JP2007120090A - Solar radiation shading control device - Google Patents

Solar radiation shading control device Download PDF

Info

Publication number
JP2007120090A
JP2007120090A JP2005312023A JP2005312023A JP2007120090A JP 2007120090 A JP2007120090 A JP 2007120090A JP 2005312023 A JP2005312023 A JP 2005312023A JP 2005312023 A JP2005312023 A JP 2005312023A JP 2007120090 A JP2007120090 A JP 2007120090A
Authority
JP
Japan
Prior art keywords
solar radiation
evaluation index
degree
control device
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005312023A
Other languages
Japanese (ja)
Other versions
JP4867287B2 (en
Inventor
Masashi Murakami
昌史 村上
Takeshi Ono
健 小野
Fumiaki Obayashi
史明 大林
Masaaki Terano
真明 寺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005312023A priority Critical patent/JP4867287B2/en
Publication of JP2007120090A publication Critical patent/JP2007120090A/en
Application granted granted Critical
Publication of JP4867287B2 publication Critical patent/JP4867287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar radiation shading control device which makes use of daylighting without a feel of glare of a daylighting section by a person in a building, comfortably maintains the indoor environment, is low in cost, and good in daylighting appearance. <P>SOLUTION: A blind Icont 11 or the solar radiation shading control device is formed of: a solar radiation acquiring section 12 for acquiring a solar radiation state of the outdoors; an evaluation index acquiring section 12 for acquiring a simulation result of an evaluation index of glare at a window W, based on arrangement information of a lighting device 2, the solar radiation state, and an opening/closing degree of the blind 1; and a control section 13 for adjusting the opening/closing degree of the blind 1 such that the acquired evaluation index of glare falls out of a value indicative of discomfort. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、照明装置が備えられた屋内への採光を制御する日射遮蔽制御装置に関するものである。   The present invention relates to a solar shading control device for controlling indoor lighting provided with a lighting device.

近年、温暖化による省エネルギの社会的要求が増えてきている。特に、昼光(日光)の導入を利用した省エネルギ制御は、自然エネルギ利用として期待は高く、また昼光を採光部である窓から執務室内へ導入する場合、窓本来の機能である利用者の外部環境とのつながりを促すことから執務者の開放感や快適性の面からも有効と考えられる。このような背景により、近年の制御技術の発展に伴い、外環境の状態に合わした日射遮蔽をブラインドの開閉により自動的に行う日射遮蔽制御装置が普及しつつある。その一つとして太陽の高度に基づいてブラインドの表面の角度を適正な角度に制御してブラインドの表面の反射面により太陽光を反射させて室内に採光し、且つブラインドの裏面の拡散面又は吸収面により太陽光を拡散又は吸収する採光装置が提供されている(例えば特許文献1)。
特開2000−170467号公報(図1,段落番号0021〜0031)
In recent years, social demands for energy saving due to global warming have increased. In particular, energy-saving control using daylight (sunlight) is expected to be a natural energy utilization, and when daylight is introduced into the office from a window that is a daylighting unit, the user is the original function of the window. It is considered effective from the viewpoint of openness and comfort of the workers because it promotes connection with the external environment. Against this background, with the recent development of control technology, solar shading control devices that automatically perform solar shading according to the state of the external environment by opening and closing the blinds are becoming widespread. As one of them, the angle of the surface of the blind is controlled to an appropriate angle based on the altitude of the sun, the sunlight is reflected by the reflecting surface of the blind surface, and the sunlight is taken indoors, and the diffusion surface or absorption of the rear surface of the blind A daylighting device that diffuses or absorbs sunlight by a surface is provided (for example, Patent Document 1).
JP 2000-170467 A (FIG. 1, paragraph numbers 0021 to 0031)

上述の特許文献1に開示されている採光装置のように、昼光(太陽光)を室内へ導入する場合、窓面自体が大規模な光源面となってしまうため、室内に居る者は眩しさによる不快感を覚える場合が多い。   When daylight (sunlight) is introduced indoors as in the daylighting device disclosed in Patent Document 1 described above, the window surface itself becomes a large-scale light source surface, so that the person in the room is dazzled. I often feel discomfort due to the problem.

このような問題に対して、一般のブラインド制御では図13(a)に示す晴天時や同図(b)に示す曇天時において太陽Tの光(日射光)が透過しない角度αから、更に日射光を遮蔽する角度(以下、オフセット角θとする)を加えることによって、ブラインド1のスラット1aの面に対する眩しさ感を抑えている。このオフセット角θとは、眩しさ感の発生しやすい日射量の大きい時間帯において、室内に居る者がグレアを感じない程度に、通常の太陽光が透過しない角度から、更に日射光を遮蔽する側に加えた角度のことを指し、このオフセット角度θは外部(屋外)の状況や時刻に拘わらず固定値を用いる。しかし、眩しさのピークは年間の中でも限られており、年間の殆どは日射を必要以上に遮蔽しているのが現状である。このことにより省エネルギの観点からも眺望の観点からも十分でなかった。   In order to solve such a problem, in the general blind control, the sun T light (sunlight) is not transmitted at the time of fine weather shown in FIG. 13A or cloudy weather shown in FIG. By adding an angle (hereinafter, referred to as an offset angle θ) that shields incident light, a feeling of glare on the surface of the slat 1a of the blind 1 is suppressed. This offset angle θ is further shielded from sunlight from an angle at which normal sunlight does not transmit to such an extent that a person in the room does not feel glare in a time zone in which the amount of solar radiation is likely to cause glare. This offset angle θ uses a fixed value regardless of the external (outdoor) situation and time. However, the peak of glare is limited during the year, and most of the year is shielding the sun more than necessary. This was not sufficient from the viewpoint of energy saving and view.

また室外と各部屋内の窓付近に照度センサを設置し、その照度から室内に居る者の眩しさ感を予測しブラインドの制御に利用する方法がある。この方法は室内に居る者の眩しさ感を予測する方法としては精度が高いが、各部屋に照度センサを設置する必要が有るため、センサ数が多くなり、そのため窓付近の見栄えも悪く、コストも高いという問題が存在する。   There is also a method in which an illuminance sensor is installed near the window in the room and in each room, and a dazzling feeling of a person in the room is predicted from the illuminance and used for blind control. This method is highly accurate as a method for predicting the dazzling feeling of people in the room, but since it is necessary to install an illuminance sensor in each room, the number of sensors increases, so the appearance near the window is poor and the cost is low. There is a problem that the

本発明は、上述の点に鑑みて為されたもので、その目的とするところは、屋内に居る人が採光部を見たときに眩しさを感じることなく昼光利用を行うことができるとともに、屋内の環境を快適に維持することができ、またコスト的にも安価で且つ採光部の見栄えも良い日射遮蔽制御装置を提供することにある。   The present invention has been made in view of the above points, and the purpose of the present invention is to enable daylight use without feeling dazzling when an indoor person looks at the daylighting unit. Another object of the present invention is to provide a solar shading control device that can maintain an indoor environment comfortably, is inexpensive in cost, and has a good daylighting appearance.

上述の目的を達成するために、請求項1の発明では、照明装置が備えられた屋内に採光するための採光部に遮蔽手段が設けられ、前記遮蔽手段の開閉度を調節することにより屋内に入射する入射光量を制御する日射遮蔽制御装置であって、屋外の日射状態を取得する日射状態取得部と、前記照明装置の配置情報と、前記日射状態と前記開閉度とに基づいて前記採光部における眩しさ感の評価指標をシミュレートした結果を取得する評価指標取得部と、取得した眩しさ感の評価指標が不快を示す値でなくなるように前記開閉度を調節する制御部とを備えたことを特徴とする。   In order to achieve the above-mentioned object, in the invention of claim 1, a shielding means is provided in a daylighting section for daylighting provided with an illumination device, and the opening and closing degree of the shielding means is adjusted to adjust indoors. A solar shading control device that controls the amount of incident light that enters the solar radiation state acquisition unit that acquires an outdoor solar radiation state, the lighting unit based on the arrangement information of the illumination device, the solar radiation state, and the open / closed degree An evaluation index acquisition unit that acquires a result of simulating an evaluation index of a dazzling feeling and a control unit that adjusts the degree of opening and closing so that the acquired evaluation index of the dazzling feeling is not a value indicating discomfort It is characterized by that.

請求項1の発明によれば、屋内に居る人が採光部を見たときに眩しさを感じることがないように昼光利用を行うことができ、そのため照明エネルギの低減が図れるとともに屋内の環境を快適に維持することが可能となり、またシミュレーションにより遮蔽手段の開閉度を調節するため、屋内に照度センサ等を設ける必要がなくなり、そのため採光部の見栄えを良くすることができ、またコストも安い。   According to the first aspect of the present invention, daylight can be used so that a person who is indoors does not feel dazzling when he / she looks at the daylighting unit, so that the illumination energy can be reduced and the indoor environment can be reduced. Can be maintained comfortably, and since the opening / closing degree of the shielding means is adjusted by simulation, it is not necessary to provide an illuminance sensor or the like indoors, so that the appearance of the daylighting section can be improved and the cost is low. .

請求項2の発明では、請求項1の発明において、前記評価指標取得部は、屋内に照明装置を配置した状態で、前記日射状態と前記開閉度を変化させて算出した前記評価指標のデータテーブルを有し、前記日射状態と前記開閉度の評価指標を前記データテーブルに基づいて取得することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the evaluation index acquisition unit is a data table of the evaluation index calculated by changing the solar radiation state and the open / closed degree in a state where a lighting device is disposed indoors. And the evaluation index of the solar radiation state and the opening / closing degree is acquired based on the data table.

請求項2の発明によれば、予め評価指標を算出した結果を有しているので、処理能力が比較的低く、安価な演算装置で評価指標取得部を構成しても高速に評価指標を取得するこができる。   According to the invention of claim 2, since the evaluation index is calculated in advance, the evaluation index can be acquired at high speed even if the evaluation index acquisition unit is configured with a relatively low processing capacity and an inexpensive arithmetic device. Can do.

請求項3の発明では、請求項1又は2の発明において、前記遮蔽手段をベネチャンブラインドで構成するとともに、入射光量の制御時の太陽位置を取得する太陽位置取得手段を備え、前記評価指標取得部は、前記太陽位置に基づいて前記評価指標を取得することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the invention, the shielding means is constituted by a Venetian blind, and further includes a solar position acquisition means for acquiring a solar position at the time of controlling the amount of incident light. The unit acquires the evaluation index based on the solar position.

請求項3の発明によれば、ベネチャンブラインドのスラット間の反射光を考慮することができ、そのためベネチャンブラインドにおいても眩しさ感を考慮した制御を行うことができる。   According to the third aspect of the invention, the reflected light between the slats of the Venetian blind can be taken into account, and therefore, the control considering the dazzling feeling can be performed also in the Venetian blind.

請求項4の発明では、請求項3の発明において、前記太陽位置と前記開閉度に基づいて前記屋内から前記採光部を見たときに視界に入るか否かを判断する直射光判断手段を備え、前記制御部は、前記直射光判断手段により前記屋内から前記採光部を見たときに視界に太陽からの直射光が入ると判断されたときに、視界に太陽が入らないように前記開閉度を制御することを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the invention, there is provided direct light determining means for determining whether to enter a field of view when the daylighting unit is viewed from the indoors based on the sun position and the degree of opening / closing. The controller is configured to prevent the sun from entering the field of view when the direct light determining unit determines that the direct light from the sun enters the field of view when the daylighting unit is viewed from the indoor. It is characterized by controlling.

請求項4の発明によれば、眩しさ感が抑えられていても、直射光が目に入って不快感を与えるような状態を生じないようにして、屋内の環境を快適に維持することができる。   According to the invention of claim 4, even if the feeling of glare is suppressed, it is possible to maintain a comfortable indoor environment by preventing direct light from entering the eyes and causing discomfort. it can.

請求項5の発明では、請求項1乃至4の何れかの発明において、太陽の高度と前記採光部の照度とに基づいて晴天か曇天かを判断する天候判断部とを備え、前記制御部は前記天候判断部により曇天と判断されたときに前記開閉度を全開に調節することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the control unit includes a weather determination unit that determines whether the sky is clear or cloudy based on the altitude of the sun and the illuminance of the daylighting unit. The open / close degree is adjusted to be fully open when the weather determination unit determines that the weather is cloudy.

請求項5の発明によれば、眩しさ感によって不快感を与えることがない曇天の場合に遮蔽手段を全開することで、屋内に居る者に開放感を与える快適な環境とすることができる。   According to the fifth aspect of the present invention, it is possible to provide a comfortable environment that provides a feeling of openness to those who are indoors by fully opening the shielding means in the case of cloudy weather that does not give discomfort due to the dazzling feeling.

本発明は、屋内に居る人が採光部を見たときに眩しさを感じることがないように昼光利用を行うことができ、そのため照明エネルギの低減が図れるとともに屋内の環境を快適に維持することが可能となり、またシミュレーションにより遮蔽手段の開閉度を調節するため、屋内に照度センサ等を設ける必要がなくなり、そのため採光部の見栄えを良くすることができ、またコストも安いという効果がある。   The present invention can use daylight so that a person who is indoors does not feel dazzling when looking at the daylighting unit, and thus can reduce illumination energy and maintain an indoor environment comfortably. In addition, since the opening / closing degree of the shielding means is adjusted by simulation, it is not necessary to provide an illuminance sensor or the like indoors, so that the appearance of the daylighting section can be improved and the cost can be reduced.

以下本発明を実施形態により説明する。   Embodiments of the present invention will be described below.

(実施形態1)
図1は本発明の日射量遮蔽装置を備えたビルの一部を示しており、建物の壁には採光部として窓部Wが開口し、この窓部Wにはベネチャンブラインド(以下ブラインドという)1からなる遮蔽手段が装着され、更に屋内である対象エリアXの天井CEには照明システムの照明装置2及び対象エリアXに配置される机Dの上面(机上面)の照度を検出する照度センサ3と、空調システムの吹き出し口4と、対象エリアXの空調環境(温度・湿度)を検出するための温度・湿度センサ5とが設けられている。また日射状態を取得するため屋上等のに屋外の適所に設けられ、各方位の鉛直面照度を計測する照度計(又は日射量を計測する日射量計)6とを設けている。尚遮蔽手段としては、例えばガラス板間に介在させた液晶シートの通電を制御して光透過率を可変して遮蔽を行うスマートウィンドウを用いても良い。
(Embodiment 1)
FIG. 1 shows a part of a building equipped with the solar radiation shielding device of the present invention. A window portion W is opened as a daylighting portion on the wall of the building, and the window portion W has a Venetian blind (hereinafter referred to as a blind). ) Illuminance for detecting the illuminance of the lighting device 2 of the lighting system and the upper surface (desk upper surface) of the desk D arranged in the target area X on the ceiling CE of the target area X that is equipped with shielding means 1 and indoors A sensor 3, an air outlet 4 of the air conditioning system, and a temperature / humidity sensor 5 for detecting the air conditioning environment (temperature / humidity) of the target area X are provided. Further, an illuminometer 6 (or a solar radiation meter for measuring the amount of solar radiation) 6 provided at an appropriate outdoor location on the rooftop or the like for acquiring the solar radiation state and measuring the vertical surface illuminance in each direction is provided. As the shielding means, for example, a smart window that performs shielding by changing the light transmittance by controlling energization of a liquid crystal sheet interposed between glass plates may be used.

空調システムは機械室等に設けられた空調機8と、天井CEの裏などに設けられた変風量ユニット9と、これら空調機8,変風量ユニット9を温度・湿度センサ6が検知する温度や湿度に基づいて制御する空調Icont(Intelligent Controller)7とで構成される。照明システムは、照度センサ3の検知照度に基づいて調光機能付きの照明装置2の光出力を制御する照明Icont10とで構成される。   The air conditioning system includes an air conditioner 8 provided in a machine room and the like, a variable air volume unit 9 provided on the back of the ceiling CE, and the temperature / humidity sensor 6 that detects the air conditioner 8 and the variable air volume unit 9. It is comprised with the air conditioning Icont (Intelligent Controller) 7 controlled based on humidity. The illumination system includes an illumination Icont 10 that controls the light output of the illumination device 2 with a dimming function based on the detected illuminance of the illuminance sensor 3.

本実施形態の日射量遮蔽装置は、ブラインド1と、照度計(又は日射量計)6と、ブラインドIcont11とで構成されている。   The solar radiation shielding device of the present embodiment includes a blind 1, an illuminometer (or solar radiation meter) 6, and a blind Icont 11.

そして各Icont7,10,11及び照度計(日射量計)6からの情報収集を行う計測Icont16は建物全体の環境を統合して連携制御する上位システムを構築するフロア統合コントローラ17とに接続されており、この接続には例えばビルオートメーション専用伝送線を用い、所定規格の信号により情報を授受できるようなっている。   And the measurement icon 16 that collects information from each of the icons 7, 10, 11 and the illuminance meter (irradiance meter) 6 is connected to a floor integrated controller 17 that constructs a host system for integrating and controlling the environment of the entire building. For this connection, for example, a dedicated transmission line for building automation is used, and information can be exchanged by a signal of a predetermined standard.

ここで本発明は日射遮蔽制御装置であって、上位システムとの連携は付加的な構成であるため、上位システムとの連携動作についての説明はここでは省略する。   Here, the present invention is a solar radiation shielding control device, and the cooperation with the host system is an additional configuration, and therefore the description of the cooperation operation with the host system is omitted here.

さて本実施形態の日射遮蔽制御装置の中枢となるブラインドIcont11は、図2に示すように日射状態取得部12と、評価指標取得部13と、制御部14とで構成されており、その内の日射状態取得部12は、システムタイマ(図示せず)により現在の時刻を取得し、対象建物の立地条件(設置場所の緯度、経度)とに基づいて現在の太陽位置を算出する太陽位置取得手段としての機能と、照度計7aから各方位の鉛直面照度を例えば1分間隔で取得する機能と、太陽位置状態と照度計7aが測定する照度による日射状態から直射光の有無を判定する直射光判断手段としての機能と、太陽高度と鉛直面照度より天候を判定する天候判断手段としての機能とを備えている。尚照度計7の代わりに日射量計を設け、計測する日射量から照度へ変換するようにしても良い。   As shown in FIG. 2, the blind Icont 11 serving as the center of the solar radiation shielding control device according to the present embodiment includes a solar radiation state acquisition unit 12, an evaluation index acquisition unit 13, and a control unit 14. The solar radiation state acquisition unit 12 acquires the current time by a system timer (not shown), and calculates the current solar position based on the location conditions (latitude and longitude of the installation location) of the target building. Direct light for determining the presence or absence of direct light from the solar position state and the solar radiation state measured by the illuminometer 7a, for example, the function of acquiring the vertical plane illuminance in each direction from the illuminometer 7a at an interval of 1 minute, for example It has a function as a judgment means and a function as a weather judgment means for judging the weather from the solar altitude and the vertical surface illuminance. A solar radiation meter may be provided instead of the illuminometer 7, and the measured solar radiation amount may be converted into illuminance.

また評価指標取得部13は、ブラインド1の開閉度と、取得した照度及び太陽位置からなる日射状態に基づいて対象エリアXに居る人Mが座位の状態で感じる眩しさ感を環境シミュレーションによりリアルタイムで算出し、この算出された眩しさ感が、不快感を与えない基準値以下になるようにブラインド1の開閉度を決定する機能を備えている。但し、ブラインド1の開閉度とはブラインド1が動作する範囲の内、動作可能な開閉度であり、例えば、ブラインド1がスラット角0°〜90°の内、1°刻みに動作可能なベネチャンブラインドからなる場合では、上述のオフセット角θが0°,1°,2°,3°,…,90°−α°となる。尚遮蔽手段がブラインド1ではなくスマートウィンドの場合には、透過率0%,1%,2%,3%,…,100%となる。   In addition, the evaluation index acquisition unit 13 provides a real-time feeling of glare that the person M in the target area X feels in a sitting position based on the degree of opening and closing of the blind 1 and the solar radiation state including the acquired illuminance and sun position in real time by environmental simulation. It has a function to calculate and to determine the degree of opening and closing of the blind 1 so that the calculated feeling of glare is below a reference value that does not give unpleasant feeling. However, the degree of opening / closing of the blind 1 is the degree of opening / closing that can be operated within the range in which the blind 1 operates. For example, the blind 1 can operate in increments of 1 ° within a slat angle of 0 ° to 90 °. In the case of a blind, the offset angle θ is 0 °, 1 °, 2 °, 3 °,..., 90 ° −α °. When the shielding means is not a blind 1 but a smart window, the transmittance is 0%, 1%, 2%, 3%,..., 100%.

制御部14は、評価指標取得部13で得られたブラインド開閉度と、過去のブラインド開閉度とを比較して、所定の設定値以上にブラインド1の開閉度が変化しないように制限を加えながらブラインド1の開閉度を制御する機能を備えている。   The control unit 14 compares the blind open / closed degree obtained by the evaluation index acquiring unit 13 with the past blind open / closed degree, and applies a restriction so that the open / closed degree of the blind 1 does not change beyond a predetermined set value. A function of controlling the degree of opening and closing of the blind 1 is provided.

次に本実施形態の動作を図3のフローチャートに基づいて説明する。   Next, the operation of this embodiment will be described based on the flowchart of FIG.

まず日射遮蔽制御装置をスタートさせると、ブラインドIcont11の日射状態取得部12は、システムタイマから10乃至30(分)の間隔で現在時刻を取得し(ステップS1)、この現在時刻と予め登録されている或いはGPSなどから取得した当該装置の設置場所の地球上の位置情報とに基づいて現在の太陽Tの位置を算出するとともに対象エリアXが面する窓部Wの位置関係を算出する(ステップS2)。このステップS2ではまず太陽位置の算出は建物の緯度及び経度と、現在時刻とに基づいて太陽高度、太陽方位角を適宜な周知の算出方法により算出する。次に窓部W面への入射角、見かけ高度(太陽高度を窓面に対して垂直方向に補正した高度)を窓部Wの位置関係として算出する。ここで窓面の入射角は、図4(a)に示すように現在の太陽高度をh[°]、方位角をA[°]、窓面の向きA0とすると、窓面への入射角i’は
i’=cos−1[cos(h)×cos(A−A0)]
となる。
First, when the solar radiation shielding control device is started, the solar radiation state obtaining unit 12 of the blind icon 11 obtains the current time at intervals of 10 to 30 (minutes) from the system timer (step S1), and is registered in advance as this current time. Or the current position of the sun T based on the position information of the installation location of the device acquired from the GPS or the like and the positional relationship of the window W facing the target area X (step S2). ). In this step S2, the solar position is calculated by first calculating the solar altitude and the solar azimuth by an appropriate known calculation method based on the latitude and longitude of the building and the current time. Next, the incident angle to the window W surface and the apparent altitude (the altitude obtained by correcting the solar altitude in the direction perpendicular to the window surface) are calculated as the positional relationship of the window W. Here, as shown in FIG. 4 (a), the incident angle of the window surface is the incident angle to the window surface when the current solar altitude is h [°], the azimuth angle is A [°], and the window surface direction A0. i ′ is i ′ = cos−1 [cos (h) × cos (A−A0)].
It becomes.

また見かけ高度h’は
h’=arc tan[tan(h)/cos(A−A0)]
となる。尚図4(a)中E,W,S,Nは東西南北の方位を示し,Zは鉛直方向を示す。
The apparent height h ′ is h ′ = arc tan [tan (h) / cos (A−A0)].
It becomes. In FIG. 4A, E, W, S, and N indicate the directions of east, west, south, and north, and Z indicates the vertical direction.

日射状態取得部12は、算出した窓面への入射角i’より窓面に対する直射光の有無を判定を行う。この場合図4(b)に示すように太陽Tの位置と窓部W側の庇の長さL等から直射光が対象エリアXに入射する範囲βや入射しない範囲γを判断し、同時にエリアA内の机Dの位置や方向などから例えば机Dで執務する人Mの視界に直射光が入射するか否かを判定する処理を行う。また日射状態取得部12は、図5に示すように太陽高度h[°]<又は見かけ太陽高度h’[°]>を横軸にと照度計7が検出する鉛直面照度を縦軸にとって、両者の関係から晴れ領域(イ)と曇り領域(ロ)とを設定し、この設定領域に現在の太陽高度h[°]<又は見かけ
太陽高度h’[°]>と、鉛直面照度とから現在の天候を判定する。この図5の設定領域の閾値は、太陽高度に応じて変化させることにより、日の入り時における誤検知率を低下させるようになっている。
The solar radiation state acquisition unit 12 determines the presence or absence of direct light on the window surface from the calculated incident angle i ′ to the window surface. In this case, as shown in FIG. 4B, a range β where the direct light is incident on the target area X and a range γ where the direct light is not incident are determined from the position of the sun T and the length L of the ridge on the window W side, and the area For example, a process of determining whether or not direct light is incident on the field of view of the person M working at the desk D from the position and direction of the desk D in A is performed. Further, as shown in FIG. 5, the solar radiation state acquisition unit 12 takes the solar altitude h [°] <or the apparent solar altitude h ′ [°]> as the horizontal axis and the vertical surface illuminance detected by the illuminometer 7 as the vertical axis. A sunny area (b) and a cloudy area (b) are set from the relationship between the two, and the current solar altitude h [°] <or apparent solar altitude h '[°]> and the vertical surface illuminance are set in this setting area. Determine the current weather. The threshold value of the setting area in FIG. 5 is changed according to the solar altitude, thereby reducing the false detection rate at sunset.

さて上述のように日射状態取得部12で、時刻の取得と、太陽位置の算出と、直射光入射判定、更に天候判定が終了すると、次のステップS3では評価指標取得部13により対象エリアX内に居る人Mが感じる眩しさ感を環境シミュレーションにより算出する処理を行い、最適なブラインド開閉度を決定する。この環境シミュレーションは周知の方法(例えば宿谷 昌則 著 数値計算で学ぶ光と熱の建築環境学 「窓と自然室内照度」 丸善株式会社 出版 参照)を用いれば良い。図6はその一例を示しており、この方法では建物の窓部W、空調環境、照明(照明器具の配置情報を含む)、対象エリア(部屋)Xの各特性を格納したデータベースDBを備え、このデータベースDBの情報に基づいて建物モデルの構築において眩しさ感の予測の準備をステップS10で行い、次に日射情報取得部12から現在時刻と、鉛直面照度とを取り込み(ステップS11)、ステップS12〜S16のループにおいて、眩しさ最適開閉度候補を、例えばオフセット角θを0°〜90°−α°の範囲で1°ずつ変化させてシミュレーションを行って求める。このループ内ではステップS13において環境シミュレーションにより眩しさ感の予測を行う。この予測では眩しさ感(グレア感)の予測式PGSV(Predicted Glare Sensation Vote)を用いて眩しさ感(グレア感)を予測する。このPGSVは、昼光利用時における眩しさ感を用いて予測する式として提案(戸倉、岩田他:「窓からの昼光によるグレア感の評価方法に関する実験的研究 その1 光環境実験室を用いた実験」、日本建築学会大会学術講演梗概 ,1992.8参照)されており、窓面に対する光源と背景の輝度対比と、居住者のグレア感(眩しさ感)を関連付けた式<数1参照>で表現される。   As described above, when the solar radiation state acquisition unit 12 completes time acquisition, solar position calculation, direct light incident determination, and weather determination, the evaluation index acquisition unit 13 in the target area X in the next step S3. The process of calculating the dazzling sensation felt by the person M located in the environment by an environmental simulation is performed to determine the optimum degree of blind opening / closing. This environmental simulation may be performed by using a well-known method (for example, Masanori Sukutani, studying architectural environment of light and heat studied by numerical calculation “Window and natural room illumination” published by Maruzen Co., Ltd.). FIG. 6 shows an example of this, and in this method, a database DB storing the characteristics of the window portion W of the building, the air conditioning environment, lighting (including lighting fixture arrangement information), and target area (room) X is provided. Based on the information in this database DB, preparation for prediction of dazzling feeling is made in the construction of the building model in step S10, and the current time and the vertical surface illuminance are fetched from the solar radiation information acquisition unit 12 (step S11), and step In the loop of S12 to S16, the dazzle optimum opening / closing degree candidate is obtained by performing a simulation by changing the offset angle θ by 1 ° in a range of 0 ° to 90 ° −α °, for example. In this loop, the dazzling feeling is predicted by environmental simulation in step S13. In this prediction, a dazzling feeling (glare feeling) is predicted using a prediction formula PGSV (Predicted Glare Sensation Vote) of a dazzling feeling (glare feeling). This PGSV is proposed as a formula that predicts the feeling of glare when using daylight (Tokura, Iwata et al .: “Experimental study on the evaluation method of glare caused by daylight from windows, Part 1 Using the light environment laboratory” , "Architectural Lecture of the Architectural Institute of Japan, 19922.8"), a formula that relates the luminosity of the light source and background to the window surface and the glare of the resident (feeling of glare) >.

Figure 2007120090
Lb:背景輝度[cd/m
Lseq:相当均一輝度(光源輝度)[cd/m
ω: 光源の立体角[sr]
但しPGSVとは元来、窓の最適設計のために提案された指標であり、ブラインドの開閉度の制御に利用される例はない。
Figure 2007120090
Lb: background luminance [cd / m 2 ]
Lseq: equivalent uniform luminance (light source luminance) [cd / m 2 ]
ω: solid angle of light source [sr]
However, PGSV is an index originally proposed for optimal design of windows, and there is no example used for controlling the degree of opening and closing of blinds.

而してステップS14において予測されたPGSVと設定PGSV値との比較を行い、設定PSVG値より小さいときには、ステップS14において眩しさ最適開閉度を決定し、前記ループを抜ける。ここでPGSVの尺度は、表1に示す通りであって、この尺度から上記の設定PSVG値を設定する。つまり眩しさが気になり始めるPSVG値1.0より小さければ、気にならない程度であると判定できる。   Thus, the PGSV predicted in step S14 is compared with the set PGSV value, and when it is smaller than the set PSVG value, the optimal glare opening / closing degree is determined in step S14, and the loop is exited. Here, the scale of PGSV is as shown in Table 1, and the set PSVG value is set from this scale. In other words, if the PSVG value is less than 1.0 where dazzling starts to be worrisome, it can be determined that the degree is not concerned.

Figure 2007120090
ループを抜けると、ステップS17において眩しさ感が基準以下となるブラインド1の開閉度の算出、つまり外部の状態とそれに対応するブラインド1の開閉度の算出を行う、シミュレーションを終了するとともに、算出した開閉度を制御部14に受け渡す。制御部14は図3のステップS4において、ブラインド1の最適な開閉度のハンチング処理を行う。つまり制御部14は受け渡された開閉度と、過去のブラインド開閉度とを比較して、予め設定している所定の設定値以上にブラインド1の開閉度が変化しないように制限を加えながら最適なブラインド1の開閉度を決定し、ブラインド1のスラット1aの角度制御を行うのである。
Figure 2007120090
After exiting the loop, calculation of the degree of opening / closing of the blind 1 in which the feeling of dazzling is below the reference in step S17, that is, calculation of the external state and the degree of opening / closing of the blind 1 corresponding thereto, is completed, and the simulation is finished. The degree of opening / closing is transferred to the control unit 14. In step S4 of FIG. 3, the control unit 14 performs hunting processing for the optimum opening / closing degree of the blind 1. In other words, the control unit 14 compares the passed degree of opening and closing with the past degree of blind opening and closing, and is optimal while restricting the degree of opening and closing of the blind 1 so as not to change beyond a predetermined set value. The opening / closing degree of the blind 1 is determined, and the angle control of the slat 1a of the blind 1 is performed.

スラット1aの角度制御は、対象エリアX内で執務(作業)している人Mの視界に直射光が入らない範囲で図7(a)に示すように太陽光が透過しない角度に対するオフセット角θの調節を行う。もし直射光が視線に入射する場合には強制的に直射光が入射しない範囲まで上述の設定値による制限を加えながらブラインド1の開閉度を調節する。   The angle control of the slat 1a is performed by offset angle θ with respect to an angle at which sunlight is not transmitted as shown in FIG. 7A within a range where direct light does not enter the field of view of the person M who is working (working) in the target area X. Make adjustments. If direct light is incident on the line of sight, the degree of opening / closing of the blind 1 is adjusted while forcibly limiting the set value to the range where direct light is not incident.

尚上述のPGSVでは光源と面として単一輝度面を想定としており、そのためスマートウィンドウなどの輝度分布が生じない場合、窓面全体を単一の光源面として捉えることが可能であり、窓面と周囲の壁面より反射される輝度からPGSVを算出することができる。しかし、ベネチャンブラインドのようなブラインド1の場合にはスラット1の表面で反射される輝度と、スラット1aの隙間より透過される天空面輝度で分布が生じてしまう。特にスラット1aの隙間より太陽Tが直接確認される場合,その影響は大きくなる。そこで本実施形態では、光源輝度を、窓面全体を単一輝度とみなした平均輝度ではなく、両輝度の大きい方を採用することによって、PGSVを算出する。また、ブラインド1のスラット1aの隙間より太陽Tが直接確認される場合や、対象エリアX内に居る人Mの作業面に正射光が入射する場合は、PGSV算出の対象外として上述のように強制的に直射光が入射しない範囲の開閉度を採用する。   In the above PGSV, a single luminance surface is assumed as the light source and the surface. Therefore, when a luminance distribution such as a smart window does not occur, the entire window surface can be regarded as a single light source surface. PGSV can be calculated from the brightness reflected from the surrounding wall surface. However, in the case of the blind 1 such as the Venetian blind, a distribution is generated between the luminance reflected by the surface of the slat 1 and the sky surface luminance transmitted through the gap between the slats 1a. In particular, when the sun T is directly confirmed from the gap between the slats 1a, the influence becomes large. Therefore, in the present embodiment, the PGSV is calculated by adopting the light source luminance that is larger than both the luminances instead of the average luminance in which the entire window surface is regarded as a single luminance. Further, when the sun T is directly confirmed from the gap between the slats 1a of the blind 1 or when the incident light is incident on the work surface of the person M in the target area X, it is excluded from the PGSV calculation as described above. Use a degree of opening and closing in a range where no direct light is forced.

また太陽位置と外部(屋外)照度より判定される天候が外部照度が低く眩しさが問題とならない曇天の場合や直射光が存在しない時間帯と判定される場合には、開放感を得るためにブラインド1のスラット1aを水平に設定してブラインド1を開放状態とする制御を行う。   In addition, in order to obtain a feeling of openness when the weather determined by the sun position and external (outdoor) illuminance is cloudy when the external illuminance is low and dazzling is not a problem or when it is determined that there is no direct light Control is performed so that the slat 1a of the blind 1 is set horizontally and the blind 1 is opened.

ところで、天候が激しく変化する場合には、屋上で計測される照度が曇天と判断する閾値に対して頻繁に上がったり下がったりすることがある。一方曇天状態から突然に太陽光が対象エリアX内に差し込み、眩しさを与えることがある。   By the way, when the weather changes drastically, the illuminance measured on the roof may frequently rise or fall with respect to a threshold value that is determined to be cloudy. On the other hand, sunlight may suddenly enter the target area X from a cloudy state and give glare.

そこで日射状態取得部12では、図8のフローチャートで示すようにステップS21において、照度計6が検出する照度と曇天と判断する閾値とを比較し、閾値より小さい場合には曇天として判定するが、制御部14ではその曇天判定が一定時間内において所定回数N連続であったか否かをステップS22で判定し、所定回数Nよりも小さい場合、つまり曇天判定が一定時間継続していると判定される場合には、ステップS23において上述のようにブラインド1を開放する開閉度を採用する。一方照度が閾値以上となった場合、或いはステップS22での判定でカウント数が所定回数Nとなった場合、つまり曇天判定が断続する場合には、ステップS24で眩しさによる不快感が基準値以下となる開閉度を評価指標取得部13より取得し、更に日射状態取得部11での直射光入射判断から直射光が入射するか否かの判定をステップS25で行い、直射光が入射する場合にはステップS26において、直射光が入射しない開閉度を採用する。また直射光が入射しない場合にはステップS27で評価指標取得部13より取得した開閉度を採用する。そしてステップS28において以上のように採用した開閉度と過去の開閉度とを比較して上述の設定値以上に変化しないようにブラインド1を制御する。   Therefore, in the solar radiation state acquisition unit 12, as shown in the flowchart of FIG. 8, in step S21, the illuminance detected by the illuminometer 6 is compared with the threshold value for determining cloudy weather. In step S22, the control unit 14 determines whether or not the cloudy day determination has been performed for a predetermined number of times N within a predetermined time, and when it is smaller than the predetermined number N, that is, when it is determined that the cloudy day determination has continued for a predetermined time. In step S23, the degree of opening and closing that opens the blind 1 as described above is employed. On the other hand, when the illuminance is greater than or equal to the threshold value, or when the number of counts is a predetermined number N in the determination in step S22, that is, when the cloudy sky determination is intermittent, discomfort due to glare is less than the reference value in step S24 When the open / closed degree is obtained from the evaluation index obtaining unit 13 and further, it is determined in step S25 whether or not the direct light is incident from the direct light incident determination in the solar radiation state obtaining unit 11, and the direct light is incident. In step S26, an opening / closing degree at which direct light is not incident is adopted. When direct light is not incident, the degree of opening / closing acquired from the evaluation index acquisition unit 13 in step S27 is employed. In step S28, the open / closed degree adopted as described above is compared with the past open / closed degree, and the blind 1 is controlled so as not to change to the set value or more.

上述のフローチャートによる処理動作を、曇天判定と外部照度の関係で表すと、図9に示すように、閾値L0より外部照度が低い状態が継続している期間t1では曇天に対応する制御が行われるが、外部照度が閾値L0を超えると急激に眩しくなるというリスクが高くなる。また外部照度が閾値L0よりも高い状態が継続している期間t2では晴天に対応する制御が行われるが、閾値L0を外部照度が下回る場合、ハンチングを避けるために一定期間t3において外部照度が閾値L0を超えている状態が継続している場合に曇天に対応する制御を開始する(t4)。   When the processing operation according to the above-described flowchart is expressed by the relationship between cloudy sky determination and external illuminance, as shown in FIG. 9, control corresponding to cloudy is performed in a period t1 in which the external illuminance is lower than the threshold value L0. However, when the external illuminance exceeds the threshold value L0, there is a high risk that it will become dazzling rapidly. In addition, control corresponding to clear sky is performed in the period t2 in which the external illuminance is higher than the threshold value L0. However, when the external illuminance falls below the threshold value L0, the external illuminance is set to the threshold value in a certain period t3 to avoid hunting. When the state exceeding L0 continues, control corresponding to cloudy weather is started (t4).

以上のように構成した本実施形態によれば、外部環境(外部照度)に応じて、ブラインド1の開閉度を調節することで、対象となる対象エリアX内にいる人Mに眩しさ感を与えることなく、従来より太陽光の導入量を確保して、照明等に必要なエネルギの削減を図れ、開放感も損なわないという利点がある。
(実施形態2)
実施形態1では評価指標取得部13によりリアルタイムにシミュレーションを行ってその結果から評価指標を取得していたが、本実施形態では、図14に示すように基準となる眩しさ感に対して事前にコンピュータ等からなる環境シミュレーション装置15を使用して環境シミュレーションを行って外部照度と、ブラインド1のオフセット角θとの関係を明らかにし、その結果を図10に示すようにブラインドIcont11に付設する最適開閉度テーブルTBに格納し、日射遮蔽制御装置の稼動時において、ブラインドIcont11の評価指標取得部13が日射状態取得部12で取得した現在の照度と最適開閉度テーブルTBの照度とを照合することで、最適なオフセット角θを決定し、このオフセット角θによる開閉度を用いて制御部13が上述のようにブラインド1の開閉度制御を行う点で相違する。
尚システム構成は図1と同じであるのでここでは図示しない。
According to the present embodiment configured as described above, the person M in the target area X to be dazzled can be dazzled by adjusting the opening / closing degree of the blind 1 according to the external environment (external illuminance). Without giving, there is an advantage that the amount of sunlight introduced can be ensured conventionally, energy required for lighting etc. can be reduced, and the feeling of opening is not impaired.
(Embodiment 2)
In the first embodiment, the evaluation index acquisition unit 13 performs the simulation in real time and acquires the evaluation index from the result. In this embodiment, the dazzling feeling that is a reference is previously shown in FIG. An environmental simulation is performed using an environmental simulation device 15 such as a computer to clarify the relationship between the external illuminance and the offset angle θ of the blind 1, and the result is shown in FIG. By storing the current illuminance acquired in the solar radiation state acquisition unit 12 by the evaluation index acquisition unit 13 of the blind icon 11 and the illuminance of the optimum opening / closing degree table TB, when the solar radiation shielding control device is in operation. The optimum offset angle θ is determined, and the controller 1 uses the degree of opening / closing by the offset angle θ. There is different in that the opening and closing of the control of the blind 1, as described above.
Since the system configuration is the same as that shown in FIG. 1, it is not shown here.

図11は事前に行う環境シミュレーションのフローチャートを示しており、この環境シミュレーションでは、上述の実施形態1での環境シミュレーションと相違する点は、図6で示すステップS12からS16のループを各時刻(K=0、1…24×365)毎に行うループ(ステップS12’〜S16’内に包含し、且つステップS17の次にステップ17で算出された最適開閉度テーブル13に眩しさ感が基準以下となる開閉度の書き込む処理、つまり外部照度と、オフセット角θの関係を最適開閉度テーブルTBに書き込む処理が追加されている点で相違する。尚ステップS12〜S16のステップでは気象庁のアメダス(地域気象観測システム<Automated Meteorological Data Acquisition System>)より配布されている設置場所に対応する地域の一時間毎の気象データの一年分を用いる。   FIG. 11 shows a flowchart of an environmental simulation performed in advance. This environmental simulation is different from the environmental simulation in the first embodiment described above in that the loop of steps S12 to S16 shown in FIG. = 0, 1... 24 × 365) loop included in each step (steps S12 ′ to S16 ′), and the optimal opening / closing degree table 13 calculated in step 17 after step S17 has a dazzling feeling below a reference. The difference is that a process for writing the opening / closing degree, that is, a process for writing the relationship between the external illuminance and the offset angle θ in the optimum opening / closing degree table TB is added. One of the areas corresponding to the installation locations distributed by the observation system <Automated Meteorological Data Acquisition System>) Use one year of hourly weather data.

本実施形態によれば、予め評価指標の算出結果をテーブルとして有することで、処理能力が比較的低く、安価な演算処理装置でブラインドIconttを構成しても高速処理が可能となる。
(実施形態3)
実施形態1、2ではビルオートメーション専用の伝送線を用いて各Icont7,10,11,16とフロア統合コントローラ17との情報授受を行うを行うようにしているが、本実施形態では図12に示すようにイーサネット(登録商標)を用いたLAN18を用い
て接続し、例えばブラインドIcont11にWebサーバを搭載し、LAN18に接続されているパーソナルコンピュータからなる個人端末PCや、パネルスイッチ装置PSからHTTP(HyperText Transfer Protocol)を用いてWebサーバにアクセスしてWebサーバが提供するブラインドIcont11側のホームページを閲覧することができるようにし、例えば個人端末PCやパネルスイッチPSからブラインドIcont11の運転状況を変更することを可能とすることで、ユーザーが眩しさレベルを自由に設定することもできるのである。
According to the present embodiment, the calculation result of the evaluation index is provided in advance as a table, so that high-speed processing is possible even if the blind Icontt is configured with an inexpensive arithmetic processing device having a relatively low processing capability.
(Embodiment 3)
In the first and second embodiments, information is exchanged between the respective Iconts 7, 10, 11 and 16 and the floor integrated controller 17 using a transmission line dedicated to building automation. In this embodiment, FIG. In this way, the LAN 18 using Ethernet (registered trademark) is connected, for example, a Web server is mounted on the blind icon 11, and an HTTP (HyperText) is sent from a personal terminal PC composed of a personal computer connected to the LAN 18 or the panel switch device PS. It is possible to access the Web server on the blind icon 11 side provided by the Web server by accessing the Web server using the Transfer Protocol), and change the operating status of the blind icon 11 from the personal terminal PC or the panel switch PS, for example. Making it possible It can also be the user to freely set the glare level.

上述の実施形態1〜3ではベネチャンブラインドからなるブラインド1を用いた場合について説明したが、スマートウィンドウやその他の開閉度を調節できるブラインドにも本発明は適用できる。   In the above-described first to third embodiments, the case where the blind 1 made of the Venetian blind is used has been described. However, the present invention can also be applied to a smart window or other blind that can adjust the degree of opening and closing.

ところで、エミット(EMIT(Embedded Micro Internetworking Technology))と称する機器組み込み型ネットワーク技術(機器に簡単にミドルウェアを組み込んでネットワークに接続できる機能を備えるネットワーク技術、以降、EMIT技術と称する。)を用いることで、携帯電話、PC(Personal Computer)、PDA(Personal Digital Assistant)、PHS(Personal Handy phone System)等の外部端末(図示せず)から様々な設備機器(照明装置、空調装置、動力装置、センサ、電気錠、Webカメラ等、以降、EMIT端末と称する。)<図示せず>にアクセスして、EMIT端末を遠隔監視・制御することができるシステムがある。   By the way, by using a device-embedded network technology called EMIT (Embedded Micro Internetworking Technology) (a network technology having a function of easily incorporating middleware into a device and connecting to the network, hereinafter referred to as EMIT technology). Various equipment (illumination equipment, air conditioning equipment, power equipment, sensors) from external terminals (not shown) such as mobile phones, PCs (Personal Computers), PDAs (Personal Digital Assistants), PHSs (Personal Handy phone Systems) Electric locks, Web cameras, etc. are hereinafter referred to as EMIT terminals.) There is a system that can access <not shown> to remotely monitor and control the EMIT terminal.

尚、EMIT端末は、マイコン搭載の組み込み機器であり、機器組み込み型のネット接続用ミドルウェアでありEMIT技術を実現するEMITソフトウェアが搭載されている。   Note that the EMIT terminal is a built-in device equipped with a microcomputer, and is a device-embedded middleware for connecting to the network and is equipped with EMIT software that realizes the EMIT technology.

上述のEMIT技術を応用したシステム(以降、EMITシステムと称する。)としては、外部端末がインターネット上に設けられたセンタサーバ(図示せず)経由でEMIT端末を遠隔監視・制御する構成のものや、センタサーバを介することなく、例えばEMITソフトウェアが搭載された外部端末から、直接各EMIT端末にアクセスしてEMIT端末を遠隔監視・制御する構成のものを挙げることができる。   As a system to which the above-mentioned EMIT technology is applied (hereinafter referred to as an EMIT system), an external terminal remotely monitors and controls an EMIT terminal via a center server (not shown) provided on the Internet. For example, a configuration in which an EMIT terminal is directly accessed from an external terminal equipped with EMIT software to remotely monitor and control the EMIT terminal without using a center server.

そしてEMITシステムによって、例えば、建物(戸建住宅、マンション、ビル、工場用等)<図示せず>内に上述のEMIT端末を分散配置させて、外部端末からEMIT端末の状態を遠隔から監視することで、建物全体のエネルギ管理や、建物内のガス、水道、電気の遠隔検針を行うことも可能となる。   Then, by using the EMIT system, for example, the above-mentioned EMIT terminals are distributed in a building (for detached houses, condominiums, buildings, factories, etc.) <not shown>, and the status of the EMIT terminals is monitored remotely from an external terminal. This makes it possible to perform energy management of the entire building and remote meter reading of gas, water, and electricity in the building.

そこで上述の本発明の実施形態1〜3に係る日射遮蔽制御装置を上述のEMITシステムを用いて構成しても良い。   Therefore, the above-described solar radiation shielding control apparatus according to the first to third embodiments of the present invention may be configured using the above-described EMIT system.

実施形態1の概略構成図である。1 is a schematic configuration diagram of Embodiment 1. FIG. 実施形態1のブラインドIcontのブロック図である。It is a block diagram of blind Icont of Embodiment 1. 実施形態1の動作説明用フローチャートである。3 is a flowchart for explaining the operation of the first embodiment. (a)は実施形態1にて用いる太陽位置の算出説明図、(b)は太陽と窓面との関係説明図である。(A) is calculation explanatory drawing of the solar position used in Embodiment 1, (b) is a related explanatory drawing of the sun and a window surface. 実施形態1に用いる天候判定の説明図である。It is explanatory drawing of the weather determination used for Embodiment 1. FIG. 実施形態1の最適開閉度決定のフローチャートである。3 is a flowchart for determining an optimum opening / closing degree according to the first embodiment. 実施形態1のブラインドの開閉度制御の説明図である。It is explanatory drawing of the opening / closing degree control of the blind of Embodiment 1. FIG. 実施形態1の曇天判定用いた制御のフローチャートである。3 is a flowchart of control using cloudiness determination according to the first embodiment. 実施形態1の曇天判定時の外部照度とブラインド制御の説明図である。It is explanatory drawing of the external illumination intensity at the time of the cloudy determination of Embodiment 1, and blind control. 実施形態2に用いるブラインドIcontのブロック図である。It is a block diagram of blind Icont used for Embodiment 2. FIG. 実施形態2の最適開閉度決定のフローチャートである。6 is a flowchart of determining an optimum opening / closing degree according to the second embodiment. 実施形態3のシステム構成図である。FIG. 9 is a system configuration diagram of a third embodiment. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 ブラインド
6 照度計
11 ブラインドIcont
12 日射状態取得部
13 評価指標取得部
14 制御部
1 Blind 6 Illuminance meter 11 Blind Icont
12 solar radiation state acquisition unit 13 evaluation index acquisition unit 14 control unit

Claims (5)

照明装置が備えられた屋内に採光するための採光部に遮蔽手段が設けられ、前記遮蔽手段の開閉度を調節することにより屋内に入射する入射光量を制御する日射遮蔽制御装置であって、
屋外の日射状態を取得する日射状態取得部と、前記照明装置の配置情報と、前記日射状態と前記開閉度とに基づいて前記採光部における眩しさ感の評価指標をシミュレートした結果を取得する評価指標取得部と、取得した眩しさ感の評価指標が不快を示す値でなくなるように前記開閉度を調節する制御部とを備えたことを特徴とする日射遮蔽制御装置。
A solar shading control device for controlling the amount of incident light entering the indoor by providing a shielding means in a daylighting unit for daylighting provided with an illuminating device, and adjusting the degree of opening and closing of the shielding means,
A result of simulating an evaluation index of a feeling of glare in the daylighting unit is acquired based on a solar radiation state acquisition unit that acquires an outdoor solar radiation state, arrangement information of the lighting device, the solar radiation state, and the open / closed degree. A solar radiation shielding control device comprising: an evaluation index acquisition unit; and a control unit that adjusts the degree of opening and closing so that the acquired evaluation index of dazzling feeling is no longer an uncomfortable value.
前記評価指標取得部は、屋内に照明装置を配置した状態で、前記日射状態と前記開閉度を変化させて算出した前記評価指標のデータテーブルを有し、前記日射状態と前記開閉度の評価指標を前記データテーブルに基づいて取得することを特徴とする請求項1記載の日射遮蔽制御装置。 The evaluation index acquisition unit has a data table of the evaluation index calculated by changing the solar radiation state and the opening / closing degree in a state where the lighting device is disposed indoors, and the evaluation index of the solar radiation state and the opening / closing degree The solar shading control device according to claim 1, wherein the solar radiation shielding control device is obtained based on the data table. 前記遮蔽手段をベネチャンブラインドで構成するとともに、入射光量の制御時の太陽位置を取得する太陽位置取得手段を備え、前記評価指標取得部は、前記太陽位置に基づいて前記評価指標を取得することを特徴とする請求項1又は2記載の日射遮蔽制御装置。 The shielding means is configured by a Venetian blind, and includes a solar position acquisition means for acquiring a solar position at the time of controlling the amount of incident light, and the evaluation index acquisition unit acquires the evaluation index based on the solar position. The solar radiation shielding control device according to claim 1 or 2. 前記太陽位置と前記開閉度に基づいて前記屋内から前記採光部を見たときに視界に入るか否かを判断する直射光判断手段を備え、前記制御部は、前記直射光判断手段により前記屋内から前記採光部を見たときに視界に太陽からの直射光が入ると判断されたときに、視界に太陽が入らないように前記開閉度を制御することを特徴とする請求項3記載の日射遮蔽制御装置。 Direct light determination means for determining whether or not to enter the field of view when the daylighting unit is viewed from the indoors based on the sun position and the degree of opening and closing, and the control unit includes the indoor light by the direct light determination means. 4. The solar radiation according to claim 3, wherein when the daylighting part is viewed from the sun, the open / closed degree is controlled so that the sun does not enter the field of view when it is determined that the direct light from the sun enters the field of view. Shielding control device. 太陽の高度と前記採光部の照度とに基づいて晴天か曇天かを判断する天候判断部とを備え、前記制御部は前記天候判断部により曇天と判断されたときに前記開閉度を全開に調節することを特徴とする請求項1乃至4の何れかに記載の日射遮蔽制御装置。
A weather determination unit that determines whether the sky is clear or cloudy based on the altitude of the sun and the illuminance of the daylighting unit, and the control unit adjusts the open / closed degree to full open when the weather determination unit determines that the weather is cloudy The solar radiation shielding control device according to claim 1, wherein the solar radiation shielding control device is a solar radiation shielding control device.
JP2005312023A 2005-10-26 2005-10-26 Solar radiation shielding control device Active JP4867287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312023A JP4867287B2 (en) 2005-10-26 2005-10-26 Solar radiation shielding control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312023A JP4867287B2 (en) 2005-10-26 2005-10-26 Solar radiation shielding control device

Publications (2)

Publication Number Publication Date
JP2007120090A true JP2007120090A (en) 2007-05-17
JP4867287B2 JP4867287B2 (en) 2012-02-01

Family

ID=38144208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312023A Active JP4867287B2 (en) 2005-10-26 2005-10-26 Solar radiation shielding control device

Country Status (1)

Country Link
JP (1) JP4867287B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052255A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Solar radiation shading control device
JP2009155845A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Daylight shading controller
JP2011040344A (en) * 2009-08-18 2011-02-24 Kyushu Electric Power Co Inc Light control system
JP2011074685A (en) * 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd Solar radiation adjusting device
JP2014047477A (en) * 2012-08-30 2014-03-17 Ohbayashi Corp Blind control system and blind control method
JP2014507576A (en) * 2011-01-06 2014-03-27 コーニンクレッカ フィリップス エヌ ヴェ Ambient light control
JP2014114696A (en) * 2014-02-21 2014-06-26 Nikken Sekkei Ltd Control method for electric blind
JP2014224346A (en) * 2013-05-15 2014-12-04 原田 昌幸 Automatic control device of electrically-driven solar shading device
WO2015056736A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Lighting member, lighting device, and method for installing lighting member
JP2015127470A (en) * 2013-12-27 2015-07-09 株式会社大林組 Blind control method and blind control system
KR20150133728A (en) * 2013-02-21 2015-11-30 뷰, 인크. Control method for tintable windows
JP2015227546A (en) * 2014-05-30 2015-12-17 清水建設株式会社 Blind controller, blind control system, and blind control method
JP2018031136A (en) * 2016-08-23 2018-03-01 清水建設株式会社 Luminous environment control system
WO2018100957A1 (en) * 2016-12-01 2018-06-07 パナソニックIpマネジメント株式会社 Daylighting system
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
US10712627B2 (en) 2011-03-16 2020-07-14 View, Inc. Controlling transitions in optically switchable devices
US10908470B2 (en) 2011-03-16 2021-02-02 View, Inc. Multipurpose controller for multistate windows
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
CN117407965A (en) * 2023-12-14 2024-01-16 北方工程设计研究院有限公司 Method, device, terminal and storage medium for adjusting shutter angle based on parameterization
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11960190B2 (en) 2019-03-20 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533445A (en) * 2014-07-16 2016-10-27 ヴィッツウェル インコーポレイテッド Smart window system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973801A (en) * 1982-10-20 1984-04-26 日立照明株式会社 Illuminating method and device utilizing external light
JPH06111942A (en) * 1992-09-30 1994-04-22 Toshiba Lighting & Technol Corp Lighting control system
JPH0864017A (en) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd Lighting control device
JPH11193678A (en) * 1998-01-05 1999-07-21 Shimizu Corp Modulated light type light shielding body
JPH11193677A (en) * 1998-01-05 1999-07-21 Shimizu Corp Modulated light type light shielding body
JPH11195306A (en) * 1998-01-05 1999-07-21 Shimizu Corp Blind
JP2002276264A (en) * 2001-03-14 2002-09-25 Nikken Sekkei Ltd Blind device having blind face luminance controlling function
JP2004324908A (en) * 2003-04-21 2004-11-18 Matsushita Electric Works Ltd Building facility control device
JP2005054356A (en) * 2003-08-01 2005-03-03 Cloud Nine:Kk Electric blind remote control system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973801A (en) * 1982-10-20 1984-04-26 日立照明株式会社 Illuminating method and device utilizing external light
JPH06111942A (en) * 1992-09-30 1994-04-22 Toshiba Lighting & Technol Corp Lighting control system
JPH0864017A (en) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd Lighting control device
JPH11193678A (en) * 1998-01-05 1999-07-21 Shimizu Corp Modulated light type light shielding body
JPH11193677A (en) * 1998-01-05 1999-07-21 Shimizu Corp Modulated light type light shielding body
JPH11195306A (en) * 1998-01-05 1999-07-21 Shimizu Corp Blind
JP2002276264A (en) * 2001-03-14 2002-09-25 Nikken Sekkei Ltd Blind device having blind face luminance controlling function
JP2004324908A (en) * 2003-04-21 2004-11-18 Matsushita Electric Works Ltd Building facility control device
JP2005054356A (en) * 2003-08-01 2005-03-03 Cloud Nine:Kk Electric blind remote control system

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052255A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Solar radiation shading control device
JP2009155845A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Daylight shading controller
JP2011040344A (en) * 2009-08-18 2011-02-24 Kyushu Electric Power Co Inc Light control system
JP2011074685A (en) * 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd Solar radiation adjusting device
JP2014507576A (en) * 2011-01-06 2014-03-27 コーニンクレッカ フィリップス エヌ ヴェ Ambient light control
US10908470B2 (en) 2011-03-16 2021-02-02 View, Inc. Multipurpose controller for multistate windows
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
US10712627B2 (en) 2011-03-16 2020-07-14 View, Inc. Controlling transitions in optically switchable devices
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
JP2014047477A (en) * 2012-08-30 2014-03-17 Ohbayashi Corp Blind control system and blind control method
US10802372B2 (en) 2013-02-21 2020-10-13 View, Inc. Control method for tintable windows
JP2021059969A (en) * 2013-02-21 2021-04-15 ビュー, インコーポレイテッド Control method for tint adjustable window
JP2022163157A (en) * 2013-02-21 2022-10-25 ビュー, インコーポレイテッド Control method for hue-adjustable window
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
JP2016516921A (en) * 2013-02-21 2016-06-09 ビュー, インコーポレイテッド Control method for tint adjustable window
CN109653669A (en) * 2013-02-21 2019-04-19 唯景公司 Control method for pigmentable window
JP2019085871A (en) * 2013-02-21 2019-06-06 ビュー, インコーポレイテッド Control method for window capable of adjusting hue
JP7124048B2 (en) 2013-02-21 2022-08-23 ビュー, インコーポレイテッド Control method for tint adjustable windows
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
KR102306274B1 (en) * 2013-02-21 2021-09-30 뷰, 인크. Control method for tintable windows
US10539854B2 (en) 2013-02-21 2020-01-21 View, Inc. Control method for tintable windows
KR20150133728A (en) * 2013-02-21 2015-11-30 뷰, 인크. Control method for tintable windows
US11126057B2 (en) 2013-02-21 2021-09-21 View, Inc. Control method for tintable windows
JP2014224346A (en) * 2013-05-15 2014-12-04 原田 昌幸 Automatic control device of electrically-driven solar shading device
WO2015056736A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Lighting member, lighting device, and method for installing lighting member
US9885453B2 (en) 2013-10-17 2018-02-06 Sharp Kabushiki Kaisha Lighting member, lighting device, and method for installing lighting member
US10337682B2 (en) 2013-10-17 2019-07-02 Sharp Kabushiki Kaisha Lighting member, lighting device, and method for installing lighting member
JPWO2015056736A1 (en) * 2013-10-17 2017-03-09 シャープ株式会社 Daylighting member, daylighting device, and installation method of daylighting member
JP2015127470A (en) * 2013-12-27 2015-07-09 株式会社大林組 Blind control method and blind control system
JP2014114696A (en) * 2014-02-21 2014-06-26 Nikken Sekkei Ltd Control method for electric blind
JP2015227546A (en) * 2014-05-30 2015-12-17 清水建設株式会社 Blind controller, blind control system, and blind control method
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
JP2018031136A (en) * 2016-08-23 2018-03-01 清水建設株式会社 Luminous environment control system
JPWO2018100957A1 (en) * 2016-12-01 2019-10-17 パナソニックIpマネジメント株式会社 Daylighting system
CN110023792A (en) * 2016-12-01 2019-07-16 松下知识产权经营株式会社 Lighting system
WO2018100957A1 (en) * 2016-12-01 2018-06-07 パナソニックIpマネジメント株式会社 Daylighting system
US11960190B2 (en) 2019-03-20 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
CN117407965A (en) * 2023-12-14 2024-01-16 北方工程设计研究院有限公司 Method, device, terminal and storage medium for adjusting shutter angle based on parameterization
CN117407965B (en) * 2023-12-14 2024-03-12 北方工程设计研究院有限公司 Method, device, terminal and storage medium for adjusting shutter angle based on parameterization

Also Published As

Publication number Publication date
JP4867287B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867287B2 (en) Solar radiation shielding control device
JP4784259B2 (en) Solar radiation shielding control device
US11473371B2 (en) Sky camera system utilizing circadian information for intelligent building control
US10508490B2 (en) Photo diode sensor-based smart window control device
US10253564B2 (en) Sky camera system for intelligent building control
O'Brien et al. Manually-operated window shade patterns in office buildings: A critical review
Atzeri et al. Comfort metrics for an integrated evaluation of buildings performance
EP3295262B1 (en) Energy-efficient integrated lighting, daylighting, and hvac with controlled window blinds
US20140303788A1 (en) Dynamic façade system consisting of controllable windows, automated shades and dimmable electric lights
EP3295261B1 (en) Energy-efficient integrated lighting, daylighting, and hvac with electrochromic glass
JP6143771B2 (en) Method for sharing motion adaptation schedule to prevent false detection in motion detection based system
TW202026515A (en) Smart curtain system and method of adjusting opening of curtain dynamically
JP4867286B2 (en) Solar radiation shielding control device
GB2583019A (en) Sky camera system for intelligent building control
Vanus et al. The proposal model of energy savings of lighting systems in the smart home care
JP4893534B2 (en) Solar radiation shielding control device
US20210140232A1 (en) Shading device
JP5440872B2 (en) Environment-linked control device
JP4956410B2 (en) Daylight shielding control device
Iwata et al. Discomfort glare index for automated blind control
Mahlabani et al. Lighting program and iranian schools lighting requirements
Phuong et al. A New Approach in Daylighting Design for Buildings
JP2012026607A (en) Guidance system for opening and closing blind
Atzeri et al. AiCARR Journal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3