JP2007090137A - Catalyst for steam reforming of hydrocarbon - Google Patents

Catalyst for steam reforming of hydrocarbon Download PDF

Info

Publication number
JP2007090137A
JP2007090137A JP2005279436A JP2005279436A JP2007090137A JP 2007090137 A JP2007090137 A JP 2007090137A JP 2005279436 A JP2005279436 A JP 2005279436A JP 2005279436 A JP2005279436 A JP 2005279436A JP 2007090137 A JP2007090137 A JP 2007090137A
Authority
JP
Japan
Prior art keywords
catalyst
hydrocarbon
steam reforming
treatment
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005279436A
Other languages
Japanese (ja)
Other versions
JP4654413B2 (en
Inventor
Masahiko Demura
Toshiyuki Hirano
Tsugi Kyo
Yan Ma
雅彦 出村
敏幸 平野
亜 許
雁 馬
Original Assignee
National Institute For Materials Science
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, 独立行政法人物質・材料研究機構 filed Critical National Institute For Materials Science
Priority to JP2005279436A priority Critical patent/JP4654413B2/en
Publication of JP2007090137A publication Critical patent/JP2007090137A/en
Application granted granted Critical
Publication of JP4654413B2 publication Critical patent/JP4654413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for steam reforming of a hydrocarbon which has high activities and excellent heat resistance properties. <P>SOLUTION: The catalyst for stem reforming of the hydrocarbon uses a Ni<SB>3</SB>Al intermettalic compound or a material subjected to the acid treatment and/or alkaline treatment of the same as a main component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化水素と水とを原料として水素を製造するための水蒸気改質用触媒に関するものである。   The present invention relates to a steam reforming catalyst for producing hydrogen using hydrocarbons and water as raw materials.
水素を燃焼すると水しか発生しないことから、地球環境の保全という観点からは、水素は理想的な燃料といえる。最近では、特に燃料電池の燃料として水素が注目されている。このような燃料としての水素の製造方法としてはこれまでに様々なものが知られている。そのうちの最も重要な方法として、メタンなどの炭化水素(CnHm)と水蒸気との反応により水素及び合成ガスを製造する方法があり、水蒸気改質反応とよばれている。その総括反応式は次の式で示され、大きな吸熱を伴う反応である。 Since only water is generated when hydrogen is burned, hydrogen is an ideal fuel from the viewpoint of conservation of the global environment. Recently, hydrogen has attracted attention as a fuel for fuel cells. Various methods for producing hydrogen as such a fuel have been known so far. Among them, the most important method is a method of producing hydrogen and synthesis gas by a reaction between a hydrocarbon such as methane (C n H m ) and steam, which is called a steam reforming reaction. The general reaction formula is shown by the following formula, and is a reaction with a large endotherm.
CnHm + nH2O → nCO +(n+m/2)H2
従って、熱力学的には高温ほど有利であり、炭化水素の種類にもよるが、通常は700℃
以上の反応温度が必要であるとされている。このことから、炭化水素の水蒸気改質用触媒には、高い活性と共に、優れた耐熱性、高温安定性及び一定の高温強度が求められている。従来、このような炭化水素の水蒸気改質用の触媒としては、担体上に担持された遷移金属が一般的に用いられている。例えば、メタン(CH4)の水蒸気改質に対する最も高い触
媒活性を示す金属としてはRh,Ru,Ni,Ir,Pd,Pt,Reが知られている。なかでも、貴金属が最も多く使用されている。ただ、貴金属の場合には、コストが高いという問題がある。他方で、Niは比較的に安く、工業的によく使用されているが、活性が十分ではなく、耐熱性が低いという問題がある。そのため、貴金属やNiに代わる炭化水素改質用の触媒として、高活性、低コストで、耐熱性の良好な新しい触媒の開発が必要とされていた。
C n H m + nH 2 O → nCO + (n + m / 2) H 2
Therefore, thermodynamically, the higher the temperature, the more advantageous and usually 700 ° C, depending on the type of hydrocarbon.
It is said that the above reaction temperature is required. For this reason, hydrocarbon steam reforming catalysts are required to have high activity, excellent heat resistance, high-temperature stability, and constant high-temperature strength. Conventionally, a transition metal supported on a carrier is generally used as a catalyst for such steam reforming of hydrocarbons. For example, Rh, Ru, Ni, Ir, Pd, Pt, and Re are known as metals exhibiting the highest catalytic activity for steam reforming of methane (CH4). Among them, precious metals are most frequently used. However, in the case of precious metals, there is a problem that the cost is high. On the other hand, Ni is relatively cheap and often used industrially, but there is a problem that the activity is not sufficient and the heat resistance is low. Therefore, development of a new catalyst with high activity, low cost and good heat resistance has been required as a catalyst for hydrocarbon reforming in place of noble metals and Ni.
一方、金属間化合物Ni3Alは、通常の材料と異なり、降伏強度が正の温度依存性を示し
(強度の逆温度依存性と呼ばれている)、優れた高温特性、耐摩耗性を持っていることから、このような高温特性等を利用してNi3Al系金属間化合物を触媒用成形体として応用す
ることが提案されている(特許文献1)。
On the other hand, the intermetallic compound Ni 3 Al, unlike ordinary materials, has a positive temperature dependence of yield strength (called reverse temperature dependence of strength), and has excellent high-temperature characteristics and wear resistance. Therefore, it has been proposed to apply a Ni 3 Al intermetallic compound as a molded article for a catalyst using such high temperature characteristics (Patent Document 1).
また、最近、本出願の発明者らは、Ni3Al金属間化合物はメタノール改質反応に高い触
媒活性を示すことを見出してもいる(特許文献2)。
特開昭55−88856号公報 PCT/JP2005/001861
Recently, the inventors of the present application have also found that Ni 3 Al intermetallic compounds exhibit high catalytic activity in methanol reforming reaction (Patent Document 2).
JP-A-55-88856 PCT / JP2005 / 001861
本発明は以上の通りの背景よりなされたものであって、従来の問題点を解消し、しかも、メタノール改質反応におけるNi3Al金属間化合物についての高い触媒活性として発明者
らによって得られている知見を踏まえて、高活性、低コスト、優れた耐熱性を有する、炭化水素の水蒸気改質用の新しい触媒と、これを用いた水蒸気改質方法を提供することを課題としている。
The present invention has been made based on the background as described above, solves the conventional problems, and has been obtained by the inventors as a high catalytic activity for the Ni 3 Al intermetallic compound in the methanol reforming reaction. Based on these findings, it is an object to provide a new catalyst for steam reforming of hydrocarbons having high activity, low cost, and excellent heat resistance, and a steam reforming method using the same.
本発明は、上記の課題を解決するものとして、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.
1、耐熱性、活性に優れ、かつ貴金属を含まない金属間化合物Ni3Alを含有する炭化水
素の水蒸気改質用触媒。
1. A steam reforming catalyst for hydrocarbons that contains the intermetallic compound Ni 3 Al, which has excellent heat resistance and activity and does not contain precious metals.
2、共存成分とともにNi3Al金属間化合物を含有し、共存成分を含めた全体の元素組成
(重量%)がNi 77-95%、Al 5-23%である炭化水素の水蒸気改質用触媒。
2. A catalyst for steam reforming of hydrocarbons containing Ni 3 Al intermetallic compound together with coexisting components, and the total elemental composition (wt%) including coexisting components is 77-95% Ni and 5-23% Al .
3、触媒表面にNiナノ粒子が存在する炭化水素の水蒸気改質用触媒。   3. Hydrocarbon steam reforming catalyst with Ni nanoparticles on the catalyst surface.
4、溶製したインゴットの切屑と機械研磨で得られた粉末もしくは回転ディスクアトマイズ法により作製された粉末形状を有している炭化水素の水蒸気改質用触媒。   4. A catalyst for steam reforming of hydrocarbons having a powder shape produced by a powder obtained by mechanical polishing and a powder obtained by mechanical polishing, or a chip of a melted ingot.
5、アルカリ及び酸処理されていることを特徴とする炭化水素の水蒸気改質用触媒。   5. Hydrocarbon steam reforming catalyst which is treated with alkali and acid.
6、上記いずれかの触媒を用いる炭化水素の水蒸気改質方法。   6. A method for steam reforming hydrocarbon using any of the above catalysts.
7、触媒をあらかじめ水素還元処理した後に、炭化水素と水蒸気と混合ガスを前記触媒と接触させて水素を製造する炭化水素の水蒸気改質方法。   7. A hydrocarbon steam reforming method in which hydrogen is produced by bringing a hydrocarbon, steam and a mixed gas into contact with the catalyst after hydrogen reduction treatment of the catalyst in advance.
本発明によって、炭化水素の水蒸気改質反応において、広い温度範囲で高活性、優れた耐熱性を持つNi3Al金属間化合物からなる触媒が提供され、高効率、低コストの水素製造
プロセスに活用することができる。
The present invention provides a catalyst comprising a Ni 3 Al intermetallic compound having high activity and excellent heat resistance in a wide range of temperature in a hydrocarbon steam reforming reaction, which is utilized in a highly efficient and low-cost hydrogen production process. can do.
本発明においては、金属間化合物Ni3Alを主な成分とするものであるが、単独相として
の組成範囲はNi 85-88重量%、Al 12-15重量%である。このNi3Al金属間化合物を含有する
触媒では、他種のものを共存させていてもよく、例えばNiAl、Ni5Al3、Niなどが共存されていてもよい。これらの他種成分を共存する場合には、全体としての組成範囲はNi 77-95重量%、Al 5-23重量%となる。
In the present invention, the main component is the intermetallic compound Ni 3 Al, but the composition range as a single phase is 85 to 88% by weight of Ni and 12 to 15% by weight of Al. In the catalyst containing this Ni 3 Al intermetallic compound, other types may coexist, for example, NiAl, Ni 5 Al 3 , Ni, etc. may coexist. When these other components coexist, the composition range as a whole is Ni 77-95% by weight and Al 5-23% by weight.
以上のNi3Al金属間化合物を含有する触媒は、各種の形状のものとして使用してよいか
、触媒の活性、その調製方法、取扱い性等の観点からは粒状物とすることが好ましく考慮される。この場合、たとえば、回転ディスクアトマイズ法やインゴット溶製後の切削と機械的研磨等により作製することができる。
The above-mentioned catalyst containing Ni 3 Al intermetallic compound may be used in various shapes, or it is preferably considered to be a granular material from the viewpoint of the activity of the catalyst, its preparation method, handleability, etc. The In this case, for example, it can be produced by a rotating disk atomizing method, cutting after ingot melting, mechanical polishing, or the like.
また、本発明では、Ni3Alの表面形状、組成を制御することによって、触媒活性を高め
るために、あらかじめアルカリや酸で表面処理することが有効でもある。アルカリ処理は、一般的には、無機又は有機の塩基の水溶液もしくは有機溶媒の溶液を用いることができる。処理温度については、通常は、室温−100℃の範囲とすることができる。酸処理には
、無機酸または有機酸、それらの水溶液や有機溶液を用いることができる。処理温度としては、室温−50℃程度までとすることが一般的に考慮される。
In the present invention, it is also effective to perform surface treatment with an alkali or an acid in advance in order to increase the catalytic activity by controlling the surface shape and composition of Ni 3 Al. In general, the alkali treatment can use an aqueous solution of an inorganic or organic base or a solution of an organic solvent. About processing temperature, it can usually be set as the range of room temperature-100 degreeC. In the acid treatment, an inorganic acid or an organic acid, an aqueous solution or an organic solution thereof can be used. As the processing temperature, it is generally considered that the processing temperature is up to about room temperature-50 ° C.
上記のアルカリ処理の場合には、Alだけが溶出し、Niが殆んど溶出しない。たとえばNaOH水溶液を用いる場合には、その濃度は10%以上、望ましくは20-30%であり、また処理温度60-100℃、処理時間1時間以上が望ましい。酸処理の場合、AlとNiとも溶出するので、
高濃度、長時間処理すると、金属間化合物Ni3Alの損失が増えることに注意する必要があ
る。例えば、HCl水溶液の場合には、濃度20%以下、処理温度20℃付近、処理時間2時間以
下が望ましい。HNO3水溶液の場合には、濃度5%以下、処理温度20℃付近、処理時間2時間
以下が望ましい。
In the case of the above alkali treatment, only Al is eluted and Ni is hardly eluted. For example, when NaOH aqueous solution is used, the concentration is 10% or more, preferably 20-30%, and the treatment temperature is 60-100 ° C. and the treatment time is 1 hour or more. In the case of acid treatment, both Al and Ni elute,
It should be noted that the loss of the intermetallic compound Ni 3 Al increases when the treatment is performed at a high concentration for a long time. For example, in the case of an aqueous HCl solution, it is desirable that the concentration is 20% or less, the treatment temperature is around 20 ° C., and the treatment time is 2 hours or less. In the case of HNO 3 aqueous solution, it is desirable that the concentration is 5% or less, the treatment temperature is around 20 ° C., and the treatment time is 2 hours or less.
また、表面処理の効果を高めるため、酸とアルカリ処理を組み合わせ、二段階の表面処理を行うことも有効である。特に、まず、酸処理し、次いでアルカリ処理することが好適
に考慮される。酸処理により表面のAlとNiを溶出することにより、表面積を増やす。続いて、アルカリ処理により表面のAlを溶出することにより、表面積をさらに増加するとともに、表面のNi活性点を増加する。これにより触媒活性を著しく改善することが可能となる。
In order to enhance the effect of the surface treatment, it is also effective to perform a two-step surface treatment by combining an acid and an alkali treatment. In particular, it is preferable to first consider acid treatment and then alkali treatment. The surface area is increased by eluting the surface Al and Ni by acid treatment. Subsequently, by eluting the surface Al by alkali treatment, the surface area is further increased and the Ni active sites on the surface are increased. As a result, the catalytic activity can be remarkably improved.
以上のとおりの本発明の触媒は、炭化水素の水蒸気改質反応による水素の製造に用いられる。この場合の炭化水素は、メタンをはじめとする各種の炭化水素:CnHmであってよく、たとえば、メタン、エタン、プロパン、ブタン、エチレン、プロピレン等々であってよい。炭化水素と水蒸気の割合は、炭化水素の種類によっても相違するが、一般的にはモル比として、H2O:炭化水素が、50〜0.5:1の範囲とし、反応温度は、400℃〜950℃程度が考慮される。500℃〜750℃程度の比較的低い反応温度においても触媒の作用は高活性なものとなる。 The catalyst of the present invention as described above is used for production of hydrogen by a hydrocarbon steam reforming reaction. The hydrocarbon in this case may be various hydrocarbons including methane: CnHm, for example, methane, ethane, propane, butane, ethylene, propylene, and the like. Although the ratio of hydrocarbon and water vapor varies depending on the type of hydrocarbon, generally, the molar ratio is H 2 O: hydrocarbon in the range of 50 to 0.5: 1, and the reaction temperature is 400 ° C. to About 950 ° C is considered. Even at a relatively low reaction temperature of about 500 ° C to 750 ° C, the action of the catalyst becomes highly active.
反応は、バッチ式あるいは流通式のいずれでもよく、流通式の場合には、固定床、流動床等の各種の方式であってよい。   The reaction may be either a batch type or a flow type, and in the case of the flow type, various methods such as a fixed bed and a fluidized bed may be used.
なお、反応に際しては、触媒をあらかじめ水素還元処理しておくことも有効である。   In the reaction, it is also effective to subject the catalyst to a hydrogen reduction treatment in advance.
以下、本発明の例を具体的に記述する。もちろん、以下の例によって発明が限定されることはない。
<実施例1>
まず、回転ディスクアトマイズ法で組成86.91重量%Ni-13.09重量%AlのNi3Al粉末試料を作製した。BET法を用いて比表面積を測定した結果、粒子直径32μm以下の粉末の比
表面積は1.3m/g;粒子直径32-75μmの粉末の比表面積は0.4m/g;粒子直径75-150μmの粉末の比表面積は0.1m/gであった。
Examples of the present invention are specifically described below. Of course, the invention is not limited by the following examples.
<Example 1>
First, a Ni 3 Al powder sample having a composition of 86.91 wt% Ni-13.09 wt% Al was prepared by a rotating disk atomization method. As a result of measuring the specific surface area using the BET method, the specific surface area of the powder having a particle diameter of 32 μm or less is 1.3 m 2 / g; the specific surface area of the powder having a particle diameter of 32-75 μm is 0.4 m 2 / g; The specific surface area of this powder was 0.1 m 2 / g.
次に、作製したNi3Al粉末に対して以下の各種のアルカリ処理と酸処理を行った。
(1)アルカリ処理:上記粒子直径75-150μmのNi3Al粉末3gを120gの20%NaOH水溶液に加え、93℃の温度で攪拌しながら5時間放置した。その後アルカリ水溶液をデカンテーションにより除去した。沈殿物を適量な蒸留水で洗浄し、洗液をデカンテーションにより除去した。この操作を洗液が中性になるまで繰返した。得られた沈殿生成物を脱水した。脱水後50℃で5時間乾燥して、Ni3Al触媒を調製した。ICP発光分光分析の結果、このNaOH水溶液により、当初のNi3Al中のAl量の約2.2%(重量比)が溶出されて除去されたこ
とがわかった。一方、Niは溶出していなかった。
(2)HNO3水溶液処理:回転ディスクアトマイズ法で作製した粒子直径75-150μmのNi3Al粉末3gを120gの2%のHNO3水溶液に加え、室温で攪拌しながら15分放置した。その後NHO3水溶液をデカンテーションにより除去した。さらに、沈殿物を適量な蒸留水で洗浄し、洗液をデカンテーションにより除去した。この操作を洗液が中性になるまで繰返した。得られた沈殿生成物を脱水した。脱水後50℃で5時間乾燥して、Ni3Al触媒を調製した。
ICP発光分光分析の結果、このHNO3水溶液により、当初のNi3Al中のNi量の約6.6%、Al量の約7.1%(重量比)を溶出し除去されたことがわかった。
(3)酸処理とアルカリ処理との二段階表面処理:まず、Ni3Al粉末試料を上記(2)のHNO3水溶液処理により処理し、続いて、酸処理した粉末を上記(1)によってアルカリ処
理した。
Next, the following various alkali treatments and acid treatments were performed on the produced Ni 3 Al powder.
(1) Alkali treatment: 3 g of Ni 3 Al powder having a particle diameter of 75-150 μm was added to 120 g of 20% NaOH aqueous solution and left standing at 93 ° C. for 5 hours with stirring. Thereafter, the alkaline aqueous solution was removed by decantation. The precipitate was washed with an appropriate amount of distilled water, and the washing was removed by decantation. This operation was repeated until the washing liquid became neutral. The resulting precipitated product was dehydrated. After dehydration, the mixture was dried at 50 ° C. for 5 hours to prepare a Ni 3 Al catalyst. As a result of ICP emission spectroscopic analysis, it was found that about 2.2% (weight ratio) of Al in the original Ni 3 Al was eluted and removed by this NaOH aqueous solution. On the other hand, Ni was not eluted.
(2) HNO 3 aqueous solution treatment: 3 g of Ni 3 Al powder with a particle diameter of 75-150 μm prepared by the rotating disk atomizing method was added to 120 g of 2% HNO 3 aqueous solution, and left at room temperature for 15 minutes with stirring. Thereafter, the NHO 3 aqueous solution was removed by decantation. Further, the precipitate was washed with an appropriate amount of distilled water, and the washing solution was removed by decantation. This operation was repeated until the washing liquid became neutral. The resulting precipitated product was dehydrated. After dehydration, the mixture was dried at 50 ° C. for 5 hours to prepare a Ni 3 Al catalyst.
As a result of ICP emission spectroscopic analysis, it was found that about 6.6% of the Ni content in the original Ni 3 Al and about 7.1% (weight ratio) of the Al content were eluted and removed by this HNO 3 aqueous solution.
(3) Two-stage surface treatment of acid treatment and alkali treatment: First, a Ni 3 Al powder sample is treated by the HNO 3 aqueous solution treatment of (2) above, and then the acid-treated powder is alkalinized by (1) above. Processed.
図1はSEMにより回転ディスクアトマイズ法で作製したNi3Al粉末及び上記の3種類
の表面処理(1)(2)(3)した試料の表面形態の観察結果である。酸処理及びアルカリ処理により表面組織、形態が大きく変化したことがわかる。図2は酸処理とアルカリ処理との二段階表面処理した試料の表面微細組織を詳しく観察した結果である。数10nm以下
の微細粒子が形成されていることがわかる。図3はTEM−EDSによりこれらのナノ粒子の組成は主にNiである分析結果を示す。図4は回転ディスクアトマイズ法で作製したNi3Al粉
末及び上記の3種類の表面処理(1)(2)(3)した試料のXRD分析結果である。すべての試料においては、Ni3Alのピークだけが検出された。これにより、これらの表面処
理の結果、Ni3Alの表面層のごく一部のAlとNiが溶出されるだけで、全体的にはNi3Al構造が保持されていることがわかる。
<実施例2>
回転ディスクアトマイズ法で作製した粉末試料(未処理試料)及び上記実施例1での(1)、(2)、(3)の方法で処理した3種類の粉末試料を触媒として、触媒反応装置(固定床流通式反応装置)で600℃1時間水素還元処理を行った後、常圧、600℃から950℃
までの各温度でメタンの水蒸気改質反応(H2O:CH4=3.5mol:1mol)を行った。その結
果を図5で示す。水素発生速度(ml min-1 g-cat-1)は酸処理とアルカリ処理との二段階処理した試料の場合、600℃から高い水素発生速度が得られることが確認された。
<実施例3>
実施例1の(3)の方法で二段階処理した試料を用いて、600℃、700℃、900℃でそれ
ぞれ10時間、メタンの水蒸気改質反応を続け、Ni3Alの触媒活性の経時変化を調べた。図
6−8は測定した各生成ガスの生成速度を反応時間の関数として示した結果である。600
℃、700℃では、10時間反応しても、触媒活性の劣化が少ないことがわかった。また、900℃では、触媒活性が劣化するが、10時間反応しても、100ml min-1g-cat-1以上の水素発生速度が得られることがわかった。また、各温度で、主にH2,CO,CO2,CH4,H2Oが生成し
ていることが確認された。これにより、Ni3Alは主に以下のメタンの水蒸気改質反応、一
酸化炭素シフト反応に活性を示すことが分かる。
FIG. 1 shows the observation results of the surface morphology of Ni 3 Al powder produced by SEM with a rotating disk atomization method and the above three types of surface treatments (1), (2) and (3). It can be seen that the surface texture and morphology were greatly changed by acid treatment and alkali treatment. FIG. 2 shows the result of detailed observation of the surface microstructure of the sample subjected to the two-stage surface treatment of acid treatment and alkali treatment. It can be seen that fine particles of several tens of nm or less are formed. FIG. 3 shows an analysis result by TEM-EDS in which the composition of these nanoparticles is mainly Ni. FIG. 4 shows the XRD analysis results of the Ni 3 Al powder produced by the rotating disk atomization method and the above-mentioned three types of surface treatments (1), (2), and (3). In all samples, only the Ni 3 Al peak was detected. Thus, as a result of these surface treatments, it can be seen that only a small portion of Al and Ni in the surface layer of Ni 3 Al is eluted, and the Ni 3 Al structure is maintained as a whole.
<Example 2>
Using a powder sample (untreated sample) produced by the rotating disk atomization method and the three types of powder samples treated by the methods (1), (2) and (3) in Example 1 above as a catalyst, a catalytic reactor ( After hydrogen reduction treatment at 600 ° C for 1 hour in a fixed bed flow reactor, normal pressure, 600 ° C to 950 ° C
The steam reforming reaction of methane (H 2 O: CH 4 = 3.5 mol: 1 mol) was performed at each temperature up to. The result is shown in FIG. As for the hydrogen generation rate (ml min -1 g-cat -1 ), it was confirmed that a high hydrogen generation rate was obtained from 600 ° C. in the case of a sample subjected to two-step treatment of acid treatment and alkali treatment.
<Example 3>
Using the sample treated in two steps by the method (3) of Example 1, the steam reforming reaction of methane was continued for 10 hours at 600 ° C., 700 ° C., and 900 ° C., respectively, and the catalyst activity of Ni 3 Al was changed over time. I investigated. FIG. 6-8 shows the results of the measured production rate of each product gas as a function of reaction time. 600
At ℃ and 700 ℃, it was found that there was little deterioration in the catalytic activity even after reaction for 10 hours. Moreover, although the catalytic activity deteriorated at 900 ° C., it was found that a hydrogen generation rate of 100 ml min −1 g-cat −1 or more could be obtained even after reaction for 10 hours. In addition, it was confirmed that H 2 , CO, CO 2 , CH 4 , and H 2 O were mainly produced at each temperature. This indicates that Ni 3 Al is mainly active in the following methane steam reforming reaction and carbon monoxide shift reaction.
(1)メタンの水蒸気改質反応: CH4+ H2O → 3H2 + CO
(2)一酸化炭素シフト反応: CO + H2O → CO2 + H2
また、図9は、600℃、700℃、900℃での定温反応中のメタンの転化率の結果を示して
いる。この結果から、700℃の場合、メタン転化率が最も良好であることがわかる。
(1) Steam reforming reaction of methane: CH 4 + H 2 O → 3H 2 + CO
(2) Carbon monoxide shift reaction: CO + H 2 O → CO 2 + H 2
FIG. 9 shows the results of methane conversion during the constant temperature reaction at 600 ° C., 700 ° C., and 900 ° C. This result shows that the methane conversion is the best at 700 ° C.
SEMにより回転ディスクアトマイズ法で作製したNi3Al粉末及び種々の表面処理した試料の表面形態の観察結果であって、(a)アトマイズ法で作製した未処理Ni3Al粉末試料;(b)20%NaOH水溶液により93℃5時間処理した試料;(c)2%HNO3水溶液により室温15分処理した試料;(d)二段階処理(上記(b)+(c)処理)した試料について示したものである。The observation results of the surface morphology of Ni 3 Al powder and various surface-treated samples prepared by rotating disk atomization method by SEM, (a) untreated Ni 3 Al powder sample prepared by atomization method; (b) 20 Sample treated at 93 ° C. for 5 hours with% NaOH aqueous solution; (c) Sample treated at room temperature for 15 minutes with 2% aqueous HNO 3 solution; (d) Sample treated in two steps (above (b) + (c) treatment) Is. 図1の(d)二段階処理した試料の微細組織の高倍率観察結果であって、数10nm以下の微細粒子が密に生成していることを示している。FIG. 1 (d) is a result of high-magnification observation of the fine structure of the sample subjected to the two-stage treatment, and shows that fine particles of several tens of nm or less are densely formed. 図1の(d)二段階処理した試料の(a)TEMによる微細組織の解析結果であって、(a)表面に生成した微細粒子と;(b)EDS分析によりその微細粒子の組成分析結果であって、主にNiであることを示している。Fig. 1 (d) Two-stage treated sample (a) Fine structure analysis result by TEM, (a) Fine particles generated on the surface; (b) Composition analysis result of the fine particles by EDS analysis And it shows that it is mainly Ni. 回転ディスクアトマイズ法で作製したNi3Al粉末及び種々の表面処理した試料のXRD分析結果であって、すべての試料に対して、Ni3Alのピークだけが検出されていることを示している。The XRD analysis results of the Ni 3 Al powder and various surface-treated samples prepared by the rotating disk atomization method show that only the Ni 3 Al peak is detected for all samples. メタンの水蒸気改質反応させる際、測定した水素発生速度を反応温度の関数として示した図であって、(1)アトマイズ法で作製した未処理Ni3Al粉末試料;(2)20%NaOH水溶液により93℃5時間処理した試料;(3)2%HNO3水溶液により室温15分処理した試料;(4)二段階処理(上記(2)+(3)処理)した試料について示している。The figure shows the measured hydrogen evolution rate as a function of reaction temperature when steam reforming reaction of methane, (1) untreated Ni 3 Al powder sample prepared by atomization method; (2) 20% NaOH aqueous solution Samples treated at 93 ° C. for 5 hours with (3) Samples treated with 2% HNO 3 aqueous solution for 15 minutes at room temperature; (4) Samples treated in two stages (the above (2) + (3) treatment). 二段階処理したNi3Al粉末試料を用いて600℃でメタンの水蒸気改質半のさせた時、測定したH2、CO,CO2の発生速度を反応時間の関数として示した図である。When obtained by methane steam reforming and half 600 ° C. using a Ni 3 Al powder samples two-step process, illustrates measured H 2, CO, the rate of evolution of CO 2 as a function of reaction time. 二段階処理したNi3Al粉末試料を用いて700℃でメタンの水蒸気改質半のさせた時、測定したH2、CO,CO2の発生速度を反応時間の関数として示した図である。When obtained by methane steam reforming and half 700 ° C. using a Ni 3 Al powder samples two-step process, illustrates measured H 2, CO, the rate of evolution of CO 2 as a function of reaction time. 二段階処理したNi3Al粉末試料を用いて900℃でメタンの水蒸気改質半のさせた時、測定したH2、CO,CO2の発生速度を反応時間の関数として示した図である。When at 900 ° C. is methane steam reforming half with Ni 3 Al powder samples two-step process, illustrates measured H 2, CO, the rate of evolution of CO 2 as a function of reaction time. 600℃、700℃、900℃での定温反応中のメタンの転化率の結果を示した図である。It is the figure which showed the result of the conversion rate of methane during the constant temperature reaction at 600 degreeC, 700 degreeC, and 900 degreeC.

Claims (7)

  1. 金属間化合物Ni3Alを含有することを特徴とする炭化水素の水蒸気改質用触媒 Hydrocarbon steam reforming catalyst containing intermetallic compound Ni 3 Al
  2. 共存成分とともにNi3Al金属間化合物を含有し、共存成分を含む全体の元素組成(重量%)がNi 77-95%,Al 5-23%であることを特徴とする請求項1の炭化水素の水蒸気改質用触
    媒。
    The hydrocarbon according to claim 1, which contains Ni 3 Al intermetallic compound together with coexisting components, and the total elemental composition (wt%) including coexisting components is 77-95% Ni and 5-23% Al. For steam reforming.
  3. 触媒表面にNiナノ粒子が存在することを特徴とする請求項1または2の炭化水素の水蒸気改質用触媒。   3. The hydrocarbon steam reforming catalyst according to claim 1 or 2, wherein Ni nanoparticles are present on the catalyst surface.
  4. 回転ディスクアトマイズ法もしくはインゴット溶製後の切削と機械研磨により作製された粉末形状を有していることを特徴とする請求項1から3のいずれかの炭化水素の水蒸気改質用触媒。   4. The hydrocarbon steam reforming catalyst according to claim 1, wherein the hydrocarbon steam reforming catalyst has a powder shape produced by a rotating disk atomization method or by cutting and mechanical polishing after ingot melting. 5.
  5. 請求項1から4のいずれかの触媒であって、酸処理及び/またはアルカリ処理されていることを特徴とする炭化水素の水蒸気改質用触媒。   The catalyst for steam reforming of hydrocarbon according to any one of claims 1 to 4, wherein the catalyst is subjected to acid treatment and / or alkali treatment.
  6. 請求項1から5のいずれかの触媒を用いる炭化水素の水蒸気改質方法であり、炭化水素と水蒸気との混合体を前記触媒と接触させて水素を製造することを特徴とする炭化水素の水蒸気改質方法。   A hydrocarbon steam reforming method using the catalyst according to claim 1, wherein hydrogen is produced by bringing a mixture of hydrocarbon and steam into contact with the catalyst to produce hydrogen. Modification method.
  7. 触媒をあらかじめ水素還元処理した後に炭化水素と水蒸気との混合体と接触させることを特徴とする請求項6の炭化水素の水蒸気改質方法。   7. The hydrocarbon steam reforming method according to claim 6, wherein the catalyst is subjected to a hydrogen reduction treatment in advance and then contacted with a mixture of hydrocarbon and steam.
JP2005279436A 2005-09-27 2005-09-27 Hydrocarbon steam reforming catalyst Expired - Fee Related JP4654413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279436A JP4654413B2 (en) 2005-09-27 2005-09-27 Hydrocarbon steam reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279436A JP4654413B2 (en) 2005-09-27 2005-09-27 Hydrocarbon steam reforming catalyst

Publications (2)

Publication Number Publication Date
JP2007090137A true JP2007090137A (en) 2007-04-12
JP4654413B2 JP4654413B2 (en) 2011-03-23

Family

ID=37976440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279436A Expired - Fee Related JP4654413B2 (en) 2005-09-27 2005-09-27 Hydrocarbon steam reforming catalyst

Country Status (1)

Country Link
JP (1) JP4654413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137132A (en) * 2008-12-10 2010-06-24 National Institute For Materials Science Catalyst for decomposing methanol
JP2010201302A (en) * 2009-03-02 2010-09-16 National Institute For Materials Science Catalyst for steam reforming of methane
WO2011108546A1 (en) * 2010-03-02 2011-09-09 Jfeスチール株式会社 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP2011225969A (en) * 2010-03-29 2011-11-10 Jfe Steel Corp Method for operating blast furnace or iron mill

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588856A (en) * 1978-12-27 1980-07-04 Kiyoshi Aoki Production of nickel formed body for catalyst
JP2002102715A (en) * 2000-09-29 2002-04-09 Kawasaki Heavy Ind Ltd Catalyst formed on metal surface and method for forming catalyst on metal surface
JP2003530207A (en) * 2000-04-08 2003-10-14 セラム リサーチ リミテッド Raney catalyst production method by gas atomization of molten alloy
WO2005072865A1 (en) * 2004-02-02 2005-08-11 National Institute For Materials Science INTERMETALLIC COMPOUND Ni3Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588856A (en) * 1978-12-27 1980-07-04 Kiyoshi Aoki Production of nickel formed body for catalyst
JP2003530207A (en) * 2000-04-08 2003-10-14 セラム リサーチ リミテッド Raney catalyst production method by gas atomization of molten alloy
JP2002102715A (en) * 2000-09-29 2002-04-09 Kawasaki Heavy Ind Ltd Catalyst formed on metal surface and method for forming catalyst on metal surface
WO2005072865A1 (en) * 2004-02-02 2005-08-11 National Institute For Materials Science INTERMETALLIC COMPOUND Ni3Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137132A (en) * 2008-12-10 2010-06-24 National Institute For Materials Science Catalyst for decomposing methanol
JP2010201302A (en) * 2009-03-02 2010-09-16 National Institute For Materials Science Catalyst for steam reforming of methane
WO2011108546A1 (en) * 2010-03-02 2011-09-09 Jfeスチール株式会社 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
CN102782161A (en) * 2010-03-02 2012-11-14 杰富意钢铁株式会社 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP2011225969A (en) * 2010-03-29 2011-11-10 Jfe Steel Corp Method for operating blast furnace or iron mill

Also Published As

Publication number Publication date
JP4654413B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
Li et al. Simultaneous tuning porosity and basicity of nickel@ nickel–magnesium phyllosilicate core–shell catalysts for CO2 reforming of CH4
Biswas et al. Aerobic oxidation of amines to imines by cesium-promoted mesoporous manganese oxide
Zhao et al. Insight into the formation of Co@ Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas
Ay et al. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts
Wang et al. Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen
Zhang et al. Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal–support interaction and catalytic stability
Min et al. Carbon dioxide reforming of methane on Ni–MgO–Al2O3 catalysts prepared by sol–gel method: Effects of Mg/Al ratios
Wang et al. Facile route for synthesizing ordered mesoporous Ni–Ce–Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas
Franchini et al. Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming
Kowalczyk et al. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios
Amin et al. Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane
Hwang et al. Methane production from carbon monoxide and hydrogen over nickel–alumina xerogel catalyst: Effect of nickel content
Bobadilla et al. Influence of the shape of Ni catalysts in the glycerol steam reforming
Hou et al. Hydrogen production from ethanol steam reforming over Rh/CeO2 catalyst
Leong et al. Shape‐directed platinum nanoparticle synthesis: nanoscale design of novel catalysts
Hwang et al. Methanation of carbon dioxide over mesoporous Ni–Fe–Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent
KR100922998B1 (en) Process for preparing monohydric alcohols from monocarboxylic acids or derivatives thereof
Alexander et al. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys
Pompeo et al. Study of Ni catalysts on different supports to obtain synthesis gas
Tang et al. CO2 reforming of methane to synthesis gas over sol–gel-made Ni/γ-Al2O3 catalysts from organometallic precursors
San-José-Alonso et al. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane
Takenaka et al. Methane decomposition into hydrogen and carbon nanofibers over supported Pd− Ni catalysts: Characterization of the catalysts during the reaction
Kim et al. CO oxidation mechanism on CeO2-supported Au nanoparticles
CN102666441B (en) From synthesis gas production light alkene
Dasireddy et al. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees