JP2007152185A - Method and apparatus for treating surfactant-containing water - Google Patents
Method and apparatus for treating surfactant-containing water Download PDFInfo
- Publication number
- JP2007152185A JP2007152185A JP2005348475A JP2005348475A JP2007152185A JP 2007152185 A JP2007152185 A JP 2007152185A JP 2005348475 A JP2005348475 A JP 2005348475A JP 2005348475 A JP2005348475 A JP 2005348475A JP 2007152185 A JP2007152185 A JP 2007152185A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- surfactant
- containing water
- added
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004094 surface-active agent Substances 0.000 title claims abstract description 159
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 29
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 225
- 238000006243 chemical reaction Methods 0.000 claims abstract description 96
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 84
- 239000003513 alkali Substances 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 18
- 238000013019 agitation Methods 0.000 claims 2
- 238000005187 foaming Methods 0.000 abstract description 15
- 238000002347 injection Methods 0.000 description 37
- 239000007924 injection Substances 0.000 description 37
- 239000007789 gas Substances 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000002351 wastewater Substances 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- -1 polyoxyethylene Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 2
- 238000002144 chemical decomposition reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4616—Power supply
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/78—Details relating to ozone treatment devices
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、電子部品洗浄廃水等の界面活性剤含有水の処理方法および処理装置に関し、特に、オゾンガスによる界面活性剤含有水の処理方法および処理装置に関する。 The present invention relates to a method and apparatus for treating surfactant-containing water such as electronic component cleaning wastewater, and more particularly to a method and apparatus for treating surfactant-containing water with ozone gas.
従来、半導体製造工場や液晶等の表示装置製造工場では、製品の製造過程でウェハ等を洗浄する洗浄用水として不純物濃度が極めて少ない超純水が使用されている。しかし、超純水のみによる洗浄では、表面張力のためにウェハ等の微細な部分の洗浄が困難となる場合がある。そこで近年、超純水に界面活性剤やアルコール等の有機物を添加して表面張力を低下させてウェハ等を洗浄する方法が用いられるようになっている。 Conventionally, in semiconductor manufacturing factories and display device manufacturing factories such as liquid crystals, ultrapure water having an extremely low impurity concentration is used as cleaning water for cleaning wafers and the like in the manufacturing process of products. However, cleaning with only ultrapure water may make it difficult to clean fine portions such as wafers due to surface tension. Therefore, in recent years, a method of cleaning a wafer or the like by adding an organic substance such as a surfactant or alcohol to ultrapure water to lower the surface tension has been used.
このため、半導体製造過程等で排出される廃水には超純水に添加された界面活性剤が含まれる場合がある。こうした電子部品洗浄廃水等の界面活性剤含有水の処理方法としては、活性炭吸着法、泡沫分離法、化学的分解法、および生物処理法等が知られている。化学的分解法としては、界面活性剤含有水に紫外線を照射する紫外線照射法、オゾン等の酸化剤を添加する酸化剤添加法等がある。 For this reason, the waste water discharged | emitted in a semiconductor manufacturing process etc. may contain the surfactant added to the ultrapure water. Known methods for treating surfactant-containing water such as electronic component washing wastewater include activated carbon adsorption, foam separation, chemical decomposition, and biological treatment. Examples of the chemical decomposition method include an ultraviolet irradiation method of irradiating surfactant-containing water with ultraviolet rays, an oxidant addition method of adding an oxidizing agent such as ozone, and the like.
例えば、特許文献1には、界面活性剤含有水にオゾンを添加した後、水素を添加する界面活性剤含有水の処理方法が開示されている。特許文献1に開示された方法では、界面活性剤含有水にオゾンを添加して界面活性剤を酸化分解させる。次に、水素を添加することにより、処理水に残存するオゾン等の酸化剤を還元する。
ところでオゾンの生成方法としては、空気または酸素を原料として放電を行うことによりオゾンを発生させる放電方式と、純水を電気分解してオゾンを発生させる電解方式とがある。電解方式では、オゾン濃度が20質量%程度のオゾン水溶液が得られる等の理由で、特許文献1では電解方式により発生させたオゾンを用いることが好ましいとされている。しかし、電解方式で発生させることができるオゾンは1g/h程度にも満たず、電解方式では大量のオゾンを発生させることができない。
By the way, as a method for generating ozone, there are a discharge method in which ozone is generated by performing discharge using air or oxygen as a raw material, and an electrolysis method in which ozone is generated by electrolyzing pure water. In the electrolysis method, it is preferable to use ozone generated by the electrolysis method in
一方、放電方式によれば300kg/h程度ものオゾンを発生させることができる。このため、従来、大量の界面活性剤含有水をオゾンにより処理する場合、放電方式で発生させたオゾン含有ガスが用いられている。しかし、放電方式で発生させたオゾンを含むオゾン含有ガスのオゾン濃度は低い。例えば、空気を原料として発生させたオゾン含有ガスのオゾン濃度は40g/Nm3(2.7質量%)程度であり、酸素を原料として発生させたオゾン含有ガスでもオゾン濃度は150〜200g/Nm3(10〜13質量%)程度に留まる。 On the other hand, according to the discharge method, ozone of about 300 kg / h can be generated. For this reason, conventionally, when a large amount of surfactant-containing water is treated with ozone, an ozone-containing gas generated by a discharge method has been used. However, the ozone concentration of the ozone-containing gas containing ozone generated by the discharge method is low. For example, the ozone concentration of an ozone-containing gas generated using air as a raw material is about 40 g / Nm 3 (2.7% by mass), and the ozone concentration of an ozone-containing gas generated using oxygen as a raw material is 150 to 200 g / Nm. 3 (about 10-13 mass%).
したがって、界面活性剤含有水に含まれる界面活性剤等の有機物を酸化分解させるためには大量のオゾン含有ガスを界面活性剤含有水に吹き込む必要がある。例えば、界面活性剤含有水に含まれる全有機態炭素(TOC)を分解するために必要なオゾン量をTOCの8倍(質量比)とした場合、TOC濃度が20mg/Lの廃水処理に必要なオゾン量は160mg/Lとなる。この場合、濃度150mg/Lのオゾン含有ガスを使用しても、オゾンによる酸化分解を行う反応槽の気液比は1.0を超え、反応槽に大量のオゾン含有ガスを吹き込むことにより、激しい発泡が生じる。 Therefore, in order to oxidatively decompose organic substances such as surfactants contained in the surfactant-containing water, it is necessary to blow a large amount of ozone-containing gas into the surfactant-containing water. For example, when the amount of ozone required to decompose total organic carbon (TOC) contained in surfactant-containing water is 8 times (mass ratio) of TOC, it is necessary for wastewater treatment with a TOC concentration of 20 mg / L. The amount of ozone is 160 mg / L. In this case, even if an ozone-containing gas having a concentration of 150 mg / L is used, the gas-liquid ratio of the reaction tank that performs oxidative decomposition with ozone exceeds 1.0, and a large amount of ozone-containing gas is blown into the reaction tank. Foaming occurs.
特に、TOC成分として非イオン性の界面活性剤を含む界面活性剤含有水を反応槽に導入し、反応槽の下部に設けた散気管からオゾン含有ガスを吹き込む場合、激しい発泡が生じる。この結果、反応槽の気液界面を安定させることができず、廃オゾン含有ガスを排出する廃オゾン管から泡が流出するといったトラブルが生じる。 In particular, when surfactant-containing water containing a nonionic surfactant as a TOC component is introduced into a reaction tank and ozone-containing gas is blown from an air diffuser provided at the bottom of the reaction tank, severe foaming occurs. As a result, the gas-liquid interface of the reaction tank cannot be stabilized, and troubles such as bubbles flowing out from the waste ozone pipe that discharges the waste ozone-containing gas occur.
本発明は上記課題に対し、発泡性の強い界面活性剤含有水のオゾン処理に際し、オゾン含有ガスの吹き込みによる発泡を抑制し、安定した処理を行うことができる界面活性剤含有水の処理方法および処理装置を提供することを目的とする。 In the present invention, in the ozone treatment of highly foamable surfactant-containing water, the surfactant-containing water treatment method capable of suppressing foaming due to blowing of ozone-containing gas and performing stable treatment, and An object is to provide a processing apparatus.
具体的には、本発明は以下を提供する。 Specifically, the present invention provides the following.
(1) 界面活性剤含有水にオゾンを添加する界面活性剤含有水の処理方法であって、 前記界面活性剤含有水を、入口および出口を備える流路に流して前記流路に沿う複数の位置で前記オゾンを前記界面活性剤含有水に添加し、前記出口に最も近い位置において最も多くのオゾンを添加する界面活性剤含有水の処理方法。 (1) A method for treating surfactant-containing water in which ozone is added to surfactant-containing water, wherein the surfactant-containing water is allowed to flow through a flow path having an inlet and an outlet, and a plurality of the water is provided along the flow path. A method for treating surfactant-containing water, wherein the ozone is added to the surfactant-containing water at a position and the most ozone is added at a position closest to the outlet.
(2) 前記オゾンを添加する前に、前記界面活性剤含有水にアルカリを添加する(1)に記載の界面活性剤含有水の処理方法。 (2) The method for treating surfactant-containing water according to (1), wherein an alkali is added to the surfactant-containing water before the ozone is added.
(3) 前記オゾンを添加する前に、前記界面活性剤含有水にアルカリと過酸化水素とを添加する(1)に記載の界面活性剤含有水の処理方法。 (3) The method for treating surfactant-containing water according to (1), wherein alkali and hydrogen peroxide are added to the surfactant-containing water before adding the ozone.
(4) 入口から出口に向かって界面活性剤含有水が流れる流路を含む界面活性剤含有水の処理装置であって、 前記流路に沿って設けられ、前記流路を流れる前記界面活性剤含有水に前記オゾンを添加して界面活性剤を酸化分解する複数のオゾン反応設備をさらに含み、 前記複数のオゾン反応設備のうち、前記出口に最も近い位置に設けられた最終段オゾン反応設備は、他のオゾン反応設備より多くの前記オゾンを前記界面活性剤含有水に添加する界面活性剤含有水の処理装置。 (4) A surfactant-containing water treatment apparatus including a flow path through which surfactant-containing water flows from an inlet toward an outlet, the surfactant provided along the flow path and flowing through the flow path It further includes a plurality of ozone reaction facilities that oxidatively decompose the surfactant by adding the ozone to the contained water, and among the plurality of ozone reaction facilities, the final stage ozone reaction facility provided at a position closest to the outlet is An apparatus for treating surfactant-containing water that adds more ozone to the surfactant-containing water than other ozone reaction equipment.
(5) 前記最終段オゾン反応設備は、オゾン供給手段を有する気液接触型の反応槽であり、 前記他のオゾン反応設備として、前記流路に前記オゾンを供給する流路内オゾン供給手段と、前記流路内の界面活性剤含有水を攪拌する攪拌手段と、を有する攪拌反応設備を含む(4)に記載の界面活性剤含有水の処理装置。 (5) The final stage ozone reaction facility is a gas-liquid contact type reaction tank having an ozone supply means, and as the other ozone reaction facility, an in-flow path ozone supply means for supplying the ozone to the flow path; The surfactant-containing water treatment apparatus according to (4), further comprising a stirring reaction facility having stirring means for stirring the surfactant-containing water in the flow path.
(6) 前記複数のオゾン反応設備の少なくともいずれか一つより入口に近い位置に設けられ、前記界面活性剤含有水にアルカリを添加するアルカリ添加手段をさらに含む(4)または(5)に記載の界面活性剤含有水の処理装置。 (6) The method according to (4) or (5), further including an alkali addition unit that is provided at a position closer to the inlet than at least one of the plurality of ozone reaction facilities and adds an alkali to the surfactant-containing water. Water treatment equipment for surfactants.
(7) 前記複数のオゾン反応設備の少なくともいずれか一つより入口に近い位置に設けられ、前記界面活性剤含有水にアルカリを添加するアルカリ添加手段と、過酸化水素を添加する過酸化水素添加手段と、をさらに含む(4)または(5)に記載の界面活性剤含有水の処理装置。 (7) Alkali addition means for adding alkali to the surfactant-containing water and hydrogen peroxide addition for adding hydrogen peroxide, which is provided at a position closer to the inlet than at least one of the plurality of ozone reaction facilities And the surfactant-containing water treatment apparatus according to (4) or (5).
本発明により処理される被処理液は、少なくとも界面活性剤を含む。界面活性剤の濃度は特に限定されず、例えば界面活性剤の濃度が3〜30mg/Lであって、界面活性剤以外の有機物を含んでTOC濃度が5〜50mg/L程度の界面活性剤含有水の処理に用いることができる。本発明は特に、電子部品製造工場廃水のような低TOC濃度廃水にも使用でき、具体的には界面活性剤の濃度が1〜5mg/L程度、TOC濃度が2〜10mg/L程度の界面活性剤含有水にも適用できる。 The liquid to be treated to be treated according to the present invention contains at least a surfactant. The concentration of the surfactant is not particularly limited. For example, the surfactant concentration is 3 to 30 mg / L, and the surfactant contains an organic substance other than the surfactant and has a TOC concentration of about 5 to 50 mg / L. Can be used for water treatment. In particular, the present invention can be used for low TOC concentration wastewater such as electronic component manufacturing factory wastewater. Specifically, the interface has a surfactant concentration of about 1 to 5 mg / L and a TOC concentration of about 2 to 10 mg / L. It can also be applied to activator-containing water.
本発明は特に、発泡性の強い非イオン性界面活性剤を含む界面活性剤含有水の処理に好適に使用でき、エチレンオキサイド(EO)鎖を有する難分解性の界面活性剤を含む界面活性剤含有水の処理にも適している。ただし、界面活性剤の種類は特に限定されず、アニオン性界面活性剤、およびカチオン性界面活性剤を含むイオン性界面活性剤を含む界面活性剤含有水の処理に本発明を用いることは排除されない。非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル(AE)、ポリオキシエチレンアルキルフェニルエーテル(APE)、脂肪酸アルカノールアミド、およびポリオキシエチレンソルビタン脂肪酸エステル等がある。 In particular, the present invention can be suitably used for the treatment of surfactant-containing water containing a non-ionic surfactant having a strong foaming property, and includes a hardly decomposable surfactant having an ethylene oxide (EO) chain. Suitable for treatment of contained water. However, the type of surfactant is not particularly limited, and the use of the present invention for the treatment of surfactant-containing water containing an anionic surfactant and an ionic surfactant containing a cationic surfactant is not excluded. . Nonionic surfactants include polyoxyethylene alkyl ether (AE), polyoxyethylene alkyl phenyl ether (APE), fatty acid alkanolamide, and polyoxyethylene sorbitan fatty acid ester.
オゾンは、空気または酸素を原料として製造されるオゾン含有ガスとして界面活性剤含有水に添加できるが、電解方式で製造されたオゾンを使用することは排除されない。オゾンの添加量は、界面活性剤を炭酸ガスにまで完全に分解するために必要な量(以下、「完全分解必要量」)であることが好ましい。ただし、反応効率によっては完全分解必要量を超えるオゾンを添加してもよく、本発明に係る処理を行った後、生物処理、吸着処理、または脱イオン処理等を行う場合等は、完全分解必要量未満の添加量としてもよい。 Although ozone can be added to the surfactant-containing water as an ozone-containing gas produced using air or oxygen as a raw material, the use of ozone produced by an electrolytic method is not excluded. The amount of ozone added is preferably an amount necessary for completely decomposing the surfactant into carbon dioxide (hereinafter referred to as “complete decomposition required amount”). However, depending on the reaction efficiency, ozone exceeding the amount required for complete decomposition may be added. After performing the treatment according to the present invention, complete decomposition is required when performing biological treatment, adsorption treatment, deionization treatment, etc. The addition amount may be less than the amount.
具体的には、界面活性剤を炭酸ガスにまで完全分解する場合はオゾンの添加量は、界面活性剤に対して20〜50倍(質量比)とすることが好ましい。また、本発明による処理後に生物処理を行う場合、オゾンの添加量は、界面活性剤に対して2〜10倍(質量比)として界面活性剤を生物分解可能な形態、すなわち有機酸やグリコール類にまで分解することが好ましい。 Specifically, when the surfactant is completely decomposed to carbon dioxide, the amount of ozone added is preferably 20 to 50 times (mass ratio) with respect to the surfactant. When biological treatment is performed after the treatment according to the present invention, the amount of ozone added is 2 to 10 times (mass ratio) with respect to the surfactant, so that the surfactant can be biodegraded, that is, organic acids or glycols. It is preferable to decompose to.
本発明では、界面活性剤を分解するために必要なオゾンを、一定方向に流れる界面活性剤含有水の流れ方向に沿った複数の位置で分割して添加し、特に最終段、つまり出口に最も近接する位置において最も多くのオゾンを添加する。最終段で添加するオゾンの添加量は、全体の添加量の60〜95%とすることが好ましい。本発明では、オゾンの添加位置を複数に分割していることから、反応効率等によっては、最終段で添加するオゾン量をあらかじめ設定した添加量より多くしてもよく、逆に少なくしてもよい。 In the present invention, ozone necessary for decomposing the surfactant is divided and added at a plurality of positions along the flow direction of the surfactant-containing water flowing in a certain direction, and particularly at the final stage, that is, at the outlet. Add the most ozone in the close position. The amount of ozone added in the final stage is preferably 60 to 95% of the total amount added. In the present invention, since the ozone addition position is divided into a plurality, depending on the reaction efficiency, etc., the amount of ozone added in the final stage may be larger than the preset amount, or conversely, Good.
オゾンの添加位置は2箇所以上であればよく、オゾン添加位置を2箇所とする場合は、最終段より前段、つまり最初のオゾン添加位置で、全体の添加量の5〜40%のオゾンを添加する。また、オゾンの添加位置を3箇所以上とする場合、最終段以外の複数のオゾン添加位置でのオゾン添加量は、互いに同一であってもよく、異なってもよい。オゾン添加位置が多いと界面活性剤の分解率を向上させることができる一方、オゾン添加のために要する機器類が多くなるため、オゾン添加位置は2〜3箇所とすることが好ましい。 The ozone addition position may be two or more. When the ozone addition position is two, ozone is added at 5 to 40% of the total addition amount before the final stage, that is, at the first ozone addition position. To do. Moreover, when the ozone addition position is three or more, the ozone addition amounts at a plurality of ozone addition positions other than the final stage may be the same or different. While there are many ozone addition positions, the decomposition rate of the surfactant can be improved. On the other hand, equipment required for ozone addition increases, and therefore the ozone addition positions are preferably two to three.
本発明に従い、界面活性剤の分解に必要なオゾンの添加位置を、界面活性剤含有水の流れに沿った複数箇所に分割すれば、1箇所でオゾンを添加する場合に比して、1箇所あたりのオゾン添加量が少なくなるため、発泡を抑制することができる。特に、本発明では、界面活性剤含有水の流路の出口に最も近接する最終段で全体の添加量の大部分を添加し、最終段より入口側、つまり前段側でのオゾン添加量を少なくすることにより、発泡を抑制しつつ、高いオゾン分解効率を得ることができる。 According to the present invention, if the ozone addition position necessary for the decomposition of the surfactant is divided into a plurality of locations along the flow of the surfactant-containing water, it is one location compared to the case where ozone is added at one location. Since the amount of ozone added per unit is reduced, foaming can be suppressed. In particular, in the present invention, most of the total addition amount is added at the final stage closest to the outlet of the surfactant-containing water flow path, and the ozone addition amount at the inlet side, that is, the front stage side is smaller than the final stage. By doing so, it is possible to obtain high ozonolysis efficiency while suppressing foaming.
これは、入口側で添加された少量のオゾンが、界面活性剤の界面活性を示す部分(疎水性部分と親水性部分との境界部)と容易かつ速やかに反応することにより、界面活性剤が変性されるためと推察される。すなわち、まず、入口側で添加された少量のオゾンにより界面活性剤が変性されることで発泡性が低減されるため、最終段で大量のオゾンを添加しても発泡を抑制できるものと考えられる。 This is because a small amount of ozone added on the inlet side reacts easily and quickly with the surface activity of the surfactant (the boundary between the hydrophobic portion and the hydrophilic portion). It is assumed that it is denatured. That is, first, since the foaming property is reduced by modifying the surfactant with a small amount of ozone added at the inlet side, it is considered that foaming can be suppressed even if a large amount of ozone is added in the final stage. .
オゾン添加位置には、界面活性剤含有水にオゾンを添加することでオゾンと界面活性剤とを反応させるオゾン反応設備を設ける。オゾン反応設備は、界面活性剤含有水にオゾンを添加するオゾン供給手段を備えていればよいが、オゾンと界面活性剤とを十分に反応させるため、界面活性剤含有水が所定の時間滞留できる反応槽をさらに備えることが好ましい。特に、界面活性剤含有水が流れる流路の出口に最も近い位置に設けられるオゾン反応設備(最終段オゾン反応設備)は、界面活性剤とオゾンとの反応時間を確保するため、散気管等のオゾン供給手段を有する気液接触型の反応槽を備えることが好ましい。 At the ozone addition position, an ozone reaction facility for reacting ozone with the surfactant by adding ozone to the surfactant-containing water is provided. The ozone reaction equipment only needs to include an ozone supply means for adding ozone to the surfactant-containing water. However, in order to sufficiently react ozone with the surfactant, the surfactant-containing water can stay for a predetermined time. It is preferable to further comprise a reaction vessel. In particular, the ozone reaction facility (final stage ozone reaction facility) provided at the position closest to the outlet of the flow path through which the surfactant-containing water flows is used to secure the reaction time between the surfactant and ozone. It is preferable to provide a gas-liquid contact type reaction tank having ozone supply means.
一方、界面活性剤の界面活性を示す部分はオゾンとの反応速度が高いため、最終段オゾン反応設備より入口側に設けられるオゾン反応設備(以下、「前段側オゾン反応設備」は、流路内を流れる界面活性剤にオゾンを添加する流路内オゾン供給手段を少なくとも備えていればよい。流路内オゾン供給手段としては、オゾン注入用の配管、エジェクタ、多孔管、および給気口付き渦流ポンプ等が挙げられる。前段側オゾン反応設備は、特に、オゾンと界面活性剤含有水との接触効率を高めるため、流路内オゾン供給手段に加え、流路内の界面活性剤含有水を攪拌する作用を有する攪拌手段を備えることが好ましい。攪拌手段としては、含気運転可能な渦流ポンプ、およびラインミキサ等が挙げられる。このように、前段側オゾン反応設備では反応槽を省略することで装置を簡素にできる。 On the other hand, since the surface activity of the surfactant has a high reaction rate with ozone, the ozone reaction facility (hereinafter referred to as the “previous stage ozone reaction facility”) provided on the inlet side of the final stage ozone reaction facility The ozone supply means in the flow path for adding ozone to the surfactant flowing in the flow path may include at least an ozone supply pipe, an ejector, a perforated pipe, and a vortex with an air supply port. Pumps, etc. The former stage ozone reaction equipment, in particular, stirs the surfactant-containing water in the flow path in addition to the ozone supply means in the flow path, in order to increase the contact efficiency between ozone and the surfactant-containing water. The stirring means preferably includes a vortex pump capable of aeration operation, a line mixer, etc. In this way, the front-stage ozone reaction equipment is not suitable. The apparatus by omitting the bath can be simplified.
本発明では、オゾンによる酸化反応を促進するために、界面活性剤含有水にオゾンを添加する前にアルカリを添加し、アルカリの共存下で界面活性剤含有水にオゾンが添加されるようにしてもよい。アルカリの添加量は、界面活性剤含有水のpHを9〜11にするために必要な量とすることが好ましい。添加するアルカリの種類は特に限定されず、水酸化ナトリウムおよび水酸化カリウム等を使用できる。 In the present invention, in order to promote the oxidation reaction by ozone, an alkali is added before adding ozone to the surfactant-containing water, and ozone is added to the surfactant-containing water in the presence of the alkali. Also good. The amount of alkali added is preferably an amount necessary to adjust the pH of the surfactant-containing water to 9-11. The kind of alkali to add is not specifically limited, Sodium hydroxide, potassium hydroxide, etc. can be used.
また、アルカリに加え過酸化水素も界面活性剤含有水に添加してもよい。オゾン添加前の界面活性剤含有水にアルカリおよび過酸化水素を添加する場合、アルカリと過酸化水素の添加順序は特に限定されない。また、アルカリの添加量は過酸化水素を添加しない場合と同様とすればよく、過酸化水素の添加量は、オゾンの添加量に対して質量比で0.1〜1となる程度が好ましい。 In addition to alkali, hydrogen peroxide may also be added to the surfactant-containing water. When alkali and hydrogen peroxide are added to the surfactant-containing water before the addition of ozone, the order of addition of alkali and hydrogen peroxide is not particularly limited. Further, the amount of alkali added may be the same as in the case where hydrogen peroxide is not added, and the amount of hydrogen peroxide added is preferably about 0.1 to 1 by mass ratio with respect to the amount of ozone added.
このように、界面活性剤含有水にアルカリを単独または過酸化水素とともに添加した後、オゾンを添加することで、ヒドロキシルラジカルを生成させ、酸化反応を促進できる。アルカリ(および過酸化水素)は、複数に分割したオゾン添加位置の少なくとも1箇所で、オゾン添加に先立って添加すればよいが、各オゾン添加位置の前で添加してもよい。特に、ヒドロキシルラジカルの生成効率を向上させるためには、最も出口に近いオゾン添加位置の前でアルカリ(および過酸化水素)を添加することが好ましい。 As described above, after adding alkali alone or together with hydrogen peroxide to the surfactant-containing water, by adding ozone, hydroxyl radicals can be generated to promote the oxidation reaction. Alkaline (and hydrogen peroxide) may be added prior to ozone addition at at least one of the ozone addition positions divided into a plurality of positions, but may be added before each ozone addition position. In particular, in order to improve the production efficiency of hydroxyl radicals, it is preferable to add alkali (and hydrogen peroxide) in front of the ozone addition position closest to the outlet.
反応槽の形状は限定されず、反応槽の下部からオゾン含有ガスを界面活性剤含有水に供給し、反応槽の上部から廃オゾン含有ガスを取り出す構成を有していることが好ましい。また、被処理水は反応槽下部から供給してもよいし、反応槽の上部に散水手段を設けて被処理水を散水手段から散水して供給してもよい。このように液面に散水すれば発泡をより抑制しやすい。 The shape of the reaction tank is not limited, and it is preferable to have a configuration in which an ozone-containing gas is supplied to the surfactant-containing water from the lower part of the reaction tank and the waste ozone-containing gas is taken out from the upper part of the reaction tank. Further, the water to be treated may be supplied from the lower part of the reaction tank, or a watering means may be provided at the upper part of the reaction tank, and the water to be treated may be supplied from the watering means. Thus, if it sprays on a liquid level, it will be easier to suppress foaming.
本発明によれば、界面活性剤含有水の発泡を抑制し、界面活性剤を酸化分解するために必要な量のオゾンを添加できる。このため本発明によれば、高い分解率で界面活性剤を分解させ、かつ、発泡によるトラブルを防止して安定して界面活性剤含有水を処理することができる。 According to the present invention, it is possible to add a necessary amount of ozone to suppress foaming of surfactant-containing water and oxidatively decompose the surfactant. For this reason, according to this invention, surfactant can be decomposed | disassembled with a high decomposition rate, the trouble by foaming can be prevented, and surfactant-containing water can be processed stably.
以下、本発明について図面を用いて詳細に説明する。以下、同一部材には同一符号を付し、説明を省略又は簡略化する。図1は、本発明の一実施形態に係る界面活性剤含有水の処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、被処理液である界面活性剤を含む界面活性剤含有水が流れる流路5と、流路5の途中に設けられた前段側オゾン反応設備10と、最終段オゾン反応設備20と、を含む。流路5は入口51および出口52を備え、界面活性剤含有水は入口51から出口52に向かって流れるように入口51から処理装置1内に導入され、出口52から排出される。
Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified. FIG. 1 is a schematic view of a surfactant-containing water treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 according to an embodiment of the present invention. The
本実施形態では、前段側オゾン反応設備10より入口51側に第1過酸化水素添加手段および第1アルカリ添加手段が設けられている。また、最終段オゾン反応設備20より入口51側には、第2過酸化水素添加手段および第2アルカリ添加手段が設けられている。上述したとおり、これらの過酸化水素添加手段およびアルカリ添加手段は省略することもできる。
In the present embodiment, the first hydrogen peroxide addition means and the first alkali addition means are provided on the
過酸化水素添加手段は、流路5内を流れる界面活性剤含有水に過酸化水素を添加できる部材で構成でき、例えば一端が過酸化水素を貯留する貯槽に接続された配管とすることができる。本実施形態では、第1過酸化水素添加手段は、第1過酸化水素注入管31で構成され、第2過酸化水素添加手段は、第2過酸化水素注入管32で構成されている。第1過酸化水素注入管31および第2過酸化水素注入管32は、どちらも一端が過酸化水素貯槽30に接続され、他端が流路5を構成する配管に接続されている。
The hydrogen peroxide addition means can be constituted by a member capable of adding hydrogen peroxide to the surfactant-containing water flowing in the
アルカリ添加手段は、流路5内を流れる界面活性剤含有水にアルカリを添加できる部材で構成でき、例えば一端がアルカリを貯留する貯槽に接続された配管とすることができる。本実施形態では、第1アルカリ添加手段は、第1アルカリ注入管41で構成され、第2アルカリ添加手段は、第2アルカリ注入管42で構成されている。第1アルカリ注入管41および第2アルカリ注入管42は、どちらも一端がアルカリ貯槽40に接続され、他端が流路5を構成する配管に接続されている。
The alkali addition means can be constituted by a member capable of adding alkali to the surfactant-containing water flowing in the
前段側オゾン反応設備10は、流路5の途中に設けられた攪拌手段としての渦流ポンプ11および渦流ポンプ11より入口51側の流路5に接続された流路内オゾン供給手段を含んで構成されている。本実施形態では、流路内オゾン供給手段は、オゾン含有ガスを流路5に吹き込む部材で構成でき、例えば本実施形態では、一端が流路5に接続されたオゾン注入管12で構成されている。オゾン注入管12の他端は、オゾン発生器25に接続されている。
The front-stage
最終段オゾン反応設備20は、被処理水(前段側オゾン反応設備10からの処理水)供給手段としての散水管23とオゾン供給手段としての散気管21を有する気液接触型の反応槽22で構成されている。散気管21は、一端がオゾン発生器25と接続されており、オゾン発生器25で生成されたオゾン含有ガスが散気管21を介して反応槽22下部から界面活性剤含有水に添加される。反応槽22の大きさは特に限定されないが、界面活性剤含有水の滞留時間が、界面活性剤がオゾンにより酸化分解されるために必要な時間となるようにすることが好ましく、例えば、界面活性剤含有水の滞留時間が5〜10分となるようにするとよい。
The final stage
本実施形態では、オゾン発生器25で生成されたオゾン含有ガスは、オゾン路25Aを介してオゾン注入管12と、散気管21とに供給される。本発明では特に、界面活性剤含有水に添加されるオゾン含有ガスの大部分(60〜95%程度)は最終段オゾン反応設備20から界面活性剤含有水に添加する。このため、オゾン発生器25で生成されたオゾン含有ガスの大部分は散気管21に供給され、オゾン注入管12には生成されたオゾン含有ガスの5〜40%程度が供給されるように構成されている。
In the present embodiment, the ozone-containing gas generated by the
次に、上記の処理装置1を用いて、界面活性剤含有水を処理する方法について説明する。まず、半導体製造廃水等の界面活性剤含有水を被処理液として、入口51から流路5内に導入する。流路5の途中には必要に応じてポンプ等を設け、界面活性剤含有水が入口51側から出口52側に向かって流速0.5〜2m/sec程度の速さで流路5内を流れるようにするとよい。
Next, a method for treating surfactant-containing water using the
本実施形態に係る処理装置1では、流路5に沿って、入口51側から出口52側に向かって第1過酸化水素注入管31、第1アルカリ注入管41、オゾン注入管12、渦流ポンプ11、第2過酸化水素注入管32、第2アルカリ注入管42、および反応槽22がこの順に設けられている。そして、入口51側から出口52側に向かう方向に流れる界面活性剤含有水には、その流れ方向に沿ってまず、第1過酸化水素注入管31から過酸化水素、および第1アルカリ注入管41から水酸化ナトリウム等のアルカリが添加され、pHが9〜11程度に調整される。
In the
次いで、pHを上げた界面活性剤にオゾン注入管12から少量のオゾン含有ガスが添加される。オゾン注入管12の直後には渦流ポンプ11が設けられており、少量のオゾンが添加された界面活性剤含有水は、渦流ポンプ11により攪拌される。前段側オゾン反応設備10では少量のオゾンが添加できればよいため、渦流ポンプ11は省略してもよい。また、オゾン注入管12と渦流ポンプ11とを設ける代わりに、エジェクタとラインミキサを流路5の途中に設けてもよい。このように、前段側オゾン反応設備10で少量のオゾンを添加した界面活性剤含有水を、渦流ポンプ11等で攪拌して大きなせん断力を与えることで、少量のオゾンを界面活性剤と効率よく反応させることができる。
Next, a small amount of ozone-containing gas is added from the
前段側オゾン反応設備10では、少量のオゾン添加により界面活性剤が変性され、発泡性が低減される。これは、少量添加されたオゾンは、主として界面活性剤の疎水性部分と親水性部分との境界部と反応して、界面活性剤の界面活性を示す部分が変性することによるものと推察される。このため、最終段オゾン反応設備20で大量のオゾンを添加しても被処理液の発泡を抑制できる。そこで、本発明では前段側オゾン反応設備10で、処理装置1で界面活性剤含有水に添加される全オゾン量の5〜40%程度を添加し、最終段オゾン反応設備20で残りの量のオゾンを添加する。
In the front-stage
なお、オゾンと界面活性剤との反応により、界面活性剤が変性して有機酸等が生じるため、処理装置1では最終段オゾン反応設備20の前に第2過酸化水素注入管32と第2アルカリ注入管42を設けている。これにより、前段側オゾン反応設備20を通過した界面活性剤含有水に過酸化水素とアルカリを添加し、オゾンによる酸化反応が促進される状態で、最終段オゾン反応設備20での処理を行なう。
Since the surfactant is denatured by the reaction between ozone and the surfactant and an organic acid or the like is generated, the second hydrogen
最終段オゾン反応設備20では、反応槽22に被処理液(界面活性剤含有水)を導入し、反応槽22下部に接続した散気管21からオゾン含有ガスを吹き込んで、被処理液を所定の時間、反応槽22内に滞留させる。最終段オゾン反応設備20では、処理装置1で界面活性剤含有水に添加される全オゾン量の大部分(60〜95%程度)を被処理液に添加して界面活性剤を分解する。最終段オゾン反応設備20での処理後、界面活性剤が分解された処理水は出口52から取り出し、必要に応じて生物処理等の後処理を行ない、超純水製造用の原水等として利用できる。
In the final stage
[実施例]
以下、実施例に基づき、本発明をさらに詳しく説明する。実施例としては、図1に示す処理装置1を用い、界面活性剤としてAPEを含む界面活性剤含有水を被処理液とした。界面活性剤含有水は、純水にTOC濃度21mg/LとなるようにAPEを溶解させて作成した合成廃水である。
[Example]
Hereinafter, the present invention will be described in more detail based on examples. As an example, the
渦流ポンプ11としては、出口圧0.3Mpaの渦流ポンプ(株式会社ニクニ製)を用い、界面活性剤含有水が、流路5内を入口51から出口52に向かって流速350L/hで流れるように処理装置1に導入した。
As the
本実施例では各オゾン反応設備でのオゾン添加に先立ち、過酸化水素とアルカリを添加した。過酸化水素としては、濃度35質量%のものを用い、アルカリとしては4質量%の水酸化ナトリウムを用いた。過酸化水素の添加量は、第1過酸化水素注入管31からの添加量を15mg/Lとし、第2過酸化水素注入管32からの添加量を250mg/Lとした。なお、第2過酸化水素注入管32は、流路5に接続せずに、反応槽22の下部に接続するようにした点で図1の処理装置1と異なる構成とした。
In this example, hydrogen peroxide and alkali were added prior to the addition of ozone in each ozone reaction facility. Hydrogen peroxide having a concentration of 35% by mass was used, and 4% by mass of sodium hydroxide was used as the alkali. The amount of hydrogen peroxide added was 15 mg / L from the first hydrogen
一方、水酸化ナトリウムは、第1アルカリ注入管41および第2アルカリ注入管42それぞれから流路5に注入した。水酸化ナトリウムの添加量は、界面活性剤含有水のpHを10にする量とした。
On the other hand, sodium hydroxide was injected into the
オゾン発生器25としては、酸素を原料として放電方式でオゾン濃度150g/Nm3のオゾン含有ガスを生成する装置を用いた。オゾン発生器25で発生されたオゾン含有ガスは、20L/hの供給速度でオゾン注入管12から流路5内に注入し、反応槽22に取り付けられた散気管21への供給量は350L/hの供給速度となるようにした。
As the
反応槽22としては、直径300mm、高さ2,700mmの円筒状の気液接触型オゾン反応塔を用いた。反応槽22の下部には散気管21を接続してオゾン含有ガスを界面活性剤含有水に吹き込むとともに、反応槽22上部より散水管23を介して被処理水(前段側処理水)を散水した。
As the
上記条件で試験を行ない、渦流ポンプ11出口で、前段側オゾン反応設備10で処理された界面活性剤含有水(前段側処理水)を採取し、前段側処理水の界面活性剤濃度を測定した。また、反応槽22出口で、最終段オゾン反応設備20で処理された界面活性剤含有水(以下、最終段処理水)を採取し、最終段処理水の界面活性剤濃度の測定も行った。界面活性剤の濃度は、分光蛍光光度計(株式会社日立ハイテクノロジーズ製、F−4500)を用い、励起波長230nm、蛍光波長305nmで測定した。測定結果は、前段側処理水の界面活性剤濃度が3.3mg/L、最終段処理水の界面活性剤濃度が0.37mg/Lで、界面活性剤の除去率は98.2%であった。また、反応槽22の気液界面は安定し、2時間以上の連続運転ができた。
The test was performed under the above conditions, and the surfactant-containing water treated in the front-stage ozone reaction facility 10 (the front-stage treated water) was collected at the outlet of the
[比較例]
比較例として、オゾン注入管12に設けたバルブ(図示せず)を閉じることで前段側オゾン反応設備10でのオゾン添加を行わず、反応槽22で全オゾン量を添加するようにした。具体的には、反応槽22に接続した散気管21からのオゾン含有ガスの供給量を370L/hとした。その他の条件は実施例と同じにして試験を行なったところ、反応槽22の気液界面が乱れた。この結果、最終段処理水の界面活性剤濃度は2.4mg/Lであり、界面活性剤の除去率は88.5%に低下した。また、反応槽22内に気泡が充満して気液界面が低下したため、約30分で処理を停止せざるを得なくなった。
[Comparative example]
As a comparative example, by closing a valve (not shown) provided in the
このように本発明によれば、発泡による処理装置1の運転トラブルを防止し、界面活性剤を高い分解率で安定して分解することができる。
Thus, according to the present invention, it is possible to prevent the operation trouble of the
本発明は、界面活性剤を含む排水の処理に用いることができる。 The present invention can be used for treatment of waste water containing a surfactant.
1 処理装置
5 流路
10 前段側オゾン反応設備
11 渦流ポンプ
12 オゾン注入管
20 最終段オゾン反応設備
21 散気管
22 反応槽
23 散水管
25 オゾン発生器
25A オゾン路
31 第1過酸化水素注入管
32 第2過酸化水素注入管
41 第1アルカリ注入管
42 第2アルカリ注入管
51 入口
52 出口
DESCRIPTION OF
Claims (7)
前記界面活性剤含有水を、入口および出口を備える流路に流して前記流路に沿う複数の位置で前記オゾンを前記界面活性剤含有水に添加し、前記出口に最も近い位置において最も多くのオゾンを添加する界面活性剤含有水の処理方法。 A method for treating surfactant-containing water by adding ozone to the surfactant-containing water,
The surfactant-containing water is caused to flow through a flow path having an inlet and an outlet, and the ozone is added to the surfactant-containing water at a plurality of positions along the flow path. A method for treating surfactant-containing water to which ozone is added.
前記流路に沿って設けられ、前記流路を流れる前記界面活性剤含有水に前記オゾンを添加して界面活性剤を酸化分解する複数のオゾン反応設備をさらに含み、
前記複数のオゾン反応設備のうち、前記出口に最も近い位置に設けられた最終段オゾン反応設備は、他のオゾン反応設備より多くの前記オゾンを前記界面活性剤含有水に添加する界面活性剤含有水の処理装置。 A surfactant-containing water treatment apparatus including a flow path through which surfactant-containing water flows from an inlet toward an outlet,
A plurality of ozone reaction facilities that are provided along the flow path and oxidatively decompose the surfactant by adding the ozone to the surfactant-containing water flowing through the flow path;
Of the plurality of ozone reaction facilities, the final stage ozone reaction facility provided at a position closest to the outlet includes a surfactant that adds more ozone to the surfactant-containing water than other ozone reaction facilities. Water treatment equipment.
前記他のオゾン反応設備として、前記流路に前記オゾンを供給する流路内オゾン供給手段と、前記流路内の界面活性剤含有水を攪拌する攪拌手段と、を有する攪拌反応設備を含む請求項4に記載の界面活性剤含有水の処理装置。 The final stage ozone reaction facility is a gas-liquid contact type reaction tank having ozone supply means,
The other ozone reaction facility includes an agitation reaction facility having an in-channel ozone supply unit that supplies the ozone to the channel and an agitation unit that agitates the surfactant-containing water in the channel. Item 5. A surfactant-containing water treatment apparatus according to Item 4.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348475A JP4983011B2 (en) | 2005-12-01 | 2005-12-01 | Method and apparatus for treating surfactant-containing water |
KR1020060119222A KR101308686B1 (en) | 2005-12-01 | 2006-11-29 | Method and apparatus for treating water containing surfactant |
CNA2006101608221A CN1974431A (en) | 2005-12-01 | 2006-11-30 | Water processing method containing surface active agent and processing device |
TW095144411A TWI391333B (en) | 2005-12-01 | 2006-11-30 | Method and apparatus for treating water containing surfactant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348475A JP4983011B2 (en) | 2005-12-01 | 2005-12-01 | Method and apparatus for treating surfactant-containing water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007152185A true JP2007152185A (en) | 2007-06-21 |
JP4983011B2 JP4983011B2 (en) | 2012-07-25 |
Family
ID=38124827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005348475A Expired - Fee Related JP4983011B2 (en) | 2005-12-01 | 2005-12-01 | Method and apparatus for treating surfactant-containing water |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4983011B2 (en) |
KR (1) | KR101308686B1 (en) |
CN (1) | CN1974431A (en) |
TW (1) | TWI391333B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011005351A (en) * | 2009-06-23 | 2011-01-13 | Taiheiyo Cement Corp | Method for treating gypsum board waste material, and cement |
JP6170266B1 (en) * | 2017-03-25 | 2017-07-26 | 伯東株式会社 | Ozone water production apparatus, ozone water production method, and sterilization method using ozone water |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101544409B (en) * | 2009-04-30 | 2011-02-02 | 巨化集团公司 | Method for concentrating and desalinating alkylphenol polyoxyethylene ether wastewater |
CN102701408A (en) * | 2012-02-06 | 2012-10-03 | 西安费斯达自动化工程有限公司 | Purifying treatment method of fatty glyceride polyethenoxy ether with ozone |
CN102701401A (en) * | 2012-02-06 | 2012-10-03 | 西安费斯达自动化工程有限公司 | Method of using ozone for purifying carbon-12 sodium alcohol ether sulphate |
CN111729353B (en) * | 2020-08-06 | 2022-03-22 | 中国石油化工股份有限公司 | Foam separation device and method for eliminating foaming of desulfurized amine liquid |
CN112678981B (en) * | 2021-03-15 | 2021-06-22 | 山东恒基农牧机械有限公司 | Multifunctional sewage treatment equipment for farm |
CN113912216B (en) * | 2021-11-05 | 2023-09-01 | 深圳市束喜环境科技有限公司 | Sewage treatment equipment and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS555774A (en) * | 1978-06-30 | 1980-01-16 | Sumitomo Precision Prod Co Ltd | Ozone treating method for strong foaming water |
JP2005324118A (en) * | 2004-05-14 | 2005-11-24 | Kurita Water Ind Ltd | Water treatment method and water treatment apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5161166A (en) * | 1974-10-22 | 1976-05-27 | Mitsubishi Electric Corp | Ozon nyoru haisuishori hoho oyobi sono sochi |
JP2001104971A (en) * | 1999-10-07 | 2001-04-17 | Nec Corp | Method and equipment for treating waste water |
-
2005
- 2005-12-01 JP JP2005348475A patent/JP4983011B2/en not_active Expired - Fee Related
-
2006
- 2006-11-29 KR KR1020060119222A patent/KR101308686B1/en not_active IP Right Cessation
- 2006-11-30 CN CNA2006101608221A patent/CN1974431A/en active Pending
- 2006-11-30 TW TW095144411A patent/TWI391333B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS555774A (en) * | 1978-06-30 | 1980-01-16 | Sumitomo Precision Prod Co Ltd | Ozone treating method for strong foaming water |
JP2005324118A (en) * | 2004-05-14 | 2005-11-24 | Kurita Water Ind Ltd | Water treatment method and water treatment apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011005351A (en) * | 2009-06-23 | 2011-01-13 | Taiheiyo Cement Corp | Method for treating gypsum board waste material, and cement |
JP6170266B1 (en) * | 2017-03-25 | 2017-07-26 | 伯東株式会社 | Ozone water production apparatus, ozone water production method, and sterilization method using ozone water |
JP2018161619A (en) * | 2017-03-25 | 2018-10-18 | 伯東株式会社 | Ozone water production apparatus, ozone water production method, and sterilization method using ozone water |
Also Published As
Publication number | Publication date |
---|---|
TW200722384A (en) | 2007-06-16 |
TWI391333B (en) | 2013-04-01 |
CN1974431A (en) | 2007-06-06 |
KR20070057671A (en) | 2007-06-07 |
KR101308686B1 (en) | 2013-10-04 |
JP4983011B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI391333B (en) | Method and apparatus for treating water containing surfactant | |
KR101917647B1 (en) | Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device | |
TWI359116B (en) | ||
US20070287917A1 (en) | Method for Collapsing Microbubbles | |
JP2009056364A (en) | Piping type water treatment apparatus | |
KR100642986B1 (en) | Advanced Water Treatment System Using Ozone Dissolution Oxidation System | |
JP5159271B2 (en) | Water treatment equipment | |
JP2009066467A (en) | Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof | |
JP2010158672A (en) | Bubble generation method, bubble generation apparatus, and ozone water producing method | |
JP6197913B1 (en) | Method and apparatus for treating wastewater containing organic matter | |
JP2009268394A (en) | Method and apparatus for sterilizing food product using microbubble-mixed sodium hypochlorite diluent | |
JP2005270886A (en) | Treatment method and apparatus for industrial wastewater | |
JP4230929B2 (en) | Sludge treatment apparatus and sludge treatment method | |
JP5208397B2 (en) | Water treatment method and water treatment apparatus | |
JP2002292379A (en) | Method and device for accelerated oxidation treatment | |
JPH0671594B2 (en) | Method and apparatus for removing dissolved oxygen in water | |
JP2008253860A (en) | Waste water treatment method | |
JP2005270885A (en) | Wastewater treatment apparatus | |
JPH04135694A (en) | Water treating device | |
JP2008149270A (en) | Ozone reaction apparatus | |
JP2006272052A (en) | Method and apparatus for treating water containing organic matter | |
JP6335749B2 (en) | Ozone treatment device, sludge treatment device, ozone treatment method and sludge treatment method | |
JP2005118642A (en) | Water treatment method and apparatus, and ejector for water treatment | |
JP4126381B2 (en) | Ozone diffuser | |
KR200358463Y1 (en) | Mixing spouting machine for solution water manufacture solution to gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |