110 Control part, 112 Component identification part, 114 Travel setting part, 130 Earth leakage part, 132 Flow path.

Claims (6)

電力を発電する燃料電池と、
燃料電池により発電された電力が供給される複数の電気部品と、
この複数の電気部品のいずれかにおいて漏電が発生したことを、その漏電に伴う漏電電流に基づいて検出する漏電検出器と、
漏電検出器が漏電を検出した場合に、この漏電検出器を利用して、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する特定手段と、
を備える、ことを特徴とする燃料電池システム。
A fuel cell for generating electric power;
A plurality of electrical components to which power generated by the fuel cell is supplied;
A leakage detector that detects that a leakage has occurred in any of the plurality of electrical components based on a leakage current associated with the leakage; and
When the leakage detector detects a leakage, the leakage detector is used to identify in which part of the plurality of electrical components the leakage has occurred,
A fuel cell system comprising:
請求項1に記載の燃料電池システムにおいて、
複数の電気部品の一部を電力の供給線から切り離す切離手段を備え、
特定手段は、切離手段による切り離しを行った場合に漏電検出器が漏電を検出するか否かに基づいて、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する、ことを特徴とする燃料電池システム。
The fuel cell system according to claim 1, wherein
A separation means for separating a part of the plurality of electrical components from the power supply line;
The specifying means specifies in which part of the plurality of electrical components the electric leakage has occurred based on whether or not the electric leakage detector detects the electric leakage when the disconnecting means performs the disconnection. A fuel cell system.
請求項2に記載の燃料電池システムにおいて、
切離手段は、各電気部品をそれぞれ電力の供給線から切り離す機能を備え、
特定手段は、切離手段による切り離しを行った場合に漏電検出器が漏電を検出するか否かに基づいて、いずれの電気部品において漏電が発生したかを特定する、ことを特徴とする燃料電池システム。
The fuel cell system according to claim 2, wherein
The disconnecting means has a function of disconnecting each electrical component from the power supply line,
The specifying means specifies in which electrical component the electric leakage has occurred, based on whether or not the electric leakage detector detects electric leakage when disconnecting by the disconnecting means. system.
請求項1乃至3のいずれか1項に記載の燃料電池システムにおいて、
燃料電池は、その中間電位が抵抗を介してグラウンドに接続され、
漏電検出器は、この抵抗に流れる漏電電流に基づいて、複数の電気部品のいずれかとグラウンドとの間で漏電が発生したことを検出する、ことを特徴とする燃料電池システム。
The fuel cell system according to any one of claims 1 to 3,
A fuel cell has its intermediate potential connected to ground through a resistor,
The leakage detector is configured to detect that leakage has occurred between any of the plurality of electrical components and the ground based on the leakage current flowing through the resistor.
請求項1に記載の燃料電池システムにおいて、
燃料電池は、その中間電位が抵抗を介してグラウンドに接続され、
漏電検出器は、この抵抗に流れる漏電電流に基づいて、複数の電気部品のいずれかとグラウンドとの間で漏電が発生したことを検出し、
特定手段は、漏電電流の極性に基づいて、複数の電気部品におけるいずれの部分において漏電が発生したかを特定する、ことを特徴とする燃料電池システム。
The fuel cell system according to claim 1, wherein
A fuel cell has its intermediate potential connected to ground through a resistor,
The leakage detector detects that a leakage has occurred between one of the plurality of electrical components and the ground based on the leakage current that flows through the resistor.
The fuel cell system characterized in that the specifying means specifies in which part of the plurality of electrical components the electrical leakage has occurred based on the polarity of the electrical leakage current.
請求項1乃至5のいずれか1項に記載の燃料電池システムと、
この燃料電池システムを搭載した車両と、
前記燃料電池により発電された電力を用いて車両を駆動する駆動機構と、
特定手段により漏電部分として特定された電気部品が車両の走行に不可欠ではない場合に、その電気部品を電気的に切り離した状態で車両を走行させる手段と、
を備える、ことを特徴とする燃料電池車。
A fuel cell system according to any one of claims 1 to 5,
A vehicle equipped with this fuel cell system;
A drive mechanism for driving the vehicle using the electric power generated by the fuel cell;
Means for causing the vehicle to travel in a state where the electrical component is electrically disconnected when the electrical component identified as the leakage portion by the identifying means is not essential for traveling of the vehicle;
A fuel cell vehicle comprising:
JP2005354812A 2005-12-08 2005-12-08 Fuel cell vehicle Expired - Fee Related JP4853004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354812A JP4853004B2 (en) 2005-12-08 2005-12-08 Fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354812A JP4853004B2 (en) 2005-12-08 2005-12-08 Fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2007157631A true JP2007157631A (en) 2007-06-21
JP4853004B2 JP4853004B2 (en) 2012-01-11

Family

ID=38241713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354812A Expired - Fee Related JP4853004B2 (en) 2005-12-08 2005-12-08 Fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP4853004B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081703A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Drive control device for vehicle and vehicle
JP2010142073A (en) * 2008-12-15 2010-06-24 Toyota Motor Corp Electric leakage detection system for electric vehicle, and electric vehicle
JP2010238544A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Fuel cell system and electric vehicle with the fuel cell system mounted
WO2011028703A2 (en) * 2009-09-01 2011-03-10 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
US8084998B2 (en) 2005-07-14 2011-12-27 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly
JP2014082875A (en) * 2012-10-17 2014-05-08 Toyota Motor Corp Power supply device for vehicle
CN108327538A (en) * 2017-12-29 2018-07-27 北京智行鸿远汽车有限公司 The fault handling method and new-energy automobile that severe insulation fault can restore automatically
JP2019040824A (en) * 2017-08-29 2019-03-14 トヨタ自動車株式会社 Fuel cell system and leakage area identification method
JP2020024837A (en) * 2018-08-07 2020-02-13 トヨタ自動車株式会社 Fuel cell system
CN112373309A (en) * 2020-11-24 2021-02-19 东风华神汽车有限公司 Method and system for automatically positioning insulation failure high-voltage component of new energy vehicle
US11233259B2 (en) 2019-04-12 2022-01-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187076A (en) * 1987-01-29 1988-08-02 株式会社島津製作所 Absorption refrigerator
JPH0970102A (en) * 1995-08-31 1997-03-11 Toshiba Corp Controller for electric car
JPH09263193A (en) * 1996-03-28 1997-10-07 Yazaki Corp Source disconnection device for vehicle and source disconnection system for vehicle
JP2000058079A (en) * 1998-08-07 2000-02-25 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai Neutral point grounding device for fuel cell
JP2003009303A (en) * 2001-06-25 2003-01-10 Mitsubishi Motors Corp High-voltage system breaker for car
JP2004039438A (en) * 2002-07-03 2004-02-05 Toshiba Corp Earth fault detector for fuel cell power generation plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187076A (en) * 1987-01-29 1988-08-02 株式会社島津製作所 Absorption refrigerator
JPH0970102A (en) * 1995-08-31 1997-03-11 Toshiba Corp Controller for electric car
JPH09263193A (en) * 1996-03-28 1997-10-07 Yazaki Corp Source disconnection device for vehicle and source disconnection system for vehicle
JP2000058079A (en) * 1998-08-07 2000-02-25 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai Neutral point grounding device for fuel cell
JP2003009303A (en) * 2001-06-25 2003-01-10 Mitsubishi Motors Corp High-voltage system breaker for car
JP2004039438A (en) * 2002-07-03 2004-02-05 Toshiba Corp Earth fault detector for fuel cell power generation plant

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084998B2 (en) 2005-07-14 2011-12-27 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
WO2008081703A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Drive control device for vehicle and vehicle
US8086363B2 (en) 2007-01-04 2011-12-27 Toyota Jidosha Kabushiki Kaisha Drive control device for vehicle, and vehicle
JP2010142073A (en) * 2008-12-15 2010-06-24 Toyota Motor Corp Electric leakage detection system for electric vehicle, and electric vehicle
JP2010238544A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Fuel cell system and electric vehicle with the fuel cell system mounted
CN102481858A (en) * 2009-09-01 2012-05-30 波士顿电力公司 Safety and performance optimized controls for large scale electric vehicle battery systems
WO2011028703A3 (en) * 2009-09-01 2011-07-07 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
WO2011028703A2 (en) * 2009-09-01 2011-03-10 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly
TWI550985B (en) * 2009-09-01 2016-09-21 波士頓電力公司 Large-scale electric vehicle battery systems for safety and performance optimized controls
JP2014082875A (en) * 2012-10-17 2014-05-08 Toyota Motor Corp Power supply device for vehicle
JP2019040824A (en) * 2017-08-29 2019-03-14 トヨタ自動車株式会社 Fuel cell system and leakage area identification method
CN108327538A (en) * 2017-12-29 2018-07-27 北京智行鸿远汽车有限公司 The fault handling method and new-energy automobile that severe insulation fault can restore automatically
JP2020024837A (en) * 2018-08-07 2020-02-13 トヨタ自動車株式会社 Fuel cell system
US11063280B2 (en) 2018-08-07 2021-07-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP7047658B2 (en) 2018-08-07 2022-04-05 トヨタ自動車株式会社 Fuel cell system
US11233259B2 (en) 2019-04-12 2022-01-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method
CN112373309A (en) * 2020-11-24 2021-02-19 东风华神汽车有限公司 Method and system for automatically positioning insulation failure high-voltage component of new energy vehicle

Also Published As

Publication number Publication date
JP4853004B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4853004B2 (en) Fuel cell vehicle
US11001162B2 (en) Vehicle power supply device and method for controlling vehicle power supply device
US9929674B2 (en) Power supply system for vehicle
US9052364B2 (en) Apparatus for diagnosing relay contact of electric vehicle and method thereof
US7862944B2 (en) Method for detection and diagnosis of isolation faults in fuel cell hybrid vehicles
WO2010113936A1 (en) Charging system, method of charging electric vehicle, and electric vehicle
JP5234282B2 (en) Battery pack inspection device
JP6602638B2 (en) Vehicle parts dielectric breakdown diagnosis system and method
WO2014061137A1 (en) Power supply management system and power supply management method
JP2017070036A (en) Power supply device for vehicle and method of detecting failure of the same
JP2009290978A (en) Method and device for detecting failure of vehicle power circuit
JP2006246564A (en) Failure diagnosis device and vehicle
JP2007099033A (en) Error detecting device of current sensor
CN109428097B (en) Fuel cell system and method for determining leakage region
US20210362624A1 (en) High-voltage system for a fuel-cell vehicle for determining an insulation fault
JP2015154641A (en) Electric leakage detection circuit of vehicle
JP2006310219A (en) Relay fusion bonding detecting device
JP2018098874A (en) Drive system and vehicle
JP2009093822A (en) Leakage detection device of fuel cell system
JP2009268188A (en) Charger for electric vehicle
JP2008263763A (en) Vehicle semiconductor relay diagnosing apparatus and method
JP2009117327A (en) Fuel cell system
JP5352038B2 (en) Power supply system
JP2008192543A (en) Fuel cell system
JPH0847102A (en) Storage battery device for electric motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees