JP2007155603A - Analyzing method using fluorescent depolarization method - Google Patents

Analyzing method using fluorescent depolarization method Download PDF

Info

Publication number
JP2007155603A
JP2007155603A JP2005353612A JP2005353612A JP2007155603A JP 2007155603 A JP2007155603 A JP 2007155603A JP 2005353612 A JP2005353612 A JP 2005353612A JP 2005353612 A JP2005353612 A JP 2005353612A JP 2007155603 A JP2007155603 A JP 2007155603A
Authority
JP
Japan
Prior art keywords
fluorescence
molecular weight
fluorescent
sample
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005353612A
Other languages
Japanese (ja)
Other versions
JP4632156B2 (en
Inventor
Akira Murakami
章 村上
Tatsuya Munaka
達也 務中
Hirohisa Abe
浩久 阿部
Masaki Kanai
正樹 叶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Kyoto Institute of Technology NUC
Original Assignee
Shimadzu Corp
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kyoto Institute of Technology NUC filed Critical Shimadzu Corp
Priority to JP2005353612A priority Critical patent/JP4632156B2/en
Publication of JP2007155603A publication Critical patent/JP2007155603A/en
Application granted granted Critical
Publication of JP4632156B2 publication Critical patent/JP4632156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the measuring sensitivity of a low-molecular weight substance to be measured in measurement using a fluorescent depolarization method. <P>SOLUTION: In a preferable embodiment, an anti-IL-4 antibody for forming a solid phase is labelled with an Ru complex fluorescent agent to form a fluorescence probe and an anti-IL-4 antibody for use in detection is added to a sample to be bonded to IL 4 being the substance to be measured. The molecular weight of a sandwich link at the time when the fluorescent probe is bonded to IL-4 is increased because the anti-IL-4 antibody for use in detection is bonded to IL-4 and the difference between the fluorescent anisotropy only of the fluorescent probe and the fluorescent anisotropy of the sandwich link is increased to enable the detection of high sensitivity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新作物、新農薬、機能性食品、医薬品などの開発分野において、生体試料の挙動を研究する際に使用される分析方法に閲し、特に試料中の測定対象物を蛍光標識プローブと結合させ、その結合した測定対象物を試料中で蛍光偏光解消法により測定する分析方法に関する。   The present invention relates to an analytical method used to study the behavior of a biological sample in the development field of new crops, new agricultural chemicals, functional foods, pharmaceuticals, etc. And an analytical method for measuring the bound measurement object in a sample by fluorescence depolarization.

新作物、新農薬、機能性食品、医薬品などの開発分野において、高度な新製品を効率良く開発するために、物質が細胞に与える効果(例えば、遺伝子を導入した細胞が産生するタンパク質)を経時的に解析し、その効果が発現するメカニズムを捉えたいという要請がある。   In order to efficiently develop advanced new products in development fields such as new crops, new agricultural chemicals, functional foods, and pharmaceuticals, the effects of substances on cells (for example, proteins produced by cells into which genes have been introduced) are analyzed over time. There is a request to analyze the mechanism and capture the mechanism of its effects.

経時的な細胞の応答を解析する方法の1つに蛍光偏光解消法がある。蛍光偏光解消法は蛍光プローブを使用し、励起光により励起された蛍光プローブから発生する蛍光の偏光性の解消により蛍光プローブで標識されたターゲットの運動性を知るものである。   One method for analyzing cellular responses over time is fluorescence depolarization. The fluorescence depolarization method uses a fluorescent probe and knows the mobility of the target labeled with the fluorescent probe by eliminating the polarization property of the fluorescence generated from the fluorescent probe excited by the excitation light.

蛍光偏光解消法は1950年代にPerinによって理論化されたもので、溶液中や膜内に固定化された状態の蛍光剤の運動性を評価できることから、蛍光標識を施した生体分子の運動性の変化を観測することにより生体分子の微量検出に応用されている。蛍光偏光解消法は、蛍光プローブを検出系から分離することなく溶液中における対象分子の相互作用を解析できる特徴がある(特許文献1、非特許文献1参照。)。
特開2004−279143号公報 T.Sakamoto et al.,Study on structure of ribosomal RNA by time-resolved luminescence anisotropy analysis, Nucleic Acids Research Supplement No.1, pp.143-144 Anal. Chem. Vol.70, No.3, pp.632-637,1998
The fluorescence depolarization method was theorized by Perin in the 1950s, and the mobility of fluorescent agents immobilized in solution or in the membrane can be evaluated. It is applied to the detection of trace amounts of biomolecules by observing changes. The fluorescence depolarization method is characterized in that the interaction of target molecules in a solution can be analyzed without separating the fluorescent probe from the detection system (see Patent Document 1 and Non-Patent Document 1).
JP 2004-279143 A T. Sakamoto et al., Study on structure of ribosomal RNA by time-resolved luminescence anisotropy analysis, Nucleic Acids Research Supplement No.1, pp.143-144 Anal. Chem. Vol.70, No.3, pp.632-637,1998

蛍光偏光解消法で測定対象物の検出を行う場合には、「蛍光プローブの分子量」と「測定対象物と結合した蛍光プローブの分子量」各々の蛍光異方性の差が指標とされる。ここで、測定対象物質の分子量が蛍光プローブの分子量に比較して小さいほど、上記の蛍光異方性値の差は小さくなり、結果として感度が低く検出が困難となる。   When the measurement object is detected by the fluorescence depolarization method, the difference in fluorescence anisotropy between the “molecular weight of the fluorescent probe” and the “molecular weight of the fluorescent probe bound to the measurement object” is used as an index. Here, as the molecular weight of the substance to be measured is smaller than the molecular weight of the fluorescent probe, the difference in the fluorescence anisotropy value becomes smaller, and as a result, the sensitivity is low and the detection becomes difficult.

もちろん、酵素免疫測定法(ELISA法)等の別法においては、これらの場合でもいわゆる競合法を用いることにより、低分子量の測定対象物質の検出を高感度に行うことは可能であるが、ELISA法は測定対象となる物質をサンプリングする必要がある。そのため、蛍光偏光解消法の1つの特徴である「経時的」な測定などは行なえない。   Of course, in other methods such as enzyme immunoassay (ELISA), it is possible to detect a low-molecular-weight target substance with high sensitivity by using a so-called competitive method. The method requires sampling the substance to be measured. For this reason, measurement over time, which is one characteristic of the fluorescence depolarization method, cannot be performed.

さらに、ELISA法を使用する際には相当量のサンプルが必要であり、例えばマイクロチップ中の微小空間における細胞の機能を解析する等の目的に対しては適用が困難である。
本発明は蛍光偏光解消法を用いた測定において、低分子量の測定対象物質の測定感度を高めることを目的とするものである。
Furthermore, when using the ELISA method, a considerable amount of sample is required, and it is difficult to apply for the purpose of, for example, analyzing the function of cells in a minute space in the microchip.
An object of the present invention is to increase the measurement sensitivity of a low-molecular-weight measurement target substance in measurement using a fluorescence depolarization method.

本発明は、試料中の測定対象物を蛍光標識プローブと結合させ、その結合した測定対象物をその試料中で蛍光偏光解消法による測定により分析する方法を対象とするものである。そして、本発明では、測定対象物に特異的に結合し、かつ前記蛍光標識プローブにも蛍光剤に結合しない増分子量物質を前記試料中に添加して測定対象物と蛍光標識プローブの結合体の分子量を増大させることを特徴とする。   The present invention is directed to a method in which an object to be measured in a sample is bound to a fluorescently labeled probe, and the bound object to be measured is analyzed in the sample by measurement using a fluorescence depolarization method. In the present invention, a molecular weight substance that specifically binds to the measurement target and does not bind to the fluorescent agent in the fluorescently labeled probe is added to the sample to form a conjugate of the measurement target and the fluorescently labeled probe. It is characterized by increasing the molecular weight.

測定対象物の一例は抗原である。その場合、蛍光標識プローブと増分子量物質は抗体である。そして、それらの物質をサンドイッチ法により結合させる。
試料反応液の体積は1μL以下であることが好ましい。
An example of the measurement object is an antigen. In that case, the fluorescently labeled probe and the molecular weight increasing substance are antibodies. And those substances are combined by the sandwich method.
The volume of the sample reaction solution is preferably 1 μL or less.

蛍光偏光解消法には、パルス光源を用いて偏光励起し、遅れて出てくる蛍光の偏光度の時間変化を10ナノ秒から数マイクロ秒の間に検出する「時間分解蛍光偏光解消法」と、光源に定常光を用いて偏光励起する「定常光励起による蛍光偏光解消法」とがある。時間分解蛍光偏光解消法では蛍光剤の蛍光寿命を測定することができ、定常光励起による蛍光偏光解消法では時間分解蛍光偏光解消法で得られる偏光度の時間平均値が得られる。本発明で使用する蛍光偏光解消法は、そのいずれの方法も含んでいる。   The fluorescence depolarization method is a “time-resolved fluorescence depolarization method” in which polarization is excited using a pulsed light source, and the temporal change in the degree of polarization of the fluorescence that is delayed is detected within 10 nanoseconds to several microseconds. There is a “fluorescence depolarization method by stationary light excitation” in which polarized light is excited using stationary light as a light source. In the time-resolved fluorescence depolarization method, the fluorescence lifetime of the fluorescent agent can be measured, and in the fluorescence depolarization method by stationary light excitation, the time average value of the degree of polarization obtained by the time-resolved fluorescence depolarization method is obtained. The fluorescence depolarization method used in the present invention includes both methods.

蛍光異方性rは、試料に特定の偏光方向の直線偏光の励起光を照射し、受光した蛍光のうち励起光の偏光方向と等しい偏光方向及びそれに直交する偏光方向のそれぞれの直線偏光成分に基づいて求める。蛍光異方性rは励起偏光と平行な成分と直交する成分との蛍光強度の差を全蛍光強度で除した値である。蛍光異方性rの時間変化関数r(t)と分子の回転運動を表す回転相関時間(閘)には以下に次に示すような関連があるため、蛍光標識プローブと結合した測定対象物の回転運動を読み取ることができる。ここで示したように、複数の回転運動成分が存在する場合でも、r(t)を多成分の指数関数で近似することで個々に評価することが可能となる。
r(t)=(IVV(t)−IVH(t))/(IVV(t)+2IVH(t))
=Σaiexp(−t/θi)
θ=1/6D
=ηV/kT
ここで、
VV:蛍光の縦偏光成分強度
VH:蛍光の横偏光成分強度
D:回転拡散係数
轗:粘度
V:分子の体積
k:ボルツマン定数
T:絶対温度(K)
i:個々の分子(又は結合部位)を表わし、上記の説明では回転運動成分
i:比例係数(存在割合の比)で、aiをすべて足すと1になる。
The fluorescence anisotropy r is obtained by irradiating a sample with linearly polarized excitation light having a specific polarization direction, and receiving each of the linearly polarized light components of the received fluorescence having a polarization direction equal to the polarization direction of the excitation light and a polarization direction orthogonal thereto. Ask based. The fluorescence anisotropy r is a value obtained by dividing the difference in fluorescence intensity between the component parallel to the excitation polarization and the component orthogonal to the total fluorescence intensity. Since the time correlation function r (t) of the fluorescence anisotropy r and the rotational correlation time (閘) representing the rotational motion of the molecule have the following relationship, the measurement object coupled to the fluorescently labeled probe Rotational motion can be read. As shown here, even when there are a plurality of rotational motion components, it is possible to individually evaluate by approximating r (t) with a multicomponent exponential function.
r (t) = (I VV (t) −I VH (t)) / (I VV (t) +2 I VH (t))
= Σa i exp (−t / θ i )
θ = 1 / 6D
= ΗV / kT
here,
I VV : Intensity of longitudinal polarization component of fluorescence I VH : Intensity of transverse polarization component of fluorescence D: Rotational diffusion coefficient 轗: Viscosity V: Volume of molecule k: Boltzmann constant T: Absolute temperature (K)
i: represents the individual molecules (or binding site), the rotational movement component in the above description a i: proportional coefficient (ratio of the existing ratio) becomes 1 when plus all the a i.

