JP2007078381A - Light emitter - Google Patents

Light emitter Download PDF

Info

Publication number
JP2007078381A
JP2007078381A JP2005263275A JP2005263275A JP2007078381A JP 2007078381 A JP2007078381 A JP 2007078381A JP 2005263275 A JP2005263275 A JP 2005263275A JP 2005263275 A JP2005263275 A JP 2005263275A JP 2007078381 A JP2007078381 A JP 2007078381A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting member
excitation
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005263275A
Other languages
Japanese (ja)
Inventor
Mitsuru Ikeuchi
満 池内
Kazuyuki Mori
和之 森
Fumihiko Oda
史彦 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2005263275A priority Critical patent/JP2007078381A/en
Publication of JP2007078381A publication Critical patent/JP2007078381A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitter having a continuous spectrum of high luminance, without pouring large amount of electric power into a narrow space. <P>SOLUTION: This light emitter comprises a rod-like or fibrous light emission member, comprising a material with a light-emitting point excited by absorption of light to spontaneously emit longer wavelength of light than that of the excitation light, and an excitation light source for irradiating the emission member with the light from an outside of the emitting member, and emits the light that propagates through the inside of the light-emitting member to the outside of the light-emitting member as an incoherent light from one end face of the light-emitting member, out of the lights emitted spontaneously from the light-emitting point of the light emitting member by the light irradiation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、連続スペクトルを持つ高輝度光放出器に関する。   The present invention relates to a high intensity light emitter having a continuous spectrum.

インコヒーレント(可干渉性のない)光源において、連続スペクトルを持った高輝度点光源を実現するために、放電ランプを例示できるように、現状は狭い空間に大電力を注ぎ込むことで高温部を形成し、その高温部での高温プラズマを発光部とし該発光部からの熱放射を利用することが行われている。この場合、該発光部が高い温度になるため、該発光部に隣接する材料は耐熱性が要求され、かつ局所で発生する熱を逃がすため、高度な技術の廃熱処理手段が必要となる。また、熱的な光源であるため、該発光部の温度の黒体放射より強い放射は出ず、該発光部温度が決まれば、分光放射輝度の上限が決まってしまう。ここで、分光放射輝度とは単位立体角あたり単位波長あたりの放射輝度のことをいう。   In order to realize a high-intensity point light source with a continuous spectrum in an incoherent (non-coherent) light source, a high-temperature part is formed by pouring high power into a narrow space so that a discharge lamp can be exemplified. However, the use of thermal radiation from the light emitting part is performed using the high temperature plasma at the high temperature part as the light emitting part. In this case, since the temperature of the light emitting part is high, the material adjacent to the light emitting part is required to have heat resistance, and the heat generated locally is released, so that a highly technical waste heat treatment means is required. Further, since it is a thermal light source, it does not emit radiation stronger than black body radiation at the temperature of the light emitting section, and once the light emitting section temperature is determined, the upper limit of the spectral radiance is determined. Here, spectral radiance refers to radiance per unit wavelength per unit solid angle.

また、蛍光物質を用いた光発生技術は、蛍光ランプやブラウン管などで用いられているが、励起のためのエネルギーを集中して高輝度にすると、エネルギー集中部で発生する熱のため、蛍光物質の焼けが生じ、発光部の輝度を高めることは限界がある。   In addition, light generation technology using fluorescent materials is used in fluorescent lamps and cathode-ray tubes. However, if the energy for excitation is concentrated and the brightness is increased, the fluorescent material is heated due to the heat generated in the energy concentration section. There is a limit to increase the luminance of the light emitting part due to the burning of the light.

一方、レーザは質の高い平行光が作り出せ、レンズなどで絞ることで非常に高い輝度を得ることができる。しかしながら、CCDを用いた分光測定などの用途によってはその可干渉(コヒーレント)性が邪魔になり、使えない。また、出力光は単一の波長であり、連続スペクトルは実現できていない。ある程度の範囲にわたり、波長を変化させることはできるが、連続スペクトルを持った発光は困難である。   On the other hand, a laser can produce high-quality parallel light, and a very high brightness can be obtained by focusing with a lens or the like. However, depending on applications such as spectroscopic measurement using a CCD, the coherence is obstructive and cannot be used. Further, the output light has a single wavelength, and a continuous spectrum cannot be realized. Although it is possible to change the wavelength over a certain range, it is difficult to emit light having a continuous spectrum.

特許文献1に、光放出部材内にレーザ媒質をドープした光増幅器の例が示されている。レーザ媒質が励起により反転分布を作り誘導放出する現象を利用したもので、自然発光する蛍光物質とは区別される。レーザ媒質は蛍光物質として使うこともできるが、特許文献1ではレーザ媒質は自然放出する蛍光物質としては機能せず、誘導放出の媒体として機能している。このため、コヒーレントな単一波長の増幅器となるが、インコヒーレントな連続スペクトルの発光を得ることはできない。   Patent Document 1 shows an example of an optical amplifier in which a laser medium is doped in a light emitting member. The laser medium uses a phenomenon in which an inversion distribution is created by excitation and stimulated emission is performed, and is distinguished from a spontaneously emitting fluorescent material. Although the laser medium can be used as a fluorescent material, in Patent Document 1, the laser medium does not function as a spontaneously emitting fluorescent material but functions as a stimulated emission medium. For this reason, although it becomes a coherent single wavelength amplifier, incoherent continuous spectrum light emission cannot be obtained.

ところで、近年、マイクロマシン技術を応用して、化学分析等を従来の装置に比して微細化して行うμ−TAS(μ−ToTal Analysis System)と称されるマイクロチップを使用した分析方法が注目されている。特許文献2にはこの技術が開示されている。このようなマイクロチップを使用した分析システムは、マイクロマシン作製技術によって小さな基板上に形成された微細な流路の中において、試薬の混合、反応、分離、抽出及び検出等の分析全ての工程を行うことを目指したものであり、例えば、医療分野における血液の分析、超微量の蛋白質や核酸等の生体分子の分析等に用いられている。   By the way, in recent years, an analysis method using a microchip called μ-TAS (μ-ToTal Analysis System), which applies micromachine technology and performs chemical analysis etc. by miniaturization as compared with a conventional apparatus, has attracted attention. ing. Patent Document 2 discloses this technique. Such an analysis system using a microchip performs all analysis processes such as mixing, reaction, separation, extraction, and detection of reagents in a fine flow path formed on a small substrate by micromachine fabrication technology. For example, it is used for analysis of blood in the medical field, analysis of biomolecules such as ultra trace amounts of proteins and nucleic acids, and the like.

μ−TASでは、抽出物質や反応性生物などを定量するために吸光光度法の光学的測定方法がよく用いられる。吸光光度法は、マイクロチップ内に形成された断面が約10〜100μm角と非常に小さい測定セル内に検体を充填し、測定光をその測定セルに入射し、測定セルを通過した通過光を受光しその通過光に基づいて液の吸光量を測定し、成分濃度を検出する方法である。   In μ-TAS, an optical measurement method such as an absorptiometry is often used to quantify extracted substances and reactive organisms. In the absorptiometry, a specimen is filled in a measurement cell having a very small cross section of about 10 to 100 μm square formed in a microchip, the measurement light is incident on the measurement cell, and the passing light that has passed through the measurement cell is measured. This is a method for detecting the component concentration by measuring the amount of light absorption of the liquid based on the received light and the passing light.

μ−TASの吸光光度法の光学的測定において、連続スペクトルを持った輝度の高い光源が求められている。半導体レーザや発光ダイオードではスペクトルの幅が狭く、吸収測定には不向きである。一方、高輝度放電ランプの場合、発光部の大きさ(光源サイズ)は数mm程度であり、0.1mm程度の大きさの測定セル内に用いる光源としては大きすぎ、光の利用率が上がらない。しかし、現状では光利用率がたいへん低いにもかかわらず適切な光源がないため高輝度放電ランプや白熱ランプが使われている。つまり、連続スペクトルを有し、小さく、輝度の高い光を提供するものが求められているが、今のところ、この条件を満足するものがない。
特開平10‐223961号公報 特開2004−109099号公報
In the optical measurement of the μ-TAS absorptiometry, a light source having a high brightness with a continuous spectrum is required. A semiconductor laser or a light emitting diode has a narrow spectrum and is not suitable for absorption measurement. On the other hand, in the case of a high-intensity discharge lamp, the size of the light emitting part (light source size) is about several millimeters, which is too large for a light source used in a measurement cell of about 0.1 mm, and the light utilization rate does not increase. . However, at present, a high-intensity discharge lamp and an incandescent lamp are used because there is no appropriate light source even though the light utilization rate is very low. In other words, there is a demand for a light that has a continuous spectrum, provides light that is small and has high brightness, but there is nothing that satisfies this condition so far.
Japanese Patent Laid-Open No. 10-223961 JP 2004-109099 A

このように、近年のマイクロ化の潮流から、前述したμ−TASの分野に限らず、高い輝度の連続スペクトルを持った光への要望が高まっている。   Thus, due to the recent trend of micro-fabrication, there is an increasing demand for light having a continuous spectrum with high brightness, not limited to the field of μ-TAS described above.

また、高輝度放電ランプは、狭い空間に大きな電力を入れることによって、発光部が高い温度になるため、それに隣接する材料は耐熱性が要求され、かつ局所で発生する熱を逃がすため、高度の廃熱処理が必要になる。電力が大きくなるにつれて、この廃熱が限界に近くなっている。このため、狭い空間に大電力を注ぎ込むことなしに、高い輝度が得られれば技術的に大きなブレークスルーになる。   In addition, the high-intensity discharge lamp has a high temperature when the light emitting part is placed in a small space, so heat resistance is required for the material adjacent to the light emitting part, and locally generated heat is released. Waste heat treatment is required. As power increases, this waste heat is approaching its limit. For this reason, if high brightness can be obtained without pouring a large amount of power into a narrow space, this is a technically significant breakthrough.

本発明の課題は、狭い空間に大電力を注ぎ込むことなしに、高い輝度の連続スペクトルを持った光放出器を提供することである。   It is an object of the present invention to provide a light emitter having a continuous spectrum with high brightness without pouring high power into a narrow space.

上記課題を解決するために、請求項1に記載の発明は、光の吸収によって励起され、励起光より長波長の光を自然放出する発光点が存在する材料からなる棒状あるいはファイバ状の光放出部材と、該光放出部材に該光放出部材の外部から光照射する励起光源とからなり、該光照射により、該光放出部材内の該発光点から自然放出される光のうち、該光放出部材の内部を伝播する光を該光放出部材の端面からインコヒーレント光として該光放出部材の外部に放出することを特徴とする光放出器とするものである。   In order to solve the above problem, the invention according to claim 1 is a rod-like or fiber-like light emission made of a material having a light emitting point that is excited by light absorption and spontaneously emits light having a wavelength longer than that of the excitation light. A light source, and an excitation light source that irradiates the light emitting member with light from the outside of the light emitting member, and the light emission of light emitted spontaneously from the light emitting point in the light emitting member by the light irradiation. A light emitter is characterized in that light propagating through the inside of the member is emitted from the end face of the light emitting member as incoherent light to the outside of the light emitting member.

請求項2に記載の発明は、前記光源は低圧水銀ランプ、希ガスエキシマランプ、キセノンクロライド(XeCl)エキシマランプ、蛍光ランプ、発光ダイオードから選ばれた光源であることを特徴とする請求項1に記載の光放出器とするものである。   The invention according to claim 2 is characterized in that the light source is a light source selected from a low-pressure mercury lamp, a rare gas excimer lamp, a xenon chloride (XeCl) excimer lamp, a fluorescent lamp, and a light emitting diode. The light emitter is as described.

請求項3に記載の発明は、前記光放出部材内に発光点として蛍光体粒子を分散させ、該蛍光体粒子の大きさが、前記自然放出される光の波長より小さいことを特徴とする請求項2に記載の光放出器とするものである。   The invention according to claim 3 is characterized in that phosphor particles are dispersed as light emitting points in the light emitting member, and the size of the phosphor particles is smaller than the wavelength of the spontaneously emitted light. The light emitter according to Item 2.

請求項4に記載の発明は、前記光源として直管状の光源を用い、該光源にファイバ状の光放出部材を巻き付けたことを特徴とする請求項2に記載の光放出器とするものである。   The invention according to claim 4 is the light emitter according to claim 2, wherein a straight tubular light source is used as the light source, and a fiber-like light emitting member is wound around the light source. .

請求項1の発明によれば、狭い空間に大電力を注ぎ込むことなしに、高い輝度の連続スペクトルを持った光放出器を得ることができる。   According to the first aspect of the present invention, it is possible to obtain a light emitter having a continuous spectrum with high luminance without pouring high power into a narrow space.

請求項2の発明によれば、低圧水銀ランプ、希ガス蛍光ランプ、エキシマランプ、発光ダイオードは外囲器の温度が低いため、光放出部材の近くに設置でき、励起光を効率よく光放出部材に照射できるため、励起効率が高くなる。また、電力密度が低いため、光放出器の温度上昇が小さくてすむ。   According to the invention of claim 2, the low pressure mercury lamp, the rare gas fluorescent lamp, the excimer lamp, and the light emitting diode can be installed near the light emitting member because the temperature of the envelope is low, and the excitation light is efficiently emitted. Excitation efficiency is increased. Further, since the power density is low, the temperature rise of the light emitter can be small.

また、請求項3の発明によれば、光放出部材内に存在する発光点としての蛍光粉末の大きさが、発光点が発する蛍光の波長より小さいと、蛍光が散乱され難くなるため、光放出部材の端面に向かう光の減衰が少なくできる。   According to the invention of claim 3, if the size of the fluorescent powder as the light emitting point existing in the light emitting member is smaller than the wavelength of the fluorescence emitted from the light emitting point, the fluorescence is difficult to be scattered. Attenuation of light toward the end face of the member can be reduced.

請求項4の発明によれば、励起光の利用効率が上がるとともに、光放出部材が長くできるため、光放出部材の端面から出てくる光の効率を高め、強度を高くすることができる。   According to the invention of claim 4, the use efficiency of the excitation light is increased and the light emitting member can be lengthened. Therefore, the efficiency of light coming out from the end face of the light emitting member can be increased and the strength can be increased.

光放出部材内に存在する発光点は、励起光により励起され、その緩和過程において自然放出が起こり、ランダムな方向に発光する。前記発光のうち、光放出部材の臨界角以下の方向に発した光は、全反射により光放出部材内を進むことができる。一般に自然放出された光は励起光より波長が長いため、吸収されにくく、大きな減衰を受けずに端面に達する。光放出部材の端から出てくる光は、光放出部材の屈折率が軸上付近で高く、周辺部で低い光放出部材において、光放出部材の軸上付近のコアの直径を大きさとする点光源とおよそ等価な光源である。   A light emitting point existing in the light emitting member is excited by excitation light, spontaneous emission occurs in the relaxation process, and light is emitted in a random direction. Of the emitted light, light emitted in a direction below the critical angle of the light emitting member can travel through the light emitting member by total reflection. In general, spontaneously emitted light has a wavelength longer than that of excitation light, and thus is not easily absorbed and reaches the end face without being greatly attenuated. The light emitted from the end of the light emitting member has a refractive index of the light emitting member that is high in the vicinity of the axis, and a light emitting member that has a low refractive index in the periphery, and the diameter of the core in the vicinity of the axis of the light emitting member is large The light source is approximately equivalent to the light source.

発光する波長における光放出部材の透過率が高い場合、自然放出を利用するため、光放出部材の長さにほぼ比例して端面から出てくる光強度が強くなり、高い輝度が得られる。レーザのような誘導放出の場合は、非線形であるため、光放出部材の長さに比例せず、入射光の強度に依存し、強度が低いと誘導放出が起こらないか、または効率が悪くなる。また、誘導放出の場合、弱い電力密度で励起すると、反転分布が得られず、誘導放出が起こらない。   When the transmittance of the light emitting member at the wavelength of light emission is high, since spontaneous emission is used, the intensity of light coming out from the end face increases in proportion to the length of the light emitting member, and high luminance is obtained. In the case of stimulated emission such as a laser, since it is non-linear, it is not proportional to the length of the light emitting member and depends on the intensity of the incident light. If the intensity is low, stimulated emission does not occur or the efficiency decreases. . In the case of stimulated emission, when excited with a weak power density, an inversion distribution cannot be obtained and stimulated emission does not occur.

光強度の上限は、単位長さあたりの発光と吸収や散乱による減衰が釣り合う強度で決まるが、光放出部材の吸収や散乱は低くできるため、高輝度ランプに匹敵する輝度が得られる。また、発光が熱的な放射でないため、高輝度放電ランプやハロゲン電球のような黒体放射による強度の限界がなく、吸収や散乱を抑えることで、熱的光源では不可能な強度を得ることもできる。   The upper limit of the light intensity is determined by the intensity that balances the light emission per unit length with the attenuation due to absorption and scattering, but the light emission member can reduce the absorption and scattering, so that brightness comparable to that of a high-intensity lamp can be obtained. In addition, since light emission is not thermal radiation, there is no limit of intensity due to black body radiation like high-intensity discharge lamps and halogen bulbs, and by suppressing absorption and scattering, it is possible to obtain intensity impossible with thermal light sources You can also.

光放出部材内を進んで端面から出てくる光は発光した光の一部(1割程度)であるため、光源の電力効率は低い値に留まる。しかしながら、分光透過率の測定のような連続スペクトルの平行光を必要とするような用途では、光源輝度がシステムの光利用効率を決定するため、低輝度の光源をそのまま用いるよりも高い光利用効率が得られる。   Since the light that travels through the light emitting member and emerges from the end face is a part of the emitted light (about 10%), the power efficiency of the light source remains low. However, in applications that require continuous-spectrum parallel light, such as spectral transmittance measurements, the light source brightness determines the light utilization efficiency of the system, so the light utilization efficiency is higher than using a low-intensity light source as it is. Is obtained.

低圧水銀ランプ、希ガス蛍光ランプ、エキシマランプ、発光ダイオードのような輝度の低い光源から、高い輝度の光が得られる。光放出器の端面の輝度を高くすることによって、全体の光利用効率が高くなる。また、電力密度を高める必要がないため、耐熱温度の低い材料でも使用える。   High-luminance light can be obtained from a low-luminance light source such as a low-pressure mercury lamp, rare gas fluorescent lamp, excimer lamp, or light-emitting diode. By increasing the luminance of the end face of the light emitter, the overall light utilization efficiency is increased. Further, since it is not necessary to increase the power density, a material having a low heat-resistant temperature can be used.

図1は本発明の実施の形態を示す概略の構成図である。励起光源10に隣接して棒状の光放出部材1が配置される。記号11は電極である。光放出部材1としては、ガラス、セラミックなどの無機材料、熱可塑性樹脂、熱硬化性樹脂、エラストマー、その他の有機材料が使用可能である。発光点2となりうるのは、蛍光物質や点欠陥である。点欠陥は結晶やガラス固体をガンマ線もしくは電子線あるいは粒子線を照射することによって、結晶やガラス内に生成するものをいう。また、希土類元素もしくは遷移金属元素の金属錯体を添加した透明プラスチックからなる光放出部材とした場合は発光点として金属錯体が機能する。   FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention. A rod-shaped light emitting member 1 is disposed adjacent to the excitation light source 10. Symbol 11 is an electrode. As the light emitting member 1, inorganic materials such as glass and ceramic, thermoplastic resins, thermosetting resins, elastomers, and other organic materials can be used. The light emitting point 2 can be a fluorescent substance or a point defect. A point defect refers to a defect generated in a crystal or glass by irradiating the crystal or glass solid with gamma rays, electron beams or particle beams. In the case of a light emitting member made of a transparent plastic to which a metal complex of a rare earth element or a transition metal element is added, the metal complex functions as a light emitting point.

励起光源10から放射された励起光は光放射部材1に照射され、光放射部材1の発光
点2に作用して発光点2が励起し光が放出する。放出した光は光放出部材1の周面に達
し、光放出部材1内を長手方向に伝播し、光放出部材1の端面1aから放出される。
Excitation light emitted from the excitation light source 10 is applied to the light emitting member 1 and acts on the light emitting point 2 of the light emitting member 1 to excite the light emitting point 2 to emit light. The emitted light reaches the peripheral surface of the light emitting member 1, propagates in the light emitting member 1 in the longitudinal direction, and is emitted from the end surface 1 a of the light emitting member 1.

図1のように、光放出部材1が棒状の場合、励起光源10からの励起光を効率よく光放出部材1に入射させるために励起光源10の光を光放出部材1側に励起光を反射する反射ミラー15を、図中に破線で示したように励起光源10の近傍に配置することも有効である。   As shown in FIG. 1, when the light emitting member 1 is rod-shaped, the light from the excitation light source 10 is reflected to the light emitting member 1 side so that the excitation light from the excitation light source 10 is efficiently incident on the light emitting member 1. It is also effective to dispose the reflecting mirror 15 in the vicinity of the excitation light source 10 as indicated by a broken line in the drawing.

図2は本発明の実施の形態の他の構成図である。励起光源10にはファイバ状の光放出部材1が巻き回されている。この場合、励起光源10に直接に光放出部材1を密着させるだけでよく、構造が簡単でコンパクトになる。そして、発光する波長における光放出部材1の透過率が高い場合には、光放出部材1の長さにほぼ比例して端面1aから出てくる光強度が強くなり、高い輝度が得られる。   FIG. 2 is another configuration diagram of the embodiment of the present invention. A fiber-shaped light emitting member 1 is wound around the excitation light source 10. In this case, it is only necessary to directly attach the light emitting member 1 to the excitation light source 10, and the structure is simple and compact. When the transmittance of the light emitting member 1 at the light emitting wavelength is high, the intensity of the light emitted from the end face 1a is increased substantially in proportion to the length of the light emitting member 1, and high luminance is obtained.

また、図3に示すように、筒状の反射ミラー16内に略棒状の励起光源10と光放出部材1を配置すると、励起光の利用率が高くなり、光放出部材1の端面1aから出てくる光の効率を高めることができる。   Further, as shown in FIG. 3, when the substantially rod-shaped excitation light source 10 and the light emitting member 1 are arranged in the cylindrical reflecting mirror 16, the utilization rate of the excitation light is increased, and the light is emitted from the end face 1a of the light emitting member 1. The efficiency of incoming light can be increased.

次に本発明の具体的実施例として励起光源と光放射部材の構成例について説明する。
<構成例1>
図2の構成において、励起光源10が全長60mm、直径8mmの低圧水銀ランプであり、光放出部材1はセリウム酸化物をドープした、直径0.1mm、長さ2000mmの無機固体であるシリカガラスファイバであり、シリカガラスファイバは低圧水銀ランプに多数回巻きつけられている。励起波長は254nmであり、光放出部材1からの放出光の波長は400〜600nmの範囲にある。
Next, configuration examples of the excitation light source and the light emitting member will be described as specific examples of the present invention.
<Configuration example 1>
In the configuration of FIG. 2, the excitation light source 10 is a low-pressure mercury lamp having a total length of 60 mm and a diameter of 8 mm, and the light emitting member 1 is an inorganic solid silica glass fiber doped with cerium oxide and having a diameter of 0.1 mm and a length of 2000 mm. The silica glass fiber is wound around a low-pressure mercury lamp many times. The excitation wavelength is 254 nm, and the wavelength of the emitted light from the light emitting member 1 is in the range of 400 to 600 nm.

<構成例2>
図2の構成において、励起光源10が全長60mm、直径3mmの蛍光ランプであり、光放出部材1はポリメチルペンテンにエルビウム錯体を添加した、直径0.2mm、長さ2000mmの有機固体であるプラスチックファイバであり、蛍光ランプに多数回巻きつけられている。励起波長は400〜600nmであり、光放出部材1からの放出光の波長は1.2〜1.6μmの近赤外線である。
<Configuration example 2>
In the configuration of FIG. 2, the excitation light source 10 is a fluorescent lamp having a total length of 60 mm and a diameter of 3 mm, and the light emitting member 1 is a plastic which is an organic solid having a diameter of 0.2 mm and a length of 2000 mm obtained by adding an erbium complex to polymethylpentene. A fiber that is wound many times around a fluorescent lamp. The excitation wavelength is 400 to 600 nm, and the wavelength of the emitted light from the light emitting member 1 is near infrared light of 1.2 to 1.6 μm.

<構成例3>
図2の構成において、励起光源10が全長60mm、直径6mmの希ガスエキシマランプの一種のキセノンクロライドエキシマランプであり、光放出部材1は直径0.5mm、長さ1000mmの有機固体であるプラスチックファイバであり、プラスチックファイバには粒径100nm以下のナノ蛍光粒子、例えばMgWOを混ぜてあり、ランプに多数回巻きつけられている。励起波長は308nmであり、光放出部材1からの放出光の波長は360〜700nmである。
<Configuration example 3>
In the configuration of FIG. 2, the excitation light source 10 is a kind of xenon chloride excimer lamp having a total length of 60 mm and a diameter of 6 mm, and the light emitting member 1 is a plastic fiber that is an organic solid having a diameter of 0.5 mm and a length of 1000 mm. The plastic fiber is mixed with nano fluorescent particles having a particle size of 100 nm or less, such as MgWO 4 , and is wound around the lamp many times. The excitation wavelength is 308 nm, and the wavelength of the emitted light from the light emitting member 1 is 360 to 700 nm.

<その他の構成>
そのほかにも、図1の構成例としては、光放出部材1にセリウムの酸化物、イッテリビウムの酸化物またはユーロピウムの酸化物をドープした無機固体であるシリカガラス製の棒状部材を使用し、励起光源10として低圧水銀ランプまたは希ガスエキシマランプを使用し、可視域の連続スペクトルを放出させる構成とすることもできる。あるいは、光放出部材1として、蛍光体のナノ粉末(Ca3(PO4)2:Tl+ )をアルカリハライド(KBr)微粉末に混ぜ超高圧で固めて透明体とした棒状部材を使用し、励起光源10としては低圧水銀ランプまたは希ガスランプとして、可視域の連続スペクトルを放出させる構成とすることもできる。
<Other configurations>
In addition, as an example of the configuration of FIG. 1, a rod-shaped member made of silica glass, which is an inorganic solid doped with cerium oxide, ytterbium oxide or europium oxide, is used as the light emitting member 1, and an excitation light source A low-pressure mercury lamp or a rare gas excimer lamp may be used as 10 to emit a continuous spectrum in the visible region. Alternatively, as the light emitting member 1, a rod-shaped member made of phosphor nano-powder (Ca3 (PO4) 2: Tl +) mixed with alkali halide (KBr) fine powder and solidified at ultrahigh pressure to form a transparent body is used. As a low-pressure mercury lamp or a rare gas lamp, a visible spectrum can be emitted.

また、図2の構成例としては、光放出部材1として、蛍光体のナノ粉末((Sr,Ca)10(PO4)6Cl:Eu2+ )に親水性のコーチィングし分散した液体の光放出部材として液体(水)ファイバを使用し、励起光源10として、近紫外線蛍光体の蛍光ランプを使用し、可視域の連続スペクトルを放出させる構成とすることもできる。また、光放出部材1として有機蛍光染料(Rhodamine 6G :赤)の溶液をチューブに充填した液体ファイバを使用し、励起光源10として近紫外線蛍光体の蛍光ランプを使用し、赤色の連続スペクトルを放出させる構成とすることもできる。 In the configuration example of FIG. 2, the light emitting member 1 is a light emitting member 1 in which a liquid is dispersed in a hydrophilic coating on phosphor nanopowder ((Sr, Ca) 10 (PO 4 ) 6 Cl: Eu 2+ ). A liquid (water) fiber can be used as the member, and a near-ultraviolet fluorescent lamp can be used as the excitation light source 10 to emit a continuous spectrum in the visible region. In addition, a liquid fiber in which a tube of an organic fluorescent dye (Rhodamine 6G: red) is filled as a light emitting member 1 and a fluorescent lamp of a near-ultraviolet phosphor is used as an excitation light source 10 to emit a red continuous spectrum. It can also be set as the structure to make.

そのほかにも、図2の構成例としては、光放出部材1として、有機固体であるプラスチック(ポリメチルペンテン)に蛍光物質としてセリウム、イッテリビウム、またはユーロピウム錯体を添加したファイバを使用し、励起光源10として、近紫外線蛍光体の蛍光ランプを使用し、可視域の連続スペクトルを放出させる構成とすることもできる。さらには、光放出部材1として、有機固体である赤外線透過プラスチックに蛍光物質としてカーボンナノチューブを添加したファイバを使用し、励起光源10として、発光ダイオードを使用し、近赤外光(900〜1100nm) を放出させる構成とすることもできる。また、光放出部材1として、アルカリハライド中に蛍光物質として銀(Ag)のナノ粒子を分散した無機固体のファイバを使用し、励起光源10として、発光ダイオードを使用し、近赤外光(900〜1100nm) を放出させる構成とすることもできる。   In addition, in the configuration example of FIG. 2, a fiber in which cerium, ytterbium, or europium complex is added as a fluorescent material to a plastic (polymethylpentene) that is an organic solid is used as the light emitting member 1. As a configuration, a fluorescent lamp made of a near-ultraviolet phosphor can be used to emit a continuous spectrum in the visible range. Furthermore, as the light emitting member 1, a fiber in which carbon nanotubes are added as a fluorescent material to an infrared transparent plastic which is an organic solid is used, and a light emitting diode is used as an excitation light source 10, and near infrared light (900 to 1100 nm) is used. It can also be set as the structure which discharge | releases. Further, as the light emitting member 1, an inorganic solid fiber in which silver (Ag) nanoparticles as a fluorescent material are dispersed in an alkali halide is used, a light emitting diode is used as the excitation light source 10, and near infrared light (900 (1100 nm) can also be emitted.

図4はμ−TAS装置へ本発明の光放出器を使用した構成例を示す。マイクロTASチップ20とチップホルダ25の一構成例を示す。マイクロチップ10はPMMA(ポリメタクリル酸メチル)、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)等の熱可塑性樹脂やエポキシ樹脂などの熱硬化性樹脂等のプラスチック材料からなる。この例で示したマイクロチップ20は、2枚の板部材が貼り合わされてできている。貼り合せ面の片面に予め溝が形成され、貼りあわせることで溝が連なった空洞を形成している。チップ外部から分析液が導入され、試薬と反応させて検査液を調合し、その検査液が図中の測定セル21に溜められる。その測定セル21に外部から光を通過させフィルタ35で波長選択をしてフォトダイオード30で受光し、所定の成分分析を行う。記号22a、22bはチップホルダ25に形成されたアパーチャである。   FIG. 4 shows a configuration example in which the light emitter of the present invention is used in the μ-TAS apparatus. One structural example of the micro TAS chip 20 and the chip holder 25 is shown. The microchip 10 is made of a plastic material such as a thermoplastic resin such as PMMA (polymethyl methacrylate), PET (polyethylene terephthalate), PC (polycarbonate), or a thermosetting resin such as an epoxy resin. The microchip 20 shown in this example is formed by bonding two plate members. A groove is formed in advance on one side of the bonding surface, and a cavity in which the groove is continuous is formed by bonding. An analysis solution is introduced from the outside of the chip, reacted with a reagent to prepare a test solution, and the test solution is stored in the measurement cell 21 in the figure. Light is passed through the measurement cell 21 from the outside, the wavelength is selected by the filter 35, the light is received by the photodiode 30, and a predetermined component analysis is performed. Symbols 22 a and 22 b are apertures formed in the chip holder 25.

図5は図2の構成の光放射器から放射される具体的発光スペクトルの例を示す。励起光源10が低圧水銀ランプであり、光放出部材はセリウムの酸化物をドープした無機固体であるシリカガラスファイバであり、そのシリカガラスファイバが低圧水銀ランプに多数回巻きつけられている。励起波長は254nmであり、光放出部材1からの放出光の波長は図のように400〜600nmの範囲にある。   FIG. 5 shows an example of a specific emission spectrum emitted from the light radiator having the configuration of FIG. The excitation light source 10 is a low-pressure mercury lamp, and the light emitting member is a silica glass fiber that is an inorganic solid doped with a cerium oxide. The silica glass fiber is wound around the low-pressure mercury lamp many times. The excitation wavelength is 254 nm, and the wavelength of the emitted light from the light emitting member 1 is in the range of 400 to 600 nm as shown in the figure.

市販の輝度計を使用して、従来からの光源と本発明の光放射器との輝度比較を歩個成った。各光源の発光部に輝度計のピントを合わせて測定した。その結果、蛍光ランプでは、10〜10cd/mの範囲であり、キセノンランプでは、10〜10cd/mの範囲であり、本発明の光放出器として図5でスペクトルを例示した低圧水銀ランプとセリウムの酸化物をドープした無機固体であるシリカガラスファイバの組み合わせのものでは、10〜10cd/mの範囲であった。本発明の光放出器はキセノンランプと同等の輝度を確認した。 Using a commercially available luminance meter, the luminance comparison between the conventional light source and the light emitter of the present invention was completed. The luminance meter was focused on the light emitting portion of each light source and measured. As a result, in the fluorescent lamp, the range is 10 3 to 10 5 cd / m 2 , and in the xenon lamp, the range is 10 8 to 10 9 cd / m 2 . The combination of the low-pressure mercury lamp and the silica glass fiber which is an inorganic solid doped with a cerium oxide was in the range of 10 7 to 10 9 cd / m 2 . The light emitter of the present invention was confirmed to have a luminance equivalent to that of a xenon lamp.

光放出部材内に存在する発光点としての蛍光物質であるが、該蛍光物質がチタン酸塩、ジルコン酸塩、バナジン酸塩、タンタル酸塩、モリブデン酸塩、タングステン酸塩、あるいは、マンガン、アンチモン、タリウム、錫、鉛、ビスマスイオンを付活剤とするハロリン酸塩、リン酸塩、あるいは、セリウム、イッテルビウム、ユーロピウムなどの希土類イオンを分散した酸化物、ハロリン酸塩、リン酸塩、カルコゲナイト、金属錯体あるいは、有機蛍光染料、有機蛍光顔料のいずれかであると、励起光に対する蛍光の発光効率が高くでき、高い輝度を得ることができる。   It is a fluorescent substance as a light emitting point existing in the light emitting member, and the fluorescent substance is titanate, zirconate, vanadate, tantalate, molybdate, tungstate, manganese, antimony , Halophosphates, phosphates with thallium, tin, lead, bismuth ions as activators, or oxides with dispersed rare earth ions such as cerium, ytterbium, europium, halophosphates, phosphates, chalcogenites, When the metal complex, organic fluorescent dye, or organic fluorescent pigment is used, the luminous efficiency of fluorescence with respect to excitation light can be increased, and high luminance can be obtained.

結晶やガラス固体をガンマ線もしくは電子線、粒子線を照射することによって、結晶やガラス内に点欠陥が生成する。この欠陥は発光点として振る舞う。均質な材料に照射によって欠陥を導入すると均質な欠陥ができ、また点欠陥は発光点のサイズが小さいため、レーリー散乱が少なく、光の出力が大きくできる。   By irradiating a crystal or glass solid with gamma rays, electron beams, or particle beams, point defects are generated in the crystal or glass. This defect behaves as a light emitting point. When a defect is introduced into a homogeneous material by irradiation, a homogeneous defect is formed, and since the point defect has a small light emitting point size, Rayleigh scattering is small and light output can be increased.

光放出部材が希土類元素もしくは遷移金属元素の金属錯体を添加した有機固体である透明プラスチックであると、蛍光体粉末より散乱される蛍光が減少するため、光放出部材の端面に向かう光の減衰が少なくできる。光放出部材内に存在する蛍光物質が、2種類以上であると複数の蛍光物質の発光が、それぞれの蛍光物質の励起帯を除き、ほぼ加算されるため、所望の発光スペクトルを得ることもができる。   If the light emitting member is a transparent plastic that is an organic solid to which a metal complex of a rare earth element or a transition metal element is added, the fluorescence scattered from the phosphor powder is reduced, so that the attenuation of light toward the end face of the light emitting member is reduced. Less. If there are two or more kinds of fluorescent substances present in the light emitting member, the light emission of a plurality of fluorescent substances is almost added except for the excitation band of each fluorescent substance, so that a desired emission spectrum may be obtained. it can.

光放出部材の屈折率が軸上で高く、周辺部で低い光放出部材において、蛍光物質からの発光周辺部で起こるほど、光放出部材に沿って進む有効な光の割合が低下するため、蛍光物質の濃度が、その軸上で高く、周辺で低いと、有効な光の割合が増加するため、端面から出てくる光量を増やすことができる。   In the light emitting member where the refractive index of the light emitting member is high on the axis and low in the peripheral portion, the proportion of effective light that travels along the light emitting member decreases as the light emitting member from the phosphor emits light. When the concentration of the substance is high on the axis and low on the periphery, the effective light ratio increases, so that the amount of light emitted from the end face can be increased.

光放出部材の1つの端面に光を反射する手段を設けることで、もう一方の端面から出てくる光量を増やすことができる。光放出部材の光放出端面に無反射コートを設ける。そうすると、光放出部材の1つの端面に反射防止手段を設けることで、端面から出てくる光量を増やすことができる。   By providing the light reflecting member on one end face of the light emitting member, the amount of light emitted from the other end face can be increased. A non-reflective coating is provided on the light emitting end face of the light emitting member. If it does so, the light quantity which comes out from an end surface can be increased by providing an antireflection means in one end surface of a light emission member.

光放出部材の直径が0.1mm以上であると、光放出部材端面からの回折光が弱くなり、干渉しにくくなるため、インコヒーレントな点光源としての質が高まる。1mmぐらいまでが実用的である。   When the diameter of the light emitting member is 0.1 mm or more, the diffracted light from the end surface of the light emitting member becomes weak and difficult to interfere, so that the quality as an incoherent point light source is improved. Up to about 1 mm is practical.

複数本の光放出部材とし、光取出し端において束ねることによって、所望の形状に照射ができる。また、異なる種類の蛍光物質を含む光放出部材を束ねることもできる。   By forming a plurality of light emitting members and bundling them at the light extraction end, a desired shape can be irradiated. Moreover, the light emission member containing a different kind of fluorescent material can also be bundled.

中空の2重管形状の励起光源と用い、光放出部材を該2重管の中空部と外に配置すると励起光源の発光表面積が広なるので、光放出部材と密着面積が増え、利用効率が上がるとともに、光放出部材が長くできるため、光放出部材の端面から出てくる光の効率を高め、強度を高くすることができる。   When a hollow double tube-shaped excitation light source is used and the light emission member is arranged outside the hollow part of the double tube, the light emission surface area of the excitation light source is increased, so that the contact area with the light emission member is increased and the use efficiency is increased. In addition, the light emitting member can be lengthened while increasing, so that the efficiency of light coming out from the end face of the light emitting member can be increased and the strength can be increased.

短い波長の蛍光を発する光放出部材と長い波長の蛍光を発する光放出部材が接続され、光取り出し端に近い側に短い波長の蛍光を発する光放出部材を配置すると、長い波長の蛍光を発する光放出部材は短い波長の蛍光を発する光放出部材によって吸収されにくいため、光取り出し端の光強度が低下することなく、高い強度が得られる。   When a light emitting member that emits short wavelength fluorescence is connected to a light emitting member that emits long wavelength fluorescence, and a light emitting member that emits short wavelength fluorescence is disposed on the side closer to the light extraction end, light that emits long wavelength fluorescence Since the emission member is not easily absorbed by the light emission member that emits short-wavelength fluorescence, high intensity can be obtained without lowering the light intensity at the light extraction end.

本発明の光放出器の原理を示す模式図である。It is a schematic diagram which shows the principle of the light emitter of this invention. 本発明の光放出器の基本構成を示す模式図であるIt is a schematic diagram which shows the basic composition of the light emitter of this invention. 本発明の光放出器の他の構成を示す模式図である。It is a schematic diagram which shows the other structure of the light emitter of this invention. 本発明の光放出器の応用例としてμTAS装置へ本発明の光放出器を使用した構成例を示す。As an application example of the light emitter of the present invention, a configuration example in which the light emitter of the present invention is used in a μTAS apparatus is shown. 本発明の光放出器の発光スペクトルの一例を示す。An example of the emission spectrum of the light emitter of the present invention is shown.

符号の説明Explanation of symbols

1 光放出部材
1a 端面
2 発光点
10 励起光源
11 電極
15 反射ミラー
16 反射ミラー
20 μ−TASチップ
21 測定セル
22a、22b アパーチャ
25 チップホルダ
30 フォトダイオード
35 フィルタ
100 光放出器
DESCRIPTION OF SYMBOLS 1 Light emission member 1a End surface 2 Light emission point 10 Excitation light source 11 Electrode 15 Reflection mirror 16 Reflection mirror 20 μ-TAS chip 21 Measurement cell 22a, 22b Aperture 25 Chip holder 30 Photodiode 35 Filter 100 Light emitter

Claims (4)

光の吸収によって励起され、励起光より長波長の光を自然放出する発光点が存在する材料からなる棒状あるいはファイバ状の光放出部材と、該光放出部材に該光放出部材の外部から光照射する励起光源とからなり、
該光照射により、該光放出部材内の該発光点から自然放出される光のうち、該光放出部材の内部を伝播する光を該光放出部材の端面からインコヒーレント光として該光放出部材の外部に放出することを特徴とする光放出器。
A rod-like or fiber-like light emitting member made of a material having a light emitting point that is excited by absorption of light and spontaneously emits light having a wavelength longer than that of the excitation light, and the light emitting member is irradiated with light from the outside of the light emitting member An excitation light source that
Of the light spontaneously emitted from the light emitting point in the light emitting member by the light irradiation, the light propagating through the light emitting member is converted into incoherent light from the end surface of the light emitting member. A light emitter characterized by being emitted to the outside.
前記励起光源は低圧水銀ランプ、希ガスエキシマランプ、キセノンクロライドエキシマランプ、蛍光ランプ、発光ダイオードから選ばれた光源であることを特徴とする請求項1に記載の光放出器。   The light emitter according to claim 1, wherein the excitation light source is a light source selected from a low-pressure mercury lamp, a rare gas excimer lamp, a xenon chloride excimer lamp, a fluorescent lamp, and a light emitting diode. 前記光放出部材内に前記発光点として蛍光体粒子を分散させ、該蛍光体粒子の大きさが、前記自然放出される光の波長より小さいことを特徴とする請求項2に記載の光放出器。   3. The light emitter according to claim 2, wherein phosphor particles are dispersed as the light emitting points in the light emitting member, and the size of the phosphor particles is smaller than the wavelength of the spontaneously emitted light. . 前記励起光源として直管状の光源を用い、該光源にファイバ状の光放出部材を巻き付けたことを特徴とする請求項2に記載の光放出器。

The light emitter according to claim 2, wherein a straight tubular light source is used as the excitation light source, and a fiber-like light emitting member is wound around the light source.

JP2005263275A 2005-09-12 2005-09-12 Light emitter Withdrawn JP2007078381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263275A JP2007078381A (en) 2005-09-12 2005-09-12 Light emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263275A JP2007078381A (en) 2005-09-12 2005-09-12 Light emitter

Publications (1)

Publication Number Publication Date
JP2007078381A true JP2007078381A (en) 2007-03-29

Family

ID=37938875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263275A Withdrawn JP2007078381A (en) 2005-09-12 2005-09-12 Light emitter

Country Status (1)

Country Link
JP (1) JP2007078381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050126A (en) * 2008-08-19 2010-03-04 Central Glass Co Ltd Ase light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050126A (en) * 2008-08-19 2010-03-04 Central Glass Co Ltd Ase light source

Similar Documents

Publication Publication Date Title
JP5322231B2 (en) Light source device
US20040155184A1 (en) Surface plasmon amplification by stimulated emission of radiation
JP2009510475A (en) Sensitive emission collection and detection system
JP2007173090A (en) Ultraviolet light source system
US9874317B2 (en) Solid state lighting device
JP2012515928A (en) Lighting design for high quality biomedical devices
Kang et al. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands
JP2010170112A (en) Light source device
US11415514B2 (en) Biochip device
US20230296615A1 (en) Radical dosimetry methods for in vivo hydroxyl radical protein foot-printing
CN107430073B (en) Functional water concentration sensor
JP2007230877A (en) Luminescent labeling reagent
JP2007078381A (en) Light emitter
US20200256730A1 (en) Broadband semiconductor-based uv light source for a spectral analysis device
TWI566017B (en) Ultraviolet radiation device
US3426194A (en) Fluorescence radiation device radiating at 280 mmu wave length,and method of making same
US10816468B2 (en) Flash photo-oxidation device and higher order structural analysis
JP2006242733A (en) Emission characteristic evaluating method of fluorescent substance
JP2006323099A (en) Nonlinear optical material structure
JP2005208262A (en) Surface leakage light optical waveguide and photo-catalytic device using the same
JP2006250725A (en) Flow cell unit, flow site meter and fluorescence detection method
Mantey et al. Measurement of the photostability of silicon nanoparticles under UVA and near infrared irradiation
WO2013168488A1 (en) Charged particle beam microscope
Al-Jarwany et al. Fabrication and Fluorescence Analysis of Rhodamine Dyes in Polycarbonate Serpentine Microfluidic System
Saito et al. Fluorescence enhancement of europium ions in a scattering matrix

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202