JP2007150905A - Linc amplifier - Google Patents

Linc amplifier Download PDF

Info

Publication number
JP2007150905A
JP2007150905A JP2005344628A JP2005344628A JP2007150905A JP 2007150905 A JP2007150905 A JP 2007150905A JP 2005344628 A JP2005344628 A JP 2005344628A JP 2005344628 A JP2005344628 A JP 2005344628A JP 2007150905 A JP2007150905 A JP 2007150905A
Authority
JP
Japan
Prior art keywords
linc
means
signal
amplifier
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344628A
Other languages
Japanese (ja)
Inventor
Juichiro Kimura
Yoshihiko Takeuchi
寿一郎 木村
嘉彦 竹内
Original Assignee
Japan Radio Co Ltd
日本無線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, 日本無線株式会社 filed Critical Japan Radio Co Ltd
Priority to JP2005344628A priority Critical patent/JP2007150905A/en
Publication of JP2007150905A publication Critical patent/JP2007150905A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals

Abstract

<P>PROBLEM TO BE SOLVED: To provide a LINC (Linear Amplification with Nonlinear Components) amplifier in which spread in the frequency band of a constant-amplitude separated signal is suppressed. <P>SOLUTION: On a pre-stage of LINC separation, an input signal is separated into an in-phase signal and a quadrature signal, each of the signals is amplified in a LINC amplification scheme, and the amplified in-phase signal and quadrature signal are orthogonally added again. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部の定振幅分離信号の周波数帯域の広帯域化を抑制したLINC増幅器に関するものである。 The present invention relates to LINC amplifier that suppresses broadening of the frequency band of the internal constant amplitude separation signal.

LINC(Linear Amplification with Nonlinear Components)増幅器の原理は、ベル研究所のDCCoxによって1974年に提案された(非特許文献1)。 LINC (Linear Amplification with Nonlinear Components) The principle of the amplifier was proposed in 1974 by DCCox the Bell Laboratories (Non-Patent Document 1). LINC増幅器の概略構成を図5に示す。 Figure 5 shows the schematic structure of the LINC amplifier. 12は入力信号を2個の定振幅分離信号に分離するLINC分離器、13,14は利得がGで同一特性の非線形増幅器、15は信号加算器である。 12 LINC separator for separating an input signal into two constant amplitude separation signals, 13 and 14 non-linear amplifier having the same characteristics gain in G, 15 denotes a signal adder.

入力信号をS(t)とし、これが帯域制限された一定位相の信号であるとすると、 When an input signal as S (t), and this is a signal of a constant phase band-limited,
で表すことができる。 It can be represented by. ここで、E(t)はベースバンド信号成分、cosω 0 tはキャリア信号成分である。 Here, E (t) is the baseband signal components, cos .omega 0 t is the carrier signal component. E(t)≧0である。 Is E (t) ≧ 0. ここで、ベースバンド信号成分E(t)が次式ように表されたとする。 Here, the baseband signal component E (t) is assumed to be represented in the following equation so.
EmはE(t)の最大値を表す。 Em represents the maximum value of E (t). この(2)式により位相情報φ(t)が定義される。 The (2) phase information phi (t) is defined by the equation.

(2)式を(1)式に代入することにより、次式の関係が成り立つ。 (2) by substituting expression of equation (1), the following expression is established.
Sa(t),Sb(t)は定振幅分離信号であり、 Sa (t), Sb (t) is a constant amplitude separation signal,
である。 It is. この定振幅分離信号Sa(t),Sb(t)は振幅一定(Em/2)であり、位相φ(t)が入力信号S(t)に依存して反対方向に回転する。 The constant amplitude separation signal Sa (t), Sb (t) is the amplitude constant (Em / 2), the phase phi (t) is rotated in the opposite direction, depending on the input signal S (t).

このように、入力信号S(t)はLINC分離器12によって(4)式で表される定振幅分離信号Sa(t),Sb(t)となり、特性の揃った利得Gの非線形増幅器13,14によりそれぞれ増幅されて、信号GSa(t),GSb(t)となる。 Thus, the input signal S (t) is LINC separator 12 by the formula (4) constant amplitude separation signal Sa (t), Sb (t), and the nonlinear amplifier 13 of uniform gain G characteristics, are amplified respectively by 14, a signal GSa (t), GSb (t). そして、その非線形増幅器13,14の出力段で2信号間の差信号を信号加算器15によって取り出すと、 When taking out a difference signal between two signals by the signal adder 15 in the output stage of the nonlinear amplifier 13,
となり、入力信号S(t)が利得Gで線形増幅されていることが判る。 Next, the input signal S (t) is seen to have been linearly amplified with a gain G.

同様に考えることにより、より一般的な帯域制限された信号についても、定振幅分離信号に分離し増幅した後に合成することにより、振幅および位相変調された信号の線形増幅が可能なことが判る。 By considered similarly, for the more general band-limited signal by synthesizing after amplifying separated into constant amplitude separation signal, it can be seen that capable linear amplification of the amplitude and phase modulated signal.

一般化のため、入力信号S(t)を下式のようにキャリア信号成分が位相情報θ(t)を含む信号とする。 For generalization, a carrier signal component by the following equation input signal S (t) is a signal including the phase information θ (t).
ここで、E(t)≧0であり、E(t)が(2)式で表されるとすると、 Here, an E (t) ≧ 0, when the E (t) is represented by equation (2),
となる。 To become. ここで、定振幅分離信号Sa(t),Sb(t)は、 The constant amplitude separation signal Sa (t), Sb (t) is
である。 It is.

よって、(6)式で示されるような一般的な帯域制限された入力信号S(t)であっても、これをLINC分離器12で2個の定振幅分離信号に分離し、特性の揃った利得Gの非線形増幅器13,14によりそれぞれ増幅し、加算器15により2信号間の差信号を取り出すことにより、その入力信号S(t)を利得Gで線形増幅できることが判る。 Therefore, even in (6) General band limitation as formula input signal S (t), which is separated into two constant amplitude separation signal LINC separator 12, uniform characteristics were respectively amplified by nonlinear amplifiers 13, 14 of the gain G, by taking a difference signal between two signals by an adder 15, it can be seen that linear amplification the input signal S a (t) with a gain G.

このように、LINC増幅器では非線形増幅器13,14を使用するので電力効率が高くなり、しかも線形増幅されるので、無線通信システムにおいて、基地局と移動局の低消費電力化等を実現するための重要な技術として注目されている。 Thus, power efficiency is increased because it uses a non-linear amplifier 13 and 14 in the LINC amplifier, and since the linear amplification in a wireless communication system for realizing a low power consumption or the like of the base station and the mobile station It has been attracting attention as an important technology.

LINC増幅器の問題点は入力信号の変調帯域に関わる。 Problems LINC amplifiers involved in the modulation band of the input signal. 一般化した入力信号は(6)式の形で表現でき、帯域制限された信号を定振幅の信号に分離すると、(8)式の定振幅分離信号Sa(t),Sb(t)となる。 Generalized input signal can be expressed in the form of equation (6), and separated the band-limited signal to a constant amplitude of the signal, the equation (8) of constant amplitude separation signal Sa (t), Sb (t) . 図6のように、入力信号S(t)が位相平面上でS(t1)からS(t2)へと軌跡を描く場合、定包絡線31上をベクトル先端が移動する定振幅分離信号Sa(t),Sb(t)の単位時間当たりの移動角度(位相変化)は、入力信号S(t)の位相面での単位時間あたりの移動角度よりも大きい場合がある。 As shown in FIG. 6, the input signal S (t) may draw a trajectory from S (t1) on the phase plane to S (t2), the constant amplitude separation signal Sa constant envelope 31 above vector tip moves ( t), the movement angle per unit time Sb (t) (phase change) may be greater than the movement angle per unit time in the phase plane of the input signal S (t). このような大きな角度の変化量は、定振幅分離信号Sa(t),Sb(t)の周波数帯域が大きく広くなることを意味する。 The variation of such large angle means that the frequency band of constant amplitude separation signal Sa (t), Sb (t) is widened greatly. この帯域広がりが顕著な場合は、図7に示すような信号点が位相面原点近傍を通る場合である。 If this band spreads notably, a case where signal points as shown in FIG. 7 passes through the phase plane near the origin. このように、入力信号S(t)に対して定振幅分離信号Sa(t),Sb(t)はその帯域が広くなる。 Thus, constant amplitude separation signal Sa to the input signal S (t) (t), Sb (t) is the band is widened. 図8に入力信号S(t)の周波数スペクトルを、図9に定振幅分離信号Sa(t),Sb(t)の周波数スペクトルを示した。 The frequency spectrum of the input signal S (t) in FIG. 8, showing the frequency spectrum of Figure 9 constant amplitude separation signal Sa (t), Sb (t).

LINC増幅器では、入力信号を定包絡線の軌跡上を変化する2個の定振幅分離信号に分離して増幅するが、周波数帯域がその入力信号に比較して広帯域を必要とすることになれば、たとえ定包絡線で信号の増幅が可能な非線形のユニットが実現できたとしても、各々のユニットに広帯域特性が要求されることとなり、定包絡線であることのメリットは半減することとなる。 The LINC amplifier will be amplified by separating the input signal into two constant amplitude separation signal that changes the trajectory above the constant envelope, if that frequency band requires broadband compared to the input signal , even if amplification is possible nonlinear unit of the signal at a constant envelope can be realized, it becomes possible to wideband characteristics are required in each of the units, the benefits of being a constant envelope becomes reduced by half.

