JP2007120992A - Sea-bottom oxygen consumption measuring device - Google Patents

Sea-bottom oxygen consumption measuring device Download PDF

Info

Publication number
JP2007120992A
JP2007120992A JP2005310337A JP2005310337A JP2007120992A JP 2007120992 A JP2007120992 A JP 2007120992A JP 2005310337 A JP2005310337 A JP 2005310337A JP 2005310337 A JP2005310337 A JP 2005310337A JP 2007120992 A JP2007120992 A JP 2007120992A
Authority
JP
Japan
Prior art keywords
oxygen
frame
meter
pair
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310337A
Other languages
Japanese (ja)
Inventor
Koichi Haraguchi
浩一 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005310337A priority Critical patent/JP2007120992A/en
Publication of JP2007120992A publication Critical patent/JP2007120992A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sea-bottom oxygen consumption measuring device miniaturizable by arranging properly various measuring instruments, wherein the shielding rate to an oxygen concentration measuring chamber is suppressed low. <P>SOLUTION: A lifting device 10 for lifting a transparent cylindrical body 12 whose bottom surface and partial upper surface are opened is fixed approximately on the center of the upper surface formed by four upper side frames of a frame skeleton 20, and on an installation frame 25 installed between a pair of upper side frames. A transparent disk 11 are supported horizontally approximately on the center of the bottom surface formed by four bottom side frames, and on upper ends of a plurality of struts 40 erected on an installation frame 30 installed between a pair of bottom side frames 26, 28. When the cylindrical body 12 is lowered, the transparent disk 11 functions as the upper surface of the cylindrical body 12 to form the oxygen concentration measuring chamber 13. An optical dissolved oxygen meter 51 for measuring the dissolved oxygen quantity in the oxygen concentration measuring chamber 13 and an agitation device 15 for chamber inside agitation are arranged on the transparent disk 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、海底酸素消費量測定装置に関し、詳しくは、船舶にウインチを装備する必要がない程に小型で、かつ、酸素濃度測定室に対する遮光率を低く抑えて昼夜の酸素消費率の差から底生微細藻による光合成量を見積もることを可能にした海底酸素消費測定装置に関する。   The present invention relates to an apparatus for measuring oxygen consumption at the bottom of the sea, and more specifically, it is so small that it is not necessary to equip a ship with a winch, and from the difference in the oxygen consumption rate between day and night with a low light shielding rate for the oxygen concentration measurement room. The present invention relates to an apparatus for measuring oxygen consumption in the sea that enables estimation of the amount of photosynthesis by benthic microalgae.

湾内の物質循環および健全な生態系の維持において、海水中の溶存酸素量は極めて重要な役割を果たしている。例えば、近年の英虞湾の底質環境が悪化している主な要因の1つとして、夏季に、湾奥部の酸素収支バランスが崩壊し、底層が貧酸素化することが挙げられる。従って、英虞湾等の湾内の環境改善を図る上で、酸素の挙動を把握しておくことは極めて重要である。   The amount of dissolved oxygen in seawater plays an extremely important role in the material circulation in the bay and the maintenance of a healthy ecosystem. For example, one of the main factors that have deteriorated the sediment environment in Ago Bay in recent years is that the oxygen balance in the back of the bay collapses in the summer and the bottom layer becomes hypoxic. Therefore, it is extremely important to understand the behavior of oxygen in order to improve the environment in bays such as Ago Bay.

このためには、湾環境モニタリングシステムにより常時海域の溶存酸素量を監視するとともに、物質循環促進技術開発の一環として、底生微細藻類の光合成能を利用した海底への酸素補給技術の開発を進め、また、底生微細藻類の機能を評価するあたり、海底表面での酸素の消費量や生産量をできるだけ現場に近い状態で把握する必要がある。   To this end, the bay environment monitoring system constantly monitors the amount of dissolved oxygen in the sea, and as part of the development of technology for promoting material circulation, the development of technology for supplementing oxygen to the sea floor using the photosynthetic capacity of benthic microalgae is promoted. In addition, when evaluating the functions of benthic microalgae, it is necessary to ascertain the oxygen consumption and production on the surface of the seabed as close to the site as possible.

底泥表面での酸素消費速度の測定法としては、これまで、底泥を底層水と共に柱状容器等で採取し、密封状態で屋内置き、容器中の酸素の減少量を測定したり、現場の海底にベルジャーという酸素電極付きの酸素濃度測定室を備えた容器を降ろし、現場で酸素の減少量を測定する方法が用いられている。しかし、前者では柱状採泥して陸上へ上げることによって、既に現場の条件とは異なってしまうという問題がある。一方、後者のベルジャー方式は現場での測定という面では優るが、長時間密閉した状態で測定するため、海水の流れで絶えず水が交換している現場の条件とは異なってしまうという問題がある。   As a method of measuring the oxygen consumption rate on the bottom mud surface, the bottom mud has been collected together with bottom layer water in a columnar container etc. and placed indoors in a sealed state to measure the amount of oxygen reduction in the container. A method has been used in which a vessel equipped with an oxygen concentration measuring chamber with an oxygen electrode called a bell jar is taken down and the amount of oxygen decrease is measured on site. However, the former has a problem that it is different from the on-site conditions by taking columnar mud and raising it to land. On the other hand, the latter bell jar method is superior in terms of on-site measurement, but because it measures in a sealed state for a long time, there is a problem that it differs from the on-site conditions where water is constantly exchanged by the flow of seawater. .

このような問題を解決するため、先に、(独)産業技術総合研究所では、海底に設置して、酸素消費量測定用のチャンバー(酸素濃度測定室)を定期的に昇降することにより、現場海底の酸素消費速度を連続的に直接測定できる観測機器を開発し、アレック電子株式会社から商品名ADO2000として商品化した。この装置ではチャンバーの昇降時間や測定間隔、チャンバー内の流速等を電子制御でき、極めて現場に近い環境での測定を可能にした。   In order to solve such problems, the National Institute of Advanced Industrial Science and Technology (AIST) first installed on the seabed and periodically lifted and lowered the oxygen consumption measurement chamber (oxygen concentration measurement room) An observation instrument that can continuously and directly measure the oxygen consumption rate at the sea floor was developed and commercialized by Alec Electronics Co., Ltd. under the trade name ADO2000. This device can electronically control the chamber up / down time, measurement interval, flow rate in the chamber, etc., enabling measurement in an extremely close environment.

しかしながら、海底の酸素消費測定装置である上記ADO2000は、設置面積が1m2以上有り、高さが約1.5m、重さも45kgと、設置にクレーン船が必要であり、取り扱いに多大な困難を伴うという問題があった。また、光合成による酸素発生量を測定するには現場海底に届くのと同程度の光がチャンバー内に届くことが必要であるが、上記ADO2000はアクリル製透明チャンバーであるにもかかわらず、このチャンバー上部に昇降用シャフトや各種センサーが多数配置されているため、遮光率が高いという問題もあった。 However, the above-mentioned ADO2000, which is an oxygen consumption measuring device for the sea floor, has an installation area of 1 m 2 or more, a height of about 1.5 m, and a weight of 45 kg. There was a problem with it. In addition, in order to measure the amount of oxygen generated by photosynthesis, it is necessary that the same amount of light as that reaching the sea floor reaches the inside of the chamber. However, although the ADO2000 is an acrylic transparent chamber, this chamber Since a large number of lifting shafts and various sensors are arranged at the top, there is also a problem that the light shielding rate is high.

そこで、本発明の目的は、各種計測器類を適切に配置することにより小型化を可能にし、かつ酸素濃度測定室に対する遮光率を低く抑えた海底酸素消費測定装置を提供することにある。   Accordingly, an object of the present invention is to provide a seabed oxygen consumption measuring device that can be miniaturized by appropriately arranging various measuring instruments and that has a low light shielding rate with respect to the oxygen concentration measuring chamber.

上記課題を解決するために、本発明の海底酸素消費量測定装置は、略方形に枠組みされたフレーム骨格の上辺フレーム4本により形成される上面の略中央で、かつ、一対の上辺フレーム間に架設された架設フレームに、底面および一部上面が開放された透明円筒体を昇降させるための昇降装置が固定され、かつ、底辺フレーム4本により形成される底面の略中央で、かつ、一対の底辺フレーム間に架設された架設フレームに立設された複数の支柱の上端に透明円板が水平に支持され、前記円筒体が降下することにより、前記透明円板が前記円筒体の上面となって酸素濃度測定室を形成し、前記透明円板に、該酸素濃度測定室内の溶存酸素量を測定するための光学式溶存酸素計と、該室内を攪拌するための攪拌装置とが配置されていることを特徴とするものである。   In order to solve the above-described problem, the seabed oxygen consumption measuring device according to the present invention includes a substantially square upper surface formed by four upper frames of a frame skeleton framed in a substantially square shape and a pair of upper frames. An elevating device for elevating the transparent cylindrical body whose bottom surface and part of the upper surface are open is fixed to the erected frame, and is substantially at the center of the bottom surface formed by the four bottom frames, and a pair of A transparent disk is horizontally supported on the upper ends of a plurality of support columns installed between the bottom frames, and the cylindrical body descends, so that the transparent disk becomes the upper surface of the cylindrical body. An oxygen concentration measurement chamber is formed, and an optical dissolved oxygen meter for measuring the amount of dissolved oxygen in the oxygen concentration measurement chamber and a stirrer for stirring the chamber are disposed on the transparent disk. Specially It is an.

本発明の海底酸素消費量測定装置では、前記透明円筒体および透明円板として、アクリル樹脂製を好適に使用することができる。また、前記透明円板に、前記酸素濃度測定室内の水質を計測するための水質計を配置してもよい。さらに、前記フレーム骨格の一対の縦辺フレーム間に架設された架設フレームに、前記酸素濃度測定室を遮光しないように光学式溶存酸素計、水温塩分計、ワイパー式光量子計およびクロロフィル濁度計の少なくとも1基を好適に装着することができる。さらに、この場合、前記一対の縦辺フレーム間に架設された前記架設フレームに対向して、別の架設フレームが一対の縦辺フレーム間に架設され、該別の架設フレームに電池ケースを好適に装着することができる。   In the seabed oxygen consumption measuring device of the present invention, acrylic resin can be suitably used as the transparent cylindrical body and the transparent disk. Further, a water quality meter for measuring the water quality in the oxygen concentration measurement chamber may be disposed on the transparent disk. Further, an optical dissolved oxygen meter, a water temperature salinity meter, a wiper photon meter, and a chlorophyll turbidimeter are installed on a construction frame constructed between a pair of vertical frames of the frame skeleton so as not to shield the oxygen concentration measurement chamber. At least one can be suitably mounted. Further, in this case, another installation frame is installed between the pair of vertical frames so as to face the installation frame installed between the pair of vertical frames, and a battery case is suitably used for the other installation frame. Can be installed.

本発明によれば、各種計測器類を適切に配置することにより小型化を可能にし、かつ酸素濃度測定室に対する遮光率を低く抑えた海底酸素消費測定装置を提供することができる。この装置によれば、酸素濃度測定室に対する遮光率が低いことから、昼夜の酸素消費率の差から、底生微細藻による光合成量(基礎生産量)を見積もることが可能となる。また、底生微細藻類の研究だけでなく、広く海底表面での酸素消費速度を測定するのに極めて有効である。更に、遮光の問題が解決することで、直射光の割合の大きい干潟での運用も可能になる。特に干潟では海底堆積物の酸素消費を相殺するほどの酸素発生が同時に行われているので、本発明の装置を利用することで実際の酸素消費量を測定することが可能になる。   According to the present invention, it is possible to provide a seabed oxygen consumption measuring apparatus that can be downsized by appropriately arranging various measuring instruments and that has a low light shielding rate with respect to the oxygen concentration measuring chamber. According to this apparatus, since the light shielding rate with respect to the oxygen concentration measurement chamber is low, it is possible to estimate the photosynthesis amount (basic production amount) by benthic microalgae from the difference in the oxygen consumption rate between day and night. Moreover, it is extremely effective not only for the study of benthic microalgae, but also for measuring the oxygen consumption rate on the seabed surface widely. Furthermore, by solving the problem of shading, operation on tidal flats with a high proportion of direct light becomes possible. In particular, in tidal flats, oxygen is generated at the same time so as to offset the oxygen consumption of the seabed sediment, so that the actual oxygen consumption can be measured by using the apparatus of the present invention.

以下、本発明の実施の形態につき図面を参照して具体的に説明する。
図1に、本発明の好適実施の形態に係る海底酸素消費量測定装置を示す。この装置1は、フレーム骨格20が略方形に枠組みされている。このフレーム20の上辺4本のフレーム21〜24により形成される上面の略中央で、かつ、一対の上辺フレーム21および23間に架設された架設フレーム25に昇降装置10が固定されている。架設フレーム25は、昇降装置を安定して固定できるよう、図示するように一対の架設フレーム25aおよび25bにて形成することが好ましい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a seabed oxygen consumption measuring device according to a preferred embodiment of the present invention. In this apparatus 1, a frame skeleton 20 is framed in a substantially square shape. The elevating device 10 is fixed to an erection frame 25 that is erected between the pair of upper side frames 21 and 23 at the approximate center of the upper surface formed by the four frames 21 to 24 on the upper side of the frame 20. The erection frame 25 is preferably formed by a pair of erection frames 25a and 25b as shown in the figure so that the lifting device can be stably fixed.

また、4本の底辺フレーム26〜29により形成される底面の略中央で、かつ、一対の底辺フレーム26および28間に架設された一対の架設フレーム30aおよび30bに立設された複数の支柱40の上端に透明円板、好ましくはアクリル透明板11が水平に支持されている。ここで、アクリル透明板11の支持を確かなものとするために、図示するように、一対の架設フレーム30aおよび30b間に、一対のフレーム31aおよび31bか架設され、フレーム30aおよび30b並びに31aおよび31bに夫々支柱、好ましくはアクリル製透明支柱40が立設されている。なお、図示はしないが、架設フレーム30a、30b、31aおよび31bの略中央部に、支柱固定用の突出部を形成してもよい。   In addition, a plurality of support columns 40 provided upright on a pair of installation frames 30a and 30b provided between the pair of bottom frames 26 and 28 at the approximate center of the bottom surface formed by the four bottom frames 26 to 29. A transparent disc, preferably an acrylic transparent plate 11, is supported horizontally at the upper end of the plate. Here, in order to ensure the support of the acrylic transparent plate 11, as shown in the figure, a pair of frames 31a and 31b are installed between the pair of installation frames 30a and 30b, and the frames 30a and 30b and 31a and Each column 31b is provided with a column, preferably an acrylic transparent column 40. Although not shown in the drawings, a support for fixing the support may be formed at a substantially central portion of the installation frames 30a, 30b, 31a and 31b.

昇降装置10により透明円筒体12が降下することにより、アクリル透明板11が透明円筒体12の上面となって酸素濃度測定室13を形成する。このアクリル透明板11の周縁部には、酸素濃度測定室13内の溶存酸素量を測定するための光学式溶存酸素計14と、室内を攪拌するための攪拌装置15とが立設されている。図示するように両者を立設することにより、酸素濃度測定室13の遮光率を低く抑えることができる。また、図示はしないが、アクリル透明板11には用途に応じ更に水質計を立設してもよい。   When the transparent cylindrical body 12 is lowered by the elevating device 10, the acrylic transparent plate 11 becomes the upper surface of the transparent cylindrical body 12 and forms the oxygen concentration measurement chamber 13. An optical dissolved oxygen meter 14 for measuring the amount of dissolved oxygen in the oxygen concentration measuring chamber 13 and a stirring device 15 for stirring the chamber are provided on the peripheral edge of the acrylic transparent plate 11. . As shown in the figure, the light shielding rate of the oxygen concentration measurement chamber 13 can be kept low by setting both of them upright. Although not shown, a water quality meter may be further provided on the acrylic transparent plate 11 depending on the application.

透明円筒体12の上部は、昇降に際し、立設された光学式溶存酸素計14および攪拌装置15に円筒体12の上面が当たらないように部分的に開放されている(穴が設けてある)。なお、光学式溶存酸素計14、攪拌装置15および水質計(図示せず)はいずれも既知のものを適宜採用することができるが、光学式溶存酸素計14は装置1の小型化を達成するために、アレック電子株式会社製のCOPAT−OPTOD(商品名)が好ましい。   The upper part of the transparent cylindrical body 12 is partially opened (a hole is provided) so that the upper surface of the cylindrical body 12 does not hit the standing optical dissolved oxygen meter 14 and the stirring device 15 when moving up and down. . The optical dissolved oxygen meter 14, the stirring device 15, and the water quality meter (not shown) can all adopt known ones as appropriate, but the optical dissolved oxygen meter 14 achieves downsizing of the device 1. Therefore, COPAT-OPTOD (trade name) manufactured by Alec Electronics Co., Ltd. is preferable.

昇降装置10の下降により酸素濃度測定室13を形成することで、例えば、直上水を含む海底を閉鎖し、閉鎖期間の酸素濃度を光学式溶存酸素計14にて測定することができる。また、その際、撹拌装置15により適宜流速を発生させることにより、酸素濃度測定室13内の酸素濃度の測定を正確に行うことが可能となる。   By forming the oxygen concentration measurement chamber 13 by lowering the elevating device 10, for example, the sea bottom including the directly above water can be closed, and the oxygen concentration during the closed period can be measured by the optical dissolved oxygen meter 14. At this time, the oxygen concentration in the oxygen concentration measurement chamber 13 can be accurately measured by appropriately generating a flow rate by the stirring device 15.

海底酸素消費量測定装置1において、フレーム骨格20の一対の縦辺フレーム33および34間に架設された一対の36aおよび36b架設フレームに、酸素濃度測定室13を遮光しないように光学式溶存酸素計51と、水温塩分計52と、ワイパー式光量子計53と、クロロフィル濁度計54とが夫々1基装着されている。図示する例ではこれらすべてが装着されているが、測定目的に応じ、適宜選定することができる。また、各計測機器は自己記録式であり、それぞれの検出データを各計測器内のデータ処理装置で処理して関連したデータとして出力することができる。海底酸素消費量測定装置1の小型化を達成する上で、夫々市場で入手し得る光学式溶存酸素計(アレック電子株式会社製、商品名COPACT−OPTOD)、水温塩分計(アレック電子株式会社製、商品名COPACT−CT)、ワイパー式光量子計(アレック電子株式会社製、商品名COPACT−LW)と、クロロフィル濁度計(アレック電子株式会社製、商品名COPACT−CLW)を使用することが好ましい。尚、これら計測機器をフレーム骨格20に装着する場合、酸素濃度測定室13を遮光しないようにするために、図示するようにフレーム骨格20の下方に配置することが重要である。   In the seabed oxygen consumption measuring device 1, an optical dissolved oxygen meter is installed on a pair of 36a and 36b installation frames installed between the pair of vertical frames 33 and 34 of the frame skeleton 20 so as not to shield the oxygen concentration measurement chamber 13 from light. 51, a water temperature salinity meter 52, a wiper-type photon meter 53, and a chlorophyll turbidity meter 54 are installed. In the example shown in the figure, all of these are mounted, but can be appropriately selected according to the measurement purpose. Each measuring device is self-recording, and each detected data can be processed by a data processing device in each measuring device and output as related data. In order to achieve downsizing of the seabed oxygen consumption measuring device 1, an optical dissolved oxygen meter (manufactured by Alec Electronics Co., Ltd., trade name COPACT-OPTOD), a water temperature salinity meter (manufactured by Alec Electronics Co., Ltd.) , Trade name COPACT-CT), wiper type photon meter (trade name COPACT-LW, manufactured by Alec Electronics Co., Ltd.) and chlorophyll turbidimeter (trade name COPACT-CLW, manufactured by Alec Electronics Co., Ltd.) are preferably used. . When these measuring devices are attached to the frame skeleton 20, it is important to arrange the oxygen concentration measurement chamber 13 below the frame skeleton 20 as illustrated in order to prevent light shielding.

また、この場合、かかる計測機器の装着部に対向して、一対の縦辺フレーム32および35間に架設された一対の架設フレーム37aおよび37bに電池ケース55を装着することが、装置1の重量バランス上、好ましい。尚、この場合もフレーム骨格20の下方に配置することが重量である。フレーム骨格20への各計測機器および電池ケースへの装置の仕方は特に制限されるものではなく、緊締や螺着等、既知の手法を適宜採用することができる。   Further, in this case, it is possible to mount the battery case 55 on the pair of installation frames 37a and 37b provided between the pair of vertical frames 32 and 35 so as to face the mounting portion of the measuring device. It is preferable in terms of balance. In this case as well, the weight is placed below the frame skeleton 20. There are no particular restrictions on the manner of measurement equipment on the frame skeleton 20 and the device on the battery case, and known methods such as tightening and screwing can be appropriately employed.

図1では配線等を省略しているが、装置1における酸素濃度測定室13の昇降時間や測定間隔、各種計測機器や酸素濃度測定室13内の流速等は外部より電子制御することができ、かかる電子制御自体は、上述ADO2000の場合と同様の制御システムを採用することができる。例えば、各観測項目データは独立した観測機器内のメモリーに保存し、データ同期のため、各観測機器はパソコンと接続時にパソコン内時計と同期させることができる。また、酸素濃度測定室13内の光学式溶存酸素計14は開閉操作と密接に関連するため、開閉と光学式溶存酸素計14のデータ取得は厳密に行う必要がある。   Although wiring etc. are abbreviate | omitted in FIG. 1, the raising / lowering time and measurement interval of the oxygen concentration measurement chamber 13 in the apparatus 1 and the flow rate in various measuring devices and the oxygen concentration measurement chamber 13 can be electronically controlled from the outside. Such electronic control itself can employ the same control system as in the case of the above-mentioned ADO2000. For example, each observation item data is stored in a memory in an independent observation device, and each observation device can be synchronized with a personal computer clock when connected to a personal computer for data synchronization. Further, since the optical dissolved oxygen meter 14 in the oxygen concentration measurement chamber 13 is closely related to the opening / closing operation, it is necessary to strictly perform opening / closing and data acquisition of the optical dissolved oxygen meter 14.

海底酸素消費量測定装置1の上辺のフレーム21〜24の四隅には、この装置1を吊り下げることができるよう4本のフレーム41により三角錐が形成され、その頂部にはフック用のリング42が固定されている。これにより、装置1の海底への設置を容易に行うことができる。   Triangular pyramids are formed by four frames 41 at four corners of the frames 21 to 24 on the upper side of the seabed oxygen consumption measuring device 1 so that the device 1 can be suspended. Is fixed. Thereby, installation to the seabed of apparatus 1 can be performed easily.

以下、上述した本発明の海底酸素消費量測定装置による具体的測定につき説明する。
図1に示す海底酸素消費量測定装置1を使用し、ここで透明円筒体の直径を29cm、高を15cmとし、昇降ストローク12cmとした。また、一対の架設フレーム36aおよび36bには、酸素濃度測定室13を遮光しないように光学式溶存酸素計51と、水温塩分計52と、ワイパー式光量子計53と、クロロフィル濁度計54とを装着した。各計測器は全て上記の好適であるものを採用した。
Hereinafter, specific measurement by the above-described seabed oxygen consumption measuring device of the present invention will be described.
The seabed oxygen consumption measuring device 1 shown in FIG. 1 was used, where the diameter of the transparent cylinder was 29 cm, the height was 15 cm, and the lifting stroke was 12 cm. In addition, an optical dissolved oxygen meter 51, a water temperature salinity meter 52, a wiper photon meter 53, and a chlorophyll turbidimeter 54 are provided on the pair of installation frames 36a and 36b so as not to shield the oxygen concentration measurement chamber 13. Installed. All the measuring instruments employed were those described above.

光学式溶存酸素計51は、酸素を消費するガルバニ電極ではなく光学式溶存酸素計であり、その精度は分解能0.4%以下である。水温塩分計52は、水温精度0.05℃以下、電気伝導度精度0.05mS/cm以下である。ワイパー式光量子計53は、ワイパーにより測定毎に汚れを除去する光量子計である。また、クロロフィル濁度計54は、ワイパーにより測定毎に汚れを除去し、クロロフィルは蛍光測定で最小0.1ug/lを測定でき、濁度は赤外後方散乱を0.03FTUの分解能で測定できる。   The optical dissolved oxygen meter 51 is not an galvanic electrode that consumes oxygen but an optical dissolved oxygen meter, and the accuracy thereof is a resolution of 0.4% or less. The water temperature salinometer 52 has a water temperature accuracy of 0.05 ° C. or less and an electric conductivity accuracy of 0.05 mS / cm or less. The wiper type photon meter 53 is a photon meter that removes dirt for each measurement by a wiper. The chlorophyll turbidimeter 54 removes dirt with a wiper for each measurement, chlorophyll can measure a minimum of 0.1 ug / l by fluorescence measurement, and turbidity can measure infrared backscattering with a resolution of 0.03 FTU. .

また、装置は使用水深30mが可能であり、連続稼働時間7日以上のリチューム電池を電池ケース55に収納し、また、撹拌装置15は0、1、2、3、4、5cm/secの流速を発生させることができる既存のものを用いた。   In addition, the device can be used at a water depth of 30 m, accommodates a rechargeable battery with a continuous operation time of 7 days or more in the battery case 55, and the stirring device 15 has a flow rate of 0, 1, 2, 3, 4, 5 cm / sec. The existing thing which can generate | occur | produce was used.

装置1の本体形状は、横0.7m、幅0.7m、高さ1.3m以内とすることができた。フレーム骨格20は、軟泥地盤での本装置の沈み込み防止のための設置面積を考慮した。装置1の重量は、30kg以内となった。これにより、既知のADO2000(アレック電子株式会社製)装置の重量37kgの2/3分程度となり、また、寸法もADO2000の寸法1m×1m×1.4mに比べ小型化され、ウインチのついた大型船が必要ではなくなった。   The main body shape of the device 1 could be within 0.7 m lateral, 0.7 m wide, and 1.3 m high. The frame skeleton 20 considered the installation area for prevention of the sinking of this apparatus in soft mud ground. The weight of the apparatus 1 was within 30 kg. As a result, the weight of the known ADO2000 (manufactured by Alec Electronics Co., Ltd.) equipment is approximately 2/3 minutes of the weight of 37 kg, and the dimensions are also reduced compared to the dimensions of 1 m × 1 m × 1.4 m of ADO2000, and a large size with a winch. A ship is no longer needed.

図2に、酸素濃度測定室13の開放と閉鎖を交互に繰り返したときの時間と酸素濃度との関係を示す。図2中、酸素濃度測定室13の閉鎖期間は網掛で示す。なお、1回の測定は10分間である。図2から酸素濃度測定室13が閉鎖すると内部DO値はほぼ直線的に減少し、30分後開放すると、速やかに外側のDO値に等しくなることが分かる。この期間の消費速度を平均化すると77±11mgO2-2-1であった。 FIG. 2 shows the relationship between time and oxygen concentration when the oxygen concentration measurement chamber 13 is alternately opened and closed. In FIG. 2, the closed period of the oxygen concentration measurement chamber 13 is shaded. One measurement is 10 minutes. It can be seen from FIG. 2 that when the oxygen concentration measurement chamber 13 is closed, the internal DO value decreases almost linearly, and when it is opened after 30 minutes, it quickly becomes equal to the outer DO value. The average consumption rate during this period was 77 ± 11 mg O 2 m −2 h −1 .

本発明の一好適実施形態に係る装置の一部切欠きの斜視図である。1 is a partially cutaway perspective view of an apparatus according to a preferred embodiment of the present invention. 酸素濃度測定室13内の時間と酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between the time in oxygen concentration measurement chamber 13, and oxygen concentration.

符号の説明Explanation of symbols

1 海底酸素消費量測定装置
10 昇降装置
11 アクリル透明板
12 透明円筒体
13 酸素濃度測定室
14 光学式溶存酸素計
15 撹拌装置
20 フレーム骨格
21、22、23、24 フレーム
26、27、28、29 底辺フレーム
25a、25b、30a、30b、31a、31b、36a、36b、37a、37b 架設フレーム
32、33、34、35 縦辺フレーム
40 支柱
41 フレーム
42 リング
51 光学式溶存酸素計
52 水温塩分計
53 ワイパー式光量子計
54 クロロフィル濁度計
55 電池ケース
DESCRIPTION OF SYMBOLS 1 Seabed oxygen consumption measuring device 10 Lifting device 11 Acrylic transparent plate 12 Transparent cylindrical body 13 Oxygen concentration measuring chamber 14 Optical dissolved oxygen meter 15 Stirring device 20 Frame skeleton 21, 22, 23, 24 Frame 26, 27, 28, 29 Bottom frame 25a, 25b, 30a, 30b, 31a, 31b, 36a, 36b, 37a, 37b Construction frame 32, 33, 34, 35 Vertical frame 40 Support column 41 Frame 42 Ring 51 Optical dissolved oxygen meter 52 Water temperature salinity meter 53 Wiper type photon meter 54 Chlorophyll turbidimeter 55 Battery case

Claims (5)

略方形に枠組みされたフレーム骨格の上辺フレーム4本により形成される上面の略中央で、かつ、一対の上辺フレーム間に架設された架設フレームに、底面および一部上面が開放された透明円筒体を昇降させるための昇降装置が固定され、かつ、底辺フレーム4本により形成される底面の略中央で、かつ、一対の底辺フレーム間に架設された架設フレームに立設された複数の支柱の上端に透明円板が水平に支持され、前記円筒体が降下することにより、前記透明円板が前記円筒体の上面となって酸素濃度測定室を形成し、前記透明円板に、該酸素濃度測定室内の溶存酸素量を測定するための光学式溶存酸素計と、該室内を攪拌するための攪拌装置とが配置されていることを特徴とする海底酸素消費量測定装置。   A transparent cylindrical body having a bottom surface and a partly upper surface open to a construction frame that is constructed at a substantial center of an upper surface formed by four upper side frames of a frame skeleton framed in a substantially square shape and is laid between a pair of upper side frames. The upper ends of a plurality of support columns that are fixed to a lifting frame for raising and lowering the frame, and that are substantially at the center of the bottom surface formed by the four bottom frames and are erected on a construction frame constructed between a pair of bottom frames. When the transparent disk is horizontally supported and the cylindrical body descends, the transparent disk becomes the upper surface of the cylindrical body to form an oxygen concentration measuring chamber, and the oxygen concentration measurement is performed on the transparent disk. An ocean bottom oxygen consumption measuring device, comprising: an optical dissolved oxygen meter for measuring the amount of dissolved oxygen in a room; and a stirrer for stirring the room. 前記透明円筒体および透明円板がアクリル樹脂製である請求項1記載の海底酸素消費量測定装置。   The seabed oxygen consumption measuring device according to claim 1, wherein the transparent cylindrical body and the transparent disk are made of acrylic resin. 前記透明円板に、前記酸素濃度測定室内の水質を計測するための水質計が配置されている請求項1または2記載の海底酸素消費量測定装置。   The seabed oxygen consumption measuring device according to claim 1 or 2, wherein a water quality meter for measuring water quality in the oxygen concentration measuring chamber is disposed on the transparent disk. 前記フレーム骨格の一対の縦辺フレーム間に架設された架設フレームに、前記酸素濃度測定室を遮光しないように、光学式溶存酸素計、水温塩分計、ワイパー式光量子計およびクロロフィル濁度計の少なくとも1基が装着されている請求項1〜3のうちいずれか一項記載の海底酸素消費量測定装置。   At least one of an optical dissolved oxygen meter, a water temperature salinity meter, a wiper photon meter, and a chlorophyll turbidimeter so that the oxygen concentration measurement chamber is not shielded from a frame constructed between a pair of vertical frames of the frame skeleton. The seabed oxygen consumption measuring device according to any one of claims 1 to 3, wherein one is installed. 前記一対の縦辺フレーム間に架設された前記架設フレームに対向して、別の架設フレームが一対の縦辺フレーム間に架設され、該別の架設フレームに電池ケースが装着されている請求項1〜4のうちいずれか一項記載の海底酸素消費量測定装置。   2. Another construction frame is constructed between a pair of vertical frames opposite to the construction frame constructed between the pair of vertical frames, and a battery case is mounted on the other construction frame. The seabed oxygen consumption measuring device according to any one of?
JP2005310337A 2005-10-25 2005-10-25 Sea-bottom oxygen consumption measuring device Pending JP2007120992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310337A JP2007120992A (en) 2005-10-25 2005-10-25 Sea-bottom oxygen consumption measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310337A JP2007120992A (en) 2005-10-25 2005-10-25 Sea-bottom oxygen consumption measuring device

Publications (1)

Publication Number Publication Date
JP2007120992A true JP2007120992A (en) 2007-05-17

Family

ID=38145009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310337A Pending JP2007120992A (en) 2005-10-25 2005-10-25 Sea-bottom oxygen consumption measuring device

Country Status (1)

Country Link
JP (1) JP2007120992A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085932A (en) * 2007-10-03 2009-04-23 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Photosynthesis activity evaluating system for coral
EP2098862A2 (en) 2008-03-05 2009-09-09 Japan Agency for Marine-Earth Science and Technology Measuring apparatus for dissolved oxygen
CN105486827A (en) * 2014-09-16 2016-04-13 郑伟 Method and device for measuring oxygen demand of sediment
CN106018720A (en) * 2016-05-19 2016-10-12 国家海洋局第二海洋研究所 In-situ cultivation system and application method thereof
KR102144788B1 (en) * 2019-11-01 2020-08-18 군산대학교산학협력단 An apparatus for measuring primary production of benthic algal and a system comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085932A (en) * 2007-10-03 2009-04-23 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Photosynthesis activity evaluating system for coral
EP2098862A2 (en) 2008-03-05 2009-09-09 Japan Agency for Marine-Earth Science and Technology Measuring apparatus for dissolved oxygen
US8202478B2 (en) 2008-03-05 2012-06-19 Japan Agency For Marine-Earth Science & Technology Observation apparatus
CN105486827A (en) * 2014-09-16 2016-04-13 郑伟 Method and device for measuring oxygen demand of sediment
CN106018720A (en) * 2016-05-19 2016-10-12 国家海洋局第二海洋研究所 In-situ cultivation system and application method thereof
CN106018720B (en) * 2016-05-19 2017-12-05 国家海洋局第二海洋研究所 Culture in situ system and its application method
KR102144788B1 (en) * 2019-11-01 2020-08-18 군산대학교산학협력단 An apparatus for measuring primary production of benthic algal and a system comprising the same

Similar Documents

Publication Publication Date Title
Jahnke et al. Benthic flux of biogenic elements on the Southeastern US continental shelf: influence of pore water advective transport and benthic microalgae
Rheuban et al. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows
JP2007120992A (en) Sea-bottom oxygen consumption measuring device
CN203178261U (en) Mobile manned device for field observation of sediment re-suspension flux and suspension speed
CN103439303B (en) Alga anabiosis and vertical migration monitoring device and monitoring method for early warning of algal bloom
Dayton et al. Cladophora, mass transport, and the nearshore phosphorus shunt
Liu et al. Distribution and budget of dissolved and biogenic silica in the Bohai Sea and Yellow Sea
CN102854221A (en) In-situ measurement device and method for sediment breathing and nitrogen endogenous release
CN203231913U (en) Device for in-situ collecting sediment and overlying water in quantitative manner
CN203745444U (en) Device for simulating and measuring bottom mud carbon flux and nutritive salt flux through bioturbation
Riisgård Filter feeding and plankton dynamics in a Danish fjord: a review of the importance of flow, mixing and density-driven circulation
JP5381417B2 (en) Interface level meter
CN203414410U (en) Alga recovery and vertical migration monitoring device for water bloom early warning
JPH10260178A (en) Measuring device for oxygen consumption of sea bottom
CN104568368B (en) Dust storm earth&#39;s surface erosion product dynamic monitor
Reimers et al. Benthic fluxes of oxygen and heat from a seasonally hypoxic region of Saanich Inlet fjord observed by eddy covariance
Sansone et al. Kilo Nalu: physical/biogeochemical dynamics above and within permeable sediments
Mueller et al. A buoy for continuous monitoring of suspended sediment dynamics
Hefner et al. Instrumentation for direct measurements of wave‐driven flow over a fringing reef crest
CN105486827A (en) Method and device for measuring oxygen demand of sediment
CN202281606U (en) Test device for testing water depth of sea water encroachment
Whalen et al. Microphytobenthos in shallow arctic lakes: fine-scale depth distribution of chlorophyll a, radiocarbon assimilation, irradiance, and dissolved O2
JP2022057304A (en) Drying work support system for laver net
CN207646003U (en) One kind being used for Urban Water Environment restoration of the ecosystem real-time detection apparatus
Gardner et al. A differential pressure instrument with wireless telemetry for in-situ measurement of fluid flow across sediment-water boundaries