蛍光異方性rは分子の回転運動により減衰していくが、励起光の照射又は蛍光発生から一定時間後のそれらの値の変化は測定対象物量の増減を表わす。そこで、本発明の好ましい態様では、時間分解蛍光偏光解消法により励起光の照射又は蛍光発生から一定時間後に測定を行なう。   Although the fluorescence anisotropy r is attenuated by the rotational movement of the molecule, the change in the value after a predetermined time from the irradiation of the excitation light or the generation of the fluorescence represents an increase or decrease in the amount of the measurement object. Therefore, in a preferred embodiment of the present invention, the measurement is performed after a predetermined time from irradiation of excitation light or generation of fluorescence by the time-resolved fluorescence depolarization method.

蛍光プローブの蛍光剤としては、フルオレセインのほか、種々のものを使用することができる。
測定対象物と蛍光プローブが相互作用した物質を経時的に検出することを目的とした場合、蛍光偏光解消法は相互作用を定量的に測定することが原理的に可能であるが、測定したい蛍光以外に試料中の培地やレンズから発生する自家蛍光(背景光)がノイズとして含まれることがあるため、これを除去することができれば好都合である。自家蛍光は寿命が短いものが多いことを利用して、自家蛍光が消滅した後に目的の蛍光を検出することにより自家蛍光によるノイズを除去することができる。
In addition to fluorescein, various fluorescent agents can be used for the fluorescent probe.
When the objective is to detect the substance with which the measurement object interacts with the fluorescent probe over time, the fluorescence depolarization method can in principle measure the interaction quantitatively. In addition, since autofluorescence (background light) generated from the culture medium or lens in the sample may be included as noise, it is advantageous if it can be removed. By utilizing the fact that many autofluorescences have a short lifetime, noise due to autofluorescence can be removed by detecting the target fluorescence after the autofluorescence has disappeared.

その方法として、時間分解蛍光偏光解消法を使用するのが好ましい。その際、蛍光プローブの蛍光剤として蛍光寿命が200ナノ秒から2マイクロ秒の範囲にあるものを使用してその蛍光寿命内で蛍光異方性の測定を行なうようにするのが好ましい。蛍光寿命が200ナノ秒から2マイクロ秒の範囲にある蛍光剤としては、Ru(ルテニウム)錯体をあげることができる。Ru錯体の一例として、[Ru(phen)3]Cl2(tris-1,10-Phenanthroline ruthenium(II)dichloride)などを挙げることができる。 As the method, it is preferable to use a time-resolved fluorescence depolarization method. At that time, it is preferable to measure the fluorescence anisotropy within the fluorescence lifetime by using a fluorescent probe having a fluorescence lifetime in the range of 200 nanoseconds to 2 microseconds. Examples of the fluorescent agent having a fluorescence lifetime in the range of 200 nanoseconds to 2 microseconds include a Ru (ruthenium) complex. An example of a Ru complex is [Ru (phen) 3 ] Cl 2 (tris-1,10-Phenanthroline ruthenium (II) dichloride).

本発明では、増分子量物質が測定対象物質に結合することにより測定対象物質のみかけの分子量が増大し、それにより蛍光偏光解消法による測定で得られる蛍光異方性が増大し、測定の高感度化が可能となる。
その結果、例えばサイトカイン類に代表される低分子量タンパク質の経時的な分析が可能となることで、細胞の経時的な機能解析が可能となる。
In the present invention, the apparent molecular weight of the substance to be measured is increased by binding the molecular weight substance to the substance to be measured, thereby increasing the fluorescence anisotropy obtained by the measurement by the fluorescence depolarization method, and the high sensitivity of the measurement. Can be realized.
As a result, for example, it becomes possible to analyze a low molecular weight protein typified by cytokines over time, thereby enabling functional analysis of cells over time.

試料反応液の体積を1μL以下とすれば、測定対象物を不用意に薄めることがなくなり、微量測定が可能となる。微小空間を用いた分析における効果は大きく、細胞の機能解析、特にシグナル伝達分野における有効な分析手法となり、癌、アレルギーの態様究明や創薬に貢献することが期待できる。   When the volume of the sample reaction solution is 1 μL or less, the measurement object is not inadvertently diluted, and a trace amount measurement is possible. The effect in the analysis using a minute space is great, and it can be expected to be an effective analysis technique in cell function analysis, particularly in the field of signal transduction, and to contribute to investigation of cancer and allergy aspects and drug discovery.

蛍光偏光解消法として時間分解蛍光偏光解消法を採用し、蛍光プローブの蛍光剤として蛍光寿命が200ナノ秒から2マイクロ秒の範囲にあるものを使用してその蛍光寿命内で蛍光異方性の測定を行なうようにすれば、自家蛍光によるノイズを除去することができる。   The time-resolved fluorescence depolarization method is adopted as the fluorescence depolarization method, and a fluorescent probe having a fluorescence lifetime in the range of 200 nanoseconds to 2 microseconds is used. If measurement is performed, noise due to autofluorescence can be removed.

蛍光異方性の測定を行なう装置について説明する。
蛍光偏光解消法には定常光励起による蛍光偏光解消法と時間分解蛍光偏光解消法があるが、前者の定常光励起による蛍光偏光解消法は通常の蛍光顕微鏡により実施することができる。そこで、本発明の好ましい蛍光偏光解消法としての時間分解蛍光偏光解消法を実施する装置の一例を図1に示す。
An apparatus for measuring fluorescence anisotropy will be described.
The fluorescence depolarization method includes a fluorescence depolarization method by stationary light excitation and a time-resolved fluorescence depolarization method. The former fluorescence depolarization method by steady light excitation can be carried out by a normal fluorescence microscope. An example of an apparatus that implements the time-resolved fluorescence depolarization method as the preferred fluorescence depolarization method of the present invention is shown in FIG.

試料が収容された反応容器としてマイクロチップ2を使用する。マイクロチップ2は顕微鏡4の試料保持台に保持する。パルス励起光を出力するパルス励起光源部としてパルスレーザー装置6が設けられており、パルスレーザー装置6からのパルス励起光をマイクロチップ2の試料に照射するために、励起光波長の光を反射し、試料からの蛍光を透過させるダイクロイックミラー8が設けられている。パルスレーザー装置6から出力されたパルス励起光を特定の偏光方向、例えば縦方向の偏光方向をもつ直線偏光にする偏光手段として偏光板10が、パルスレーザー装置6とダイクロイックミラー8の間の光路上に配置されている。これにより、偏光板10により偏光方向が規定されたパルス励起光が顕微鏡4を通してマイクロチップ2中の微小空間内にある試料に照射される。ダイクロイックミラー8と顕微鏡4は照射光学系を構成している。   The microchip 2 is used as a reaction container in which a sample is accommodated. The microchip 2 is held on the sample holder of the microscope 4. A pulse laser device 6 is provided as a pulse excitation light source unit that outputs pulsed excitation light. In order to irradiate the sample of the microchip 2 with the pulse excitation light from the pulse laser device 6, the light of the excitation light wavelength is reflected. A dichroic mirror 8 that transmits fluorescence from the sample is provided. A polarizing plate 10 is used as a polarization means for converting the pulse excitation light output from the pulse laser device 6 into linearly polarized light having a specific polarization direction, for example, a longitudinal polarization direction, on the optical path between the pulse laser device 6 and the dichroic mirror 8. Is arranged. Thereby, the pulse excitation light whose polarization direction is defined by the polarizing plate 10 is irradiated through the microscope 4 to the sample in the minute space in the microchip 2. The dichroic mirror 8 and the microscope 4 constitute an irradiation optical system.

パルス励起光の照射により試料から発生した蛍光は、顕微鏡4を通ってダイクロイックミラー8を透過し、偏光板10と同一の偏光方向に設定された検光子(偏光素子)12を通過した後、励起光成分を除去するカットオフフィルタ14を経て検出手段のストリークスコープ16に導かれて検出される。顕微鏡4、検光子12及びカットオフフィルタ14は受光光学系を構成している。   Fluorescence generated from the sample by irradiation with pulsed excitation light passes through the microscope 4, passes through the dichroic mirror 8, passes through the analyzer (polarizing element) 12 set in the same polarization direction as the polarizing plate 10, and then excited. The light is removed and guided to the streak scope 16 of the detection means via the cut-off filter 14 for removing the light component. The microscope 4, the analyzer 12, and the cut-off filter 14 constitute a light receiving optical system.

演算手段(図示略)は、ストリークスコープ16で検出された検出信号のうち、蛍光発生から所定の時間後、例えば200ナノ秒から2マイクロ秒の範囲の検出信号を使用して蛍光偏光解消を評価するようになっている。演算手段はデータ処理装置の機能に含ませることもできる。   The computing means (not shown) evaluates the depolarization of fluorescence using a detection signal within a range of, for example, 200 nanoseconds to 2 microseconds after a predetermined time from the generation of fluorescence among the detection signals detected by the streak scope 16. It is supposed to be. The calculation means can be included in the function of the data processing apparatus.

検出に用いるストリークスコープ16は、検出すべき光量が少ない場合には、フォトンカウンティングモードで高感度な検出が可能であり、光量が多い場合にはアナログ計測により高速の検出ができるという特徴をもっている。しかし、ストリークスコープ16に替えて、TAC(時間―電圧変換器)法を用いたTCSPC(時間相関単一格子計数法)方式の検出器を用いてよい。   The streak scope 16 used for detection has a feature that high-sensitivity detection is possible in the photon counting mode when the amount of light to be detected is small, and high-speed detection can be performed by analog measurement when the amount of light is large. However, instead of the streak scope 16, a TCSPC (time correlation single grid counting method) type detector using a TAC (time-voltage converter) method may be used.

検光子12を偏光板10と同方向に設置した場合に、IVVすなわち蛍光の縦偏光成分強度が得られ、検光子12を偏光板10と直交する方向に設置した場合にはIVHすなわち蛍光の横偏光成分強度が得られる。そこで、他の方法として、受光光学系に検光子12を回転させる回転機構を設けることができる。検光子12を回転させることによりIVVとIVHを得ることができる。検光子12の回転は手動と自動のどちらでもよい。 When the analyzer 12 is installed in the same direction as the polarizing plate 10, I VV, that is, the intensity of the longitudinal polarization component of fluorescence is obtained, and when the analyzer 12 is installed in the direction orthogonal to the polarizing plate 10, I VH, that is, fluorescence. Is obtained. Therefore, as another method, a rotation mechanism for rotating the analyzer 12 can be provided in the light receiving optical system. I VV and I VH can be obtained by rotating the analyzer 12. The analyzer 12 may be rotated manually or automatically.

さらに他の方法として、検光子を用いずに、入射光の縦偏光と横偏光を分離することのできる偏光ビームスプリッターを受光光学系に設け、その偏光ビームスプリッターを使用して蛍光の縦偏光成分と横偏光成分を検出器に導いてIVVとIVHを同時に検出するようにしてもよい。この場合にはストリークスコープ等の検出器が2個必要となる。
得られたIVV、IVHを演算手段で演算することで蛍光異方性を求めることができる。この演算手段もデータ処理装置の機能に含ませることもできる。
As another method, a polarization beam splitter that can separate the longitudinal polarization and the lateral polarization of incident light without using an analyzer is provided in the light receiving optical system, and the polarization polarization splitter of the fluorescence is used by using the polarization beam splitter. Alternatively, the horizontal polarization component may be guided to a detector to detect I VV and I VH at the same time. In this case, two detectors such as a streak scope are required.
The fluorescence anisotropy can be obtained by calculating the obtained I VV and I VH by the calculation means. This computing means can also be included in the function of the data processing apparatus.

好ましい形態では、測定対象物と蛍光標識核酸又は蛍光標識糖鎖との結合反応及び時間分解蛍光偏光解消法による測定を試料の体積が1μL以下の状態で行なう。そのために、試料の体積が1μL以下となるように形成されたマイクロチップを反応容器として使用することができる。そのような反応容器は、例えばシリコン基板に微細加工により反応室と流路を形成し、上下の底面に透明ガラス基板又は透明石英ガラスを用いて形成することができる。   In a preferred mode, the binding reaction between the measurement object and the fluorescently labeled nucleic acid or the fluorescently labeled sugar chain and the measurement by the time-resolved fluorescence depolarization method are performed in a state where the sample volume is 1 μL or less. Therefore, a microchip formed so that the sample volume is 1 μL or less can be used as a reaction container. Such a reaction vessel can be formed using, for example, a transparent glass substrate or transparent quartz glass on the upper and lower bottom surfaces by forming a reaction chamber and a flow path by fine processing on a silicon substrate.

そのようなマイクロチップに関しては、近年、μTAS(Micro Total Analysis Systems)、LOC(Laboratory on a Chip)と称される、マイクロマシニング技術を利用してガラスやシリコンの基板上に化学分析や化学合成の機能を集積しチップ化する研究が盛んに行われており、容易に作製したり入手したりすることができる。   In recent years, such microchips have been used for chemical analysis and chemical synthesis on glass and silicon substrates using micromachining technology called μTAS (Micro Total Analysis Systems) and LOC (Laboratory on a Chip). Research into integrating functions into chips has been actively conducted, and they can be easily produced or obtained.

μTASやLOCは、主として分析装置の超小型化や微小空間での化学反応が研究の対象であるが、最近は細胞操作に関する研究が注目されつつある。いずれも共通の特徴として、1)使用する試薬や試料の大幅な低減、2)分析や反応の高速化(短時間化)、3)並列処理による分析や合成操作件数のハイスループット化、4)機能の集積による高機能化・自動化・省力化、5)システム全体の小型化などがあり、様々な分野で将来の新市場を形成するものと期待されている。   For μTAS and LOC, researches are mainly focused on ultra-miniaturized analyzers and chemical reactions in microspaces. Recently, research on cell manipulation is gaining attention. All of them share the following features: 1) Significant reduction in reagents and samples to be used, 2) Faster analysis and reaction (shorter time), 3) High throughput of analysis and synthesis operations by parallel processing, 4) There are high functions, automation, labor savings and 5) downsizing of the whole system, and it is expected to form new future markets in various fields.

マイクロチップ2の一例を図2に示す。(A)は平面図、(B)はその流路に沿った断面図である。
マイクロチップ2は3枚のガラス基板20,22,24が接合されて構成されている。ガラス基板20は厚みが1.0mmの石英ガラス、ガラス基板22は厚みが0.5mmの石英ガラス、ガラス基板24は厚みが0.17mmのカバーガラスである。カバーガラスの材質は限定されないが、石英、BK−7、パイレックス(登録商標)など、自家蛍光の少ないものが望ましい。
An example of the microchip 2 is shown in FIG. (A) is a top view, (B) is sectional drawing along the flow path.
The microchip 2 is configured by bonding three glass substrates 20, 22, and 24. The glass substrate 20 is a quartz glass having a thickness of 1.0 mm, the glass substrate 22 is a quartz glass having a thickness of 0.5 mm, and the glass substrate 24 is a cover glass having a thickness of 0.17 mm. The material of the cover glass is not limited, but a material with less autofluorescence such as quartz, BK-7, Pyrex (registered trademark) is desirable.

ガラス基板20の片面には、数百μm以下の幅と深さを持つ微小な流路溝26と、流路溝26の両端部に位置する試料導入(Inlet)及び排出(Outlet)のための貫通穴28,30が形成されている。ガラス基板22には流路溝26の中央部に該当する位置に直径が1mmの反応室用の貫通穴32があけられている。ガラス基板24は加工を施していない平坦な板である。   On one side of the glass substrate 20, there are a minute channel groove 26 having a width and depth of several hundred μm or less, and sample introduction (Inlet) and discharge (Outlet) positioned at both ends of the channel groove 26. Through holes 28 and 30 are formed. A through hole 32 for a reaction chamber having a diameter of 1 mm is formed in the glass substrate 22 at a position corresponding to the central portion of the flow channel groove 26. The glass substrate 24 is a flat plate that has not been processed.

ガラス基板20の流路溝26が形成されている面とガラス基板22の片面とを向かい合わせて密着させ、さらにガラス基板22の裏面にガラス基板24を密着させた状態で、それぞれのガラス基板間を例えばフッ酸溶液による接合などの手段で液密に接合することにより、このマイクロチップ2が構成されている。
マイクロチップ2中の反応室32の形状は直径1mm、深さが0.5mmで、容量は約0.4μLである。
In a state where the surface of the glass substrate 20 on which the flow channel grooves 26 are formed and one surface of the glass substrate 22 face each other and are in close contact with each other, and the glass substrate 24 is in close contact with the back surface of the glass substrate 22, The microchip 2 is configured by bonding the liquids in a liquid-tight manner by means such as bonding with a hydrofluoric acid solution.
The reaction chamber 32 in the microchip 2 has a diameter of 1 mm, a depth of 0.5 mm, and a capacity of about 0.4 μL.

一実施の形態として、例えば、細胞が外部からの刺激により、I型アレルギーにおけるIgE産生と関わりが深いといわれるインターロイキン-4(IL-4)を産生することを経時的に検出する場合を取り上げて説明する。   As one embodiment, for example, a case where it is detected over time that cells produce interleukin-4 (IL-4), which is said to be closely related to IgE production in type I allergy, by external stimulation. I will explain.

まず、蛍光異方性rと分子量Mの関係は次式のように表わされる(非特許文献2参照。)。
r=r0/(1+τ/θ)、
θ=ηM(v+h)/RT、
r:蛍光異方性、
θ:回転相関時間、
τ:蛍光寿命、
M:分子量、
0:分子運動がない場合の異方性(非特許文献2から0.3と仮定)
η:粘度(非特許文献2から1cpと仮定)
v+h:水和体積(非特許文献2から1.9と仮定)
T:絶対温度(非特許文献2から293と仮定)
First, the relationship between the fluorescence anisotropy r and the molecular weight M is expressed by the following equation (see Non-Patent Document 2).
r = r 0 / (1 + τ / θ),
θ = ηM (v + h) / RT,
r: fluorescence anisotropy,
θ: rotational correlation time,
τ: fluorescence lifetime,
M: molecular weight,
r 0 : Anisotropy in the absence of molecular motion (assuming non-patent document 2 to 0.3)
η: Viscosity (assuming 1 cp from Non-Patent Document 2)
v + h: Hydration volume (assuming non-patent document 2 to 1.9)
T: Absolute temperature (assuming non-patent literature 2 to 293)

ここで、非特許文献2を参考に、r0=0.3、η=1cp、(v+h)=1.9、T=293°Kと仮定して、蛍光寿命τが5ナノ秒、500ナノ秒及び50μ秒の蛍光プローブのそれぞれについて蛍光異方性rと分子量Mの関係を図示すると、図3のようになる。 Here, with reference to Non-Patent Document 2, assuming that r 0 = 0.3, η = 1 cp, (v + h) = 1.9, T = 293 ° K, the fluorescence lifetime τ is 5 nanoseconds, 500 nanoseconds FIG. 3 shows the relationship between the fluorescence anisotropy r and the molecular weight M for each of the second and 50 μsec fluorescent probes.

IL-4の分子量は約15,000である。IL-4と特異的に結合する市販の抗体は比較的容易に入手できるが、その分子量は約150,000である。認識部位によっては、Fab'フラグメントを切断して蛍光標識することで、蛍光プローブの分子量を抑えることは可能であるが、それでもその分子量は約50,000である。
いま、分子量約150,000の抗体を蛍光標識して蛍光プローブを調製するものとする。
IL-4 has a molecular weight of about 15,000. Commercially available antibodies that specifically bind IL-4 are relatively readily available, but have a molecular weight of about 150,000. Depending on the recognition site, it is possible to suppress the molecular weight of the fluorescent probe by cleaving the Fab ′ fragment and fluorescently labeling it, but the molecular weight is still about 50,000.
Assume that a fluorescent probe is prepared by fluorescently labeling an antibody having a molecular weight of about 150,000.

まず、参考として、IL-4に蛍光プローブを結合させることにより蛍光異方性値rの変化からIL-4の存在を検出することを考える。蛍光プローブの分子量は約150,000、IL-4に蛍光プローブが結合したものの分子量は約165,000である。   First, as a reference, let us consider detecting the presence of IL-4 from the change in fluorescence anisotropy value r by binding a fluorescent probe to IL-4. The molecular weight of the fluorescent probe is about 150,000, and the molecular weight of the fluorescent probe bound to IL-4 is about 165,000.

その場合、蛍光寿命が約500ナノ秒の蛍光プローブを用いた場合の蛍光異方性値rを算出すると、図3から
蛍光プローブのみ:r=0.057(図3中のa)
蛍光プローブとIL-4の結合したもの:r=0.061(図3中のb)
となる。その結果、その差が小さいため、高感度な検出は困難であることがわかる。
In that case, when the fluorescence anisotropy value r is calculated when a fluorescent probe having a fluorescence lifetime of about 500 nanoseconds is used, from FIG. 3, only the fluorescent probe: r = 0.057 (a in FIG. 3)
A combination of a fluorescent probe and IL-4: r = 0.061 (b in FIG. 3)
It becomes. As a result, since the difference is small, it turns out that highly sensitive detection is difficult.

なお、ここで蛍光寿命が5ナノ秒程度の蛍光プローブ、又は50μ秒程度の蛍光プローブを用いても、蛍光プローブのみの蛍光異方性値と結合体の蛍光異方性値との差はほとんどないため、この系では使用が困難である、また、蛍光寿命が5ナノ秒程度のものは培地等からの夾雑蛍光の影響を受けるため、経時的な計測には不向きである。   Note that even if a fluorescent probe with a fluorescence lifetime of about 5 nanoseconds or a fluorescent probe with about 50 microseconds is used here, there is almost no difference between the fluorescence anisotropy value of the fluorescent probe alone and the fluorescence anisotropy value of the conjugate. Therefore, it is difficult to use in this system, and those having a fluorescence lifetime of about 5 nanoseconds are not suitable for measurement over time because they are affected by contaminating fluorescence from the medium and the like.

一方、サンドイッチELISA法では経時的な観測はできないものの、本発明ではIL-4を抗原とする2種類の抗体で、抗体どおしは互いには結合しないものを用いることにより、IL-4の検出が可能になる。多くの場合、このサンドイッチELISA法に用いる抗体は市販の試薬で入手可能であり、例えばIL-4を対象としたものから、固相化用の抗IL-4抗体と増分子量物質である検出用抗IL-4抗体を準備する。   On the other hand, although sandwich ELISA is not possible over time, in the present invention, IL-4 can be detected by using two types of antibodies that use IL-4 as an antigen and antibodies that do not bind to each other. Is possible. In many cases, antibodies used in this sandwich ELISA method are available as commercially available reagents. For example, from IL-4 targets, anti-IL-4 antibodies for solid-phase immobilization and high molecular weight substances for detection Prepare anti-IL-4 antibody.

そして、固相化用の抗IL-4抗体を、例えばRu錯体蛍光剤にて標識して蛍光プローブとし、試料中には増分子量物質である検出用抗IL-4抗体を予め添加し、測定対象物質であるIL-4と結合させておく。この場合、蛍光プローブの分子量は約150,000、蛍光プローブがIL-4と結合した際のサンドイッチ結合体の分子量は、IL-4に検出用抗IL-4抗体が結合しているために315,000となる。   Then, the anti-IL-4 antibody for immobilization is labeled with, for example, a Ru complex fluorescent agent to form a fluorescent probe, and the anti-IL-4 antibody for detection, which is a molecular weight substance, is added to the sample in advance and measured. It is combined with the target substance IL-4. In this case, the molecular weight of the fluorescent probe is about 150,000, and the molecular weight of the sandwich conjugate when the fluorescent probe is bound to IL-4 is 315 because the anti-IL-4 antibody for detection is bound to IL-4. 1,000.

前述と同様にして蛍光寿命が約500ナノ秒の蛍光プローブを用いた場合の蛍光異方性値を算出すると、図4に示されるように、
蛍光プローブのみ:r=0.057(図4中のa)
蛍光プローブとIL-4の結合したもの:0.099(図4中のB)
となり、その差が増大し、より高感度な検出が可能となることがわかる。
When the fluorescence anisotropy value is calculated using a fluorescent probe having a fluorescence lifetime of about 500 nanoseconds as described above, as shown in FIG.
Only fluorescent probe: r = 0.057 (a in FIG. 4)
Fluorescent probe and IL-4 combined: 0.099 (B in FIG. 4)
Thus, the difference increases, and it can be seen that detection with higher sensitivity is possible.

本発明が適用される測定対象物、蛍光標識プローブ及び増分子量物質は、実施例に示したものに限らず、他の生体物質であっても特異的に結合して分子量を増加させることができるものであれば、同様に適用することができる。例えば、抗体や抗体の一部、タンパク質、アプタマー等が挙げられる。また、直接測定対象物に結合する適当な分子量のタンパク質等を結合させた物質でもよい。測定対象物質を検出するために蛍光標識する物質(抗体、抗体の一部等)と増分子量物質との組合せについては、サンドイッチELISAで用いられる「固相用抗体と検出用抗体」の組合せが良い例である。この時、増分子量物質である検出用抗体と測定対象物が結合した物質を、蛍光標識した固相用抗体とさらに結合させて蛍光異方性を測定することとなる。「固相用抗体と検出用抗体」の組合せは逆でも勿論かまわない。   The measurement object, the fluorescently labeled probe, and the molecular weight increasing substance to which the present invention is applied are not limited to those shown in the examples, and even other biological substances can specifically bind to increase the molecular weight. If it is a thing, it can apply similarly. For example, an antibody, a part of the antibody, a protein, an aptamer and the like can be mentioned. Moreover, the substance which couple | bonded the protein of the suitable molecular weight etc. couple | bonded with a measuring object directly may be sufficient. For the combination of a substance (antibodies, a part of an antibody, etc.) that is fluorescently labeled to detect the substance to be measured and a high molecular weight substance, the combination of “solid phase antibody and detection antibody” used in sandwich ELISA is good. It is an example. At this time, a substance in which the detection antibody, which is a high molecular weight substance, and the measurement target are bound to each other is further bound to a fluorescently labeled solid phase antibody to measure fluorescence anisotropy. Of course, the combination of “solid phase antibody and detection antibody” may be reversed.

本発明は、新作物、新農薬、機能性食品、医薬品などの開発分野において、生体試料の挙動を研究する際に利用することができる。   The present invention can be used when studying the behavior of biological samples in the development field of new crops, new agricultural chemicals, functional foods, pharmaceuticals, and the like.

本発明の実施に使用する分析装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the analyzer used for implementation of this invention. 同分析装置において使用することのできる一実施例のマイクロチップを示す図であり、(A)は平面図、(B)はその流路に沿った断面図である。It is a figure which shows the microchip of one Example which can be used in the analyzer, (A) is a top view, (B) is sectional drawing along the flow path. 参考例においてIL-4を検出する場合を説明するグラフである。It is a graph explaining the case where IL-4 is detected in a reference example. 一実施例においてIL-4を検出する場合を説明するグラフである。It is a graph explaining the case where IL-4 is detected in one Example.

符号の説明Explanation of symbols

2 マイクロチップ
20,22,24 ガラス基板
26 流路溝
28,30 試料導入又は排出のための貫通穴
32 反応室用の貫通穴
2 Microchip 20, 22, 24 Glass substrate 26 Channel groove 28, 30 Through hole for sample introduction or discharge 32 Through hole for reaction chamber

Claims (5)

試料中の測定対象物を蛍光標識プローブと結合させ、その結合した前記測定対象物を前記試料中で蛍光偏光解消法による測定により分析する方法であって、
前記測定対象物に特異的に結合し、かつ前記蛍光標識プローブにも蛍光剤にも結合しない増分子量物質を前記試料中に添加して測定対象物と蛍光標識プローブの結合体の分子量を増大させることを特徴とする分析方法。
A method of binding a measurement object in a sample with a fluorescently labeled probe, and analyzing the bonded measurement object in the sample by measurement using a fluorescence depolarization method,
A molecular weight substance that specifically binds to the measurement object and does not bind to the fluorescently labeled probe or the fluorescent agent is added to the sample to increase the molecular weight of the conjugate of the measurement object and the fluorescently labeled probe. An analysis method characterized by that.
前記測定対象物は抗原、前記蛍光標識プローブと増分子量物質は抗体であり、それらの物質をサンドイッチ法により結合させる請求項1に記載の分析方法。 The analysis method according to claim 1, wherein the measurement object is an antigen, the fluorescently labeled probe and the molecular weight substance are antibodies, and these substances are bound by a sandwich method. 前記試料液の体積を1μL以下とする請求項1又は2に記載の分析方法。 The analysis method according to claim 1 or 2, wherein the volume of the sample solution is 1 μL or less. 前記蛍光偏光解消法は時間分解蛍光偏光解消法である請求項1から3のいずれかに記載の分析方法。 The analysis method according to claim 1, wherein the fluorescence depolarization method is a time-resolved fluorescence depolarization method. 前記蛍光標識プローブの蛍光剤として蛍光寿命が200ナノ秒から2マイクロ秒の範囲にあるものを使用してその蛍光寿命内で前記測定を行なう請求項4に記載の分析方法。 5. The analysis method according to claim 4, wherein the measurement is performed within the fluorescence lifetime using a fluorescent agent having a fluorescence lifetime in the range of 200 nanoseconds to 2 microseconds as the fluorescent agent of the fluorescently labeled probe.
JP2005353612A 2005-12-07 2005-12-07 Analysis method using fluorescence depolarization Expired - Fee Related JP4632156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353612A JP4632156B2 (en) 2005-12-07 2005-12-07 Analysis method using fluorescence depolarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353612A JP4632156B2 (en) 2005-12-07 2005-12-07 Analysis method using fluorescence depolarization

Publications (2)

Publication Number Publication Date
JP2007155603A true JP2007155603A (en) 2007-06-21
JP4632156B2 JP4632156B2 (en) 2011-02-16

Family

ID=38240165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353612A Expired - Fee Related JP4632156B2 (en) 2005-12-07 2005-12-07 Analysis method using fluorescence depolarization

Country Status (1)

Country Link
JP (1) JP4632156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003303A (en) * 2015-06-05 2017-01-05 国立研究開発法人 海上・港湾・航空技術研究所 Characteristic detection method of oil, and characteristic detection device of oil
CN106350069A (en) * 2016-07-29 2017-01-25 兰州大学 Building method and application of double-emission-rate fluorescent probe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206427A (en) * 1997-01-20 1998-08-07 Toa Medical Electronics Co Ltd Immunoassay
WO2003081243A1 (en) * 2002-03-27 2003-10-02 Matsushita Electric Industrial Co., Ltd. Fluorescent polarization method, kit used therefor and biosensor
JP2004279143A (en) * 2003-03-14 2004-10-07 Shimadzu Corp Analysis method and apparatus by time-resolved fluorescence depolarization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206427A (en) * 1997-01-20 1998-08-07 Toa Medical Electronics Co Ltd Immunoassay
WO2003081243A1 (en) * 2002-03-27 2003-10-02 Matsushita Electric Industrial Co., Ltd. Fluorescent polarization method, kit used therefor and biosensor
JP2004279143A (en) * 2003-03-14 2004-10-07 Shimadzu Corp Analysis method and apparatus by time-resolved fluorescence depolarization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003303A (en) * 2015-06-05 2017-01-05 国立研究開発法人 海上・港湾・航空技術研究所 Characteristic detection method of oil, and characteristic detection device of oil
CN106350069A (en) * 2016-07-29 2017-01-25 兰州大学 Building method and application of double-emission-rate fluorescent probe

Also Published As

Publication number Publication date
JP4632156B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2010877B1 (en) Polarization based interferometric detector
US7033542B2 (en) High throughput screening with parallel vibrational spectroscopy
JP2006507504A (en) High-throughput screening by parallel vibrational spectroscopy
Chuang et al. Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection
JP2008527375A (en) Infrared transmitting substrate, semiconductor substrate, silicon substrate, fluid sample analysis device, fluid sample analysis method, and computer-readable recording medium
CN110806401A (en) Wavelength/angle modulation free conversion polarized light fluorescence imaging surface plasma resonance instrument
Koç et al. History of spectroscopy and modern micromachined disposable Si ATR-IR spectroscopy
JP5828899B2 (en) Measuring device and method for measuring characteristics of object to be measured using the same
US10436707B2 (en) Detection of analytes using nanoparticles as light scattering enhancers
JP2011503580A (en) Systems and methods for quantifying analytes in immunoassays or enzyme assays
JP4632156B2 (en) Analysis method using fluorescence depolarization
JP2013511714A5 (en)
JP4475525B2 (en) Biopolymer screening method by depolarization
Schasfoort Surface plasmon resonance instruments
Schasfoort et al. SPR instrumentation
Mukhopadhyay Surface plasmon resonance instruments diversify
US7427509B2 (en) Method and apparatus for measuring fluorescence polarization in lab-on-a-chip
CN211697502U (en) Wavelength/angle modulation free conversion polarized light fluorescence imaging surface plasma resonance instrument
JP2004279143A (en) Analysis method and apparatus by time-resolved fluorescence depolarization method
US20220187211A1 (en) Apparatus including analyzer unit
Kompanets Portable optical biosensors for the determination of biologically active and toxic compounds
Sun Label-free sensing on microarrays
JP2005337805A (en) Antibody or antigen measuring method
Matveeva et al. Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission
US20060270054A1 (en) Method for inspecting the quality of probe beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R150 Certificate of patent or registration of utility model

Ref document number: 4632156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees