JP2007096077A - Manufacturing method of wiring board and of display apparatus - Google Patents

Manufacturing method of wiring board and of display apparatus Download PDF

Info

Publication number
JP2007096077A
JP2007096077A JP2005284768A JP2005284768A JP2007096077A JP 2007096077 A JP2007096077 A JP 2007096077A JP 2005284768 A JP2005284768 A JP 2005284768A JP 2005284768 A JP2005284768 A JP 2005284768A JP 2007096077 A JP2007096077 A JP 2007096077A
Authority
JP
Japan
Prior art keywords
wiring
manufacturing
wiring board
pulse width
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005284768A
Other languages
Japanese (ja)
Other versions
JP4760270B2 (en
Inventor
Akira Koshiishi
亮 輿石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005284768A priority Critical patent/JP4760270B2/en
Publication of JP2007096077A publication Critical patent/JP2007096077A/en
Application granted granted Critical
Publication of JP4760270B2 publication Critical patent/JP4760270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a wiring board capable of correcting a short-circuit by avoiding degradation of processing accuracy and damages to other wires. <P>SOLUTION: A short pulse width laser beam is emitted to a wire short circuit 26 to eliminate the circuit 26. The laser beam has an energy density smaller than a processing threshold value of a material configuring a third wire (scanning wire) 22 and greater than a material configuring at least either of a first wire (signal wire) 24 and a second wire (current supply wire) 25. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アクティブマトリクス型の薄膜トランジスタ等を含む配線基板の製造方法と、この配線基板によって構成される表示装置の製造方法に関する。   The present invention relates to a method for manufacturing a wiring substrate including an active matrix thin film transistor and the like, and a method for manufacturing a display device including the wiring substrate.

有機エレクトロルミネッセンス(有機EL)ディスプレイや液晶ディスプレイなどの表示装置は、アクティブマトリクス型の薄膜トランジスタ(TFT;Thin Film Transistor)素子などの配線、例えば信号配線や電流供給配線などの配線を各々複数含む配線基板によって構成され、駆動可能な装置構成とされる。
有機ELによる従来の表示装置の要部の構成例を、図5に示す。この表示装置101では、基体103上に、陽極108とその駆動素子であるTFT素子109を有する画素110が設けられ、この画素110を区画するように、それぞれ独立して縦方向に延在する信号配線106及び電流供給配線107と、これらとは層間絶縁膜105により分離されて横方向に延在する走査配線104(破線図示)とが、それぞれ画素の配列に応じて多数設けられる。
A display device such as an organic electroluminescence (organic EL) display or a liquid crystal display includes a wiring board including a plurality of wirings such as active matrix thin film transistor (TFT) elements, such as signal wirings and current supply wirings. It is comprised by this and it is set as the apparatus structure which can be driven.
FIG. 5 shows a configuration example of a main part of a conventional display device using organic EL. In this display device 101, a pixel 110 having an anode 108 and a TFT element 109 as a driving element thereof is provided on a base 103, and signals extending in the vertical direction independently so as to partition the pixel 110. A large number of wirings 106 and current supply wirings 107, and scanning wirings 104 (shown by broken lines) that are separated from each other by the interlayer insulating film 105 and extend in the lateral direction are provided in accordance with the arrangement of the pixels.

各画素110においては、前述した陽極108上に、少なくとも有機発光材料からなる有機層111と陰極112とがこの順に積層形成され、これによって主たる発光構造が形成される。
このような表示装置101においては、陽極108の駆動が、走査配線104と、信号配線106と、電流供給配線107と、これらの配線により電流供給されるTFT素子109とによってなされ、陰極112との間の通電により、有機層111における発光がなされる。
In each pixel 110, at least an organic layer 111 made of an organic light emitting material and a cathode 112 are stacked in this order on the above-described anode 108, thereby forming a main light emitting structure.
In such a display device 101, the anode 108 is driven by the scanning wiring 104, the signal wiring 106, the current supply wiring 107, and the TFT element 109 that is supplied with current through these wirings. The organic layer 111 emits light by energization therebetween.

この表示装置101における陽極108の駆動、すなわち各配線104,106及び107による画素110の発光動作について、図6に示す単位画素の等価回路を用い、走査配線104をX及びX、信号配線106をY、電流供給配線107をYとして説明する。
この等価回路は、有機ELの発光部ELと、第1のTFTトランジスタ(MOSトランジスタ)Tr1と、第2のTFTトランジスタ(MOSトランジスタ)Tr2と、容量Cとを有して成る。第2のTFTトランジスタTr2の一方の主電極(例えばソース)が信号線Y1に接続され、他方の主電極(例えばドレイン)が容量Cを介して電流供給配線Y2に接続され、ゲート電極が走査線X1に接続される。一方、発光部ELの陽極が第1のTFTトランジスタTr1を介して電流供給配線Y2に接続され、第1のTFTトランジスタTr1のゲート電極が第2のTFTトランジスタTr2と容量Cの接続中点に接続される。
For the driving of the anode 108 in this display device 101, that is, the light emission operation of the pixel 110 by the wirings 104, 106, and 107, the scanning wiring 104 is set to X 1 and X 2 , and the signal wiring using the equivalent circuit of the unit pixel shown in FIG. Description will be made assuming that 106 is Y 1 and the current supply wiring 107 is Y 2 .
The equivalent circuit includes an organic EL light emitting unit EL, a first TFT transistor (MOS transistor) Tr1, a second TFT transistor (MOS transistor) Tr2, and a capacitor C. One main electrode (for example, source) of the second TFT transistor Tr2 is connected to the signal line Y1, the other main electrode (for example, drain) is connected to the current supply wiring Y2 via the capacitor C, and the gate electrode is the scanning line. Connected to X1. On the other hand, the anode of the light emitting portion EL is connected to the current supply wiring Y2 via the first TFT transistor Tr1, and the gate electrode of the first TFT transistor Tr1 is connected to the connection middle point of the second TFT transistor Tr2 and the capacitor C. Is done.

この等価回路の動作は次の通りである。
電流供給配線Y2には常時電流が供給されている。走査線X1に走査パルスが印加され、信号線Y1に所要の信号が供給されると、第2のTFTトランジスタTr2がオン状態になり、容量Cに所要の信号が書き込まれる。この書き込まれた信号に基づいて第1のTFTトランジスタTr1がオン状態になり、信号量に応じた電流が電流供給部Y2を通して発光部ELに供給されて、発光部ELが発光表示される。
このようにして発光動作がなされる単位画素110が、複数個XYマトリックス状に配列されて、表示装置101が構成される。
The operation of this equivalent circuit is as follows.
A current is constantly supplied to the current supply wiring Y2. When a scanning pulse is applied to the scanning line X1 and a required signal is supplied to the signal line Y1, the second TFT transistor Tr2 is turned on and a required signal is written to the capacitor C. Based on the written signal, the first TFT transistor Tr1 is turned on, a current corresponding to the signal amount is supplied to the light emitting unit EL through the current supply unit Y2, and the light emitting unit EL is lit and displayed.
The display device 101 is configured by arranging a plurality of unit pixels 110 that emit light in this manner in an XY matrix.

