JP2007121272A - Particulate flow rate measuring device - Google Patents

Particulate flow rate measuring device Download PDF

Info

Publication number
JP2007121272A
JP2007121272A JP2006246833A JP2006246833A JP2007121272A JP 2007121272 A JP2007121272 A JP 2007121272A JP 2006246833 A JP2006246833 A JP 2006246833A JP 2006246833 A JP2006246833 A JP 2006246833A JP 2007121272 A JP2007121272 A JP 2007121272A
Authority
JP
Japan
Prior art keywords
electrode
flow rate
tube
granular
rate measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006246833A
Other languages
Japanese (ja)
Other versions
JP5047569B2 (en
Inventor
Wataru Hisada
渡 久田
Mitsuo Shintani
光男 新谷
Manabu Yamaguchi
山口  学
Miki Aramatsu
美樹 荒松
Original Assignee
Sinto Brator Co Ltd
新東ブレーター株式会社
Yamamoto Denki Instrument Kk
山本電機インスツルメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005288944 priority Critical
Priority to JP2005288944 priority
Application filed by Sinto Brator Co Ltd, 新東ブレーター株式会社, Yamamoto Denki Instrument Kk, 山本電機インスツルメント株式会社 filed Critical Sinto Brator Co Ltd
Priority to JP2006246833A priority patent/JP5047569B2/en
Publication of JP2007121272A publication Critical patent/JP2007121272A/en
Application granted granted Critical
Publication of JP5047569B2 publication Critical patent/JP5047569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To precisely perform measurement even when particulate to be measured shows abrasive action and has a small particle diameter and in flow rate, in a particulate flow rate measuring device of a capacitance system composed of an electrode tube measuring the amount of passage (flow rate) of the particulate by arranging the electrode at the outer circumference and passing the particulate through the inside. <P>SOLUTION: The particulate flow rate measuring device of the capacitance system makes the particulate to be measured pass through a tubular electrode arrangement tube consisting of an insulator in which tightness is held by a casing 24 and a pair of measurement electrodes and a guard electrode are arranged. Detection/ground electrodes 14, 16 as the pair of measurement electrodes are integrally arranged on the inner circumferential part of a main body layer 12 of the electrode arrangement tube 10. A protection tube 20 consisting of ceramic or the like consisting of an insulator and detachably and airtightly fitted into the inside of the electrode arrangement tube 10 is provided. The particulate to be measured is passed through the inside of the protection tube to perform the measurement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粉粒体流量測定装置に関する。より詳しくは、基本的に、輸送媒体を気体(空気)とする粉粒体輸送手段を備えた各種粉粒体装置において、各装置の機能を発揮させるためにその粉粒体の流量を測定しフィードバック制御するに際して、粉粒体の流量を測定しその結果を静電容量にて出力する機能を備えた、いわゆる静電容量式の粉粒体流量測定装置に関する。   The present invention relates to a granular material flow rate measuring apparatus. More specifically, in various types of granular material devices equipped with granular material transportation means that uses gas (air) as the transport medium, the flow rate of the granular material is measured in order to exert the function of each device. The present invention relates to a so-called capacitance-type granular material flow rate measuring apparatus having a function of measuring the flow rate of granular material and outputting the result as a capacitance when performing feedback control.
上記粉粒体を取り扱う装置としては、1)配設された輸送管内に圧力気体を用いて粉粒体を輸送する空気輸送装置や、2)粉粒体からなる研磨材を圧縮空気、またはインペラーにより衝突させて表面加工を施すブラスト装置、3)粉体からなる粉体塗料をスプレーガン(エジェクター)により吹き付けて塗装を施す粉体塗装装置等を挙げることができる。   As an apparatus for handling the above-mentioned granular material, 1) an air transportation apparatus that transports the granular material using a pressure gas in an arranged transport pipe, or 2) an abrasive made of the granular material is compressed air, or an impeller And 3) a powder coating device for spraying a powder coating material made of powder with a spray gun (ejector).
昨今、ブラスト装置等において、メンテナンスが容易で、被測定粒体が小粒径・少流量の場合でも、その流量精度良好に測定することができる静電容量式の粉粒体流量測定装置の出現が要望されるようになってきている。   Recently, in the blasting equipment etc., the appearance of a capacitance type powder flow measuring device that is easy to maintain and can measure the flow rate with good accuracy even when the particle to be measured has a small particle size and a small flow rate. Has come to be requested.
しかし、上記要望を満足する静電容量式の粉粒体流量測定装置は、本発明者らが知る限りにおいては、公知ではない。   However, as far as the present inventors know, a capacitance-type granular material flow rate measuring apparatus that satisfies the above-mentioned requirements is not publicly known.
なお、本発明の発明性に影響を与えるものではないが、上記のような静電容量式の粉粒体流量測定装置に係る公知関連技術としては、例えば、特許文献1〜4等に記載されたものがある。   In addition, although it does not affect the inventiveness of the present invention, as a related art related to the capacitance-type granular material flow rate measuring apparatus as described above, for example, it is described in Patent Documents 1 to 4 and the like. There is something.
特許文献1では、粉体塗料の供給装置において粉体塗料の流量を測定管の外周に沿って螺旋(スパイラル)状にした一対の測定電極とその間にガード電極を配置した静電容量式にて測定する手段が開示されている(特許請求の範囲等参照)。   In Patent Document 1, in a powder coating material supply apparatus, a capacitance type in which a flow rate of powder coating material is a spiral shape along the outer periphery of a measuring tube and a guard electrode is disposed between the electrodes. Means for measuring is disclosed (see claims, etc.).
特許文献2では、静電容量式粉粒体の流量測定装置において粉粒体の通路を構成する部材を熱膨張対策としてセラミックから形成することが開示されている。   In Patent Document 2, it is disclosed that a member constituting a passage of a granular material is formed from ceramic as a countermeasure for thermal expansion in a flow rate measuring device for electrostatic capacitance type granular material.
特許文献3では、高温の粉粒体を測定するための静電容量式粉粒体の流量測定装置において電極をその保持体の内側に固定し、これを粉粒体が通過する円筒管を包むように配置して電極部の熱影響を防止する構造が開示されている(特許請求の範囲等参照)。   In Patent Document 3, an electrode is fixed to the inside of a holding body in a capacitive flow rate measuring device for measuring a high temperature granular material, and this is wrapped around a cylindrical tube through which the granular material passes. The structure which arrange | positions in such a way and prevents the thermal influence of an electrode part is disclosed (refer Claims etc.).
特許文献4では、測定用電極のソース電極およびセンス電極、ガード電極を円筒管の外周の円周方向にそれぞれ45°の角度でかつ90°の範囲にわたって配置した構成が開示され(要約等参照)、さらに、円筒管をアルミナ等で形成することが開示されている(段落0017参照)。
特許第3288201号公報(特許請求の範囲等) 特開平8−271301号公報(特許請求の範囲等) 特開2001−21397号公報(特許請求の範囲等) 特開2002−46068号公報(要約等)
Patent Document 4 discloses a configuration in which the source electrode, the sense electrode, and the guard electrode of the measurement electrode are arranged at an angle of 45 ° and over a range of 90 ° in the circumferential direction of the outer periphery of the cylindrical tube (see summary, etc.). Furthermore, it is disclosed that the cylindrical tube is formed of alumina or the like (see paragraph 0017).
Japanese Patent No. 3288201 (Claims etc.) JP-A-8-271301 (Claims etc.) JP 2001-21397 A (Claims etc.) JP 2002-46068 A (summary etc.)
本発明は、上記にかんがみて、外周に電極を配置し内側に粉粒体を通過させ、その粉粒体の通過量(流量)を測定する静電容量式の粉粒体流量測定装置において、被測定粉粒体が摩耗作用を有しかつ小粒径・少流量であっても、その流量を精度良好に測定でき、かつ、粉粒体通過管がたとえ摩耗しても、該粉粒体通過管のみ交換できる、メンテナンスの容易な粉粒体流量測定装置を提供することにある。   In view of the above, the present invention is an electrostatic capacity type particulate matter flow rate measuring device in which an electrode is arranged on the outer periphery and a particulate matter is passed inside, and a passing amount (flow rate) of the particulate matter is measured. Even if the measured granular material has an abrasion action and has a small particle size and a small flow rate, the flow rate can be measured with good accuracy, and even if the granular material passage tube is worn, the granular material An object of the present invention is to provide an easy-to-maintain powder flow rate measuring device that can replace only the passage tube.
本発明は、上記課題を下記構成により解決する。なお、理解容易のために図符号を付すが、それらは本発明の技術的範囲に何ら影響を与えるものではない。   The present invention solves the above problems by the following configuration. In addition, although a figure code | symbol is attached | subjected for understanding easily, they do not affect the technical scope of this invention at all.
本発明に係る粉粒体流量測定装置は、ケーシングにより機密性が保持され外周に一対の測定電極及びガード電極が配置された絶縁体からなる筒状の電極配置管の内側に測定する粉粒体を通過させ、その粉粒体の流量と比例する静電容量をパラメーターとして粉粒体の流量を測定するようにした粉粒体流量測定装置であって、電極配置管10の内側には、絶縁体からなり着脱可能かつ機密保持可能に装入されてなる保護管20を備え、該保護管20の内側に測定する粉粒体を通過させて測定する構成である(図1・2参照)。   The granular material flow rate measuring device according to the present invention is a granular material for measuring inside a cylindrical electrode arrangement tube made of an insulator in which confidentiality is maintained by a casing and a pair of measurement electrodes and guard electrodes are arranged on the outer periphery. Is a particle flow rate measuring apparatus that measures the flow rate of the granular material using a capacitance proportional to the flow rate of the granular material as a parameter, and is insulated inside the electrode arrangement tube 10. The protective tube 20 is made of a body and is detachably mounted and can be kept secret, and the measurement is performed by passing a granular material to be measured inside the protective tube 20 (see FIGS. 1 and 2).
本発明は、上記の如く、保護管20は取替え可能であるため、相対的に薄肉のものを使用可能であり、可及的に被測定粉粒体と測定電極との距離も小さくできる。さらには、材料として、比誘電率及び熱膨張率の小さいものを選択することができる。したがって、検出静電容量の変化に悪影響を与える諸因子(距離、誘電率等)が小さくなり、結果的に、流量変動に伴う静電容量の小変化量も検出可能となる。   In the present invention, since the protective tube 20 can be replaced as described above, a relatively thin tube can be used, and the distance between the measured granular material and the measurement electrode can be reduced as much as possible. Furthermore, a material having a small relative dielectric constant and thermal expansion coefficient can be selected as the material. Therefore, various factors (distance, dielectric constant, etc.) that adversely affect the change in the detected capacitance are reduced, and as a result, it is possible to detect a small change in the capacitance due to the flow rate fluctuation.
上記において、一対の測定電極(検出電極14と接地電極16)は、電極配置管10の本体層12の内周面部に一体配置することが望ましい。当該構成により、さらに、被測定粉粒体と測定電極との距離も小さくなり、結果的に、流量変動に伴う静電容量の小変化量も検出可能となる。   In the above, it is desirable that the pair of measurement electrodes (the detection electrode 14 and the ground electrode 16) be integrally arranged on the inner peripheral surface portion of the main body layer 12 of the electrode arrangement tube 10. With this configuration, the distance between the powder to be measured and the measurement electrode is further reduced, and as a result, it is possible to detect a small amount of change in capacitance due to flow rate fluctuations.
上記構成において電極配置管10は、本体層12を成形絶縁層とし、ガード電極を、本体層12の内周面部に一対の測定電極より外周側に位置して配置される内部ガード電極18Aと、本体層12の外周面部に配置される外部ガード電極18Bとからなるものとすることが望ましい。ガード電極を、成形絶縁層である本体層12を挟んで内部ガード電極18Aと外部ガード電極18Bの二重構造としたので、浮遊容量変動及び温度ドリフトの影響をより小さくでき、さらに高精度・高感度の粉粒体流量の検出が可能となる。   In the above configuration, the electrode arrangement tube 10 has the main body layer 12 as a molded insulating layer, and the guard electrode is disposed on the inner peripheral surface portion of the main body layer 12 on the outer peripheral side of the pair of measurement electrodes, It is desirable that the external guard electrode 18B disposed on the outer peripheral surface portion of the main body layer 12 is used. Since the guard electrode has a double structure of the internal guard electrode 18A and the external guard electrode 18B with the main body layer 12 as a molded insulating layer in between, the influence of stray capacitance fluctuation and temperature drift can be reduced, and high accuracy and high Sensitive particle flow rate can be detected.
上記構成において、電極配置管10は、フレキシブル基板13が本体層12に一体成形されたものとし、フレキシブル基板13は、絶縁樹脂フィルム15の片面に一対の測定電極(検出電極14と接地電極16)が他面に内部ガード電極18Aが印刷されたものとすることが望ましい。測定電極やガード電極を銅箔などで形成する場合に比して生産性が良好となる。   In the above configuration, the electrode arrangement tube 10 is formed by integrally forming the flexible substrate 13 on the main body layer 12, and the flexible substrate 13 has a pair of measurement electrodes (detection electrode 14 and ground electrode 16) on one side of the insulating resin film 15. It is desirable that the inner guard electrode 18A is printed on the other surface. Productivity is better than when the measurement electrode and the guard electrode are formed of copper foil or the like.
電極配置管10は、測定電極(検出電極14と接地電極16)が、その内周面側を露出させて一体配置することが望ましい。可及的に被測定粒体の通過断面(保護管内周断面)に近くなるため、より高精度・高感度の粉粒体流量の検出が可能となる。   It is desirable that the electrode arrangement tube 10 is integrally arranged with the measurement electrodes (the detection electrode 14 and the ground electrode 16) with the inner peripheral surface exposed. Since it is as close as possible to the cross section of the particle to be measured (the inner circumferential cross section of the protective tube), it is possible to detect the flow rate of the granular material with higher accuracy and sensitivity.
電極配置管10の内周面と保護管20の外周面との間には、検出感度に悪影響を与えない範囲内の隙間を有することが望ましく、該隙間は、通常、0〜0.6mmとする。本発明の目的を確実に達成するためである。   It is desirable to have a gap within a range that does not adversely affect the detection sensitivity between the inner peripheral surface of the electrode arrangement tube 10 and the outer peripheral surface of the protective tube 20, and the gap is usually 0 to 0.6 mm. To do. This is for reliably achieving the object of the present invention.
保護管20の肉厚も、検出感度に悪影響を与えない範囲内のものが望ましく、その肉厚は、通常、0.3〜0.6mmとする。本発明の目的を確実に達成するためである。   The wall thickness of the protective tube 20 is preferably within a range that does not adversely affect the detection sensitivity, and the wall thickness is usually 0.3 to 0.6 mm. This is for reliably achieving the object of the present invention.
上記各構成において、一対の測定電極が、検出電極14と接地電極16とからなり、電極配置管10に沿って、検出電極14と接地電極16とが、相互にギャップ(隙間)Gを有して螺旋状に形成されて、軸線に直交する直径方向で相互に対面する構成とした場合、検出電極14と接地電極16の相互幅比を、1:1〜1:3.5の範囲内とする。   In each of the above configurations, the pair of measurement electrodes includes the detection electrode 14 and the ground electrode 16, and the detection electrode 14 and the ground electrode 16 have a gap (gap) G along the electrode arrangement tube 10. In this case, the mutual width ratio between the detection electrode 14 and the ground electrode 16 is in the range of 1: 1 to 1: 3.5.
検出電極と接地電極とをギャップをおいて、螺旋状に形成することにより、測定管(本発明では保護管20)内を粉粒体が通過する位置による測定値の変動が少ないものとなる。そして、当該構成において、幅比が大きすぎると、後述の実施例で示す如く、幅に差があることによる内壁部の感度上昇が期待できず、当然中心部の感度も低化して望ましくない。   By forming the detection electrode and the ground electrode in a spiral shape with a gap, the variation in the measurement value due to the position where the granular material passes through the measurement tube (protective tube 20 in the present invention) is reduced. In this configuration, if the width ratio is too large, it is not desirable to increase the sensitivity of the inner wall portion due to the difference in width, as will be described later in the embodiment, and naturally the sensitivity of the central portion is lowered.
上記構成において、保護管20の中心部より内壁部近傍における高感度を求める場合(粉体流量が少ない場合等)は、検出電極と接地電極との幅を異ならせて、両電極間に電圧を印加したとき、保護管の内周壁側に電気力線高密度部位が発生させるようにすることが望ましく、そのときの、検出電極と接地電極の相互幅比を、1:1.2〜1:3.5とし、かつ、両電極間ギャップGを1〜3mmとする。   In the above configuration, when high sensitivity is required in the vicinity of the inner wall portion from the center portion of the protective tube 20 (when the powder flow rate is small, etc.), the width between the detection electrode and the ground electrode is made different so that a voltage is applied between both electrodes. When applied, it is desirable to generate a high-density line of electric force lines on the inner peripheral wall side of the protective tube, and the mutual width ratio of the detection electrode and the ground electrode at that time is 1: 1.2 to 1: 3.5, and the gap G between the electrodes is 1 to 3 mm.
相互幅比が1に近いと、相互幅比を変えたことによる効果(電気力線密度の増大による内壁側の感度上昇)が期待できず、電極間ギャップが小さすぎては、検出電極相互又は接地電極相互が軸線に直交する直径方向で相互に対面する結果となり易く、誤作動するおそれがある。逆に、電極間ギャップGが大きくなると相対的に電気力線密度が低下して感度が低下する。   If the mutual width ratio is close to 1, the effect of changing the mutual width ratio (increased sensitivity on the inner wall side due to an increase in the electric force line density) cannot be expected, and if the gap between the electrodes is too small, The ground electrodes tend to face each other in the diametrical direction perpendicular to the axis, which may cause malfunction. On the contrary, when the gap G between the electrodes is increased, the electric line of force density is relatively lowered and the sensitivity is lowered.
上記各構成の粉粒体流量測定装置は、ブラスト装置に用いた場合、特に、噴射材の粒径が小さく、その流量(噴射量)が少ない精密ブラスト加工を施すブラスト装置に適用することが望ましく、その構成は、下記の如く、粉粒体流量測定装置を用いて、ブラスト加工における噴射材の流量を測定制御してブラスト加工をするものとなる。   When used in a blasting apparatus, the granular material flow rate measuring apparatus having the above-described configuration is preferably applied to a blasting apparatus that performs precision blasting, particularly when the particle size of the injection material is small and the flow rate (injection amount) is small. The structure is such that, as described below, blasting is performed by measuring and controlling the flow rate of the spray material in the blasting using a granular material flow rate measuring device.
本発明は、以上の説明から明らかな如く、電極配置管(電極管を含む。)の内側に、着脱自在な保護管をはめ込み可能としたので、被測定粉粒体(通過粉粒体)が相対的に小粒径・小流量でも高精度・感度で流量測定が可能となる。   As is clear from the above description, the present invention enables the removable protective tube to be fitted inside the electrode arrangement tube (including the electrode tube), so that the measured granular material (passing granular material) It is possible to measure the flow rate with high accuracy and sensitivity even with relatively small particle size and small flow rate.
当然、保護管が破損した場合に、測定装置の取替え・廃棄する必要がなく、その保護管のみを取り替えればよいもので、メンテナンスコストも低減させることができる。   Naturally, when the protective tube is broken, it is not necessary to replace and discard the measuring device, and only the protective tube needs to be replaced, and the maintenance cost can be reduced.
本発明を、各実施形態に基づいて、詳細に説明する。   The present invention will be described in detail based on each embodiment.
(1)本発明の第一実施形態における粉粒体測定装置における測定部(電極配置管10)の構造の一例を図1に示す。   (1) An example of the structure of the measurement part (electrode arrangement tube 10) in the granular material measuring device according to the first embodiment of the present invention is shown in FIG.
電極配置管10は、成形絶縁層からなる本体層12と、該本体層12の内周面部にフレキシブル基板13が一体配置され、本体層12の外周面部に銅箔(良導電性金属箔)からなる外部ガード電極18Bが一体配置されている。   The electrode arrangement tube 10 includes a body layer 12 made of a molded insulating layer, a flexible substrate 13 integrally disposed on the inner peripheral surface portion of the main body layer 12, and a copper foil (good conductive metal foil) on the outer peripheral surface portion of the main body layer 12. An external guard electrode 18B is integrally disposed.
そして、電極配置管10の内側に、実際に粉粒体が通過する酸化物系セラミック等の耐摩耗性材料からなる保護管20をこの電極配置管10に挿入して、二重構造の測定部構造体(電極配置管10/保護管20組体)としてある。   Then, a protective tube 20 made of an abrasion-resistant material such as an oxide ceramic through which the granular material actually passes is inserted into the electrode arrangement tube 10 into the electrode arrangement tube 10, and a measurement unit having a double structure This is a structure (electrode arrangement tube 10 / protection tube 20 assembly).
そして検出電極14と接地電極(アース電極)16との間に高周波の交番電圧を印加しこれと同相、同振幅にて駆動する回路を持った静電容量測定回路にて静電容量の変化を電圧変化として測定・表示する。   Then, a high-frequency alternating voltage is applied between the detection electrode 14 and the ground electrode (earth electrode) 16, and the capacitance is changed by a capacitance measuring circuit having a circuit driven with the same phase and the same amplitude. Measure and display as voltage change.
ここで、フレキシブル基板13は、絶縁樹脂フィルム15の片面に一対の測定電極(検出電極14と接地電極16)が、他面に測定電極用リード部(図示せず)及び内部ガード電極18Aが銅印刷されたものである。なお、測定電極(検出電極14と接地電極16)と測定電極用印刷部はメッキされたスルーホールにて表裏に導通を持たせてある。また、内部ガード電極18Aは、測定電極用リード部を除いて全面に印刷されている。   Here, the flexible substrate 13 has a pair of measurement electrodes (detection electrode 14 and ground electrode 16) on one side of the insulating resin film 15, and a measurement electrode lead (not shown) and an internal guard electrode 18A on the other side. It has been printed. The measurement electrode (detection electrode 14 and ground electrode 16) and the measurement electrode printing part are electrically connected to each other by plated through holes. The internal guard electrode 18A is printed on the entire surface except for the measurement electrode lead portion.
そして、フレキシブル基板13を円筒状に形成しその外周をガラスクロス12aにて覆い、さらに、その外面からエポキシ樹脂、不飽和ポリエステル樹脂等を含浸させ硬化させて、繊維強化プラスチック(FRP)からなる本体層12を成形する。なお、エポキシ樹脂を使用した場合は、金属に対する接着性も優れているため、本体層12の形成時、同時に、後述の銅箔からなる外部ガード電極18Bの形成材を接着一体化することも可能である。なお、本体層12は、FRP以外に、成形絶縁層であれば特に限定されるものではない。   The flexible substrate 13 is formed in a cylindrical shape, and the outer periphery thereof is covered with a glass cloth 12a. Further, the outer surface of the flexible substrate 13 is impregnated with an epoxy resin, an unsaturated polyester resin, etc. Layer 12 is formed. In addition, since the adhesiveness with respect to a metal is excellent when using an epoxy resin, the formation material of the external guard electrode 18B which consists of below-mentioned copper foil can also be adhere | attached and integrated simultaneously with the formation of the main body layer 12. It is. The main body layer 12 is not particularly limited as long as it is a molded insulating layer other than FRP.
そして、測定電極である螺旋銅印刷の一方を検出電極14、他方を接地電極16とする。ここで、絶縁樹脂フィルム15の片面(内側面)に筒状に巻き回したとき螺旋(スパイラル)を形成する検出電極14及び接地電極16は、筒軸線に直交する直径方向で相互に対面するようになっている。検出電極(プラス)14と接地電極(マイナス)16とが対面しなければ、管の直径方向の電気力線が発生せず円柱状容積内の静電容量の変化を検知できないためである。   One of the spiral copper prints as the measurement electrode is set as the detection electrode 14 and the other is set as the ground electrode 16. Here, the detection electrode 14 and the ground electrode 16 that form a spiral when wound in a cylindrical shape on one surface (inner surface) of the insulating resin film 15 face each other in the diameter direction perpendicular to the cylinder axis. It has become. This is because if the detection electrode (plus) 14 and the ground electrode (minus) 16 do not face each other, electric lines of force in the diameter direction of the tube are not generated, and a change in capacitance within the cylindrical volume cannot be detected.
なお、検出電極14及び接地電極16は、上記、フレキシブル基板13による銅印刷の代わりにリボン状の金属箔(銅箔)を使用して形成することもできる。   In addition, the detection electrode 14 and the ground electrode 16 can also be formed using a ribbon-shaped metal foil (copper foil) instead of the copper printing by the flexible substrate 13 described above.
そして、本実施形態では、外部ガード電極18Bは、測定電極である検出電極14と接地電極16の外周を包み囲うように、本体層12を介して設置してある。外部ガード電極18Bは、通常、銅箔等の良導電性の金属箔で形成する。   In the present embodiment, the external guard electrode 18B is provided via the main body layer 12 so as to surround the outer periphery of the detection electrode 14 and the ground electrode 16 that are measurement electrodes. The external guard electrode 18B is usually formed of a highly conductive metal foil such as a copper foil.
高精度の流量測定が目的であるので、温度ドリフトの影響や浮遊容量(stray capacitor)を排除するため、図2に示すような単層のガード電極18でもよいが、図1に示すような、外部ガード電極18Bと内部ガード電極18Aからなる二層構造とすることが望ましい。   Since the purpose is to measure the flow rate with high accuracy, a single-layer guard electrode 18 as shown in FIG. 2 may be used to eliminate the effects of temperature drift and stray capacitors, but as shown in FIG. It is desirable to have a two-layer structure composed of an external guard electrode 18B and an internal guard electrode 18A.
測定電極である検出電極14と接地電極16を、FRPからなる電極配置管10の本体層12で包み囲うことにより、電極配置管10及び保護管20を収納しているケーシングを通じての外部温度変化による温度ドリフトも低減させることができる。   By surrounding the detection electrode 14 and the ground electrode 16 that are measurement electrodes with the main body layer 12 of the electrode placement tube 10 made of FRP, it is caused by a change in external temperature through the casing that houses the electrode placement tube 10 and the protection tube 20. Temperature drift can also be reduced.
なお、ガード電極を検出電極14と接地電極16との間に配する構成も考えられる(特許文献1の図2、特許文献2の図3、特許文献3の図1、特許文献4の図3等参照)。   In addition, the structure which distribute | arranges a guard electrode between the detection electrode 14 and the ground electrode 16 is also considered (FIG. 2 of patent document 1, FIG. 3 of patent document 2, FIG. 1 of patent document 3, FIG. 3 of patent document 4). Etc.).
また、測定電極である検出電極14及び接地電極16は、上記のような螺旋(スパイラル)形式でなくても、パラレル形式でもよい(特許文献2の図1等参照)。さらに、検出電極14及び接地電極16は、図例では、印刷したフレキシブル基板13を使用した構成であるが、金属箔を、電極配置管10の内側に埋設した構成とすることもできる。この場合は、測定精度の見地からは必ずしも望ましくないが、電極保持性の見地からは、熱影響による剥離・離脱等のおそれがなく望ましい。   In addition, the detection electrode 14 and the ground electrode 16 that are measurement electrodes may not be in the spiral form as described above, but may be in a parallel form (see FIG. 1 in Patent Document 2). Furthermore, although the detection electrode 14 and the ground electrode 16 are configured using the printed flexible substrate 13 in the illustrated example, a metal foil may be embedded in the electrode arrangement tube 10. In this case, it is not always desirable from the standpoint of measurement accuracy, but it is desirable from the standpoint of electrode retention because there is no fear of peeling or detachment due to thermal effects.
そして、本実施形態では、電極配置管10の内部へ粉粒体を通過させる保護管20が、接続管22を介して着脱自在にかつ気密保持可能に装入されている。   And in this embodiment, the protective tube 20 which lets a granular material pass to the inside of the electrode arrangement | positioning pipe | tube 10 is inserted through the connecting pipe 22 so that attachment or detachment is possible and airtight maintenance is possible.
ここで、保護管20の形成材は、従来の電極管と同様、石英ガラスでもよいが、通常、耐摩耗性が良好で薄くしても破損するおそれのない絶縁体である酸化物系セラミックとする。酸化物系セラミックとしては、アルミナ、ジルコニア等を挙げることができる。   Here, the material for forming the protective tube 20 may be quartz glass, as in the case of the conventional electrode tube, but is usually an oxide ceramic that is an insulator that has good wear resistance and does not break even if thin. To do. Examples of oxide ceramics include alumina and zirconia.
保護管20の肉厚は、通常、耐摩耗性を有する材料を使用することができ、しかも、交換を予定しているため、測定精度の見地からは、可及的に薄肉にできる。例えば、酸化物セラミックから形成する場合、0.7mm以下、0.3〜0.6mm、さらには0.5〜0.4mmが望ましい。薄すぎると、耐用期間が短くなり、厚すぎると、測定精度を得難くなる。   The protective tube 20 can be made as thin as possible from the standpoint of measurement accuracy because a material having wear resistance can be used normally and replacement is planned. For example, when formed from an oxide ceramic, 0.7 mm or less, 0.3 to 0.6 mm, and further 0.5 to 0.4 mm are desirable. If it is too thin, the service life will be shortened. If it is too thick, it will be difficult to obtain measurement accuracy.
次に、本実施形態の測定検出部をケーシングに組み込んだ粉粒体流量測定装置の組立て方法を、図3に基づいて説明をする。   Next, an assembling method of the granular material flow rate measuring apparatus in which the measurement detection unit of the present embodiment is incorporated in the casing will be described with reference to FIG.
なお、接続管(継手)22は、上記保護管20と同様の酸化物系セラミック層(パイプ)を内面に備えた(接着された)ものである。   The connecting pipe (joint) 22 has an oxide ceramic layer (pipe) similar to that of the protective pipe 20 on the inner surface (adhered).
ここで、電極配置管10と接続管22を締結するために、ケーシング24の端部内周面は雌ねじ24aを備えたものとするとともに、接続管22を元部側中間外周にストッパ凸部22aを備えたものとする。   Here, in order to fasten the electrode arrangement tube 10 and the connection tube 22, the inner peripheral surface of the end portion of the casing 24 is provided with a female screw 24 a, and the stopper protrusion 22 a is provided on the intermediate intermediate outer periphery of the connection tube 22. It shall be provided.
そして、ケーシング24の雌ねじ24aにねじ込む中間リング26、及び、該中間リング26にねじ込む締結リング(スリーブナット)28を用意する。   Then, an intermediate ring 26 to be screwed into the female screw 24 a of the casing 24 and a fastening ring (sleeve nut) 28 to be screwed into the intermediate ring 26 are prepared.
上記中間リング26は、外側に六角スパナ係合部26aを備えた径違いニップルとされ、また、内側には、下記内側に装着するシール材のシール座となる内フランジ部26bを備えている。   The intermediate ring 26 is a nipple having a different diameter provided with a hexagonal spanner engaging portion 26a on the outer side, and an inner flange portion 26b serving as a seal seat for a sealing material to be mounted on the inner side.
上記締結リング28は、スリーブナットとされ、同様に、六角スパナ係合部28aを備え、また、元端に止め内フランジ28bを備えている。   The fastening ring 28 is a sleeve nut, and similarly includes a hexagonal spanner engaging portion 28a and a stop inner flange 28b at the base end.
また、電極配置管10及び保護管20をシール支持するために、中間リング26の内側に装着す電極配置管支持シール(グランドパッキン)30及び保護管支持シール(グランドパッキン)32及び両シール30、32の間に介在させるパッキン押えリング34を用意し、さらに、締結リング28の底部に装着する底部シール(Oリング)38を用意する。   In addition, in order to seal and support the electrode arrangement tube 10 and the protection tube 20, an electrode arrangement tube support seal (ground packing) 30 and a protection tube support seal (ground packing) 32 and both seals 30, which are mounted inside the intermediate ring 26, A packing presser ring 34 to be interposed between 32 is prepared, and a bottom seal (O-ring) 38 to be attached to the bottom of the fastening ring 28 is prepared.
まず、電極配置管10の一端に電極管支持シール30を介して一方の中間リング26を装着して、ケーシング24の一端から、電極配置管10を挿入した後、中間リング26をケーシング24にねじ込み、電極配置管10の一端をケーシング24に固定する。そして、電極配置管10の他端も、電極配置管支持シール30を嵌め込み、さらに、中間リング26をねじ込んで、電極配置管10をケーシング24に固定する。   First, one intermediate ring 26 is attached to one end of the electrode arrangement tube 10 via the electrode tube support seal 30, and after inserting the electrode arrangement tube 10 from one end of the casing 24, the intermediate ring 26 is screwed into the casing 24. The one end of the electrode arrangement tube 10 is fixed to the casing 24. Further, the electrode arrangement tube support seal 30 is also fitted to the other end of the electrode arrangement tube 10, and the intermediate ring 26 is screwed to fix the electrode arrangement tube 10 to the casing 24.
ここで、電極配置管10の両端と中間リング26の内周との間は、電極配置管支持シール30でシールされる。   Here, a gap between both ends of the electrode arrangement tube 10 and the inner periphery of the intermediate ring 26 is sealed with an electrode arrangement tube support seal 30.
次に、中間リング26の内側で電極配置管支持シール30の手前側に、パッキン押えリング34を介して、保護管支持シール32を装着する。そして、該保護管支持シール10に保護管20を嵌入(挿入)して保護管20の両端部を支持して保護管20をセットする。さらに、締結リング28の元部内側にOリング38を嵌め込み、接続管22の一端係合フランジ部22aにOリング38を介して装着された締結リング28を、中間リング26にねじ込む。   Next, the protective tube support seal 32 is mounted on the inner side of the intermediate ring 26 and on the front side of the electrode arrangement tube support seal 30 via the packing retainer ring 34. Then, the protective tube 20 is fitted (inserted) into the protective tube support seal 10 to support both ends of the protective tube 20 and set the protective tube 20. Further, the O-ring 38 is fitted inside the base portion of the fastening ring 28, and the fastening ring 28 attached to the one end engaging flange portion 22 a of the connection pipe 22 via the O-ring 38 is screwed into the intermediate ring 26.
ここで、電極管支持シール30及び保護管支持シール32は、直接的及び間接的に軸方向にも圧縮されて、シール性がより確実となるとともに電極配置管10及び保護管20に対する支持(保持性)も向上する。   Here, the electrode tube support seal 30 and the protection tube support seal 32 are directly and indirectly compressed in the axial direction, so that the sealing performance becomes more reliable and the electrode arrangement tube 10 and the protection tube 20 are supported (held). Property) is also improved.
こうして、ホース等で形成された粉粒体流路の途中に、本実施形態の粉粒体流量測定装置を組み付ける。   Thus, the granular material flow rate measuring apparatus of the present embodiment is assembled in the middle of the granular material flow path formed by a hose or the like.
この組み付けが完了した状態で、該保護管20と電極配置管10との挿入(嵌合)状態は、零当たり(隙間0mm)でもよい。通常、脱着自在性、保護管と電極管の熱膨張率に差がある場合等を考慮して、約0.1mm以上で、約0.6mm以下、望ましくは約0.5mm以下で、さらに望ましくは、0.3mm以下の隙間嵌めとする。   With this assembly completed, the insertion (fitting) state between the protective tube 20 and the electrode arrangement tube 10 may be zero (gap 0 mm). Usually, taking into account the possibility of attachment / detachment and the difference in thermal expansion coefficient between the protective tube and the electrode tube, it is about 0.1 mm or more, about 0.6 mm or less, preferably about 0.5 mm or less, and more desirable. Is a gap fit of 0.3 mm or less.
そして、この組付け完了後の、静電容量式の粉粒体流量測定装置は、粉粒体が保護管20を通過したときの静電容量変化は同軸コネクターに接続された同軸ケーブルにて変換器へ出力させるようにして、使用する。すなわち、センサーで検知した粉粒体の静電容量の変化を、変換器で、電圧値又は電流値に変換して、それらの数値をさらに物理量(流量:例えばg/min表示)としてディスプレイ装置に表示する。   And after this assembly is completed, the capacitance-type granular material flow rate measuring device converts the capacitance change when the granular material passes through the protective tube 20 with a coaxial cable connected to the coaxial connector. Use it so that it can be output to the instrument. That is, the change in electrostatic capacity of the powder detected by the sensor is converted into a voltage value or current value by a converter, and these numerical values are further converted into physical quantities (flow rate: for example, g / min display) to the display device. indicate.
本実施形態の粉粒体測定装置は、下記のような効果を奏する。   The granular material measuring apparatus of the present embodiment has the following effects.
電極管を廃止して、測定電極(検出・接地電極)を外側から支持体で支持して電極配置管を形成することで、測定対象物までの測定距離を小さく、かつ、電極管(コアー管)の静電容量を排除することで測定対象粉粒体の粒度が非常に小さくてまたその流量が少なく、且つ、セラミックのように誘電率の高い保護管を用いても測定感度が上がり精度が向上できる。   The electrode tube is abolished, and the measurement electrode (detection / grounding electrode) is supported by a support from the outside to form an electrode arrangement tube, thereby reducing the measurement distance to the measurement object and the electrode tube (core tube) ), The measurement granularity of the granular material to be measured is very small and the flow rate is small, and even if a protective tube with a high dielectric constant such as ceramic is used, the measurement sensitivity increases and the accuracy is improved. It can be improved.
さらに、摩耗性粉粒体の流量を静電容量の変化として測定する上で、耐摩耗性が高い酸化物系セラミックで肉厚が0.5mm以下となる保護管を電極配置管に挿入した2重構造の測定部構造体とし、更にこれらを、FRP層を介してガード電極にて覆い包む構造とすることで、検出精度と耐摩耗性という背反する性能を両立させることができる。   Furthermore, when measuring the flow rate of the abrasive particles as a change in capacitance, a protective tube having a thickness of 0.5 mm or less made of an oxide-based ceramic with high wear resistance was inserted into the electrode arrangement tube 2 By adopting a measurement structure having a heavy structure and covering these with a guard electrode via an FRP layer, the contradictory performance of detection accuracy and wear resistance can be achieved.
また保守は定期的な保護管のみの交換で済む。このように微粉で且つ低流量であっても精度、耐摩耗性、作業性を持ち合わせた粉粒体の流量測定装置は、業界の発展に寄与するところは極めて大きい。
(2)次に、本発明の第二実施形態について説明をする。以下の説明で、上記実施形態と同一部分については、同一図符号を付して、それらの説明の全部又は一部を省略する。
Maintenance can be done only by periodically replacing the protective tube. As described above, the flow rate measuring device for fine particles, which has accuracy, wear resistance and workability even at a low flow rate, contributes greatly to the development of the industry.
(2) Next, a second embodiment of the present invention will be described. In the following description, the same parts as those in the above embodiment are denoted by the same reference numerals, and all or a part of the description is omitted.
本実施形態の粉粒体測定装置における測定部構造体(電極配置管10/保護管20組体)の一例を、図4に示す。   An example of the measurement part structure (electrode arrangement tube 10 / protection tube 20 assembly) in the granular material measurement device of the present embodiment is shown in FIG.
電極配置管(電極管)10は、成形絶縁層となる本体層12を、該本体層12の内周面部がフレキシブル基板13で一体配置されて形成されている。ここまでは、上記実施形態と同様である。   The electrode arrangement tube (electrode tube) 10 is formed by integrally arranging a main body layer 12 serving as a molded insulating layer with a flexible substrate 13 on an inner peripheral surface portion of the main body layer 12. Up to this point, the process is the same as in the above embodiment.
そして、フレキシブル基板13は、絶縁樹脂フィルム15の片面(筒状としたとき外周面となる)に、幅広の検出電極14とそれより狭い接地電極16が一定のギャップGを隔て縞状に印刷してある。   The flexible substrate 13 is printed in a striped pattern with a wide detection electrode 14 and a narrower ground electrode 16 spaced apart by a certain gap G on one surface of the insulating resin film 15 (which becomes an outer peripheral surface when it is formed into a cylindrical shape). It is.
該フレキシブル基板13を巻き回して筒状としたとき、検出電極14と接地電極16とが、相互にギャップ(隙間)Gを有して螺旋状に形成され、かつ、軸線に直交する直径方向で相互に対面するようになっている。   When the flexible substrate 13 is wound into a cylindrical shape, the detection electrode 14 and the ground electrode 16 are formed in a spiral shape with a gap (gap) G therebetween, and in a diametrical direction perpendicular to the axis. They are facing each other.
ここで、上記検出電極14と接地電極16との相互幅比が、1:1〜1:3.5の範囲内にある。   Here, the mutual width ratio between the detection electrode 14 and the ground electrode 16 is in the range of 1: 1 to 1: 3.5.
なお、図6に、検出電極幅=接地電極幅の場合(A)、検出電極幅>接地電極幅の場合(B)についても、電気力線図をそれぞれ示す。すなわち検出電極幅/接地電極幅=1/1の場合、電気力線は平行となり、電極配置管の管中央部側と管内壁部側との電気力線密度(感度)は同じとなる。他方、検出電極幅と接地電極幅とが異なる場合、電気力線密度は平行とならず、電極配置管の管中央部側より管内壁部側の電気力線密度(感度)が高くなり、管内壁部近傍の感度が上昇する。   FIG. 6 shows electric field diagrams for the case of detection electrode width = ground electrode width (A) and the case of detection electrode width> ground electrode width (B). That is, when the detection electrode width / ground electrode width = 1/1, the electric force lines are parallel, and the electric force line density (sensitivity) between the tube central portion side and the tube inner wall portion side of the electrode arrangement tube is the same. On the other hand, when the detection electrode width and the ground electrode width are different, the electric force line density is not parallel, and the electric force line density (sensitivity) on the tube inner wall side is higher than the tube center side of the electrode arrangement tube, Sensitivity near the wall increases.
こうして、管内壁部側の感度が高くなることにより、電極配置管(本実施形態では保護管)内を通過する粉粒体の流量が微小量であっても、測定精度を低下させずに測定が可能となる。その理由は、管内を流れる粉粒体が微小量の場合、その粉粒体は管の内壁に沿って螺旋を描きながら移動するためである(新たな知見)と推定される。   Thus, by increasing the sensitivity on the inner wall side of the tube, even if the flow rate of the powder passing through the electrode arrangement tube (protective tube in this embodiment) is very small, the measurement accuracy is not degraded. Is possible. The reason is presumed that when the amount of powder flowing in the tube is very small, the particle moves while drawing a spiral along the inner wall of the tube (new knowledge).
しかし、幅比が大きくなりすぎると、却って、感度が低下することが分かった(後述の実施例参照)。電気力線密度の高密度化範囲の幅が狭くなりすぎて、螺旋移動する粉粒体の層が粗になるため、流量変化を検知することが困難となる。   However, it has been found that if the width ratio becomes too large, the sensitivity decreases on the contrary (see examples described later). Since the width of the electric force line density densification range becomes too narrow, and the layer of the granular material that spirally moves becomes coarse, it is difficult to detect the flow rate change.
そして、粉粒体が微小量で管壁を螺旋移動するような場合を想定して検出電極幅と接地電極幅を異ならせる場合は、粉粒体の流量・種類により異なるが、相互幅比を、1:1.2〜1:3.5、さらには、1:1.5〜1:3.0とすることが望ましい。なお、検出・接地電極の幅によるが、両電極間ギャップGが0.5〜5mm、さらには1〜3mmが望ましい。このときの幅広側の電極幅は、電極配置管の内径が10.5mmのとき、例えば、幅広側:14〜15.5mm、幅狭側:5.5〜7mmとする。   And assuming that the granular material spirally moves along the tube wall with a minute amount, the width of the detection electrode and the width of the ground electrode are different. 1: 1.2 to 1: 3.5, and more preferably 1: 1.5 to 1: 3.0. Depending on the width of the detection / ground electrode, the gap G between the electrodes is preferably 0.5 to 5 mm, more preferably 1 to 3 mm. The electrode width on the wide side at this time is, for example, wide side: 14 to 15.5 mm and narrow side: 5.5 to 7 mm when the inner diameter of the electrode arrangement tube is 10.5 mm.
また、本体層12は、(円)筒状としたフレキシブル基板13の外面に、ガラスクロス12aを巻いて覆い外周からエポキシ樹脂を含浸させ固め、その上から包み込むように単層のガード電極18にて全体を覆って形成したものである。図例では、必然的ではないが、更にガラスクロス12bを巻いて覆い外周からエポキシ樹脂を含浸させ固めた構成としてある。   The main body layer 12 is covered with a single-layer guard electrode 18 so that the outer surface of the (circle) cylindrical flexible substrate 13 is covered with a glass cloth 12a, covered with an epoxy resin from the outer periphery and hardened. It is formed to cover the whole. In the example shown in the figure, the glass cloth 12b is wound and covered with an epoxy resin from the outer periphery, which is hardened.
これを電極配置管(測定電極管)10としてその内部へ粉粒体を通過させる保護管20を挿入する。   This is used as an electrode arrangement tube (measuring electrode tube) 10 and a protective tube 20 is inserted through which the granular material passes.
本実施形態における、測定部10をケーシング24Aに組み込んだ構造の一例を図5に示す。なお、図例のケーシング24Aは、電極配置管受け金具23と、各電極と直結する電極信号変換器(回路基板)(図示せず)を組み込む可能なスペースを備えたケーシング本体25とから構成されている。実施形態と異なり、変換器に接続するためのリード線が不要となり、信号が外部ノイズの影響を受け難くなる。   FIG. 5 shows an example of a structure in which the measurement unit 10 is incorporated in the casing 24A in the present embodiment. The casing 24A shown in the figure is composed of an electrode arrangement tube bracket 23 and a casing body 25 having a space capable of incorporating an electrode signal converter (circuit board) (not shown) directly connected to each electrode. ing. Unlike the embodiment, a lead wire for connecting to the converter is not necessary, and the signal is hardly affected by external noise.
電極配置管10は固定リング(絶縁樹脂製)31に接着樹脂31aにて固定される。該固定リング31は電極配置管受け金具23に挿入され、電極配置管固定シール(Oリング)30Aにて固定(保持)される。   The electrode arrangement tube 10 is fixed to a fixing ring (made of insulating resin) 31 with an adhesive resin 31a. The fixing ring 31 is inserted into the electrode arrangement tube holder 23 and fixed (held) by an electrode arrangement tube fixing seal (O-ring) 30A.
他方、保護管20は電極配置管10内へ挿入されて二重構造の測定部構造体を形成するそのとき、電極配置管10との隙間は0.6mm以下となるように電極配置管受け金具23の先端位置決めリング部23aにて位置決めされ、保護管固定シール(Oリング)32Aにて固定(保持)される。   On the other hand, the protective tube 20 is inserted into the electrode arrangement tube 10 to form a measurement structure of a double structure. At that time, the electrode arrangement tube receiving metal fitting so that the gap with the electrode arrangement tube 10 is 0.6 mm or less. 23 is positioned by the tip positioning ring portion 23a and fixed (held) by a protective tube fixing seal (O-ring) 32A.
さらに、接続管22が、締結リング(ユニオンナット)28にてねじ込み方式により電極配置受け金具23に接続される。このとき、Oリング32Aは、接続管22の段付き元部22aと、電極管受け金具23の先端位置決め部23aに形成された切欠段部との間で密着保持される。   Further, the connecting pipe 22 is connected to the electrode arrangement receiving bracket 23 by a screwing method with a fastening ring (union nut) 28. At this time, the O-ring 32 </ b> A is tightly held between the stepped base portion 22 a of the connection tube 22 and the notch step portion formed in the tip positioning portion 23 a of the electrode tube bracket 23.
なお、接続管22の先端内側部には、保護管と同一内径の酸化物系セラミックスパイプ22bが内面に接着されてライナーとされている。粉粒体が通過時の接続管22の耐磨耗性を確保するためである。   An oxide ceramic pipe 22b having the same inner diameter as that of the protective tube is bonded to the inner surface of the inner end of the connecting tube 22 to form a liner. This is to ensure the wear resistance of the connecting pipe 22 when the granular material passes.
こうして、粉粒体が保護管20を通過したときの、静電容量変化はケーシング24A内に収納された変換器40にて電圧あるいは電流へ変換し、その出力はケーブルを通してスケーリングメーターに入力され物理量へ変換して表示されるようになっている。   In this way, the change in capacitance when the granular material passes through the protective tube 20 is converted into voltage or current by the converter 40 housed in the casing 24A, and the output is input to the scaling meter through the cable and is a physical quantity. Converted to be displayed.
なお、第二実施形態では、検出・接地電極14、16をそれぞれ絶縁樹脂フィルム15の外周面部に配した例を示したが、内周面部一体配置した場合にも勿論本発明は適用可能である。さらに、コアとして石英管を使用する場合にも本発明は適用される。   In the second embodiment, the detection / ground electrodes 14 and 16 are arranged on the outer peripheral surface portion of the insulating resin film 15, respectively. However, the present invention is naturally applicable to the case where the inner peripheral surface portion is integrally arranged. . Furthermore, the present invention is also applied when a quartz tube is used as the core.
以下、実施例・参照例・比較例に基づいて、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples, reference examples, and comparative examples.
<第一実施形態対応>
(1)実施例1−1〜1−3、参照例1−1〜1−2
図1・2に示す構成において、表1に示す材質・寸法仕様とした。
<Corresponding to the first embodiment>
(1) Examples 1-1 to 1-3, Reference Examples 1-1 to 1-2
In the configuration shown in FIGS. 1 and 2, the material and size specifications shown in Table 1 were used.
図2に示すものは、本発明の先願(特願2005-155954:平成17年5月27日)に係るもので、参照例1−1・1−2に使用したものである。   The one shown in FIG. 2 relates to the prior application of the present invention (Japanese Patent Application No. 2005-155954: May 27, 2005), and is used in Reference Examples 1-1 and 1-2.
電極配置管10Aは、石英ガラス管44の外周面にスパイラル状に銅箔を巻きつけて検出・接地電極14、16を形成し、該検出・接地電極14、16の外側に銅箔を巻きつけてガード電極18が絶縁樹脂フィルム15を介して形成したものである。そして、該電極配置管10Aの内部に保護管20を挿入して二重構造の測定部構造体としてある。   The electrode placement tube 10A is formed by spirally winding copper foil around the outer peripheral surface of the quartz glass tube 44 to form the detection / ground electrodes 14 and 16, and winding the copper foil outside the detection / ground electrodes 14 and 16 The guard electrode 18 is formed through the insulating resin film 15. Then, a protective tube 20 is inserted into the electrode arrangement tube 10A to form a double measuring unit structure.
なお、材質・使用材料はそれぞれ下記の如くである。 The materials and materials used are as follows.
・合成石英ガラス・・・外径12.9mm、肉厚1.2mm、全長140mm
比誘電率(1MHz・25℃):3.88、
線膨張率(25℃):4.7×10-7
・92%アルミナ・・・比誘電率(1MHz・25℃):8.9、
線膨張率(25℃):7.1×10-6
・電極管配置本体層・・・材質:ガラス強化エポキシ樹脂
・絶縁樹脂フィルム・・・材質:アクリル樹脂(比誘電率3.6)、肉厚:0.8mm
(2)材料供給試験
下記1)サクション(吸引)式のエアブラスト装置(図7)に、下記の如く、粉粒体流量測定装置58を組み込んで、下記条件で行った。
・ Synthetic quartz glass: outer diameter 12.9mm, wall thickness 1.2mm, total length 140mm
Relative permittivity (1MHz, 25 ℃): 3.88
Linear expansion coefficient (25 ° C.): 4.7 × 10 −7
・ 92% alumina ・ ・ ・ Relative permittivity (1MHz ・ 25 ℃): 8.9
Linear expansion coefficient (25 ° C.): 7.1 × 10 −6
・ Electrode tube placement body layer ・ ・ ・ Material: Glass reinforced epoxy resin ・ Insulating resin film ・ ・ ・ Material: Acrylic resin (relative dielectric constant 3.6), Wall thickness: 0.8 mm
(2) Material supply test The following 1) The powder flow rate measuring device 58 was incorporated into the suction (suction) type air blast device (FIG. 7) as follows, and the test was performed under the following conditions.
1)本サクション式のエアブラスト装置は、粉粒体タンク50内に貯留した粉粒体(ブラスト材料)をスクリューフィーダー52により、定量的に切出し、耐圧ホース54(外径:30mmφ、肉厚:5.5mm)を介してエジェクター56で、粉粒体を吸引供給するものである。そして、粉粒体流量測定装置58を、フィーダー52の粉粒体吐出口(切り出し口)と耐圧ホース54の元部との間に組み込む。     1) This suction-type air blasting apparatus quantitatively cuts the powder (blast material) stored in the powder tank 50 with a screw feeder 52, and a pressure hose 54 (outer diameter: 30 mmφ, wall thickness: 5.5 mm), the ejector 56 sucks and feeds the granular material. Then, the granular material flow rate measuring device 58 is incorporated between the granular material discharge port (cutout port) of the feeder 52 and the base portion of the pressure hose 54.
そして、負圧約−5000mmAq(−49kPa)、流速約25m/s、にて粉粒体を吸引し該粉粒体流量測定装置58内を通過させ、そのときの静電容量を同軸ケーブル60を通して変換表示装置62により電圧へ変換し出力として得た。さらに、流量(切出し量)を変化させて電圧変化を測定し、そのときの流量と出力電圧の関係を求めた。   Then, the powder is sucked at a negative pressure of about −5000 mmAq (−49 kPa) and a flow rate of about 25 m / s and passed through the powder flow measuring device 58, and the electrostatic capacity at that time is converted through the coaxial cable 60. It was converted into voltage by the display device 62 and obtained as an output. Furthermore, the voltage change was measured by changing the flow rate (cutout amount), and the relationship between the flow rate and the output voltage at that time was obtained.
なお、上記で使用した各供給粉粒体の仕様を下記する。   In addition, the specification of each supply granular material used above is described below.
・グリーンカーボランダムGC♯1000・・・平均粒径:約15μm、硬さ:Hk2400〜2500
・グリーンカーボランダムGC♯1500・・・平均粒径:約10μm、硬さ:同
・グリーンカーボランダムGC♯2000・・・平均粒径:約10μm、硬さ:同
(3)試験結果
1)実施例1−1・参照例1−1の試験結果を図8に示す。そして当該図から、参照例1−1の検出感度は、実施例1−1の約1/5であることが分かる。
・ Green Carborundum GC # 1000 ・ ・ ・ Average particle size: about 15μm, Hardness: Hk2400-2500
・ Green Carborundum GC # 1500 ... Average particle size: about 10 μm, hardness: same ・ Green Carborundum GC # 2000 ... Average particle size: about 10 μm, hardness: same (3) Test results 1) Implementation The test results of Example 1-1 and Reference Example 1-1 are shown in FIG. And from the said figure, it turns out that the detection sensitivity of Reference Example 1-1 is about 1/5 of Example 1-1.
すなわち、実施例1−1の回帰曲線:y1=0.958e0.6127x
参照例1−1の回帰曲線:y1´=0.327e0.008x
ここで、x=100(g/min)とすると、y1/y1´≒4.7となる。
That is, the regression curve of Example 1-1: y 1 = 0.958e 0.6127x
Regression curve of Reference Example 1-1: y 1 ′ = 0.327e 0.008x
Here, when x = 100 (g / min), y 1 / y 1 ′ ≈4.7.
2)実施例1−2、1−3及び参照例1−2の試験結果を図9に示す。参照例2の検出感度は、実施例2の約1/3であることが分かる。   2) The test results of Examples 1-2 and 1-3 and Reference Example 1-2 are shown in FIG. It can be seen that the detection sensitivity of Reference Example 2 is about 1/3 that of Example 2.
すなわち、実施例1−2の回帰曲線:y2=0.447e0.0174x
参照例1−2の回帰曲線:y2´=0.354e0.01x
ここで、x=100(g/min)の場合、y2/y2´≒2.6となる。

<第二実施形態対応>
以下、第二実施形態に対応する実施例・参照例・比較例について説明する。
That is, the regression curve of Example 1-2: y 2 = 0.447e 0.0174x
Regression curve of Reference Example 1-2: y 2 ′ = 0.354e 0.01x
Here, when x = 100 (g / min), y 2 / y 2 ′ ≈2.6.

<Compatible with the second embodiment>
Examples, reference examples, and comparative examples corresponding to the second embodiment will be described below.
各実施例・参照例・比較例に使用した電極配置管・保護管の仕様を表2・3に示す。   Tables 2 and 3 show the specifications of the electrode arrangement tube and protective tube used in each example, reference example, and comparative example.
なお、各材質は、特記しない限り、第一実施形態のものを使用した。   Each material used in the first embodiment was used unless otherwise specified.
(1)実施例2−1〜5、参照例2−1〜3
各実施例・参照例の電極配置管10は、外周面となる片面に表示の仕様で検出・接地電極を印刷(銅ペースト)した絶縁樹脂フィルム15を巻いたもの(内径φ11mmφ)に、ガラスクロス12aを巻いて覆い更に外周からエポキシ樹脂を含浸させ固定し、その上から包み込むようにガード電極18にて全体を覆って電極配置管10を調製し(図4において、ガード電極18の外側のガラスクロス12bのないもの)、該電極配置管10の内部に、第一実施形態と同仕様のセラミックスチューブを保護管20として挿入した。
(1) Examples 2-1 to 5 and Reference Examples 2-1 to 3
The electrode arrangement tube 10 of each example / reference example is formed by winding a glass cloth on an insulating resin film 15 in which a detection / grounding electrode is printed (copper paste) according to display specifications on one side as an outer peripheral surface (inner diameter φ11 mmφ). 12a is wound and covered, and further impregnated with epoxy resin from the outer periphery, fixed, and covered with the guard electrode 18 so as to be wrapped from above, thereby preparing the electrode arrangement tube 10 (in FIG. 4, the glass outside the guard electrode 18). A ceramic tube having the same specifications as in the first embodiment was inserted as a protective tube 20 into the electrode arrangement tube 10.
(2)比較例2−1
比誘電率が3.88、熱膨張係数4.7×10-7、外径φ12.9mm、内径φ10.5mm、肉厚1.2mm、
合成石英ガラスをコア管として用いこれに幅10.5mmの検出電極と幅10.5mmの接地電極を4
mmのギャップの電極フィルムの電極面を外側にして螺旋状にコア管長さに接合させ、これ
をガード電極で覆い、更に比誘電率2.0の収縮フッ素樹脂製チューブに挿入し固定させ電極管としこの内部へアルミナ92%、外径φ10mm、内径φ9mm、肉厚0.5mmのセラミックチューブを保護管として挿入して調製した。
(2) Comparative Example 2-1
Relative permittivity 3.88, thermal expansion coefficient 4.7 × 10 -7 , outer diameter φ12.9mm, inner diameter φ10.5mm, wall thickness 1.2mm,
Synthetic quartz glass is used as the core tube.
The electrode surface of the electrode film with a gap of mm is spirally bonded to the core tube length, covered with a guard electrode, and then inserted into a shrinkable fluororesin tube having a relative dielectric constant of 2.0 and fixed. A ceramic tube having 92% alumina, an outer diameter of φ10 mm, an inner diameter of φ9 mm, and a wall thickness of 0.5 mm was inserted into this as a protective tube.
(3)管中心部・内壁部の感度試験
上記のように調製した実施例・参照例について、図10(A)に示すように外径φ8mm、0.5tのフッ素樹脂製パイプ64を保護管20に接触しないように挿入し、電極配置管10の内壁部近傍での静電容量変化を、同様に、φ2mmアクリル製ロッド66を測定電極管10の中央部へ挿入し中央部の近傍の静電容量変化を、それぞれ電圧として測定した。
(3) Pipe center / inner wall sensitivity test For the examples and reference examples prepared as described above, a fluororesin pipe 64 having an outer diameter of 8 mm and 0.5 t as shown in FIG. In the same manner, the capacitance change in the vicinity of the inner wall portion of the electrode arrangement tube 10 is inserted into the central portion of the measurement electrode tube 10 by inserting a φ2 mm acrylic rod 66 in the vicinity of the center portion. Capacitance changes were measured as voltages, respectively.
電極の相互幅比が1/1である実施例2−1における内壁部及び中央部の基準として、出力比で求めた。   The output ratio was obtained as a reference for the inner wall portion and the center portion in Example 2-1 in which the mutual width ratio of the electrodes was 1/1.
それらの結果を、表2・3及び図11に示すとともに、評価結果を纏めて下記する。   The results are shown in Tables 2 and 3 and FIG. 11, and the evaluation results are summarized below.
実施例2−2:実施例2−1より内壁部(内周部)の感度が6%上昇し中央部は14%低下した。     Example 2-2: The sensitivity of the inner wall portion (inner peripheral portion) increased by 6% and the central portion decreased by 14% from Example 2-1.
実施例2−3:実施例2−1より内壁部の感度は11%上昇し、中央部は37%低下した
実施例2−4:実施例2−1より内壁部の感度は5%上昇し、中央部は14%低下した。これは実施例2−2とほぼ同様な結果である。
Example 2-3: The sensitivity of the inner wall portion increased by 11% from Example 2-1, and the central portion decreased by 37%. Example 2-4: The sensitivity of the inner wall portion increased by 5% compared to Example 2-1. In the middle, it fell 14%. This is almost the same result as in Example 2-2.
実施例2−5:実施例2−1より内壁部の感度は11%上昇し、中央部は37%低下した。これは実施例2−3とほぼ同一な結果である。     Example 2-5: The sensitivity of the inner wall portion was 11% higher than that of Example 2-1, and the central portion was 37% lower. This is almost the same result as in Example 2-3.
参照例2−1:実施例2−1より内壁部の感度は3%低下し、中央部も37%低下した。     Reference Example 2-1: The sensitivity of the inner wall portion was 3% lower than that of Example 2-1, and the central portion was also 37% lower.
参照例2−2:実施例2−1より内壁部の感度は5%低下し、中央部も37%低下した。これは参照例2−2とほぼ同様な結果である。     Reference Example 2-2: From Example 2-1, the sensitivity of the inner wall portion was reduced by 5%, and the central portion was also reduced by 37%. This is almost the same result as Reference Example 2-2.
参照例2−3:実施例2−1より内壁部の感度は8%低下し、中央部も14%低下した。これは電極間ギャップが広がったためであると考えられる。     Reference Example 2-3: From Example 2-1, the sensitivity of the inner wall portion was reduced by 8%, and the central portion was also reduced by 14%. This is thought to be because the gap between the electrodes widened.
比較例2−1:実施例2−1より内壁部の感度は26%低下し、中央部は46%低下した。これはコアー電極構造とすることでコアー管の厚み分の距離が広がり、更にコアー管の静電容量分感度が低下したためであると考えられる。     Comparative Example 2-1: The sensitivity of the inner wall portion was reduced by 26% and the central portion was reduced by 46% compared to Example 2-1. This is presumably because the core electrode structure increases the distance corresponding to the thickness of the core tube and further reduces the capacitance sensitivity of the core tube.
(4)流量/出力電圧対応試験
実施例2−1及び実施例2−3の電極配置管を静電容量/電圧変換器とが一体構造化した図5に示す流量測定装置を用いて、平均粒径約25μmのグリーンカーボランダムGC#600を用いた以外は、第一実施形態におけるのと同様にして流量と出力電圧との関係を求めた。
(4) Flow rate / output voltage correspondence test Using the flow rate measuring device shown in FIG. 5 in which the electrode arrangement tubes of Example 2-1 and Example 2-3 are integrated with a capacitance / voltage converter, an average is obtained. The relationship between the flow rate and the output voltage was determined in the same manner as in the first embodiment except that the green carborundum GC # 600 having a particle size of about 25 μm was used.
そのときの流量と出力電圧の関係を図12に示す。この結果から同一流量のとき、電極幅比3/1の実施例2−3は、電極幅比1/1の実施例2−1より高い出力が得られた。これは粉粒体が空気流にて搬送される場合、搬送管(保護管20)の壁面近傍の密度が高くなって流れているためと推定される。すなわち、実施例2−3は、保護管内壁部近傍の感度が高い電極構造が良好であることを示している。   FIG. 12 shows the relationship between the flow rate and the output voltage at that time. From this result, at the same flow rate, Example 2-3 with an electrode width ratio of 3/1 was able to obtain a higher output than Example 2-1 with an electrode width ratio of 1/1. This is presumed to be because the density of the vicinity of the wall surface of the transport pipe (protection pipe 20) increases when the powder is transported by air flow. That is, Example 2-3 shows that an electrode structure with high sensitivity near the inner wall of the protective tube is good.
本発明に係る粉粒体流量測定装置の第一実施形態における測定検出部を示すモデル断面図。Model sectional drawing which shows the measurement detection part in 1st embodiment of the granular material flow volume measuring apparatus which concerns on this invention. 本発明に係る粉粒体流量測定装置の第一実施形態の先行例を示すモデル断面図。Model sectional drawing which shows the prior example of 1st embodiment of the granular material flow volume measuring apparatus which concerns on this invention. 本発明に係る粉粒体流量測定装置の第一実施形態における組立て断面図。The assembly sectional view in the first embodiment of the granular material flow measuring device concerning the present invention. 本発明に係る第二実施形態における測定検出部を示すモデル断面図。Model sectional drawing which shows the measurement detection part in 2nd embodiment which concerns on this invention. 同じく組立て断面図。Similarly assembly sectional view. (A)、(B)は検出電極/接地電極の相互幅比と発生電気力線密度の関係を示す原理説明図。(A), (B) is a principle explanatory view showing the relationship between the mutual width ratio of the detection electrode / ground electrode and the generated electric field line density. 本発明の粉粒体流量測定装置を吸引式のエアブラスト装置に組み込んだ場合の一例を示す構成図。The block diagram which shows an example at the time of incorporating the granular material flow volume measuring apparatus of this invention in a suction-type air blasting apparatus. 実施例1−1および比較例1−1における流量測定装置を、図7に示す吸引式のエアブラスト装置に組み込んで、同一の粉粒体(グリーンカーボランダム♯1000)を供給した場合の粉粒体流量/出力電圧の関係を示すグラフ図。Particles in the case where the flow rate measuring device in Example 1-1 and Comparative Example 1-1 are incorporated into the suction type air blast device shown in FIG. 7 and the same powder (green carborundum # 1000) is supplied. The graph which shows the relationship between body flow volume / output voltage. 実施例1−2・3及び参照例1−2の流量測定装置を、図7に示す吸引式のエアブラスト装置に組み込んで、同一の粉粒体(グリーンカーボランダム♯1500)を供給した場合の粉粒体流量/出力電圧の関係を示すグラフ図。When the flow rate measuring devices of Examples 1-2 and 3 and Reference Example 1-2 are incorporated in the suction-type air blast device shown in FIG. 7 and the same granular material (green carborundum # 1500) is supplied The graph which shows the relationship of a granular material flow volume / output voltage. (A)、(B)は、各例の測定電極部に電圧を印加したときの中心部及び内壁部との静電容量の変化をそれぞれ測定するための測定原理図。(A), (B) is a measurement principle diagram for measuring changes in capacitance between the central portion and the inner wall portion when a voltage is applied to the measurement electrode portion of each example. 図10の測定原理図を用いて測定した結果を示すグラフ図。The graph which shows the result measured using the measurement principle figure of FIG. 実施例2−1及び実施例2−3の流量測定装置を、図7に示す吸引式のエアブラスト装置に組み込んで、同一の粉粒体(グリーンカーボランダム♯600)を供給した場合の粉粒体流量/出力電圧の関係を示すグラフ図。Particles in the case where the flow rate measuring devices of Example 2-1 and Example 2-3 are incorporated into the suction type air blast device shown in FIG. 7 and the same powder (green carborundum # 600) is supplied. The graph which shows the relationship between body flow volume / output voltage.
符号の説明Explanation of symbols
10 電極配置管(電極管)
12 電極配置管の本体層
14 検出電極
16 接地電極
18 ガード電極
18A 内部ガード電極
18B 外部ガード電極
20 保護管
G 検出電極と接地電極とのギャップ
10 Electrode placement tube (electrode tube)
12 Body Layer of Electrode Arrangement Tube 14 Detection Electrode 16 Ground Electrode 18 Guard Electrode 18A Internal Guard Electrode 18B External Guard Electrode 20 Protective Tube G Gap between Detection Electrode and Ground Electrode

Claims (12)

  1. ケーシングにより機密性が保持され、一対の測定電極、及びガード電極が配置された絶縁体からなる筒状の電極配置管の内側に測定する粉粒体を通過させ、その粉粒体の流量と比例する静電容量をパラメーターとして粉粒体の流量を測定するようにした粉粒体流量測定装置であって、
    電極配置管の内側に、絶縁体からなり、着脱可能かつ気密保持可能に装入されてなる保護管を備え、該保護管の内側に測定する粉粒体を通過させて測定をするようにしたことを特徴とする粉粒体流量測定装置。
    Confidentiality is maintained by the casing, and a granular material to be measured is passed inside a cylindrical electrode arrangement tube made of an insulator in which a pair of measurement electrodes and a guard electrode are arranged, and is proportional to the flow rate of the granular material. It is a granular material flow rate measuring device that measures the flow rate of the granular material with the capacitance to be a parameter,
    A protective tube made of an insulator, which is detachable and airtightly held, is provided inside the electrode arrangement tube, and measurement is performed by passing the granular material to be measured inside the protective tube. The granular material flow rate measuring apparatus characterized by the above-mentioned.
  2. 前記一対の測定電極が、前記電極配置管の本体層の内周面に一体配置されていることを特徴とする請求項1記載の粉粒体流量測定装置。   2. The granular material flow rate measuring apparatus according to claim 1, wherein the pair of measurement electrodes are integrally disposed on an inner peripheral surface of a main body layer of the electrode arrangement tube.
  3. 前記電極配置管は、前記本体層が成形絶縁層からなり、また、前記ガード電極が、前記本体層の内周面部に前記一対の測定電極より外周側に位置して配置される内部ガード電極と、前記本体層の外周面部に配置される外部ガード電極とからなることを特徴とする請求項2記載の粉粒体流量測定装置。   The electrode arrangement tube includes an internal guard electrode in which the main body layer is formed of a molded insulating layer, and the guard electrode is disposed on an inner peripheral surface portion of the main body layer on an outer peripheral side from the pair of measurement electrodes. 3. The granular material flow rate measuring device according to claim 2, comprising an external guard electrode disposed on an outer peripheral surface portion of the main body layer.
  4. 前記電極配置管は、フレキシブル基板が前記本体層に一体成形されたものであり、前記フレキシブル基板は、絶縁樹脂フィルムの片面に前記一対の測定電極が他面に測定電極用リード部及び前記内部ガード電極が印刷されたものであることを特徴とする請求項1〜3のいずれかに記載の粉粒体流量測定装置。   In the electrode arrangement tube, a flexible substrate is integrally formed with the main body layer, and the flexible substrate has a pair of measurement electrodes on one side of an insulating resin film and a lead portion for measurement electrodes and the internal guard on the other side. The electrode is printed, The granular material flow rate measuring apparatus according to any one of claims 1 to 3.
  5. 前記電極配置管の内周面と前記保護管の外周面との間に検出感度に悪影響を与えない範囲内の隙間を有することを特徴とする請求項1〜4のいずれかに記載の粉粒体流量測定装置。   The powder according to any one of claims 1 to 4, wherein a gap within a range that does not adversely affect detection sensitivity is provided between the inner peripheral surface of the electrode arrangement tube and the outer peripheral surface of the protective tube. Body flow measurement device.
  6. 前記電極配置管の内周面と前記保護管の外周面との隙間が、0〜0.6mmであることを特徴とする請求項5記載の粉粒体流量測定装置。   The granular material flow rate measuring device according to claim 5, wherein a gap between an inner peripheral surface of the electrode arrangement tube and an outer peripheral surface of the protective tube is 0 to 0.6 mm.
  7. 前記保護管の肉厚が、検出感度に悪影響を与えない範囲内のものであることを特徴とする請求項1〜6のいずれかに記載の粉粒体流量測定装置。   The granular material flow rate measuring device according to any one of claims 1 to 6, wherein the thickness of the protective tube is within a range that does not adversely affect the detection sensitivity.
  8. 前記保護管の肉厚が、0.3〜0.6mmであることを特徴とする請求項7記載の粉粒体流量測定装置。   The granular material flow rate measuring device according to claim 7, wherein the thickness of the protective tube is 0.3 to 0.6 mm.
  9. 前記一対の測定電極が、検出電極と接地電極とからなり、前記電極配置管に沿って、前記検出電極と接地電極とが、相互にギャップ(隙間)を有して螺旋状に形成されて、軸線に直交する直径方向で相互に対面し、かつ、
    前記検出電極と接地電極の相互幅比が、1:1〜1:3.5の範囲内にあることを特徴とする請求項1〜8のいずれかに記載の粉粒体流量測定装置。
    The pair of measurement electrodes includes a detection electrode and a ground electrode, and along the electrode arrangement tube, the detection electrode and the ground electrode are formed in a spiral shape with a gap (gap) therebetween, Facing each other in the diameter direction perpendicular to the axis, and
    The granular material flow rate measuring apparatus according to any one of claims 1 to 8, wherein a mutual width ratio of the detection electrode and the ground electrode is in a range of 1: 1 to 1: 3.5.
  10. 前記検出電極と接地電極との幅を異ならせて、両電極間に電圧を印加したとき、前記保護管の内周壁側に電気力線高密度部位が発生するようにしたことを特徴とする請求項9記載の粉粒体流量測定装置。   The detection electrode and the ground electrode have different widths, and when a voltage is applied between both electrodes, a high-density line of electric force lines is generated on the inner peripheral wall side of the protective tube. Item 10. The granular material flow rate measuring device according to Item 9.
  11. 前記検出電極と接地電極の相互幅比が、1:1.2〜1:3.5の範囲内にあり、かつ、両電極間ギャップが1〜3mmであることを特徴とする請求項10記載の粉粒体流量測定装置。   The mutual width ratio of the detection electrode and the ground electrode is in a range of 1: 1.2 to 1: 3.5, and a gap between both electrodes is 1 to 3 mm. Granular material flow rate measuring device.
  12. 請求項1〜11のいずれかに記載の粉粒体流量測定装置を用いて、ブラスト加工における噴射材の流量を測定制御してブラスト加工することを特徴とするブラスト加工方法。   A blasting method comprising performing a blasting process by measuring and controlling a flow rate of an injection material in a blasting process using the granular material flow rate measuring device according to any one of claims 1 to 11.
JP2006246833A 2005-09-30 2006-09-12 Powder flow rate measuring device Active JP5047569B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005288944 2005-09-30
JP2005288944 2005-09-30
JP2006246833A JP5047569B2 (en) 2005-09-30 2006-09-12 Powder flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246833A JP5047569B2 (en) 2005-09-30 2006-09-12 Powder flow rate measuring device

Publications (2)

Publication Number Publication Date
JP2007121272A true JP2007121272A (en) 2007-05-17
JP5047569B2 JP5047569B2 (en) 2012-10-10

Family

ID=38145251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246833A Active JP5047569B2 (en) 2005-09-30 2006-09-12 Powder flow rate measuring device

Country Status (1)

Country Link
JP (1) JP5047569B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034946A1 (en) 2007-09-12 2009-03-19 Sintobrator, Ltd. Powder flow measuring device
JP2015517903A (en) * 2012-04-12 2015-06-25 ノードソン コーポレーションNordson Corporation Powder spray gun with wear-resistant electrode support

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102423U (en) * 1980-01-09 1981-08-11
JPH08271301A (en) * 1995-03-30 1996-10-18 Chichibu Onoda Cement Corp Flow measuring device for powder/grain
JPH08337322A (en) * 1995-06-12 1996-12-24 Chichibu Onoda Cement Corp Powder supplying device
JP2001021397A (en) * 1999-07-12 2001-01-26 Insutetsuku Kk Flow rate measuring apparatus for powder and particles
JP2002046068A (en) * 2000-08-02 2002-02-12 Insutetsuku Kk Blasting machine with flow measuring apparatus for grinding/polishing/cleaning material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102423U (en) * 1980-01-09 1981-08-11
JPH08271301A (en) * 1995-03-30 1996-10-18 Chichibu Onoda Cement Corp Flow measuring device for powder/grain
JPH08337322A (en) * 1995-06-12 1996-12-24 Chichibu Onoda Cement Corp Powder supplying device
JP2001021397A (en) * 1999-07-12 2001-01-26 Insutetsuku Kk Flow rate measuring apparatus for powder and particles
JP2002046068A (en) * 2000-08-02 2002-02-12 Insutetsuku Kk Blasting machine with flow measuring apparatus for grinding/polishing/cleaning material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034946A1 (en) 2007-09-12 2009-03-19 Sintobrator, Ltd. Powder flow measuring device
JP2009068959A (en) * 2007-09-12 2009-04-02 Sinto Brator Co Ltd Instrument for measuring mass flow rate of powder
JP4614997B2 (en) * 2007-09-12 2011-01-19 新東工業株式会社 Powder flow rate measuring device and measuring method thereof
US8061217B2 (en) 2007-09-12 2011-11-22 Sintokogio, Ltd. Apparatus for measuring a flow rate of a powder
JP2015517903A (en) * 2012-04-12 2015-06-25 ノードソン コーポレーションNordson Corporation Powder spray gun with wear-resistant electrode support
US10150123B2 (en) 2012-04-12 2018-12-11 Nordson Corporation Powder spray gun comprising a wear resistant electrode support

Also Published As

Publication number Publication date
JP5047569B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4614997B2 (en) Powder flow rate measuring device and measuring method thereof
US4920795A (en) Electromagnetic flowmeter for conductive or dielectric fluids and its applications in particular oilfield
KR100287298B1 (en) Flowmeters in caustic fluids with non-contaminated bodies
EP1300658B1 (en) Electromagnetic flowmeter for electrically conducting liquids
JP5497759B2 (en) High-pressure electromagnetic flow meter comprising an electrode assembly with stress resistance
US9395220B2 (en) Magnetic inductive flow meter having capacitive measuring device for empty pipe detection
EP1493586A1 (en) Printing device having a printing fluid detector
US20050212533A1 (en) Oil condition sensor
AU8920298A (en) Capacitance level sensor
JP5047569B2 (en) Powder flow rate measuring device
EP0114737A1 (en) Capacitively coupled magnetic flowmeter
US20150143918A1 (en) Magnetically inductive flowmeter for determining the flow rate of a fluid flowing through a measuring tube
US20160161308A1 (en) Flow Measuring Device
US3839912A (en) Metering electrode assembly for electromagnetic flowmeters
US20120118073A1 (en) Apparatus for measuring volume-or mass-flow of a medium in a pipeline
US6225809B1 (en) Static electricity measuring system
US9789697B1 (en) Fluid level sensor with combined capacitance and conductance
JP4804799B2 (en) Powder flow rate measuring device
US8692541B2 (en) Position sensing head with redundancy
US7934431B2 (en) Measuring transducer of a flow measuring device applied in industrial measurements technology
CN208860414U (en) Ceramic coatings electrode
GB2529538A (en) Conductivity sensing
JP6891021B2 (en) Eddy current displacement meter
US20150040683A1 (en) Magnetic-inductive flow meter
JPH0587603A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

R150 Certificate of patent or registration of utility model

Ref document number: 5047569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250