以上のように、入力する信号が振幅変調だけでなく位相変調をも受けた信号である場合には、LINC増幅器で増幅するときに、定振幅分離信号が元信号の原点付近を通過するほど周波数帯域が広がる問題があった。 As described above, when the signal input is a signal also received phase modulated not only amplitude modulation, when amplified by LINC amplifier, frequency as constant amplitude separation signal passes near the origin of the original signal the band there was a problem to spread.

本発明の目的は、LINC分離部に入力する信号を位相が変化せず振幅のみが変化する同相信号または直交信号に限らせ、上記した周波数帯域の広がりを抑制したLINC増幅器を提供することである。 An object of the present invention, only the amplitude without signal change the phase of the input to the LINC separator unit is restricted to in-phase signal or quadrature signal changes, to provide a LINC amplifier that suppresses the spread of the frequency band described above is there.

上記目的を達成するために、請求項1にかかる発明は、入力信号を定振幅の2個の信号に分離するLINC分離手段と、該LINC分離手段で分離されたそれぞれの信号を同一の利得で増幅する同一特性の第1および第2の非線形増幅手段と、該第1および第2の非線形増幅手段の出力信号を加算する信号加算手段とからなるLINC増幅手段を有するLINC増幅器において、前記入力信号を同相信号と直交信号に分離する直交分離手段と、前記同相信号を増幅する前記LINC増幅手段と同じ構成の第1のLINC増幅手段と、前記直交信号を増幅する前記LINC増幅手段と同じ構成の第2のLINC増幅手段と、前記第1および第2のLINC増幅手段の出力信号を加算する直交加算手段とを備えたことを特徴とする。 To achieve the above object, the invention according to claim 1, the LINC separating means for separating an input signal into two signals of constant amplitude, the respective signals separated by the LINC separating means at the same gain first and second nonlinear amplification means having the same characteristics for amplifying, in a LINC amplifier having a LINC amplification means consisting of a signal adding means for adding the output signal of the first and second nonlinear amplification means, the input signal same and orthogonal separation means for separating the in-phase signal and quadrature signal, a first LINC amplifier means having the same structure as the LINC amplifier means for amplifying the in-phase signal, and the LINC amplification means for amplifying the quadrature signal a second LINC amplification means configuration, characterized in that a quadrature adder for adding an output signal of the first and second LINC amplification means.
請求項2にかかる発明は、請求項1に記載のLINC増幅器において、前記第1のLINC増幅手段は前記同相信号の正から負への変化および負から正への変化時に該同相信号の定振幅分離信号の位相変化が連続し、且つ前記第2のLINC増幅手段は前記直交信号の正から負への変化および負から正への変化時に該直交信号の定振幅分離信号の位相変化が連続することを特徴とする。 Such invention in claim 2, in LINC amplifier of claim 1, wherein the first LINC amplification means of of identity-phase signal when the change from the change and negative from positive to negative of the phase signal to a positive continuous phase variation of the constant amplitude separation signal, and the phase change of the constant amplitude separation signals straight communication No. when the change of the second LINC amplifier means to positive from the change and negative from positive to negative of the quadrature signal characterized in that it continuously.
請求項3にかかる発明は、請求項1又は2に記載のLINC増幅器において、前記第1のLINC増幅手段の前記第1および第2の非線形増幅手段並びに前記第2のLINC増幅手段の前記第1および第2の非線形増幅手段の前段又は後段に、それぞれ周波数変換手段を挿入したことを特徴とする。 According to claim 3 invention, claim 1 or in LINC amplifier according to 2, wherein the first of said first and second nonlinear amplification means and said second LINC amplification means of said first LINC amplifier means and before or after the second nonlinear amplification means, respectively, characterized in that the insertion of the frequency converter.
請求項4にかかる発明は、請求項1、2又は3に記載のLINC増幅器において、前記第1のLINC増幅手段の出力信号と前記第2のLINC増幅手段の出力信号を取り込み直交検波する直交検波手段と、該直交検波手段の検波結果に応じて前記第1のLINC増幅手段の出力信号又は前記第2のLINC増幅手段の出力信号の位相を調整し前記直交加算手段に入力する同相信号と直交信号との直交性を補正する移相手段とを設けたことを特徴とする。 The invention according to claim 4 is the LINC amplifier of claim 1, 2 or 3, quadrature detection for quadrature detection receives the output signal of said first output signal and said second LINC amplification means LINC amplification means It means, a phase signal to be input to the quadrature adder means adjusts the phase of the output signal of the output signal or the second LINC amplification means of said first LINC amplifier means in response to detection result of said orthogonal detection means by providing a phase shifting means for correcting the orthogonality of the quadrature signal and said.

本発明によれば、入力信号を同相信号と直交信号に直交分離して、それらを個々のLINC増幅手段によって個別に増幅しその後直交加算するため、それら同相信号と直交信号はI軸上あるいはQ軸上のみを変化するので、入力信号が振幅変調だけでなく位相変化を含み元信号が原点付近を通過するときであっても、同相信号や直交信号から分離された定振幅分離信号が必要以上に周波数帯域を広げることはなく、構成要素に対する広帯域化の要求を緩和することができる。 According to the present invention, orthogonal separates the input signal into in-phase signal and quadrature signal, because they are amplified and then orthogonally adding separately by individual LINC amplifier means, the quadrature signals on the I axis and their in-phase signal or because changes to the Q-axis only, even if the input signal is not more when the original signal includes a phase change not only amplitude modulation passes near the origin, constant amplitude separation signal separated from the in-phase signal and quadrature signal not possible to widen the frequency band more than necessary, it is possible to relax the requirements of broadband for components.

[第1の実施例] First Embodiment
図1は本発明の第1の実施例のLINC増幅器の構成を示すブロック図である。 Figure 1 is a block diagram showing the configuration of a LINC amplifier of the first embodiment of the present invention. 11は入力信号S(t)を直交分離して同相信号S I (t)と直交信号S Q (t)にする直交分離器、12Aは同相信号S I (t)を定振幅分離信号S Ia (t)、S Ib (t)に分離するLINC分離器、12Bは直交信号S Q (t)を定振幅分離信号S Qa (t)、S Qb (t)に分離するLINC分離器、13A,13B,14A,14Bは利得Gで特性が揃った非線形増幅器、15Aは信号GS Ia (t)と信号GS Ib (t)を加算する信号加算器、15Bは信号GS Qa (t)と信号GS Qb (t)を加算する信号加算器、16は信号GS I (t)と信号GS Q (t)を直交加算する直交加算器である。 11 orthogonal separator, 12A in-phase signal S I (t) of constant amplitude separation signal to orthogonally separate the input signal S (t) phase signal S I (t) and quadrature signal S Q (t) S Ia (t), LINC separator for separating the S Ib (t), 12B quadrature signals S Q (t) of constant amplitude separation signal S Qa (t), LINC separator for separating the S Qb (t), 13A, 13B, 14A, 14B are nonlinear amplifier characteristics are met by the gain G, 15A is a signal adder for adding the signal GS Ia (t) and the signal GS Ib (t), 15B is the signal GS Qa (t) signal signal adder for adding the GS Qb (t), 16 is an orthogonal adder orthogonal adding signals GS I (t) and the signal GS Q (t). つまり、本実施例は、入力信号を同相信号と直交信号に2分割して振幅成分のみが変化するようにしてからそれぞれの分割信号をLINC方式で増幅することにより、信号の周波数帯域を必要以上に広げないようにしたものである。 That is, the present embodiment, by two divided by the input signal to the phase signal and the quadrature signal amplified by the LINC system each split signal from as only an amplitude component is changed, requiring a frequency band of the signal in which was not allowed to spread to more.

入力信号S(t)を複素数表現に直して、 Input signal S (t) to fix the complex express,
と変形すると、入力信号S(t)はベースバンド信号成分E(t)cosθ(t)+jE(t)sinθ(t)でキャリア信号成分cosω 0 (t)を変調していることが分かる。 When deformed, the input signal S (t) it is found that the modulating baseband signal component E (t) cosθ (t) + jE (t) sinθ (t) carrier signal component cos .omega 0 in (t). そこで、本実施例では、入力信号を実数部(同相信号)と虚数部(直交信号)に2分し、その2分された信号に対して各々LINC方式の増幅を行い、最後に直交加算する。 Therefore, in this embodiment, 2 minutes real part of the input signal (in-phase signal) and the imaginary part (quadrature signal), performs amplification of each LINC system for the 2-minute signal, the last quadrature adder to.

このようにした場合、同相信号S I (t)、直交信号S Q (t)は、 In such a case, the in-phase signal S I (t), the quadrature signal S Q (t) is
となる。 To become. ここで、同相信号S I (t)、直交信号S Q (t)は各々振幅成分のみとなり、位相成分を含まない。 Here, in-phase signal S I (t), the quadrature signal S Q (t) are each becomes only the amplitude component does not contain a phase component. 従って、このように入力信号S(t)を直交する同相信号S I (t)、直交信号S Q (t)に分離することにより、急激な位相変化(信号が位相平面で原点近傍を通過する際に生じる)は、各々の同相信号S I (t)、直交信号S Q (t)には発生しない。 Therefore, in-phase signal S I that is orthogonal to the input signal S (t) Thus (t), by separating the quadrature signal S Q (t), passes through the near home at a rapid phase variation (signal phase plane It occurs when) each of the in-phase signal S I (t), does not occur in the quadrature signal S Q (t).

図2はこれを説明する位相平面図である。 Figure 2 is a phase plane view explaining this. 入力信号S(t)が図2(a)に示すような場合、その信号S(t)は同相信号S I (t)、直交信号S Q (t)に分離されるが、同相信号S I (t)はI軸上において振幅を正又は負方向に増減するのみであるので、図2(b)に示すように、そのLINC分離成分である定振幅分離信号S Ia (t)、S Ib (t)もその位相は大きく変化しない。 If the input signal S (t) is as shown in FIG. 2 (a), the signal S (t) is phase signal S I (t), but is separated into quadrature signals S Q (t), the in-phase signal since S I (t) is only increasing or decreasing the amplitude in the positive or negative direction on the I-axis, as shown in FIG. 2 (b), constant amplitude separation signal S Ia with its LINC separated components (t), S Ib (t) is also the phase does not change significantly. また直交信号S Q (t)はQ軸上において振幅を正又は負方向に増減するのみであるので、図2(c)に示すように、そのLINC分離成分である定振幅分離信号S Qa (t)、S Qb (t)もその位相は大きく変化しない。 Since quadrature signals S Q (t) is only increasing or decreasing the amplitude in the positive or negative direction on the Q axis, as shown in FIG. 2 (c), constant amplitude separation signal S Qa in its LINC separated components ( t), S Qb (t) is also the phase does not change significantly. 以下、詳しく説明する。 It will be described in detail below.

ここで、従来例(1)式に対する(2)式とは異なり、(10)式を変形して、 Here, unlike for the conventional example (1) (2), by transforming the equation (10),
とおく。 far. さらに、 further,
とおく。 far. ここで、 here,
とする。 To.

このようにすることにより、位相面の原点を通過する信号の場合、すなわち、「E I (t)、E Q (t)が正から負、もしくは、負から正への変化」に対して、(12)式で汎関数E I (t)、E Q (t)を決める関数ρ(t)、σ(t)は(13)式の範囲で連続となる。 In this way, for the case of signals passing through the origin of the phase plane, i.e., "E I (t), the change in E Q (t) is a positive negative, or from negative to positive", (12) functionals E I by the formula (t), the function that determines the E Q (t) ρ (t ), σ (t) is continuous in the range (13). また、原点を通過する際の位相変化は、ρ(t)、σ(t)がπ/2を通過するときの変化であるため、汎関数を構成する関数ρ(t)、σ(t)においても、急激な位相変化は無い。 The phase change as it passes through the origin, [rho (t), for sigma (t) is the change when passing through the [pi / 2, functions constituting functional ρ (t), σ (t) in also, the rapid phase change is not.

(12)式を(11)式に代入すると、 (12) Substituting equation in expression (11),
となる。 To become. ここで、 here,
となる。 To become. (16)式、(17)式は定振幅分離信号である。 (16), (17) is a constant amplitude separation signal.

このように、(9)式で与えられる入力信号S(t)は(10)式で与えられる同相信号S I (t)、直交信号S Q (t)に分割でき、これらの同相信号S I (t)、直交信号S Q (t)は各々(16)式、(17)式で与えられる定振幅分離信号とすることができる。 Thus, (9) the input signal S (t) given by equation can be divided into (10) is given by the formula in-phase signal S I (t), the quadrature signal S Q (t), these in-phase signal S I (t), the quadrature signal S Q (t) are each (16) can be a constant amplitude separation signal given by equation (17).

以上により、定振幅分離信号S Ia (t)、S Ib (t)、S Qa (t)、S Qb (t)を利得がGで特性の揃った非線形増幅器13A,14A,13B,14Bで増幅し、S Ia (t)とS Ib (t)、S Qa (t)とSQ b (t)を信号加算器15A,15Bで各々加算し、その加算信号を直交加算器16で直交加算することにより、入力信号をG倍に増幅することができ、このとき帯域が大きく広がることはない。 By the above, the constant amplitude separation signal S Ia (t), amplified with S Ib (t), S Qa (t), nonlinear amplifier 13A to gain an S Qb (t) has uniform characteristics in G, 14A, 13B, 14B that is, respectively adds S Ia (t) and S Ib (t), S Qa (t) and SQ b (t) of the signal adder 15A, in 15B, orthogonal adding the sum signals in quadrature adder 16 makes it possible to amplify the input signal to G times, does not at this time band is widened greatly.

[第2の実施例] Second Embodiment
図3は第2の実施例のLINC増幅器の構成を示すブロック図である。 Figure 3 is a block diagram showing the configuration of a LINC amplifier of the second embodiment. ここでは、非線形増幅器13A,14A,13B,14Bの前段に乗算器17A,18A,17B,18Bを挿入し、発振器19からキャリア信号cosω a (t)を入力して周波数変換を行うようにしている。 Here, nonlinear amplifier 13A, and insert 14A, 13B, front to the multiplier 17A for 14B, 18A, 17B, and 18B, and to perform frequency conversion from the oscillator 19 to input carrier signal cosω a (t) . このうように、各々周波数変換してからRF信号で加算及び直交加算することもできる。 Of this way, it is also possible to add and quadrature summing the RF signals from the respective frequency conversion. なお、乗算器17A,18A,17B,18Bは、非線形増幅器13A,14A,13B,14Bの後段に挿入してもよい。 Note that the multiplier 17A, 18A, 17B, 18B are nonlinear amplifier 13A, 14A, 13B, may be inserted downstream of 14B.

[第3の実施例] Third Embodiment
図4は第3の実施例のLINC増幅器の構成を示すブロック図である。 Figure 4 is a block diagram showing the configuration of a LINC amplifier of the third embodiment. ここでは、直交加算器16に入力する信号GS I (t)とGS Q (t)の直交性を直交検波器20で検出して、その検出信号を積分器21で積分し、その結果により、信号加算器15Aの後段に挿入した移相器22によって一方の信号GS Q (t)の位相を制御し、信号GS I (t)とGS Q (t)の直交性を補正できるようにしたものである。 Here, by detecting the orthogonality of signals input to the quadrature adder 16 GS I (t) and GS Q (t) by the quadrature detector 20, and integrates the detection signal by the integrator 21, the result, controlling the phase of one signal GS Q (t) by the phase shifter 22 inserted downstream of the signal summer 15A, which the orthogonality of the signal GS I (t) and GS Q (t) has to be able to correct it is. なお、移相器22を信号加算器15Aの後段に挿入して、他方の信号GS Q (t)の位相を制御してもよい。 Incidentally, by inserting a phase shifter 22 in the subsequent stage of the signal adders 15A, it may control the phase of the other signal GS Q (t).

本発明の第1の実施例のLINC増幅器のブロック図である。 It is a block diagram of a LINC amplifier according to the first embodiment of the present invention. 図1の動作説明用のベクトル図である。 It is a vector diagram for explaining the operation of Figure 1. 本発明の第2の実施例のLINC増幅器のブロック図である。 It is a block diagram of a LINC amplifier according to the second embodiment of the present invention. 本発明の第3の実施例のLINC増幅器のブロック図である。 It is a block diagram of a LINC amplifier of the third embodiment of the present invention. 従来のLINC増幅器のブロック図である。 It is a block diagram of a conventional LINC amplifier. 図5のLINC増幅器の動作説明用のベクトル図である。 It is a vector diagram for explaining the operation of the LINC amplifier of FIG. 図5のLINC増幅器の動作説明用のベクトル図である。 It is a vector diagram for explaining the operation of the LINC amplifier of FIG. 入力信号の周波数スペクトル図である。 It is a frequency spectrum diagram of the input signal. 図5のLINC増幅器内部信号の周波数スペクトル図である。 It is a frequency spectrum diagram of a LINC amplifier internal signals of FIG.

符号の説明 DESCRIPTION OF SYMBOLS

11:直交分離器 12,12A,12B:LINC分離器 13,13A,13B,14,14A,14B:非線形増幅器 15,15A,15B:信号加算器 16:直交加算器 17A,17B,18A,18B:乗算器 19:発振器 20:直交検波器 21:積分器 22:移相器 31:定包絡線 11: orthogonal separator 12, 12A, 12B: LINC separator 13,13A, 13B, 14,14A, 14B: nonlinear amplifier 15, 15A, 15B: signal summer 16: quadrature adder 17A, 17B, 18A, 18B: multiplier 19: oscillator 20: the quadrature detector 21: integrator 22: phase shifter 31: constant-envelope

Claims (4)

  1. 入力信号を定振幅の2個の信号に分離するLINC分離手段と、該LINC分離手段で分離されたそれぞれの信号を同一の利得で増幅する同一特性の第1および第2の非線形増幅手段と、該第1および第2の非線形増幅手段の出力信号を加算する信号加算手段とからなるLINC増幅手段を有するLINC増幅器において、 And LINC separating means for separating an input signal into two signals of constant amplitude, the first and second nonlinear amplification means having the same characteristics for amplifying the respective signals separated by the LINC separating means at the same gain, in LINC amplifier having a LINC amplification means consisting of a signal adding means for adding the output signal of the first and second nonlinear amplification means,
    前記入力信号を同相信号と直交信号に分離する直交分離手段と、前記同相信号を増幅する前記LINC増幅手段と同じ構成の第1のLINC増幅手段と、前記直交信号を増幅する前記LINC増幅手段と同じ構成の第2のLINC増幅手段と、前記第1および第2のLINC増幅手段の出力信号を加算する直交加算手段とを備えたことを特徴とするLINC増幅器。 Orthogonal separation means, a first LINC amplifier means having the same structure as the LINC amplifier means for amplifying the in-phase signal, the LINC amplifier for amplifying the quadrature signal for separating the input signal into in-phase signal and the quadrature signal a second LINC amplifier means having the same structure as means, said first and second LINC amplifiers, characterized in that a quadrature adder for adding an output signal of the LINC amplifier means.
  2. 請求項1に記載のLINC増幅器において、 In LINC amplifier according to claim 1,
    前記第1のLINC増幅手段は前記同相信号の正から負への変化および負から正への変化時に該同相信号の定振幅分離信号の位相変化が連続し、且つ前記第2のLINC増幅手段は前記直交信号の正から負への変化および負から正への変化時に該直交信号の定振幅分離信号の位相変化が連続することを特徴とするLINC増幅器。 The first LINC amplification means continuously change in phase of constant amplitude separation signals of identity-phase signal when the change from the change and negative from positive to negative of the phase signal to the positive, and the second LINC amplification It means LINC amplifier, characterized in that the phase change of the constant amplitude separation signals straight communication degree from the change and negative from positive to negative when the change in the positive of the quadrature signal is continuous.
  3. 請求項1又は2に記載のLINC増幅器において、 In LINC amplifier of claim 1 or 2,
    前記第1のLINC増幅手段の前記第1および第2の非線形増幅手段並びに前記第2のLINC増幅手段の前記第1および第2の非線形増幅手段の前段又は後段に、それぞれ周波数変換手段を挿入したことを特徴とするLINC増幅器。 Before or after said first and second nonlinear amplification means of said first and second nonlinear amplification means and said second LINC amplification means of said first LINC amplifier means, inserting the frequency conversion means, respectively LINC amplifier, characterized in that.
  4. 請求項1、2又は3に記載のLINC増幅器において、 In LINC amplifier of claim 1, 2 or 3,
    前記第1のLINC増幅手段の出力信号と前記第2のLINC増幅手段の出力信号を取り込み直交検波する直交検波手段と、該直交検波手段の検波結果に応じて前記第1のLINC増幅手段の出力信号又は前記第2のLINC増幅手段の出力信号の位相を調整し前記直交加算手段に入力する同相信号と直交信号との直交性を補正する移相手段とを設けたことを特徴とするLINC増幅器。 A quadrature detection means for quadrature detection receives the output signal of the output signal and the second LINC amplification means of said first LINC amplifier means, an output of the first LINC amplifier means in response to detection result of said orthogonal detection means LINC characterized in that a and phase shifting means for correcting the orthogonality of the signal or phase signal and the quadrature signal to adjust the phase input to the quadrature adder means output signal of the second LINC amplification means amplifier.
JP2005344628A 2005-11-29 2005-11-29 Linc amplifier Pending JP2007150905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344628A JP2007150905A (en) 2005-11-29 2005-11-29 Linc amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344628A JP2007150905A (en) 2005-11-29 2005-11-29 Linc amplifier

Publications (1)

Publication Number Publication Date
JP2007150905A true JP2007150905A (en) 2007-06-14

Family

ID=38211742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344628A Pending JP2007150905A (en) 2005-11-29 2005-11-29 Linc amplifier

Country Status (1)

Country Link
JP (1) JP2007150905A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074069A1 (en) * 2008-12-24 2010-07-01 京セラ株式会社 Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit
US8427231B2 (en) 2010-12-28 2013-04-23 Fujitsu Limited Amplifying device and amplifying method
WO2013087232A1 (en) * 2011-12-15 2013-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for use with an amplifier circuit
US8766738B2 (en) 2008-11-18 2014-07-01 Nxp, B.V. Decomposer and amplifier
CN104283573A (en) * 2014-09-16 2015-01-14 电子科技大学 Method and device for improving the efficiency of LINC transmitter
WO2017209045A1 (en) * 2016-05-30 2017-12-07 Necネットワーク・センサ株式会社 Linear amplifying device, input signal supplying method, and origin avoiding circuit used therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422749A (en) * 1977-07-20 1979-02-20 Western Electric Co Interrferroometallic amplifier
JPH05207080A (en) * 1992-01-24 1993-08-13 Nec Eng Ltd Modulator
JP2002510927A (en) * 1998-04-02 2002-04-09 エリクソン インコーポレイテッド Power waveform synthesis Chireix / doherty hybrid amplifier
JP2004343666A (en) * 2003-05-19 2004-12-02 Japan Radio Co Ltd High frequency amplifier circuit
WO2006047377A2 (en) * 2004-10-22 2006-05-04 Parkervision, Inc. Systems and methods for vector power amplification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422749A (en) * 1977-07-20 1979-02-20 Western Electric Co Interrferroometallic amplifier
JPH05207080A (en) * 1992-01-24 1993-08-13 Nec Eng Ltd Modulator
JP2002510927A (en) * 1998-04-02 2002-04-09 エリクソン インコーポレイテッド Power waveform synthesis Chireix / doherty hybrid amplifier
JP2004343666A (en) * 2003-05-19 2004-12-02 Japan Radio Co Ltd High frequency amplifier circuit
WO2006047377A2 (en) * 2004-10-22 2006-05-04 Parkervision, Inc. Systems and methods for vector power amplification

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766738B2 (en) 2008-11-18 2014-07-01 Nxp, B.V. Decomposer and amplifier
WO2010074069A1 (en) * 2008-12-24 2010-07-01 京セラ株式会社 Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit
JP2010153967A (en) * 2008-12-24 2010-07-08 Kyocera Corp Addition circuit, power amplifying circuit using the addition circuit, transmitter using the power amplifying circuit, and communication device
US8351881B2 (en) 2008-12-24 2013-01-08 Kyocera Corporation Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit
US8427231B2 (en) 2010-12-28 2013-04-23 Fujitsu Limited Amplifying device and amplifying method
WO2013087232A1 (en) * 2011-12-15 2013-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for use with an amplifier circuit
US8836421B2 (en) 2011-12-15 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for use with an amplifier circuit
CN104283573A (en) * 2014-09-16 2015-01-14 电子科技大学 Method and device for improving the efficiency of LINC transmitter
WO2017209045A1 (en) * 2016-05-30 2017-12-07 Necネットワーク・センサ株式会社 Linear amplifying device, input signal supplying method, and origin avoiding circuit used therein

Similar Documents

Publication Publication Date Title
Kim et al. Digital predistortion of wideband signals based on power amplifier model with memory
CN1864325B (en) Transmission device, transmission output control method, and radio communication device
RU2197778C2 (en) Method and device for reducing mobile-station peak-to-mean transmission power ratio
EP2497188B1 (en) Digital affine transformation modulated power amplifier for wireless communications
RU2305896C2 (en) Transmitter with multiple modulation
US5105445A (en) Predistortion arrangement for a digital transmission system
KR100507592B1 (en) Method and apparatus for efficient signal power amplification
JP5126234B2 (en) Power amplifier and a radio transmitter having the same
US20030022639A1 (en) Peak limiter and multi-carrier amplification apparatus
US20080051044A1 (en) Transmission power amplifier apparatus for combining power-amplified constant amplitude signals each having controlled constant amplitude value and phase
US20170047952A1 (en) Multi-band wide band power amplifier digital predistortion system
CN1171422C (en) Transmitter
US20110156815A1 (en) Modulation agnostic digital hybrid mode power amplifier system and method
US7526261B2 (en) RF power transmission, modulation, and amplification, including cartesian 4-branch embodiments
CN100454793C (en) Method and device for reducing peak-to-average power ratio in mobile communication system using orthogonal frequency division multiplexing
JP4280422B2 (en) Limiting envelope digital communications transmission system and method
Zhou et al. Optimality condition for selected mapping in OFDM
CN1144410C (en) Method and apparatus for conditioning modulated signals in digital communication
CN1134952C (en) Method and apparatus for limiting amplitude of transmission signal
JP2005341056A (en) Transmitter and receiver
Rudolph Out-of-band emissions of digital transmissions using Kahn EER technique
JP6080854B2 (en) System and method for increasing the bandwidth of a digital pre-distortion in a multi-channel wideband communication system
US7957712B2 (en) Double-LINC switched-mode transmitter
EP2132872A1 (en) Amplifier pre-distortion systems and methods
US9768739B2 (en) Digital hybrid mode power amplifier system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018