このような表示装置等を構成する配線基板の製造においては、図7A及び図7Bに示すように、本来互いに分離して設けられる各配線、例えば信号配線106と電流供給配線107との間に、不純物やパターン誤差などによって短絡(配線短絡部112)を生じるおそれがあることから、この短絡を、新たな問題を生じることなく修正する方法が求められてきた。
従来、このような短絡に対する修正方法として、レーザ光照射により短絡箇所に位置する配線材料を除去する方法が、広く用いられてきた。
In the manufacture of a wiring board constituting such a display device or the like, as shown in FIGS. 7A and 7B, each wiring originally provided separately from each other, for example, between the signal wiring 106 and the current supply wiring 107, Since there is a possibility that a short circuit (wiring short circuit part 112) may occur due to impurities or pattern errors, a method for correcting this short circuit without causing a new problem has been demanded.
Conventionally, as a correction method for such a short circuit, a method of removing a wiring material located at the short circuit part by laser beam irradiation has been widely used.

しかし、通常のレーザ光照射による場合、被加工基板となる配線基板が、前述の信号配線や電流供給配線と熱的に連結される位置に、例えば層間絶縁膜を介して下層に設けられる配線(例えば、所謂走査配線)を有する場合、前述の短絡箇所に対する修正は不可能とされている。
これは、配線短絡箇所に対するレーザ光照射で除去した場合、その加工時に発生する熱が絶縁膜や走査配線などにまで拡散してしまうため、図7Cに示すように、この熱によって下層の走査配線が損傷ないし断線してしまうおそれがあることによる。
However, in the case of normal laser light irradiation, a wiring board (ie, a substrate to be processed) is provided at a position where it is thermally connected to the signal wiring and current supply wiring described above, for example, through an interlayer insulating film ( For example, in the case of having so-called scanning wiring), it is impossible to correct the short-circuited portion.
This is because when the wiring short-circuited portion is removed by laser light irradiation, the heat generated during the processing diffuses to the insulating film, the scanning wiring, and the like. Therefore, as shown in FIG. This may cause damage or disconnection.

また、通常のレーザ光に比して熱拡散が少ないとされている、例えば10ピコ秒以下のパルス幅を有する(所謂フェムト秒オーダーの)短パルス幅レーザ光によって修正を行う方法が知られている。
しかし、この短パルス幅レーザ光による方法は、直接の修正対象である基板表面の配線における除去時の溶融や飛散が低減されるものの、通常用いられる短波長帯(例えば390nm)のレーザ光が絶縁膜を通過して下層の走査配線に到達してしまうために、やはり走査配線に損傷ないし断線を生じてしまう。
Also known is a method of correcting with a short pulse width laser beam (so-called femtosecond order) having a pulse width of, for example, 10 picoseconds or less, which is said to have less thermal diffusion than ordinary laser light. Yes.
However, this method using short pulse width laser light reduces melting and scattering at the time of removal on the wiring on the substrate surface that is the object of direct correction, but insulates laser light in a normally used short wavelength band (eg, 390 nm). Since the film passes through the film and reaches the lower scanning wiring, the scanning wiring is also damaged or disconnected.

この問題に対し、焦点位置を基板表面とは異なる位置へと意図的に変えることにより、下地層へ透過するエネルギーを抑えて、損傷を抑制する加工方法が提案されている(例えば特許文献1参照)。
特開2003-1467号公報
In order to solve this problem, there has been proposed a processing method for suppressing damage by intentionally changing the focal position to a position different from the substrate surface, thereby suppressing energy transmitted to the underlayer (see, for example, Patent Document 1). ).
JP2003-1467

しかしながら、特許文献1に記載された手法を用いる場合には、焦点位置が基板表面から外れているために加工精度が著しく低下してしまう。
近年、アクティブマトリクス基板をはじめとする配線基板には、実装密度の向上などを目的として更なる狭ピッチ化(高精細化)が求められていることから、特許文献1に記載の加工方法は、基板製造における修正手法として最適とは言い難い。
However, when the method described in Patent Document 1 is used, the processing accuracy is significantly reduced because the focal position is off the substrate surface.
In recent years, wiring boards such as active matrix substrates have been required to have a narrower pitch (higher definition) for the purpose of improving mounting density and the like. It is hard to say that it is the most suitable as a correction method in substrate manufacturing.

本発明の目的は、加工精度を損なうことなく短絡を修正することが可能な配線基板の製造方法と、この配線基板により構成される表示装置の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the wiring board which can correct a short circuit, without impairing processing precision, and the manufacturing method of the display apparatus comprised by this wiring board.

本発明に係る配線基板の製造方法は、少なくとも第1配線及び第2配線と、層間絶縁膜によって前記第1配線及び前記第2配線とは分離された第3配線とを、それぞれ複数本有する配線基板の製造方法であって、前記第1配線及び前記第2配線の少なくとも一方における短絡箇所を除去する修正工程を有し、前記修正工程における前記除去を、第3配線を構成する材料の加工閾値より小さく、かつ前記第1配線及び前記第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行うことを特徴とする。   The method of manufacturing a wiring board according to the present invention includes a wiring having at least a first wiring and a second wiring, and a plurality of third wirings separated from the first wiring and the second wiring by an interlayer insulating film. A method for manufacturing a substrate, comprising: a correction step of removing a short-circuit portion in at least one of the first wiring and the second wiring, wherein the removal in the correction step is a processing threshold of a material constituting the third wiring It is performed by irradiation with a short pulse width laser beam which is smaller and has an energy density larger than a processing threshold of a material constituting at least one of the first wiring and the second wiring.

本発明に係る表示装置の製造方法は、少なくとも第1配線及び第2配線と、層間絶縁膜によって前記第1配線及び前記第2配線とは分離された第3配線とを、それぞれ複数本有する配線基板によって構成される表示装置の製造方法であって、前記第1配線及び前記第2配線の少なくとも一方における短絡箇所を除去する修正工程を有し、前記修正工程における前記除去を、第3配線を構成する材料の加工閾値より小さく、かつ前記第1配線及び前記第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行うことを特徴とする。   The display device manufacturing method according to the present invention includes at least a first wiring and a second wiring, and a plurality of wirings each including a plurality of third wirings separated from the first wiring and the second wiring by an interlayer insulating film. A manufacturing method of a display device constituted by a substrate, comprising: a correction step of removing a short-circuit portion in at least one of the first wiring and the second wiring, wherein the removal in the correction step is performed using a third wiring. The irradiation is performed by irradiation with a short pulse width laser beam having an energy density that is smaller than a processing threshold of a material to be formed and larger than a processing threshold of a material forming at least one of the first wiring and the second wiring.

本発明に係る配線基板の製造方法によれば、第1配線及び前記第2配線の少なくとも一方における短絡箇所を除去する修正工程を有し、除去を、第3配線を構成する材料の加工閾値より小さく第1配線及び第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行うことから、加工精度を損なうことなく短絡を修正することが可能となる。   According to the method for manufacturing a wiring board according to the present invention, the method includes a correction step of removing a short-circuit portion in at least one of the first wiring and the second wiring, and the removal is performed based on a processing threshold value of a material constituting the third wiring. Since it is performed by irradiation with a short pulse width laser beam having an energy density larger than the processing threshold of the material constituting at least one of the first wiring and the second wiring, it is possible to correct the short circuit without impairing the processing accuracy. Become.

本発明に係る表示装置の製造方法によれば、表示装置を構成する配線基板の製造において、第1配線及び第2配線の少なくとも一方における短絡箇所の除去を、第3配線を構成する材料の加工閾値より小さく、かつ第1配線及び第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行うことから、第3配線の損傷ないし断線を回避して表示装置を製造することが可能となる。   According to the method for manufacturing a display device according to the present invention, in the manufacture of the wiring substrate constituting the display device, the removal of the short-circuited portion in at least one of the first wiring and the second wiring is processed, and the material constituting the third wiring is processed. Since it is performed by irradiation with a short pulse width laser beam having an energy density that is smaller than the threshold and larger than the processing threshold of the material constituting at least one of the first wiring and the second wiring, damage or disconnection of the third wiring is avoided. Thus, the display device can be manufactured.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、本発明に係る製造方法を実施するのに好適な加工装置の一例の構成について説明する。   First, the structure of an example of a processing apparatus suitable for implementing the manufacturing method according to the present invention will be described.

図1A及び図1Bは、それぞれ、本発明に係る配線基板の製造方法に用いて好適な加工装置の一例を示す概略構成図と、この加工装置を構成する局所排気装置の概略断面図を示す。
本実施形態に係る加工装置1は、所謂レーザリペア装置であり、液晶や有機エレクトロルミネッセンスディスプレイなどの表示装置の製造において、短絡箇所をレーザ光照射で除去することによって、所謂欠陥となるおそれのある箇所を修正するために用いられるものである。
1A and 1B respectively show a schematic configuration diagram showing an example of a processing apparatus suitable for use in the method for manufacturing a wiring board according to the present invention, and a schematic cross-sectional view of a local exhaust device constituting the processing apparatus.
The processing device 1 according to the present embodiment is a so-called laser repair device, and in manufacturing a display device such as a liquid crystal or an organic electroluminescence display, there is a risk of causing a so-called defect by removing the short-circuited portion by laser light irradiation. It is used to correct the location.

本実施形態において、加工装置1は、少なくとも図1Aに示すように、パルスレーザ光源部2と、レーザ光による主たる被照射部(加工部)となる局所排気部3を規定する局所排気装置4と、局所排気装置4と共通のチャンバー内に設けられ、かつ被加工基板(配線基板;本実施形態においてはアクティブマトリクス型のTFT素子を含む配線基板)6の配置部となる支持台5とを有する。   In the present embodiment, the processing apparatus 1 includes, as shown in FIG. 1A, at least a pulse laser light source section 2 and a local exhaust apparatus 4 that defines a local exhaust section 3 that is a main irradiated section (processing section) by laser light. A support base 5 provided in a common chamber with the local exhaust device 4 and serving as a placement portion of a substrate to be processed (wiring substrate; a wiring substrate including an active matrix TFT element in this embodiment) 6. .

局所排気装置4には、圧縮した窒素を支持台5に向けて噴射することによって局所排気装置4を静圧浮上させる圧縮ガス供給手段9と、支持台5に向けて噴射された圧縮ガスをリング状の排気流路(吸引溝)15から排気する排気手段10と、局所排気部3にパージガス流路16からパージガスを供給するパージガス供給手段11と、局所排気部3におけるレーザCVDの原料ガスとなる材料ガスを流路17から供給する供給手段12とが設けられる。
圧縮ガス供給手段11からの圧縮ガスは、供給路及び通気孔を構成するリング状の圧縮ガス供給路14及びその開口部に配置された多孔質通気膜13により、局所排気装置4に対向する支持台5に向けて出射され、所謂静圧浮上パッド構成による浮上がなされる。
The local exhaust device 4 includes a compressed gas supply means 9 that statically floats the local exhaust device 4 by injecting compressed nitrogen toward the support base 5, and a ring of compressed gas injected toward the support base 5. The exhaust means 10 for exhausting from the gas exhaust passage (suction groove) 15, the purge gas supply means 11 for supplying the purge gas from the purge gas passage 16 to the local exhaust section 3, and the raw material gas for laser CVD in the local exhaust section 3 Supply means 12 for supplying the material gas from the flow path 17 is provided.
The compressed gas supplied from the compressed gas supply means 11 is supported by the ring-shaped compressed gas supply passage 14 constituting the supply passage and the vent and the porous gas permeable membrane 13 disposed in the opening thereof so as to face the local exhaust device 4. The light is emitted toward the table 5 and floated by a so-called static pressure floating pad configuration.

一方、局所排気部3は、図1Bに示すように、排気流路15の端部を構成する吸引溝によって囲まれた領域内で、透明窓18と配線基板6の配置部との間に規定される。この局所排気部3は、局所排気装置4内の透明窓18から支持台5上に載置された配線基板6までの間で、吸引溝15が形成する同心環に比して内側に、略円筒状空間として形成されると考えられる。
また、局所排気部3には主に、材料ガス供給手段12による原料ガスのほか、パージガス供給手段11によるパージガスが導入され、このパージガスを導入する圧力、速度、位置、角度等を選定することにより、透明窓18の表面における、配線基板6で除去された材料の飛散に伴う付着を抑制することなどが可能となる。
On the other hand, as shown in FIG. 1B, the local exhaust part 3 is defined between the transparent window 18 and the arrangement part of the wiring board 6 in the region surrounded by the suction groove constituting the end part of the exhaust flow path 15. Is done. The local exhaust unit 3 is substantially inwardly formed as compared with the concentric ring formed by the suction groove 15 between the transparent window 18 in the local exhaust device 4 and the wiring substrate 6 placed on the support base 5. It is thought that it is formed as a cylindrical space.
Further, in addition to the raw material gas from the material gas supply means 12 and the purge gas from the purge gas supply means 11 are mainly introduced into the local exhaust part 3, by selecting the pressure, speed, position, angle, etc. for introducing this purge gas. In addition, it is possible to suppress adhesion of the material removed by the wiring board 6 on the surface of the transparent window 18 due to scattering.

この局所排気装置4は、支持台5上の配線基板6に対して相対的に変位可能とされ、材料ガス供給手段12と、パージガス供給手段11と、排気手段10とによって、浮上剛性の向上が図られる。
なお、ここで浮上剛性とは、局所排気装置4と配線基板6との間の吸着力であり、この浮上剛性が十分でない場合には、局所排気装置4の配線基板6に対する高さ(ギャップ)の安定性が不十分となるとか、局所排気装置4の機械的もしくは力学的な安定性が不十分になるなどの問題が生じることから、配線基板6の短絡修正作業を通じて浮上剛性を十分に確保しておくことが望ましい。
The local exhaust device 4 can be displaced relative to the wiring substrate 6 on the support base 5. The material gas supply means 12, the purge gas supply means 11, and the exhaust means 10 can improve the floating rigidity. Figured.
Here, the levitation rigidity is an adsorption force between the local exhaust device 4 and the wiring board 6, and when the levitation rigidity is not sufficient, the height (gap) of the local exhaust apparatus 4 with respect to the wiring board 6. As a result, problems such as insufficient stability of the exhaust and mechanical or mechanical stability of the local exhaust device 4 may occur, so that sufficient levitation rigidity is ensured through a short-circuit correction operation for the wiring board 6. It is desirable to keep it.

次に、本実施形態に係る配線基板の製造方法について、前述の加工装置1を用いて説明する。   Next, the manufacturing method of the wiring board according to the present embodiment will be described using the processing apparatus 1 described above.

まず、支持台5上に、パルスレーザ光源部2からのレーザ光Lの照射対象となる配線基板6を載置した後、局所排気装置4の下へと移動させる。
このとき、予め圧縮ガス供給手段9によって、所要の圧力、例えば0.2MPaの圧縮窒素を圧縮ガス供給路14及び多孔質通気膜13を経て噴射するとともに、排気手段10からの排気を開始して、局所排気装置4を十分安定して静圧浮上させることによって、移動してきた配線基板6との衝突回避を図ることが好ましい。
First, the wiring board 6 to be irradiated with the laser light L from the pulse laser light source unit 2 is placed on the support 5 and then moved below the local exhaust device 4.
At this time, the compressed gas supply means 9 injects compressed nitrogen of a required pressure, for example, 0.2 MPa through the compressed gas supply path 14 and the porous gas permeable membrane 13 and starts exhausting from the exhaust means 10. It is preferable to avoid collision with the wiring board 6 that has moved by causing the local exhaust device 4 to float with sufficient static pressure.

続いて、パージガス供給手段11からアルゴンガスを、所要の流量、例えば50ccm導入するとともに、排気手段10と局所排気部4の主たる圧力調整手段となる局所排気手段(図示せず)によって、最終的に行うレーザ光Lの照射における被照射部となる配線基板6の所定位置の雰囲気、すなわち局所排気部3の雰囲気を十分減圧する。同時に、局所排気部3以外すなわち周辺部の圧力の調整を行って、局所排気装置4と配線基板6との間の高さ及び剛性を確保する。最適な高さは、配線基板6の厚さにもよるが、例えば10μm程度に選定することができる。   Subsequently, the argon gas is introduced from the purge gas supply means 11 at a required flow rate, for example, 50 ccm, and finally, by the local exhaust means (not shown) serving as the main pressure adjusting means of the exhaust means 10 and the local exhaust section 4. The atmosphere at a predetermined position of the wiring board 6 serving as the irradiated portion in the irradiation of the laser beam L to be performed, that is, the atmosphere of the local exhaust portion 3 is sufficiently reduced. At the same time, by adjusting the pressure in the area other than the local exhaust part 3, that is, in the peripheral part, the height and rigidity between the local exhaust apparatus 4 and the wiring board 6 are ensured. The optimum height depends on the thickness of the wiring board 6, but can be selected to be about 10 μm, for example.

続いて、局所排気装置4の透明窓18を通してレーザ照射部を観察しながら、支持台5を移動させて、配線基板6を所望の位置に移動させる。その後、局所排気手段による局所排気部3に対する局所排気を継続しながら、パルスレーザ光源部2から短パルス幅レーザ光Lを出射する。
パルスレーザ光源部2からの短パルス幅レーザ光を、光路を規定するミラー7、レンズ8、及び透過孔19内の透明窓18を介し、局所排気部3に導入して配線基板6上の短絡箇所に照射することにより、この短絡箇所を除去する修正工程を行う。なお、短パルス幅レーザ光のパルス幅は、後述するように、被照射箇所における熱拡散が進行するよりも短くなる間隔として、一般にフェムト秒オーダーとされる10ピコ秒(ps)以下とすることが好ましい。
Subsequently, while observing the laser irradiation portion through the transparent window 18 of the local exhaust device 4, the support base 5 is moved to move the wiring board 6 to a desired position. Thereafter, a short pulse width laser beam L is emitted from the pulse laser light source unit 2 while continuing local pumping of the local pumping unit 3 by the local pumping unit.
A short pulse width laser beam from the pulse laser light source unit 2 is introduced into the local exhaust unit 3 through the mirror 7 that defines the optical path, the lens 8, and the transparent window 18 in the transmission hole 19 to be short-circuited on the wiring board 6. The correction process which removes this short circuit location is performed by irradiating a location. As will be described later, the pulse width of the short pulse width laser light is set to 10 picoseconds (ps) or less, which is generally in the femtosecond order, as an interval that becomes shorter than the thermal diffusion at the irradiated site. Is preferred.

ここで、本実施形態に係る配線基板6は、表示装置の要部を構成する、アクティブマトリクス型のTFT素子を含む配線基板である。本実施形態においては、図2に示すように、例えばガラスによる基体21上に、例えば厚さ100nmのMo(モリブデン)による走査配線22と、例えば厚さ100nmのSi(シリコンナイトライド)による層間絶縁膜23がこの順に積層形成され、この層間絶縁膜23上に、走査配線22とは分離されて、例えば厚さ500nmのAl(アルミニウム)による信号配線24及び電流供給配線25が、それぞれ独立に形成された構成を有する。すなわち、本実施形態においては、配線基板を構成する信号配線(第1配線)24及び電流供給配線25(第2配線)と、走査配線(第3配線)22とが、層間絶縁膜23によって分離されている。 Here, the wiring board 6 according to the present embodiment is a wiring board including an active matrix TFT element that constitutes a main part of the display device. In the present embodiment, as shown in FIG. 2, for example, a scanning wiring 22 made of Mo (molybdenum) having a thickness of 100 nm and a Si x N y (silicon nitride) having a thickness of 100 nm, for example, on a substrate 21 made of glass, for example. Are formed in this order, and the signal wiring 24 and the current supply wiring 25 made of Al (aluminum) having a thickness of 500 nm, for example, are separated from the scanning wiring 22 on the interlayer insulating film 23, respectively. It has an independently formed configuration. That is, in the present embodiment, the signal wiring (first wiring) 24 and the current supply wiring 25 (second wiring) and the scanning wiring (third wiring) 22 constituting the wiring board are separated by the interlayer insulating film 23. Has been.

この配線基板6の表面に生じた、信号配線24から電流供給配線25に渡る配線短絡部(短絡箇所)26に対し、前述した修正工程を行って、配線短絡部26を除去することにより、信号配線24と電流供給配線25の間の電気的短絡を解消することができる。
そして、本実施形態に係る配線基板の製造方法においては、後述するように、短パルス幅レーザ光の照射を、少なくとも被照射箇所において、信号配線24及び電流供給配25による第1配線及び第2配線を構成する材料(Al)の加工閾値より大きく、走査配線22による第3配線を構成する材料(Mo)の加工閾値より小さいエネルギー密度を選定して行うことにより、第3配線(走査配線)22の損傷ないし断線を回避することが可能となる。
The wiring short-circuit portion (short-circuit portion) 26 generated on the surface of the wiring substrate 6 from the signal wiring 24 to the current supply wiring 25 is subjected to the above-described correction process to remove the wiring short-circuit portion 26, thereby An electrical short circuit between the wiring 24 and the current supply wiring 25 can be eliminated.
In the method for manufacturing the wiring board according to the present embodiment, as will be described later, the first pulse and the second wiring by the signal wiring 24 and the current supply wiring 25 are irradiated at least in the irradiated portion with the irradiation of the short pulse width laser light. The third wiring (scanning wiring) is selected by selecting an energy density that is larger than the processing threshold of the material (Al) constituting the wiring and smaller than the processing threshold of the material (Mo) constituting the third wiring by the scanning wiring 22. It becomes possible to avoid the damage or disconnection of 22.

次に、この短パルス幅レーザ光のエネルギー密度の選定と、その検討結果について、図3及び図4を参照して説明する。   Next, the selection of the energy density of the short pulse width laser beam and the examination results will be described with reference to FIGS.

図3は、パルス幅3ピコ秒の短パルス幅レーザの照射における、アルミニウムとモリブデンの、加工閾値の波長依存性を測定した結果である。図中、点で示したものがアルミニウムの測定結果、破線で示したものがモリブデンの測定結果である。
この測定結果から、アルミニウムの場合はレーザ光の波長が長くなるにしたがって加工閾値エネルギーが低下しているのに対し、モリブデンの場合は閾値が0.02J/cmと略一定で、レーザ光の波長の変化による閾値変動が殆ど生じていないことが確認できる。
FIG. 3 shows the results of measuring the wavelength dependence of the processing threshold values of aluminum and molybdenum in irradiation with a short pulse width laser having a pulse width of 3 picoseconds. In the figure, the dot indicates the measurement result of aluminum, and the broken line indicates the measurement result of molybdenum.
From this measurement result, in the case of aluminum, the processing threshold energy decreases as the wavelength of the laser beam increases, whereas in the case of molybdenum, the threshold value is substantially constant at 0.02 J / cm 2 , It can be confirmed that there is almost no threshold fluctuation due to wavelength change.

したがって、アルミニウムにおいてのみ、レーザ光吸収が長波長化に伴って増加することから、少なくとも配線短絡部26が信号配線24及び電流供給配線25の少なくとも一方と同じ材料で構成される場合、短パルス幅レーザ光の波長が700nm未満では、層間絶縁膜23を透過して走査配線22に至るレーザ光によって、走査配線22に損傷ないし断線が生じてしまう。
すなわち、本実施形態におけるように、信号配線24及び電流供給配線25をアルミニウムによって構成し、これらとは層間絶縁膜23によって分離される走査配線22をモリブデンによって構成する場合には、短パルス幅レーザ光の波長を700nm以上とすることによって、0.02J/cm以下のエネルギー密度とし、下層の走査配線22を構成する材料の変質を抑制することが可能となる。
Therefore, only in aluminum, the laser light absorption increases as the wavelength increases, so that at least when the wiring short-circuit portion 26 is made of the same material as at least one of the signal wiring 24 and the current supply wiring 25, the short pulse width When the wavelength of the laser light is less than 700 nm, the scanning wiring 22 is damaged or disconnected by the laser light that passes through the interlayer insulating film 23 and reaches the scanning wiring 22.
That is, as in this embodiment, when the signal wiring 24 and the current supply wiring 25 are made of aluminum and the scanning wiring 22 separated by the interlayer insulating film 23 is made of molybdenum, a short pulse width laser is used. By setting the wavelength of light to 700 nm or more, it is possible to obtain an energy density of 0.02 J / cm 2 or less and to suppress deterioration of the material constituting the lower scanning wiring 22.

図4は、信号配線24及び電流供給配線25を構成するアルミニウムの薄膜の、パルスレーザ照射に対する、溶融厚さのパルス幅依存性を測定した結果である。溶融温度は、アルミニウムの融点に相当する600℃とした。
この測定結果から、レーザ光のパルス幅が35ピコ秒より長い場合に溶融厚さが155nmとなってしまうことが確認できる。また、レーザ光のパルス幅が0.25ピコ秒の場合には略20nm程度であることも確認できる。
FIG. 4 shows the measurement results of the pulse width dependence of the melt thickness on the pulse laser irradiation of the aluminum thin film constituting the signal wiring 24 and the current supply wiring 25. The melting temperature was 600 ° C. corresponding to the melting point of aluminum.
From this measurement result, it can be confirmed that the melt thickness becomes 155 nm when the pulse width of the laser light is longer than 35 picoseconds. It can also be confirmed that when the pulse width of the laser light is 0.25 picoseconds, it is approximately 20 nm.

一般的に、層間絶縁膜23は100nm以上の厚さで形成されるため、層間絶縁膜23の下層にあたる走査配線22に、層間絶縁膜23の上側における溶融の影響が及ぼされないためには、溶融厚さを100nm以下に抑制する必要がある。
したがって、図4の測定結果からは、短パルス幅レーザ光のパルス幅を10ピコ秒以下とすることが好ましいと考えられる。
In general, since the interlayer insulating film 23 is formed with a thickness of 100 nm or more, the scanning wiring 22 which is the lower layer of the interlayer insulating film 23 is not affected by melting above the interlayer insulating film 23. It is necessary to suppress the thickness to 100 nm or less.
Therefore, from the measurement result of FIG. 4, it is considered preferable to set the pulse width of the short pulse width laser light to 10 picoseconds or less.

以上説明したように、本実施形態に係る配線基板の製造方法によれば、少なくとも第1配線及び第2配線と、層間絶縁膜によって第1配線及び第2配線とは分離された第3配線とを有する配線基板の製造において、第1配線及び前記第2配線の少なくとも一方における短絡箇所を除去する修正工程における除去を、第3配線を構成する材料の加工閾値より小さく第1配線及び第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行うことから、加工精度を損なうことなく短絡を修正することが可能となる。
更に、本実施形態に係る製造方法によって得られる配線基板によって表示を構成した場合には、第3配線の損傷ないし断線を回避して、画質などの品質の高い表示装置を、歩留まり良く製造することが可能となるものである。
As described above, according to the method of manufacturing the wiring board according to the present embodiment, at least the first wiring and the second wiring, and the third wiring separated from the first wiring and the second wiring by the interlayer insulating film, In the manufacturing of the wiring board having the first wiring and the second wiring, the removal in the correction step of removing the short-circuited portion in at least one of the first wiring and the second wiring is smaller than the processing threshold of the material constituting the third wiring. This is performed by irradiation with a short pulse width laser beam having an energy density larger than the processing threshold of the material constituting at least one of the above, and therefore it is possible to correct the short circuit without impairing the processing accuracy.
Furthermore, when the display is configured by the wiring board obtained by the manufacturing method according to the present embodiment, the third wiring is prevented from being damaged or disconnected, and a high-quality display device such as an image quality is manufactured with high yield. Is possible.

なお、本発明に係る配線基板の製造方法においては、短パルス幅レーザ光のパルス幅と、波長と、照射エネルギーとのうち、少なくとも1つを、層間絶縁膜の厚さに基づいて選定することが好ましい。これは、前述の溶融厚さをはじめ、層間絶縁膜上へのレーザ光照射による熱的影響が、下層の第3配線(本実施形態では走査配線)に及ぼされる程度が、層間絶縁膜の材料よりも、特にその厚さによって変動するためである。
また、短パルス幅レーザ光の波長については、層間絶縁膜を構成する材料の吸収波長帯に基づいて選定することが好ましい。これは、レーザ光自体が層間絶縁膜に吸収されてしまうと、層間絶縁膜が変質ないし除去されてしまうために、層間絶縁膜によって上下に分離されていた第1配線及び第2配線と第3配線との間で新たに短絡が生じてしまうおそれが生じるためである。
In the method for manufacturing a wiring board according to the present invention, at least one of the pulse width, wavelength, and irradiation energy of the short pulse width laser light is selected based on the thickness of the interlayer insulating film. Is preferred. This is because the material of the interlayer insulating film has such a degree that the thermal influence by the laser beam irradiation on the interlayer insulating film including the above-described melt thickness is exerted on the lower third wiring (scanning wiring in the present embodiment). Rather, it varies depending on its thickness.
The wavelength of the short pulse width laser light is preferably selected based on the absorption wavelength band of the material constituting the interlayer insulating film. This is because when the laser light itself is absorbed by the interlayer insulating film, the interlayer insulating film is altered or removed, so that the first wiring and the second wiring separated from each other by the interlayer insulating film and the third wiring are separated. This is because a new short circuit may occur with the wiring.

<実施例>
本発明の実施例を説明する。
波長780nm、パルス幅3ピコ秒のレーザ光の加工エネルギーを、アルミニウムの加工閾値である0.015J/cm以下になるようにアッテネーターを設定し、加工サイズを10μm□として、スリット位置を配線短絡部に合わせ、所定の条件で複数回レーザー光のパルス照射を行ったところ、モリブデンによる下層の走査配線に影響を生じることなく、層間絶縁膜上の配線短絡部のみを除去して完全に修復することができた。
<Example>
Examples of the present invention will be described.
Set the attenuator so that the processing energy of the laser beam with a wavelength of 780 nm and a pulse width of 3 picoseconds is 0.015 J / cm 2 or less, which is the aluminum processing threshold, set the processing size to 10 μm □, and short-circuit the slit position When laser irradiation is performed multiple times under predetermined conditions in accordance with the area, only the wiring short-circuited portion on the interlayer insulating film is removed and completely repaired without affecting the underlying scanning wiring of molybdenum. I was able to.

これに対し比較例として、波長390nm、パルス幅3ピコ秒のレーザ光の加工エネルギーをアルミニウムの加工閾値である0.04J/cmになるようにアッテネーターを設定し、加工サイズを10μm□として、所定の条件で同様に配線短絡部に対して複数回レーザー光のパルス照射を行ったところ、従来技術による場合(図7C)と同様に、アルミニウムによる配線短絡部だけでなく、層間絶縁膜及び走査配線まで除去され、走査配線が断線してしまうことが確認された。 On the other hand, as a comparative example, the attenuator is set so that the processing energy of the laser beam having a wavelength of 390 nm and a pulse width of 3 picoseconds is 0.04 J / cm 2 which is the processing threshold of aluminum, and the processing size is 10 μm □, Similarly, under the predetermined conditions, pulsed laser light was applied several times to the wiring short-circuited portion. As in the case of the prior art (FIG. 7C), not only the wiring short-circuited portion by aluminum but also the interlayer insulating film and scanning It was confirmed that even the wiring was removed and the scanning wiring was disconnected.

以上、本発明に係る配線基板の製造方法及び表示装置の、製造方法の実施の形態及び実施例を説明したが、以上の実施の形態の説明で挙げた使用材料及びその量、処理時間及び寸法などの数値的条件は好適例に過ぎず、説明に用いた各図における寸法形状及び配置関係も概略的なものである。すなわち、本発明は、この実施の形態に限られるものではない。   The embodiment of the manufacturing method and the example of the wiring board manufacturing method and display device according to the present invention have been described above. However, the materials used, the amount thereof, the processing time, and the dimensions mentioned in the description of the above embodiment. The numerical conditions such as are merely preferred examples, and the dimensional shapes and arrangement relationships in the drawings used for the description are also schematic. That is, the present invention is not limited to this embodiment.

例えば、第3配線は必ずしも配線短絡部の直下に存在する必要はなく、配線短絡部から層間絶縁膜を介して熱的に連結される位置にあれば本発明を適用することが可能である。
また、例えば信号配線と電流供給配線は互いに異なる材料で構成されても良く、この場合には、配線短絡部の除去が可能である限り、少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度のレーザ光を照射すれば良い。
For example, the third wiring does not necessarily need to exist immediately below the wiring short-circuit portion, and the present invention can be applied to a position where the third wiring is thermally connected from the wiring short-circuit portion via the interlayer insulating film.
Further, for example, the signal wiring and the current supply wiring may be made of different materials, and in this case, as long as the wiring short-circuit portion can be removed, the energy density is larger than the processing threshold of the material constituting at least one of them. What is necessary is just to irradiate a laser beam.

また、第1配線〜第3配線を構成する各材料もアルミニウムやモリブデンに限られず、各配線の構成についても、例えばアルミニウムやモリブデンを50%以上含むものをはじめとして、合金や積層構造による構成とすることもできる。
また、例えば加工装置1について、ミラー7などの配置を選定しながら、例えばCW(Continuous Wave;連続発振)レーザ光源を有する装置構成とすることにより、レーザCVD(Chemical Vapor Deposition)による修正と併せた配線基板の製造を行うことも可能となるなど、本発明に係る製造方法は、種々の変形及び変更をなされうる。
In addition, each material constituting the first wiring to the third wiring is not limited to aluminum or molybdenum, and the structure of each wiring is, for example, a structure including an alloy or a laminated structure including 50% or more of aluminum or molybdenum. You can also
Further, for example, with respect to the processing apparatus 1, while selecting the arrangement of the mirror 7 and the like, for example, by adopting an apparatus configuration having a CW (Continuous Wave) laser light source, it is combined with correction by laser CVD (Chemical Vapor Deposition). The manufacturing method according to the present invention can be variously modified and changed such that a wiring board can be manufactured.

A,B それぞれ、本発明に係る配線基板の製造方法に用いて好適な加工装置の一例を示す概略構成図と、この加工装置を構成する局所排気装置の概略断面図である。1A and 1B are a schematic configuration diagram showing an example of a processing apparatus suitable for use in the method for manufacturing a wiring board according to the present invention, and a schematic cross-sectional view of a local exhaust device that constitutes the processing apparatus. 本発明に係る配線基板の製造方法の、一例の説明に供する配線基板の概略断面図である。It is a schematic sectional drawing of the wiring board with which it uses for description of an example of the manufacturing method of the wiring board which concerns on this invention. 本発明に係る配線基板の製造方法の一例における、第1配線及び第2配線と第3配線とを構成する材料の、加工閾値の波長依存性の測定結果を示す模式図である。It is a schematic diagram which shows the measurement result of the wavelength dependence of the process threshold value of the material which comprises the 1st wiring, the 2nd wiring, and the 3rd wiring in an example of the manufacturing method of the wiring board which concerns on this invention. 本発明に係る配線基板の製造方法の一例における、第1配線及び第2配線を構成する材料の、溶融厚さのパルス幅依存性を測定した結果を示す模式図である。It is a schematic diagram which shows the result of having measured the pulse width dependence of the melt thickness of the material which comprises the 1st wiring and the 2nd wiring in an example of the manufacturing method of the wiring board which concerns on this invention. 従来の表示装置の要部の構成例を示す模式的斜視図である。It is a typical perspective view which shows the structural example of the principal part of the conventional display apparatus. 従来の表示装置の画素における駆動及び発光動作の説明に供する回路図である。It is a circuit diagram with which it uses for description of the drive and light emission operation in the pixel of the conventional display apparatus. A,B,C それぞれ、従来の表示装置を構成する配線基板における短絡の説明に供する模式的斜視図と、配線基板における短絡の説明に供する概略断面図と、従来の製造方法による短絡修正手法の説明に供する概略断面図である。Each of A, B, and C is a schematic perspective view for explaining a short circuit in a wiring board constituting a conventional display device, a schematic sectional view for explaining a short circuit in the wiring board, and a short-circuit correcting method by a conventional manufacturing method. It is a schematic sectional drawing with which it uses for description.

符号の説明Explanation of symbols

1・・・加工装置、2・・・パルスレーザ光源部、3・・・局所排気部、4・・・局所排気装置、5・・・支持台、6・・・配線基板(被加工基板)、7・・・ミラー、8・・・レンズ、9・・・圧縮ガス供給手段、10・・・排気手段、11・・・パージガス供給手段、12・・・材料ガス供給手段、13・・・多孔質通気膜、14・・・圧縮ガス供給路、15・・・排気流路(吸引溝)、16・・・パージガス流路、17・・・材料ガス流路、18・・・透明窓、19・・・透過孔、21・・・基体、22・・・走査配線、23・・・層間絶縁膜、24・・・信号配線、25・・・電流供給配線、26・・・配線短絡部、101・・・従来の表示装置、102・・・従来の配線基板、103・・・基体、104・・・走査配線、105・・・層間絶縁膜、106・・・信号配線、107・・・電流供給配線、108・・・陽極、109・・・TFT素子、110・・・画素、111・・・有機層、112・・・陰極、113・・・配線短絡部   DESCRIPTION OF SYMBOLS 1 ... Processing apparatus, 2 ... Pulse laser light source part, 3 ... Local exhaust part, 4 ... Local exhaust apparatus, 5 ... Support stand, 6 ... Wiring board (substrate to be processed) , 7 ... Mirror, 8 ... Lens, 9 ... Compressed gas supply means, 10 ... Exhaust means, 11 ... Purge gas supply means, 12 ... Material gas supply means, 13 ... Porous ventilation membrane, 14 ... compressed gas supply passage, 15 ... exhaust passage (suction groove), 16 ... purge gas passage, 17 ... material gas passage, 18 ... transparent window, DESCRIPTION OF SYMBOLS 19 ... Transmission hole, 21 ... Base | substrate, 22 ... Scanning wiring, 23 ... Interlayer insulation film, 24 ... Signal wiring, 25 ... Current supply wiring, 26 ... Wiring short-circuit part 101 ... Conventional display device, 102 ... Conventional wiring board, 103 ... Substrate, 104 ... Scanning wiring, 105. Interlayer insulating film 106 ... Signal wiring 107 ... Current supply wiring 108 ... Anode 109 ... TFT element 110 ... Pixel 111 ... Organic layer 112 ... Cathode, 113 ... Wiring short-circuit part

Claims (11)

少なくとも第1配線及び第2配線と、層間絶縁膜によって前記第1配線及び前記第2配線とは分離された第3配線とを、それぞれ複数本有する配線基板の製造方法であって、
前記第1配線及び前記第2配線の少なくとも一方における短絡箇所を除去する修正工程を有し、
前記修正工程における前記除去を、第3配線を構成する材料の加工閾値より小さく、かつ前記第1配線及び前記第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行う
ことを特徴とする配線基板の製造方法。
A method of manufacturing a wiring board having at least a first wiring and a second wiring, and a plurality of third wirings separated from the first wiring and the second wiring by an interlayer insulating film, respectively.
A correction step of removing a short-circuit portion in at least one of the first wiring and the second wiring;
The short pulse width having an energy density that is smaller than a processing threshold value of a material constituting the third wiring and larger than a processing threshold value of a material constituting at least one of the first wiring and the second wiring. A method for manufacturing a wiring board, comprising performing irradiation with laser light.
前記配線基板が、アクティブマトリクス型の薄膜トランジスタを含む配線基板である
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method of manufacturing a wiring board according to claim 1, wherein the wiring board is a wiring board including an active matrix type thin film transistor.
前記短パルス幅レーザ光のパルス幅が、10ピコ秒以下である
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1, wherein a pulse width of the short pulse width laser light is 10 picoseconds or less.
前記短パルス幅レーザ光の波長が、700nm以上である
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method of manufacturing a wiring board according to claim 1, wherein a wavelength of the short pulse width laser light is 700 nm or more.
前記第1配線が信号配線であり、前記第2配線が電流供給配線であり、前記第3配線が走査配線である
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1, wherein the first wiring is a signal wiring, the second wiring is a current supply wiring, and the third wiring is a scanning wiring.
前記第1配線を構成する材料がアルミニウムを含む
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1, wherein the material constituting the first wiring includes aluminum.
前記第3配線を構成する材料がモリブデンを含む
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1, wherein the material constituting the third wiring contains molybdenum.
前記短パルス幅レーザ光の照射エネルギーが、被照射箇所において0.02J/cm以下である
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method of manufacturing a wiring board according to claim 1, wherein the irradiation energy of the short pulse width laser light is 0.02 J / cm 2 or less at the irradiated portion.
前記短パルス幅レーザ光照射において、
パルス幅と、波長と、照射エネルギーとのうち、少なくとも1つを、前記層間絶縁膜の厚さに基づいて選定する
ことを特徴とする請求項1に記載の配線基板の製造方法。
In the short pulse width laser light irradiation,
The method for manufacturing a wiring board according to claim 1, wherein at least one of a pulse width, a wavelength, and an irradiation energy is selected based on a thickness of the interlayer insulating film.
前記短パルス幅レーザ光の波長を、前記層間絶縁膜を構成する材料の吸収波長帯に基づいて選定する
ことを特徴とする請求項1に記載の配線基板の製造方法。
The method for manufacturing a wiring board according to claim 1, wherein the wavelength of the short pulse width laser light is selected based on an absorption wavelength band of a material constituting the interlayer insulating film.
少なくとも第1配線及び第2配線と、層間絶縁膜によって前記第1配線及び前記第2配線とは分離された第3配線とを、それぞれ複数本有する配線基板によって構成される表示装置の製造方法であって、
前記第1配線及び前記第2配線の少なくとも一方における短絡箇所を除去する修正工程を有し、
前記修正工程における前記除去を、第3配線を構成する材料の加工閾値より小さく、かつ前記第1配線及び前記第2配線の少なくとも一方を構成する材料の加工閾値より大きいエネルギー密度を有する短パルス幅レーザ光の照射によって行う
ことを特徴とする表示装置の製造方法。
A method for manufacturing a display device comprising a wiring substrate having at least a first wiring and a second wiring, and a plurality of third wirings separated from the first wiring and the second wiring by an interlayer insulating film. There,
A correction step of removing a short-circuit portion in at least one of the first wiring and the second wiring;
The short pulse width having an energy density that is smaller than a processing threshold value of a material constituting the third wiring and larger than a processing threshold value of a material constituting at least one of the first wiring and the second wiring. A method for manufacturing a display device, which is performed by laser light irradiation.
JP2005284768A 2005-09-29 2005-09-29 Wiring board manufacturing method and display device manufacturing method Expired - Fee Related JP4760270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284768A JP4760270B2 (en) 2005-09-29 2005-09-29 Wiring board manufacturing method and display device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284768A JP4760270B2 (en) 2005-09-29 2005-09-29 Wiring board manufacturing method and display device manufacturing method

Publications (2)

Publication Number Publication Date
JP2007096077A true JP2007096077A (en) 2007-04-12
JP4760270B2 JP4760270B2 (en) 2011-08-31

Family

ID=37981402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284768A Expired - Fee Related JP4760270B2 (en) 2005-09-29 2005-09-29 Wiring board manufacturing method and display device manufacturing method

Country Status (1)

Country Link
JP (1) JP4760270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044353A (en) * 2008-08-14 2010-02-25 Samsung Mobile Display Co Ltd Structure for repairing line defect of organic light emitting display and method of repairing it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077198A (en) * 1999-08-31 2001-03-23 Display Technologies Inc Array substrate without short circuit between top wiring and bottom wiring and its manufacture
JP2005118821A (en) * 2003-10-16 2005-05-12 Olympus Corp Ultrashort pulse laser beam machining method
JP2005144526A (en) * 2003-11-19 2005-06-09 Sony Corp Manufacturing method for laser-beam machined product, and laser-beam machining apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077198A (en) * 1999-08-31 2001-03-23 Display Technologies Inc Array substrate without short circuit between top wiring and bottom wiring and its manufacture
JP2005118821A (en) * 2003-10-16 2005-05-12 Olympus Corp Ultrashort pulse laser beam machining method
JP2005144526A (en) * 2003-11-19 2005-06-09 Sony Corp Manufacturing method for laser-beam machined product, and laser-beam machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044353A (en) * 2008-08-14 2010-02-25 Samsung Mobile Display Co Ltd Structure for repairing line defect of organic light emitting display and method of repairing it
US8227977B2 (en) 2008-08-14 2012-07-24 Samsung Mobile Display Co., Ltd. Structure for repairing a line defect of an organic light emitting display and a method of repairing the defect

Also Published As

Publication number Publication date
JP4760270B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US9276212B2 (en) Method of cutting flexible display device and method of fabricating flexible display device using the same
US8013270B2 (en) Laser processing apparatus, laser processing method, manufacturing method of wiring substrate, manufacturing method of display apparatus and wiring substrate
JP6764305B2 (en) Laser irradiation device, semiconductor device manufacturing method, and laser irradiation device operation method
JP7034817B2 (en) Manufacturing method of laser processing equipment and semiconductor equipment
JP4334308B2 (en) Wiring correction device
JP4403427B2 (en) LASER PROCESSING DEVICE, LASER PROCESSING METHOD, WIRING BOARD MANUFACTURING METHOD, DISPLAY DEVICE MANUFACTURING METHOD, AND WIRING BOARD
JP2010185928A (en) Method of manufacturing display device and display device
US11158841B2 (en) Method for manufacturing organic el display device
JP4760270B2 (en) Wiring board manufacturing method and display device manufacturing method
JP4784372B2 (en) Wiring board manufacturing method, display device manufacturing method, and wiring board manufacturing apparatus
JP2004342785A (en) Method of manufacturing semiconductor, and semiconductor manufacturing equipment
JP2011165717A (en) Display device and method of manufacturing the same
KR101894330B1 (en) Method for Manufacturing Flexible Display
JP2008110401A (en) Laser processing apparatus, laser processing method, method of manufacturing wiring substrate, method of manufacturing display apparatus and wiring substrate
JP4992205B2 (en) Processing method, display device, and semiconductor device
JP5090690B2 (en) Semiconductor thin film manufacturing method, thin film transistor manufacturing method, and semiconductor thin film manufacturing apparatus
JP2009042680A (en) Tft substrate and method of manufacturing the same
JP2006278728A (en) Conductive film modifying method, laminated structure, and thin film transistor
WO2021038950A1 (en) Laser processing device and method for manufacturing semiconductor device
JP2009139871A (en) Active matrix display device and method for manufacturing the active matrix display device
JP2007204818A (en) Wiring board manufacturing method, and display device manufacturing method
JP4779507B2 (en) Thin film pattern forming apparatus and thin film pattern forming method
JP2009216757A (en) Display, and method of manufacturing the same
KR100852119B1 (en) Method of forming silicon layer
JP2007310310A (en) Method of forming conductive film, method of manufacturing wiring substrate and method of manufacturing display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees