JP2007047181A - Leak current detection device and method - Google Patents

Leak current detection device and method Download PDF

Info

Publication number
JP2007047181A
JP2007047181A JP2006251440A JP2006251440A JP2007047181A JP 2007047181 A JP2007047181 A JP 2007047181A JP 2006251440 A JP2006251440 A JP 2006251440A JP 2006251440 A JP2006251440 A JP 2006251440A JP 2007047181 A JP2007047181 A JP 2007047181A
Authority
JP
Japan
Prior art keywords
leakage current
voltage
phase
detected
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251440A
Other languages
Japanese (ja)
Other versions
JP4920357B2 (en
Inventor
Toyoji Ahei
豊次 阿閉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006251440A priority Critical patent/JP4920357B2/en
Publication of JP2007047181A publication Critical patent/JP2007047181A/en
Application granted granted Critical
Publication of JP4920357B2 publication Critical patent/JP4920357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect leak current caused by ground insulation resistance. <P>SOLUTION: This leak current detection device comprises: a leak current detection section 10 for detecting leak current from a measured line; an amplifying section 11 for converting the detected leak current into voltage and amplifying converted voltage; a first harmonic component removing section 12 for removing a harmonic component included in the voltage amplified by the amplifying section, a voltage detection section 14 for detecting voltage from the measured line; a second harmonic component removing section 16 for removing a harmonic component included in the detected voltage; a phase difference detection section 20 for detecting phase difference from two voltage signal waveforms from which harmonic component is removed; a frequency calculation section 21 for calculating frequency occurring in the measured line of which voltage is detected by the voltage detection section based on the voltage signal waveforms from which harmonic component is removed by the second harmonic component removing section; and a phase angle calculating means 22 for calculating phase angle of the leak current based on the phase difference detected by the phase difference detection section and frequency calculated by the frequency calculation section. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、漏洩電流を計測することにより電気機器の絶縁状態を判定する漏洩電流検出装置及び方法に関し、詳細には、被測定電線路に流れている対地絶縁抵抗成分のみの漏洩電流を検出する漏洩電流検出装置及び方法に関する。   The present invention relates to a leakage current detection apparatus and method for determining an insulation state of an electrical device by measuring a leakage current, and more specifically, detects a leakage current of only a ground insulation resistance component flowing in a measured electric line. The present invention relates to a leakage current detection apparatus and method.

日常生活の中で、電気の存在を意識することはあまりないが、周知のように、エネルギー源として、また、情報や通信を初めとする様々な分野に利用され、我々の社会にとって、なくてはならない存在となっている。   In everyday life, there is not much awareness of the existence of electricity, but as is well known, it is used as an energy source and in various fields such as information and communication. It has become a must not.

一方で、電気の利用は、便利な反面、適切な管理や使用を誤れば、大変危険な側面も兼ね備えており、電気火災や感電事故等の重大な事故を引き起こす可能性も少なくない。   On the other hand, the use of electricity is convenient, but if it is not properly managed and used, it also has very dangerous aspects, and there are many possibilities of causing serious accidents such as electric fires and electric shocks.

例えば、その重大事故の原因の一つとして、電路や機器の絶縁不良に深く関係しているのが漏洩電流である。しかし、この漏洩電流を調べるには、大変な時間を要するうえに、停電させて絶縁不良だけの数値を絶縁抵抗計により測定する必要がある。   For example, one of the causes of the serious accident is leakage current that is closely related to insulation failure of electric circuits and equipment. However, in order to investigate this leakage current, it takes a long time, and it is necessary to measure the value of insulation failure with an insulation resistance meter after a power failure.

しかしながら、現在の社会状況では、コンピュータが社会の各方面に利用され、インテリジェントビルの普及拡大及び工場のFA(ファクトリー・オートメーション)化により、24時間連続稼働するシステムが構築されており、漏洩電流を計測するために、一時的に停電状態にすることができない状況となっている。   However, in the current social situation, computers are used in various areas of society, and systems that operate continuously for 24 hours have been constructed by the spread of intelligent buildings and factory automation (FA). In order to measure, it is in a situation where it cannot temporarily be in a power failure state.

したがって、現在では、このような高度情報化による社会の無停電化の要請から、電路及び機器の絶縁不良管理が停電を伴う絶縁抵抗計による方法から、電気を切ることなく測定できる漏洩電流測定方法に移ってきており、漏電遮断器や漏電火災警報機等により漏洩電流を測定して絶縁状態を管理する通電中の予防策は種々提案されている(例えば、特許文献1及び2参照)。   Therefore, at present, due to the demand for uninterruptible socialization due to such advanced information technology, the leakage current measurement method that can measure the insulation failure of the electric circuit and equipment from the method using the insulation resistance meter with power failure without turning off the electricity Various preventive measures during energization in which the leakage current is measured by an earth leakage breaker, an earth leakage fire alarm, or the like and the insulation state is managed have been proposed (see, for example, Patent Documents 1 and 2).

ところで、漏洩電流Iには、対地静電容量に起因する漏洩電流(Igc)と、絶縁抵抗に直接関与している対地絶縁抵抗に起因する漏洩電流(Igr)とが含まれている。上述した漏電火災等を引き起こす原因は、絶縁抵抗の存在であり、この絶縁抵抗に起因する漏洩電流(Igr)のみを正確に検出することができれば、回路の絶縁状態をチェックすることができ、漏電火災等の大惨事を避けることができる。   By the way, the leakage current I includes a leakage current (Igc) caused by the ground capacitance and a leakage current (Igr) caused by the ground insulation resistance directly related to the insulation resistance. The cause of the above-mentioned leakage fire is the presence of insulation resistance. If only the leakage current (Igr) caused by this insulation resistance can be accurately detected, the insulation state of the circuit can be checked, A catastrophe such as a fire can be avoided.

しかしながら、工場等で使用される電気機器は、機器同士を結線する際に電線路の長さが長大になることがあり、この電線路の長大化により、対地静電容量が増大化し、それに伴って対地静電容量に起因する漏洩電流(Igc)が大きくなってしまう。   However, electrical equipment used in factories or the like may have a long wire path when connecting the devices, and this increase in the length of the wire path increases the capacitance to the ground. As a result, the leakage current (Igc) due to the ground capacitance increases.

また、これらの電気機器は、電力用半導体素子を応用したインバータを搭載している。電気機器では、この搭載しているインバータを高速の電子スイッチとして使用しているため、必然的に、商用電源の基本周波数である50Hz若しくは60Hzの整数倍の正弦波である高調波歪み電流が発生する。高調波歪み電流には、高い周波数成分が含まれているため、電線路に自然分布している対地静電容量を通過し、電線路に流れてしまい、電線路に流れた高調波歪み電流により漏洩電流Iの値が大きくなってしまう。   Moreover, these electric devices are equipped with inverters using power semiconductor elements. In electrical equipment, this installed inverter is used as a high-speed electronic switch, so inevitably harmonic distortion current is generated that is a sine wave that is an integral multiple of 50 Hz or 60 Hz, which is the fundamental frequency of commercial power. To do. Since the harmonic distortion current contains high frequency components, it passes through the ground capacitance that is naturally distributed in the electric wire and flows into the electric wire, and due to the harmonic distortion current that flows in the electric wire. The value of the leakage current I becomes large.

したがって、絶縁の良否に直接関係する対地絶縁抵抗に起因する漏洩電流(Igr)が電線路の長大化及びインバータ等による高調波歪み電流の影響を受けてしまい、正確に検出することが困難となる。   Therefore, the leakage current (Igr) caused by the ground insulation resistance directly related to the quality of the insulation is affected by the length of the electric wire and the harmonic distortion current due to the inverter, and it is difficult to detect accurately. .

また、部品が高密度に実装された機器、例えば、電話機、ファクシミリ、プリンター及び複合機等では、絶縁箇所を調べるために、絶縁抵抗計等により計測を行った場合、注入する測定電圧により電子回路が影響を受けてしまう恐れがある。したがって、このような機器では、機能破壊を招く恐れがあることから、絶縁抵抗の測定自体ができない機器も多数存在する。
特開2001−215247号公報 特開2002−98729号公報
In addition, in equipment in which parts are mounted with high density, such as telephones, facsimiles, printers, and multi-function machines, when measuring with an insulation resistance meter or the like in order to check the insulation location, an electronic circuit is generated by the injected measurement voltage. May be affected. Accordingly, there is a large number of devices that cannot measure the insulation resistance because such devices may cause functional destruction.
JP 2001-215247 A JP 2002-98729 A

本願発明が解決しようとする問題点は、漏洩電流を計測し、検出のために電路及び機械設備等を停電状態にすることなく、かつ、被測定電線路に接続されている機器の機能を破壊することなく、外部から簡単かつ安全に絶縁の良否に直接関係する対地絶縁抵抗に起因する漏洩電流(Igr)のみを計測し、検出する点にある。   The problem to be solved by the present invention is that the leakage current is measured, and the function of the equipment connected to the line to be measured is destroyed without causing the electric circuit and mechanical equipment to be in a power failure state for detection. Therefore, only the leakage current (Igr) caused by the ground insulation resistance directly related to the quality of the insulation is measured and detected easily and safely from the outside.

また、本発明に係る漏洩電流検出装置は、上述の課題を解決するために、電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出手段と、上記漏洩電流検出手段により検出された漏洩電流を電圧に変換する電圧変換手段と、上記被測定電線路に印加されている電圧を検出する電圧検出手段と、上記電圧検出手段によって検出された電圧の信号波形と、上記電圧変換手段からの電圧の信号波形との位相差を検出する位相差検出手段と、上記電圧検出手段により検出された電圧の信号波形に基づき、上記被測定電線路に印加されている電源周波数を算出する周波数算出手段と、上記位相差検出手段により検出された位相差と、上記周波数算出手段で算出された電源周波数に基づき、上記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出手段と、上記漏洩電流検出手段により検出された漏洩電流の実効値を算出する実効値算出手段と、上記実効値算出手段で算出された実効値と、上記位相角度算出手段により算出された上記被測定電線路に流れている漏洩電流の位相角度に基づき、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出手段と、を備え、上記実効値算出手段は、上記漏洩電流検出手段により検出された漏洩電流の平均値をIとし、その実効値I
=I×(π/2)√2
により算出し、上記対地絶縁抵抗漏洩電流成分算出手段は、上記実効値算出手段により算出された実効値Iと、上記位相角度算出手段により算出された上記被測定電線路に流れている漏洩電流の位相角度θから、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分Igrを
Igr=I×cosθ
により算出することを特徴とする。
Moreover, in order to solve the above-mentioned problem, the leakage current detection apparatus according to the present invention includes a leakage current detection means for detecting a leakage current flowing in a measured electric wire having a single phase electric method, and the leakage current detection described above. Voltage conversion means for converting the leakage current detected by the means into voltage, voltage detection means for detecting the voltage applied to the electric wire to be measured, signal waveform of the voltage detected by the voltage detection means, A phase difference detecting means for detecting a phase difference from the voltage signal waveform from the voltage converting means; and a power supply frequency applied to the measured electric line based on the voltage signal waveform detected by the voltage detecting means. Based on the phase difference detected by the phase difference detection means and the power supply frequency calculated by the frequency calculation means, the leakage current flowing in the measured electric line is calculated. A phase angle calculating means for calculating a phase angle, an effective value calculating means for calculating an effective value of the leakage current detected by the leakage current detecting means, an effective value calculated by the effective value calculating means, and the phase angle Based on the phase angle of the leakage current flowing through the measured electric wire calculated by the calculating means, the leakage current component due to the ground insulation resistance included in the leakage current flowing through the measured electric wire is calculated. A ground insulation resistance leakage current component calculating means, wherein the effective value calculating means sets the average value of the leakage current detected by the leakage current detecting means to I, and sets the effective value I 0 to I 0 = I × (Π / 2) √2
The ground insulation resistance leakage current component calculation means calculates the effective value I 0 calculated by the effective value calculation means and the leakage current flowing through the measured electric wire calculated by the phase angle calculation means. Of the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric wire path from the phase angle θ of Igr = I 0 × cos θ
It is characterized by calculating by.

さらに、本発明に係る漏洩電流検出方法は、上述の課題を解決するために、電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出工程と、上記漏洩電流検出工程により検出された漏洩電流を電圧に変換する電圧変換工程と、上記被測定電線路に印加されている電圧を検出する電圧検出工程と、上記電圧検出工程によって検出された電圧の信号波形と、上記電圧変換工程からの電圧の信号波形との位相差を検出する位相差検出工程と、上記電圧検出工程により検出された電圧の信号波形に基づき、上記被測定電線路に印加されている電源周波数を算出する周波数算出工程と、上記位相差検出工程により検出された位相差と、上記周波数算出工程で算出された電源周波数に基づき、上記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出工程と、上記漏洩電流検出工程により検出された漏洩電流の実効値を算出する実効値算出工程と、上記実効値算出工程で算出された実効値と、上記位相角度算出工程により算出された上記被測定電線路に流れている漏洩電流の位相角度に基づき、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出工程と、を備え、上記実効値算出工程は、上記漏洩電流検出工程により検出された漏洩電流の平均値をIとし、その実効値I
=I×(π/2)√2
により算出し、上記対地絶縁抵抗漏洩電流成分算出工程は、上記実効値算出工程により算出された実効値Iと、上記位相角度算出工程により算出された上記被測定電線路に流れている漏洩電流の位相角度θから、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分Igrを
Igr=I×cosθ
により算出することを特徴とする。
Furthermore, in order to solve the above-mentioned problem, the leakage current detection method according to the present invention includes a leakage current detection step for detecting a leakage current flowing in a measured electric line whose electric system is a single phase, and the leakage current detection described above. A voltage conversion step for converting the leakage current detected in the step into a voltage; a voltage detection step for detecting a voltage applied to the measured electric line; and a signal waveform of the voltage detected by the voltage detection step; A phase difference detection step for detecting a phase difference from the voltage signal waveform from the voltage conversion step, and a power supply frequency applied to the measured line based on the voltage signal waveform detected by the voltage detection step The leakage current flowing in the line to be measured based on the phase calculation detected in the phase difference detection step and the power supply frequency calculated in the frequency calculation step A phase angle calculating step for calculating a phase angle, an effective value calculating step for calculating an effective value of the leakage current detected by the leakage current detecting step, an effective value calculated by the effective value calculating step, and the phase angle Based on the phase angle of the leakage current flowing through the measured electric wire calculated in the calculation step, the leakage current component due to the ground insulation resistance included in the leakage current flowing through the measured electric wire is calculated. A ground insulation resistance leakage current component calculation step, wherein the effective value calculation step is defined as an average value of leakage currents detected by the leakage current detection step, and the effective value I 0 is defined as I 0 = I × (Π / 2) √2
The ground insulation resistance leakage current component calculation step calculates the effective value I 0 calculated by the effective value calculation step and the leakage current flowing through the measured electric wire calculated by the phase angle calculation step. Of the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric wire path from the phase angle θ of Igr = I 0 × cos θ
It is characterized by calculating by.

本発明に係る漏洩電流検出装置及び方法は、被測定電線路に流れている漏洩電流を検出し、検出した漏洩電流から高調波成分を除去したものと、被測定電線路の電圧線路に発生している電圧を検出し、検出した電圧から高調波成分を除去したものから位相差を検出し、検出した位相差と、高調波成分を除去した電圧から算出した電源周波数とから漏洩電流の位相角度を算出し、算出した漏洩電流の位相角度と、高調波成分を除去した漏洩電流の実効値から対地絶縁抵抗のみに起因する漏洩電流を算出する。したがって、本発明に係る漏洩電流検出装置及び方法は、高調波成分を除去した電圧から被測定電線路に流れている電源周波数(商用電源であれば50Hz若しくは60Hz)を正確に算出し、この電源周波数に基づいて、入力される高調波成分が除去された漏洩電流の信号波形と、高調波成分が除去された電圧の信号波形との位相差を正確に検出するので、正確な漏洩電流の位相角度を算出することができ、また、正確な位相角度と、高調波成分を除去した漏洩電流の実効値から対地絶縁抵抗のみに起因する漏洩電流を算出することができるので、被測定電線路が長大化し、インバータによる高調波歪み電流による影響を受けても、漏電火災等の大惨事を招く対地絶縁抵抗のみに起因する漏洩電流のみを算出することができる。   The leakage current detection apparatus and method according to the present invention detects leakage current flowing through a measured electrical line, removes harmonic components from the detected leakage current, and occurs in the voltage line of the measured electrical line. The phase angle of the leakage current is detected from the detected phase difference and the power supply frequency calculated from the voltage from which the harmonic component has been removed. And the leakage current caused only by the ground insulation resistance is calculated from the calculated phase angle of the leakage current and the effective value of the leakage current from which the harmonic component is removed. Therefore, the leakage current detection apparatus and method according to the present invention accurately calculate the power frequency (50 Hz or 60 Hz for commercial power) flowing from the voltage from which the harmonic component has been removed to the line to be measured. Based on the frequency, the phase difference between the input signal waveform of the leakage current from which the harmonic component has been removed and the voltage signal waveform from which the harmonic component has been removed is accurately detected. Since the angle can be calculated, and the leakage current due to the ground insulation resistance alone can be calculated from the accurate phase angle and the effective value of the leakage current from which the harmonic component has been removed, Even if it is lengthened and affected by the harmonic distortion current caused by the inverter, only the leakage current due to the ground insulation resistance that causes a catastrophe such as a leakage fire can be calculated.

また、本発明に係る漏洩電流検出装置及び方法は、漏洩電流を計測検出のために電路・機械設備等を一時的な停電状態にすることなく、外部から簡単かつ安全にIgrを測定することができる。   In addition, the leakage current detection apparatus and method according to the present invention can measure Igr easily and safely from the outside without causing the electric circuit / mechanical equipment to temporarily stop for measuring and detecting the leakage current. it can.

以下、本発明の実施の形態としての漏洩電流検出装置及び方法について説明する。   Hereinafter, a leakage current detection apparatus and method according to embodiments of the present invention will be described.

漏洩電流検出装置1は、図1に示すように、被測定電線路Aの全体にクランプし、被測定電線路Aに流れている漏洩電流Iを検出するカレントトランスセンサ部(以下CTセンサ部という。)10と、CTセンサ部10により検出された漏洩電流Iを電圧に変換し、変換後の電圧(以下「変換後電圧」という。)V1を増幅する増幅部11と、増幅後の変換後電圧V1から高調波成分を除去するローパスフィルタ(以下LPFという。)12と、LPF12で高調波成分が除去された変換後電圧V1を整流する全波整流部13と、被測定電線路Aの電圧線路から電圧V2を検出する電圧検出部14と、電圧検出部14で検出された電圧V2を所定の変圧比になるように変圧する変圧器15と、変圧器15で所定の電圧値に変圧された電圧V2から高調波成分を除去するローパスフィルタ(以下LPFという。)16と、LPF16で高調波成分が除去された電圧V2を整流する全波整流部17と、LPF12により高調波成分が除去された変換後電圧V1の信号波形S1と、LPF16により高調波成分が除去された電圧V2の信号波形S2とを比較する比較部18と、比較部18により比較された結果に基づき所定の演算を行う演算部19と、演算部19による演算結果に基づき位相パルス幅を測定する位相パルス幅測定部20と、LPF16により高調波成分が除去された電圧V2の信号から被測定電線路Aの電圧線路に発生している電源周波数を測定する電源周波数測定部21と、位相パルス幅測定部20で測定された位相パルスと、電源周波数測定部21で測定された電源周波数から被測定電線路Aに流れる漏洩電流Iの位相角度を算出する位相角度算出部22と、全波整流部13で整流された変換後電圧V1をデジタル信号に変換するA/D変換部23と、A/D変換部23でデジタル信号に変換された変換後電圧V1の実効値を算出する実効値算出部24と、全波整流部17で整流された電圧V2をデジタル信号に変換するA/D変換部25と、A/D変換部25でデジタル信号に変換された電圧V2の実効値を算出する実効値算出部26と、位相角度算出部22で算出された漏洩電流Iの位相角度と、実効値算出部24で算出された変換後電圧V1の実効値から対地絶縁抵抗に起因する漏洩電流Iを算出する漏洩電流算出部27と、位相角度算出部22で算出された漏洩電流Iの位相角度と、実効値算出部26で算出された電圧V2の実効値から対地絶縁抵抗の抵抗値を算出する抵抗値算出部28とを備えてなる。   As shown in FIG. 1, the leakage current detection device 1 is clamped to the entire measured electric wire A and detects a leakage current I flowing in the measured electric wire A (hereinafter referred to as a CT sensor unit). 10), the leakage current I detected by the CT sensor unit 10 is converted into a voltage, and the converted voltage (hereinafter referred to as “converted voltage”) V1 is amplified; A low-pass filter (hereinafter referred to as LPF) 12 that removes harmonic components from the voltage V1, a full-wave rectifier 13 that rectifies the converted voltage V1 from which the harmonic components have been removed by the LPF 12, and the voltage of the measured electrical line A The voltage detector 14 for detecting the voltage V2 from the line, the transformer 15 for transforming the voltage V2 detected by the voltage detector 14 to a predetermined transformation ratio, and the transformer 15 being transformed to a predetermined voltage value. Voltage V2 A low-pass filter (hereinafter referred to as LPF) 16 that removes harmonic components, a full-wave rectifier 17 that rectifies the voltage V2 from which the harmonic components have been removed by the LPF 16, and a post-conversion from which harmonic components have been removed by the LPF 12 The comparison unit 18 that compares the signal waveform S1 of the voltage V1 with the signal waveform S2 of the voltage V2 from which the harmonic component has been removed by the LPF 16, and the calculation unit 19 that performs a predetermined calculation based on the comparison result by the comparison unit 18 And a phase pulse width measuring unit 20 that measures the phase pulse width based on the calculation result by the calculating unit 19 and a voltage V2 signal from which the harmonic component has been removed by the LPF 16 The power source frequency measuring unit 21 that measures the power source frequency that is present, the phase pulse measured by the phase pulse width measuring unit 20, and the power source measured by the power source frequency measuring unit 21 A phase angle calculation unit 22 that calculates the phase angle of the leakage current I flowing through the measured electric wire A from the wave number, and an A / D conversion unit 23 that converts the converted voltage V1 rectified by the full wave rectification unit 13 into a digital signal. An effective value calculator 24 for calculating an effective value of the converted voltage V1 converted into a digital signal by the A / D converter 23, and an A for converting the voltage V2 rectified by the full-wave rectifier 17 into a digital signal. / D conversion unit 25, effective value calculation unit 26 for calculating the effective value of voltage V2 converted into a digital signal by A / D conversion unit 25, and phase angle of leakage current I calculated by phase angle calculation unit 22 The leakage current I calculated from the effective value of the converted voltage V 1 calculated by the effective value calculation unit 24 and the leakage current I calculated by the phase angle calculation unit 22. Phase angle and effective value calculation unit 2 And a resistance value calculation unit 28 for calculating the resistance value of the ground insulation resistance from the effective value of the voltage V2 calculated in Step 6.

CTセンサ部10は、被測定電線路Aに流れている漏洩電流成分から生じる磁気を検出し、検出した磁気から電流を生成する。CTセンサ部10は、生成した電流を漏洩電流Iとして増幅部11に供給する。なお、CTセンサ部10により生成された漏洩電流Iは、対地静電容量に起因する漏洩電流(以下Igcという。)と、絶縁抵抗に直接関与している対地絶縁抵抗に起因する漏洩電流(以下Igrという。)とが含まれている。なお、Igcは、被測定線路Aの長さに応じて容量が増大するだけでなく、電気機器に使用されているインバータやノイズフィルター等に起因する高調波歪み電流によっても容量が増大する。   The CT sensor unit 10 detects magnetism generated from a leakage current component flowing in the electric wire path A to be measured, and generates a current from the detected magnetism. The CT sensor unit 10 supplies the generated current as the leakage current I to the amplification unit 11. In addition, the leakage current I generated by the CT sensor unit 10 is a leakage current (hereinafter referred to as Igc) due to the ground capacitance and a leakage current (hereinafter referred to as Igc) directly related to the insulation resistance. Igr.). In addition, Igc not only increases in capacity according to the length of the line A to be measured, but also increases in capacity due to harmonic distortion current caused by an inverter, a noise filter, or the like used in an electrical device.

増幅部11は、CTセンサ部10から供給された漏洩電流Iを電圧に変換し、変換後電圧V1を所定のレベルまで増幅する。また、増幅部11は、例えば、CTセンサ部10から供給された漏洩電流Iが0mA〜10mAのときには、二段で増幅し、また、CTセンサ部10から供給された漏洩電流Iが10mA〜300mAのときには、一段で増幅する。増幅部11は、増幅後の変換後電圧V1をLPF12に供給する。LPF12は、変換後電圧V1に含まれている高調波成分を除去する。LPF12は、高調波成分が除去された変換後電圧V1を全波整流部13と比較部18に供給する。全波整流部13は、供給された変換後電圧V1を整流し、整流後の変換後電圧V1をA/D変換部23に供給する。   The amplifying unit 11 converts the leakage current I supplied from the CT sensor unit 10 into a voltage, and amplifies the converted voltage V1 to a predetermined level. For example, when the leakage current I supplied from the CT sensor unit 10 is 0 mA to 10 mA, the amplification unit 11 amplifies in two stages, and the leakage current I supplied from the CT sensor unit 10 is 10 mA to 300 mA. In this case, it is amplified in one stage. The amplifying unit 11 supplies the converted voltage V1 after amplification to the LPF 12. The LPF 12 removes harmonic components contained in the converted voltage V1. The LPF 12 supplies the converted voltage V1 from which the harmonic component has been removed to the full-wave rectification unit 13 and the comparison unit 18. The full-wave rectification unit 13 rectifies the supplied converted voltage V <b> 1 and supplies the converted voltage V <b> 1 after rectification to the A / D conversion unit 23.

電圧検出部14は、被測定電線路Aに電圧プローブを接続することにより、電圧線路に発生している電圧を検出する。なお、電圧検出部14は、被測定電線路Aの電気方式が三相3線式(デルタ結線からなる)の場合には、S相(接地)以外のR相とT相間の電圧を検出する。また、電圧検出部14は、被測定電線路Aの電気方式が三相4線式(スター結線からなる)の場合には、接地線以外の相間から電圧を検出する。また、電圧検出部14は、被測定電線路Aの電気方式が単相2線式の場合には、N相とL相間の電圧を検出する。   The voltage detection unit 14 detects a voltage generated in the voltage line by connecting a voltage probe to the measured electric line A. The voltage detector 14 detects the voltage between the R phase and the T phase other than the S phase (ground) when the electrical system of the measured electrical line A is a three-phase three-wire system (consisting of a delta connection). . Moreover, the voltage detection part 14 detects a voltage from between phases other than a grounding wire, when the electrical system of the to-be-measured electric wire A is a three-phase four-wire system (it consists of star connection). Moreover, the voltage detection part 14 detects the voltage between N phase and L phase, when the electrical system of the to-be-measured electrical line A is a single phase 2 wire type.

そして、電圧検出部14は、被測定電線路Aから検出した電圧V2から基準点を求め、電圧V2を変圧器15に供給する。例えば、電圧検出部14は、被測定電線路Aから検出した電圧V2の0クロスする点を基準点とする。   Then, the voltage detection unit 14 obtains a reference point from the voltage V <b> 2 detected from the measured electric line A, and supplies the voltage V <b> 2 to the transformer 15. For example, the voltage detection unit 14 uses a point where the voltage V2 detected from the measured electric wire A crosses zero as a reference point.

変圧器15は、供給された電圧V2を所定の電圧値に変圧し、変圧後の電圧VをLPF16に供給する。変圧器15は、例えば、電圧比が20:1になるように変圧を行う。LPF16は、供給された電圧V2に含まれている高調波成分を除去する。LPF16は、高調波成分を除去した電圧V2を全波整流部17と、比較部18と、電源周波数測定部21に供給する。全波整流部17は、供給された電圧V2を整流し、整流後の電圧V2をA/D変換部25に供給する。   The transformer 15 transforms the supplied voltage V2 to a predetermined voltage value, and supplies the transformed voltage V to the LPF 16. For example, the transformer 15 performs voltage transformation so that the voltage ratio is 20: 1. The LPF 16 removes harmonic components contained in the supplied voltage V2. The LPF 16 supplies the voltage V <b> 2 from which the harmonic component has been removed to the full wave rectification unit 17, the comparison unit 18, and the power frequency measurement unit 21. The full-wave rectifier 17 rectifies the supplied voltage V <b> 2 and supplies the rectified voltage V <b> 2 to the A / D converter 25.

比較部18では、LPF12から供給された変換後電圧V1の0Vクロス点をとり、方形波変換を行い、方形波変換後の信号を演算部19に供給する。また、比較部18では、LPF16から供給された電圧V2の0Vクロス点をとり、方形波変換を行い、方形波変換後の信号を演算部19に供給する。   The comparison unit 18 takes a 0V cross point of the converted voltage V1 supplied from the LPF 12, performs square wave conversion, and supplies the square wave converted signal to the arithmetic unit 19. Further, the comparison unit 18 takes the 0V cross point of the voltage V <b> 2 supplied from the LPF 16, performs square wave conversion, and supplies the square wave converted signal to the calculation unit 19.

演算部19は、比較部18から供給される信号に基づき所定の演算を行い、演算後の信号を位相パルス幅測定部20に供給する。演算部19は、例えば、EXOR(排他的論理和)回路からなっており、比較部18から供給されてきた2つの方形波変換後の信号のEXORを実行する。   The calculation unit 19 performs a predetermined calculation based on the signal supplied from the comparison unit 18 and supplies the calculated signal to the phase pulse width measurement unit 20. The arithmetic unit 19 is composed of, for example, an EXOR (exclusive OR) circuit, and executes EXOR of the two signals after square wave conversion supplied from the comparison unit 18.

位相パルス幅測定部20は、演算部19から供給される演算結果に基づき、変換後電圧V1と電圧V2の位相パルス幅を検出する。ここで、位相パルス幅測定部20の動作について説明する。   The phase pulse width measurement unit 20 detects the phase pulse widths of the converted voltage V1 and voltage V2 based on the calculation result supplied from the calculation unit 19. Here, the operation of the phase pulse width measurement unit 20 will be described.

電気方式が単相の場合には、図2(a)に示すように、Igrの位相角θは0°、Igcの位相角θは90°となる。したがって、IgrとIgcの位相差は、90°(1/4サイクル)となる。また、電源が三相の場合には、図2(b)に示すように、Igrの位相角θは60°、Igcの位相角θは0°となる。したがって、IgrとIgcの位相差は、60°(1/6サイクル)となる。そこで、位相パルス幅測定部20は、電源が単相のときでも、三相のときでも対応できるように、位相パルス幅を1サイクルの1/4以下のもののみ対象とする。   When the electrical system is a single phase, as shown in FIG. 2A, the phase angle θ of Igr is 0 ° and the phase angle θ of Igc is 90 °. Therefore, the phase difference between Igr and Igc is 90 ° (1/4 cycle). When the power source is three-phase, the phase angle θ of Igr is 60 ° and the phase angle θ of Igc is 0 ° as shown in FIG. Therefore, the phase difference between Igr and Igc is 60 ° (1/6 cycle). Therefore, the phase pulse width measuring unit 20 targets only a phase pulse width of ¼ or less of one cycle so that it can cope with a single-phase power supply or a three-phase power supply.

ゆえに、位相パルス幅測定部20は、演算部19から供給される演算結果に基づいて算出した、1サイクルの1/4以下の位相パルス幅を位相角度算出部22に出力する。なお、電源周波数が60Hzの場合には、1サイクルが16.6msであるので、位相パルス幅は、4.15ms以下となり、また、電源周波数が50Hzの場合には、1サイクルが20msであるので、4ms以下となる。   Therefore, the phase pulse width measurement unit 20 outputs to the phase angle calculation unit 22 a phase pulse width that is calculated based on the calculation result supplied from the calculation unit 19 and is ¼ or less of one cycle. When the power supply frequency is 60 Hz, one cycle is 16.6 ms, so the phase pulse width is 4.15 ms or less. When the power supply frequency is 50 Hz, one cycle is 20 ms. 4 ms or less.

電源周波数測定部21は、LPF16から供給された電圧V2に基づき、電源周波数を測定し、測定結果を位相角度算出部22に供給する。なお、被測定電線路Aが商用電源であれば、電源周波数測定部21の測定結果は、50Hz若しくは60Hzとなる。また、電源周波数測定部21は、LPF16から供給された電圧V2に基づき、50Hz又は60Hzの何れかを判定する構成であっても良い。   The power supply frequency measurement unit 21 measures the power supply frequency based on the voltage V <b> 2 supplied from the LPF 16 and supplies the measurement result to the phase angle calculation unit 22. In addition, if the to-be-measured electrical line A is a commercial power source, the measurement result of the power frequency measuring unit 21 is 50 Hz or 60 Hz. The power supply frequency measuring unit 21 may be configured to determine either 50 Hz or 60 Hz based on the voltage V2 supplied from the LPF 16.

位相角度算出部22は、位相パルス幅測定部20から供給された位相パルス幅Wと、電源周波数測定部21から供給された電源周波数Fに基づき、下記(1)式により被測定電線路Aに流れている漏洩電流Iの位相角度θを算出する。
θ=360×A×F・・・(1)
位相角度算出部22は、算出した位相角度θを漏洩電流算出部27に供給する。
Based on the phase pulse width W supplied from the phase pulse width measurement unit 20 and the power supply frequency F supplied from the power supply frequency measurement unit 21, the phase angle calculation unit 22 is connected to the measured electrical line A according to the following equation (1). The phase angle θ of the flowing leakage current I is calculated.
θ = 360 × A × F (1)
The phase angle calculation unit 22 supplies the calculated phase angle θ to the leakage current calculation unit 27.

A/D変換部23は、全波整流部13から供給された整流後の変換後電圧V1をデジタル信号に変換し、変換後の信号を実効値算出部24に供給する。実効値算出部24は、A/D変換部23から供給された信号に基づき、下記(2)式により変換後電圧V1の実効値Iを算出する。なお、実効値算出部24に供給される信号は、被測定電線路Aに流れている漏洩電流Iを電圧に変換した変換後電圧V1に基づくものであるので、便宜的にIとする。
=I×(π/2)/√2・・・(2)
The A / D converter 23 converts the rectified converted voltage V <b> 1 supplied from the full-wave rectifier 13 into a digital signal, and supplies the converted signal to the effective value calculator 24. Based on the signal supplied from the A / D conversion unit 23, the effective value calculation unit 24 calculates the effective value I 0 of the converted voltage V1 by the following equation (2). The signal supplied to the effective value calculating unit 24, since it is based on the converted voltage V1 obtained by converting the leakage current I flowing through the measured electric line A to the voltage, and convenience I 0.
I 0 = I × (π / 2) / √2 (2)

実効値算出部24は、算出した実効値Iを漏洩電流算出部27に供給する。 The effective value calculation unit 24 supplies the calculated effective value I 0 to the leakage current calculation unit 27.

また、A/D変換部25は、全波整流部17から供給された整流後の電圧V2をデジタル信号に変換し、変換後の信号を実効値算出部26に供給する。実効値算出部26は、A/D変換部25から供給された信号に基づき、下記(3)式により電圧V2の実効値Vを算出する。
=V×(π/2)/√2・・・(3)
The A / D converter 25 converts the rectified voltage V <b> 2 supplied from the full-wave rectifier 17 into a digital signal and supplies the converted signal to the effective value calculator 26. The effective value calculation unit 26 calculates the effective value V 0 of the voltage V2 based on the signal supplied from the A / D conversion unit 25 by the following equation (3).
V 0 = V × (π / 2) / √2 (3)

実効値算出部26は、算出した実効値Vを抵抗値算出部28に供給する。 The effective value calculation unit 26 supplies the calculated effective value V 0 to the resistance value calculation unit 28.

漏洩電流算出部27は、位相角度算出部22から供給された位相角度θと、実効値算出部24から供給されたIに基づき、Igrを算出する。なお、電源が単相電源の場合には、下記(4)式によりIgrを算出し、電源が三相電源の場合には、下記(5)式によりIgrを算出する。
Igr=I×cosθ・・・(4)
Igr=(I×sinθ)/cos30°・・・(5)
なお、漏洩電流算出部27は、電源が単相電源であるか三相電源であるかを、図示しないロータリースイッチの選択状態に応じて判断することとする。
The leakage current calculation unit 27 calculates Igr based on the phase angle θ supplied from the phase angle calculation unit 22 and I 0 supplied from the effective value calculation unit 24. When the power source is a single-phase power source, Igr is calculated by the following equation (4), and when the power source is a three-phase power source, Igr is calculated by the following equation (5).
Igr = I 0 × cos θ (4)
Igr = (I 0 × sin θ) / cos 30 ° (5)
The leakage current calculation unit 27 determines whether the power source is a single-phase power source or a three-phase power source according to a selection state of a rotary switch (not shown).

漏洩電流算出部27は、算出したIgrを抵抗値算出部28に供給する。   The leakage current calculation unit 27 supplies the calculated Igr to the resistance value calculation unit 28.

抵抗値算出部28は、実効値算出部26から供給された実効値Vと、漏洩電流算出部27から供給されたIgrに基づき、下記(6)式によりGrを算出する。
Gr=V/Igr・・・(6)
上述のように構成される本願発明に係る漏洩電流検出装置1では、例えば、被測定電線路Aの電源が三相式の場合、電源を単相式と同様の処理が可能な構成となっている。ここで、本願発明に係る漏洩電流検出装置1の原理について述べる。
The resistance value calculation unit 28 calculates Gr by the following equation (6) based on the effective value V 0 supplied from the effective value calculation unit 26 and Igr supplied from the leakage current calculation unit 27.
Gr = V 0 / Igr (6)
In the leakage current detection apparatus 1 according to the present invention configured as described above, for example, when the power source of the measured electrical line A is a three-phase type, the power source can be processed in the same manner as a single-phase type. Yes. Here, the principle of the leakage current detection apparatus 1 according to the present invention will be described.

CTセンサ部10は、被測定電線路Aをクランプし、図3(a)に示すように、位相が120°ずつ異なるR相−S相間、S相−T相間及びT相−R相間の波形を検出する。なお、図3(a)では、便宜的にそれぞれの波形を示しているが、CTセンサ部10で検出される波形は合成波形である。CTセンサ部10により検出された合成波形は、増幅部11、LPF12及び比較部18を介して演算部19に入力される。   The CT sensor unit 10 clamps the electric wire A to be measured, and, as shown in FIG. 3A, the waveforms between the R phase and the S phase, between the S phase and the T phase, and between the T phase and the R phase, which are different by 120 °. Is detected. In FIG. 3A, each waveform is shown for convenience, but the waveform detected by the CT sensor unit 10 is a composite waveform. The combined waveform detected by the CT sensor unit 10 is input to the calculation unit 19 via the amplification unit 11, the LPF 12, and the comparison unit 18.

また、電圧検出部14は、R相及びT相に電圧プローブを接続し、R相−T相間の電圧を検出し、検出した電圧を、図3(b)に示すように、反転させる。電圧検出部14は、検出した電圧の所定の場所で0クロスする点を基準点として定める。このように基準点が定まった電圧V2は、変圧器15、LPF16及び比較部18を介して演算部19に入力される。   Moreover, the voltage detection part 14 connects a voltage probe to R phase and T phase, detects the voltage between R phase and T phase, and reverses the detected voltage, as shown in FIG.3 (b). The voltage detector 14 determines a point at which zero crossing occurs at a predetermined location of the detected voltage as a reference point. The voltage V <b> 2 whose reference point is determined in this way is input to the calculation unit 19 via the transformer 15, the LPF 16 and the comparison unit 18.

例えば、被測定電線路AのR相にIgr(以下「R相Igr」という。)のみが発生し、また、T相にIgr(以下「T相Igr」という。)のみが発生している場合には、図3(c)に示すように、R相Igrは、基準点から120°の位相差が生じ、T相Igrは、基準点から60°の位相差が生じる。   For example, when only Igr (hereinafter referred to as “R phase Igr”) is generated in the R phase of the measured electrical line A, and only Igr (hereinafter referred to as “T phase Igr”) is generated in the T phase. As shown in FIG. 3C, the R phase Igr has a phase difference of 120 ° from the reference point, and the T phase Igr has a phase difference of 60 ° from the reference point.

また、被測定電線路AのR相にIgc(以下「R相Igc」という。)のみが発生し、また、T相にIgc(以下「T相Igc」という。)のみが発生している場合には、図3(d)に示すように、R相IgcとT相Igcの合成波形の基準点からの位相差は、180°(0°)である。   Further, when only Igc (hereinafter referred to as “R phase Igc”) is generated in the R phase of the measured electrical line A, and only Igc (hereinafter referred to as “T phase Igc”) is generated in the T phase. As shown in FIG. 3D, the phase difference from the reference point of the combined waveform of the R phase Igc and the T phase Igc is 180 ° (0 °).

さらに、被測定電線路AのR相にIgrとIgcとが発生し、T相にIgrとIgcとが発生している場合には、図3(e)に示すようになる。   Further, when Igr and Igc are generated in the R phase of the measured electrical line A and Igr and Igc are generated in the T phase, the result is as shown in FIG.

また、上述の説明をベクトルで表すと、以下のようになる。被測定電線路Aが三相式なので、図4(a)に示すようになる。そして、電圧検出部14でR相−T相間の電圧を検出し、検出した電圧から基準点を求めると、図4(b)に示すように、単相式のベクトル図となる。なお、上述したように、R相Igrと基準点との位相差は、60°であり、また、T相Igrと基準点との位相差は、120°である。   Further, the above description can be expressed as a vector as follows. Since the wire A to be measured is a three-phase type, it is as shown in FIG. Then, when the voltage detector 14 detects the voltage between the R phase and the T phase and obtains the reference point from the detected voltage, a single-phase vector diagram is obtained as shown in FIG. As described above, the phase difference between the R phase Igr and the reference point is 60 °, and the phase difference between the T phase Igr and the reference point is 120 °.

また、単相式の場合には、図2(a)を用いて既述したように、IgrとIgcの位相差は90°なので、R相Igrから90°回った位置にR相Igcを求めることができ、また、T相Igrから90°回った位置にT相Igcを求めることができる。さらに、基準点から180°(0°)の位置に、R相IgcとT相Igcとの合成ベクトルIgcを求めることができる(図4(c))。   Further, in the case of the single-phase type, as described above with reference to FIG. 2A, the phase difference between Igr and Igc is 90 °, so the R-phase Igc is obtained at a position rotated 90 ° from the R-phase Igr. In addition, the T-phase Igc can be obtained at a position rotated 90 ° from the T-phase Igr. Further, a combined vector Igc of the R phase Igc and the T phase Igc can be obtained at a position 180 ° (0 °) from the reference point (FIG. 4C).

したがって、例えば、被測定電線路AにR相Igrのみが発生している場合には、R相IgrとIgcとの合成ベクトル、すなわち被測定電線路Aに流れている漏洩電流Iは、図4(d)のように表すことができる。なお、図4(d)から、R相Igrを算出する式として、上述した(5)式を導き出すことができる。また、漏洩電流Iの位相差θは、R相Igr及びIgcの大きさにより変化し、変化の幅は、基準点から60°〜180°である。 Therefore, for example, when only the R phase Igr is generated in the measured electrical line A, the combined vector of the R phase Igr and Igc, that is, the leakage current I 0 flowing in the measured electrical line A is It can be expressed as 4 (d). Note that, from FIG. 4D, the above-described equation (5) can be derived as an equation for calculating the R phase Igr. Further, the phase difference θ of the leakage current I 0 changes depending on the magnitudes of the R phases Igr and Igc, and the range of change is 60 ° to 180 ° from the reference point.

また、例えば、被測定電線路AにT相Igrのみが発生している場合には、T相IgrとIgcとの合成ベクトル、すなわち被測定電線路Aに流れている漏洩電流Iは、図4(e)のように表すことができる。なお、図4(e)から、T相Igrを算出する式として、上述した(5)式を導き出すことができる。また、漏洩電流Iの位相差θは、T相Igr及びIgcの大きさにより変化し、変化の幅は、120°〜180°である。 For example, when only the T-phase Igr is generated in the measured electrical line A, the combined vector of the T-phase Igr and Igc, that is, the leakage current I 0 flowing in the measured electrical line A is It can be expressed as 4 (e). Note that, from FIG. 4E, the above-described equation (5) can be derived as an equation for calculating the T-phase Igr. In addition, the phase difference θ of the leakage current I 0 changes depending on the magnitudes of the T phases Igr and Igc, and the range of change is 120 ° to 180 °.

ここで、上述に示した本願発明に係る漏洩電流検出装置1により、被測定電線路Aに流れる漏洩電流成分を検出する動作について図5に示すフローチャートを用いて説明する。   Here, the operation of detecting the leakage current component flowing in the measured electrical line A by the leakage current detection apparatus 1 according to the present invention described above will be described with reference to the flowchart shown in FIG.

ステップST1において、ユーザは、測定対象の電線路の種類(単相2線式、単相3線式及び三相3線式等)に応じて、漏洩電流検出装置1の図示しないロータリースイッチを切り換える。   In step ST1, the user switches a rotary switch (not shown) of the leakage current detection device 1 according to the type of electric wire to be measured (single-phase two-wire system, single-phase three-wire system, three-phase three-wire system, etc.). .

ステップST2において、ユーザは、電圧プローブを測定対象の電線路の電圧線路に接続する。測定対象の電線路が単相2線式(電圧線路と接地線とからなる)の場合には、電圧線路の極性に注意して、電圧線路に電圧プローブを接続する。電圧検出部14は、電圧プローブを介して検出した電圧を変圧器15に供給する。また、測定対象の電線路が単相3線式又は三相多線式(三相3線式又は三相4線式)の場合には、R相及びT相の極性に注意して、R相及びT相に電圧プローブを接続する。電圧検出部14は、電圧プローブを介して検出した電圧を合成して、合成後の電圧を変圧器15に供給する。   In step ST2, the user connects the voltage probe to the voltage line of the electric wire to be measured. When the electric wire to be measured is a single-phase two-wire system (consisting of a voltage line and a ground line), pay attention to the polarity of the voltage line and connect a voltage probe to the voltage line. The voltage detection unit 14 supplies the voltage detected via the voltage probe to the transformer 15. In addition, when the electric wire to be measured is a single-phase three-wire type or a three-phase multi-wire type (three-phase three-wire type or three-phase four-wire type), A voltage probe is connected to the phase and T phase. The voltage detection unit 14 combines the voltages detected via the voltage probe, and supplies the combined voltage to the transformer 15.

ステップST3において、ユーザは、漏洩電流検出装置1の主電源をONにする。   In step ST3, the user turns on the main power supply of the leakage current detection device 1.

ステップST4において、ユーザは、CTセンサ部10のセンサ部(分割型交流器)のKとLの方向に注意して、B種設置工事の接地線若しくは被測定電線路を一括して挟む。なお、漏洩電流検出装置1は、センサ部のKとLの方向が合っている場合には、漏洩電流成分が図示しない表示部に表示され、また、センサ部のKとLの方向が間違っている場合には、図示しないブザー出力部からブザーが鳴り響く構成であっても良い。また、センサ部の挟む方向を間違えないように、センサ部の持ち手の部分に、K表示とL表示を付して置いても良い。   In step ST4, the user pays attention to the directions of K and L of the sensor unit (divided AC device) of the CT sensor unit 10 and sandwiches the ground wire or the measured electric wire path of the class B installation work in a lump. In the leakage current detection device 1, when the K and L directions of the sensor unit are aligned, the leakage current component is displayed on a display unit (not shown), and the K and L directions of the sensor unit are incorrect. If it is, a configuration in which a buzzer sounds from a buzzer output unit (not shown) may be used. Further, a K display and an L display may be attached to the handle portion of the sensor unit so that the direction in which the sensor unit is sandwiched is not mistaken.

ステップST5において、ユーザは、漏洩電流検出装置1の測定開始ボタンを押圧する。漏洩電流検出装置1は、測定開始ボタンの押圧により、被測定電線路に流れている漏洩電流の検出を行う。   In step ST5, the user presses the measurement start button of the leakage current detection device 1. The leakage current detection device 1 detects the leakage current flowing in the measurement target electric line by pressing the measurement start button.

ここで、本発明に係る漏洩電流検出装置1により、実際に被測定電線路から漏洩電流成分を測定した第1の結果を図6に示す。図6は、屋上受配電キュービクル(高圧受電設備)の動力盤(電源周波数:50Hz、電圧:200V、被測定低電圧電路の種類:三相3線式、150kvA、室温:41℃、湿度:43%)を測定対象として行ったものである。   Here, FIG. 6 shows a first result of actually measuring the leakage current component from the measured electric line by the leakage current detection apparatus 1 according to the present invention. FIG. 6 shows a power board (power frequency: 50 Hz, voltage: 200 V, type of low-voltage circuit to be measured: three-phase three-wire system, 150 kvA, room temperature: 41 ° C., humidity: 43 of a rooftop power distribution cubicle (high voltage power receiving equipment). %) Was measured.

また、実験では、測定開始から6分経過時〜9分経過前(3分間)に疑似絶縁抵抗としてR相に20kΩを接地し、測定開始から9分経過時〜11分経過前(2分間)に疑似絶縁抵抗としてT相に20kΩを接地し、測定開始から11分経過時〜12分経過前(1分間)に疑似絶縁抵抗を外し(接地解除)、測定開始から12分経過時〜13分経過前(1分間)に疑似絶縁抵抗としてR相に10kΩを接地し、測定開始から13分経過時〜15分経過前(2分間)に疑似絶縁抵抗としてT相に10kΩを接地し、測定開始から15分経過後に疑似絶縁抵抗を外した。   In the experiment, 20 kΩ was grounded to the R phase as a pseudo-insulation resistance 6 minutes to 9 minutes before the start of measurement (3 minutes), and 9 minutes to 11 minutes before the start of measurement (2 minutes). As a pseudo-insulation resistance, ground 20 kΩ in the T phase, remove the pseudo-insulation resistance (11 minutes) after the elapse of 11 minutes to 12 minutes (1 minute) from the start of measurement, and 12 to 13 minutes after the start of measurement. 10kΩ is grounded to the R phase as the pseudo-insulation resistance before the passage (1 minute), and 10kΩ is grounded to the T phase as the pseudo-insulation resistance at the time of 13 minutes to 15 minutes (2 minutes) after the start of measurement. 15 minutes later, the pseudo-insulation resistance was removed.

例えば、疑似絶縁抵抗としてR相に20kΩの抵抗を接地した場合には、理論的に、疑似絶縁抵抗成分の電流として、
Igr=V/R=200/(20×10)=10mA
の電流が被測定電線路に加算されて流れる。
For example, when a 20 kΩ resistor is grounded to the R phase as the pseudo insulation resistance, theoretically, as the current of the pseudo insulation resistance component,
Igr = V / R = 200 / (20 × 10 3 ) = 10 mA
Current is added to the line to be measured and flows.

漏洩電流検出装置1は、図6に示すように、時間が6分経過時に、疑似絶縁抵抗としてR相に20kΩの抵抗を接地したら、12.3mAのIgrを検出した。疑似絶縁抵抗を接地していないとき(測定開始から6分経過前、測定開始から11分経過時〜12分経過前及び測定開始から15分経過後)のIgrが2mAであるので、R相に20kΩの疑似抵抗を接地した後のIgrから2mAを差し引くと、10.3mAとなる。したがって、本願発明に係る漏洩電流検出装置1は、10.3mAの変化を測定できたことになる。この値は、上述した理論値(10mA)とほぼ一致している。   As shown in FIG. 6, the leakage current detection device 1 detected 12.3 mA Igr when grounding a resistance of 20 kΩ in the R phase as a pseudo-insulation resistance when the time was 6 minutes. Since Igr is 2 mA when the pseudo-insulation resistance is not grounded (before 6 minutes from the start of measurement, after 11 minutes from the start of measurement to 12 minutes before and after 15 minutes from the start of measurement), If 2 mA is subtracted from Igr after grounding the pseudo resistance of 20 kΩ, it becomes 10.3 mA. Therefore, the leakage current detection apparatus 1 according to the present invention can measure a change of 10.3 mA. This value almost coincides with the theoretical value (10 mA) described above.

また、R相に疑似絶縁抵抗を20kΩ接地したとき、接地前の抵抗値(Gr≒105.46kΩ(測定開始から6分経過前までのGrの平均値))との合成抵抗値は、
Gr=(20×10×105.46×10)/(20×10+105.46×10)≒16.3kΩ
となる。漏洩電流検出装置1は、図6に示すように、測定開始から6分経過時の抵抗Grは17.2kΩを示しており、上述した理論値(16.3kΩ)とほぼ一致している。
In addition, when the pseudo insulation resistance is grounded to the R phase at 20 kΩ, the combined resistance value with the resistance value before grounding (Gr≈105.46 kΩ (average value of Gr from the start of measurement to 6 minutes before)) is
Gr = (20 × 10 3 × 105.46 × 10 3 ) / (20 × 10 3 + 105.46 × 10 3 ) ≈16.3 kΩ
It becomes. As shown in FIG. 6, the leakage current detection device 1 has a resistance Gr of 17.2 kΩ when 6 minutes have elapsed from the start of measurement, which substantially matches the above-described theoretical value (16.3 kΩ).

また、疑似絶縁抵抗としてT相に20kΩの抵抗を接地した場合にも、上述と同様に、理論的には、疑似絶縁抵抗成分の電流は10mA増加する。漏洩電流検出装置1では、図6に示すように、測定開始から9分経過時〜11分経過前に検出したIgrは、ほぼ12.4mAとなっており、該数値から2mAを差し引くと、10.4mAとなり、ほぼ理論値(10mA)と一致する。   Further, even when a 20 kΩ resistor is grounded as the pseudo-insulation resistance in the T phase, the current of the pseudo-insulation resistance component theoretically increases by 10 mA as described above. In the leakage current detection device 1, as shown in FIG. 6, the Igr detected from 9 minutes to 11 minutes after the start of measurement is approximately 12.4 mA, and when 2 mA is subtracted from the value, 10 g .4 mA, which almost coincides with the theoretical value (10 mA).

また、T相に疑似絶縁抵抗を20kΩ接地したときの合成抵抗値Grは、上述と同様に、理論的には、16.3kΩであり、測定値は17.4kΩを示しており、ほぼ理論値と一致している。   Further, the combined resistance value Gr when the pseudo-insulation resistance is grounded to the T phase at 20 kΩ is theoretically 16.3 kΩ and the measured value is 17.4 kΩ, as described above. Is consistent with

また、漏洩電流検出装置1は、図6に示すとおり、疑似絶縁抵抗としてR相又はT相に10kΩを接地したときのIgrとGrも理論値と実測値がほぼ一致している。   In addition, as shown in FIG. 6, the leakage current detection device 1 has a theoretical value and an actual measurement value that are substantially the same for Igr and Gr when 10 kΩ is grounded to the R phase or the T phase as a pseudo insulation resistance.

さらに、漏洩電流検出装置1は、測定開始から11分経過後から12分経過前、及び15分経過時に疑似絶縁抵抗の接地状態を解除した場合、Igr、I及びGrの値が接地以前(測定開始から1分〜5分)の状態に戻った。 Further, the leak current detecting device 1, prior to the expiration 12 minutes from the start of measurement after elapse of 11 minutes, and when releasing the ground state of the pseudo insulation resistance when 15 minutes elapsed, Igr, the value of I 0 and Gr ground earlier ( The state returned to the state of 1 minute to 5 minutes from the start of measurement.

また、本発明に係る漏洩電流検出装置1により、実際に被測定電線路から漏洩電流成分を測定した第2の結果を図7に示す。図7は、受配電キュービクル(高圧受電設備)の動力盤(電源周波数:50Hz、電圧:200V、被測定低電圧電路の種類:三相3線式、150kvA)を測定対象として行ったものである。   Moreover, the 2nd result which actually measured the leakage current component from the to-be-measured electric wire line by the leakage current detection apparatus 1 which concerns on this invention is shown in FIG. FIG. 7 shows a power board (power supply frequency: 50 Hz, voltage: 200 V, type of low-voltage circuit to be measured: three-phase three-wire system, 150 kvA) of a power distribution cubicle (high-voltage power receiving equipment) as a measurement target. .

また、実験は、測定開始から1分経過時〜4分経過前(3分間)に疑似静電容量としてR相及びT相に0.22μFを接地し、測定開始から3分経過時〜4分経過前(1分間)に疑似絶縁抵抗としてT相に20kΩを接地し、測定開始から4分経過後に疑似静電容量及び疑似絶縁抵抗を外して行った。したがって、測定開始から3分経過時〜4分経過前は、R相及びT相に疑似静電容量を接地し、かつ、T相に疑似絶縁抵抗を接地して行った。   In the experiment, 1 minute elapsed from the start of measurement to 4 minutes before (3 minutes), 0.22 μF was grounded to the R phase and T phase as a pseudo capacitance, and 3 minutes elapsed from the start of measurement to 4 minutes. Before the lapse of time (1 minute), 20 kΩ was grounded to the T phase as a pseudo insulation resistance, and after 4 minutes from the start of measurement, the pseudo capacitance and the pseudo insulation resistance were removed. Therefore, from 3 minutes to 4 minutes before the start of measurement, the pseudo capacitance was grounded to the R phase and the T phase, and the pseudo insulation resistance was grounded to the T phase.

例えば、疑似静電容量としてR相及びT相に0.22μFの容量を接地した場合には、容量性リアクタンスXは、
X=1/2πfC=1/(2π×50×(0.22×10−6+0.22×10−6))
≒7.23×10
となる。
For example, when a capacitance of 0.22 μF is grounded to the R phase and the T phase as a pseudo capacitance, the capacitive reactance X is
X = 1 / 2πfC = 1 / (2π × 50 × (0.22 × 10 −6 + 0.22 × 10 −6 ))
≒ 7.23 × 10 3
It becomes.

したがって、被測定電線路には、
I=V/X=200/7.23×10≒27.6mA
の電流が加算されて流れる。
Therefore, the line to be measured has
I = V / X = 200 / 7.23 × 10 3 ≈27.6 mA
The current is added and flows.

また、絶縁抵抗としてT相に20kΩの抵抗を接地した場合には、理論的に、疑似絶縁抵抗成分の電流として、
Igr=V/R=200/(20×10)=10mA
の電流が被測定電線路に加算されて流れる。
In addition, when a 20 kΩ resistor is grounded to the T phase as an insulation resistance, theoretically, as a current of a pseudo insulation resistance component,
Igr = V / R = 200 / (20 × 10 3 ) = 10 mA
Current is added to the line to be measured and flows.

漏洩電流検出装置1は、図7に示すように、時間が測定開始から1分経過時に、疑似静電容量としてR相及びT相に0.22μFの静電容量が接地されているときに、7.8mAのIgrを検出し、また、100.8mAのIを検出した。なお、Iは、上述したように絶縁抵抗に起因する電流Igrと、静電容量に起因する電流Igcの合成電流である。 As shown in FIG. 7, the leakage current detection device 1 has a time when 1 minute has elapsed from the start of measurement, and when a capacitance of 0.22 μF is grounded in the R phase and the T phase as a pseudo capacitance, 7.8 mA of Igr was detected, and 100.8 mA of I 0 was detected. Note that I 0 is a combined current of the current Igr caused by the insulation resistance and the current Igc caused by the capacitance as described above.

疑似静電容量を接地していないときのIgrは、図7に示したとおり、7.6mA(測定開始から1分経過前のIgr)であるので、R相及びT相に疑似静電容量を接地した場合、Igrの変化は殆どない。   As shown in FIG. 7, the Igr when the pseudo capacitance is not grounded is 7.6 mA (Igr 1 minute before the start of measurement), so the pseudo capacitance is not added to the R phase and the T phase. When grounded, there is almost no change in Igr.

一方、疑似静電容量を接地していないときのIは、75.9mA(測定開始から1分経過前のI)である。疑似静電容量接地後のI(100.8mA)から疑似静電容量接地前のI(75.9mA)を差し引くと、24.9mAとなり、これが、加算されたIgcである。この加算されたIgcは、理論値(27.6mA)とほぼ等しい。 On the other hand, I 0 when not grounded pseudo capacitance is 75.9mA (I 0 before a lapse of one minute from the start of measurement). When the I 0 after the pseudo capacitance ground (100.8mA) subtracting the pseudo-capacitance ground before I 0 (75.9mA), 24.9mA next, which is the Igc of the addition. This added Igc is almost equal to the theoretical value (27.6 mA).

また、漏洩電流検出装置1は、図7に示すように、R相及びT相に疑似静電容量が接地され、かつ、T相に疑似絶縁抵抗が接地されているとき(測定開始から3分経過時〜4分経過前)に、21.0mAのIgrを検出し、また、107.0mAのIを検出した。 In addition, as shown in FIG. 7, the leakage current detection device 1 has a pseudo-capacitance grounded in the R phase and the T phase, and a pseudo insulation resistance is grounded in the T phase (3 minutes from the start of measurement). From the elapsed time to 4 minutes before), 21.0 mA of Igr was detected, and 107.0 mA of I 0 was detected.

T相に絶縁抵抗を接地した後のIgr(21mA)から、絶縁抵抗を接地する前のIgr(8mA(測定開始から3分経過時のIgr))を差し引くと、13mAとなり、理論値(10mA)とほぼ等しくなる。   Subtracting Igr (8 mA (Igr after 3 minutes from the start of measurement)) before grounding the insulation resistance from Igr (21 mA) after grounding the insulation resistance to the T phase yields 13 mA, which is a theoretical value (10 mA) Is almost equal to

また、R相に疑似絶縁抵抗として10kΩを接地したときの比較部18と演算部19の動作について図8〜図10を用いて説明する。   Further, the operations of the comparison unit 18 and the calculation unit 19 when 10 kΩ is grounded as a pseudo insulation resistance in the R phase will be described with reference to FIGS.

比較部18は、図8に示すように、LPF12から変換後電圧V1が入力され、LPF16から電圧V2が入力される。変換後電圧V1と電圧V2の位相差は、120°である。比較部18は、図9(a)に示すように、LPF12から入力された変換後電圧V1を方形波変換し、変換後の信号を演算部19に出力する。また、比較部18は、図9(b)に示すように、LPF16から入力された電圧V2を方形波変換し、変換後の信号を演算部19に出力する。   As shown in FIG. 8, the comparison unit 18 receives the converted voltage V <b> 1 from the LPF 12 and receives the voltage V <b> 2 from the LPF 16. The phase difference between the converted voltage V1 and the voltage V2 is 120 °. As shown in FIG. 9A, the comparison unit 18 performs square wave conversion on the converted voltage V <b> 1 input from the LPF 12, and outputs the converted signal to the calculation unit 19. Further, as shown in FIG. 9B, the comparison unit 18 performs square wave conversion on the voltage V <b> 2 input from the LPF 16 and outputs the converted signal to the calculation unit 19.

演算部19は、図10に示すように、変換後電圧V2の方形波信号と、電圧V2の方形波信号に基づき、EXORを実行する。演算部19は、EXOR後の信号に基づき、1サイクルの1/4以下の位相パルス幅を求め、求めた位相パルス幅を位相角度算出部22に出力する。   As illustrated in FIG. 10, the arithmetic unit 19 performs EXOR based on the square wave signal of the converted voltage V2 and the square wave signal of the voltage V2. The computing unit 19 obtains a phase pulse width equal to or less than ¼ of one cycle based on the signal after EXOR, and outputs the obtained phase pulse width to the phase angle calculating unit 22.

ステップST6において、ユーザは、測定が終了したら、漏洩電流検出装置1の電源をOFFにする。   In step ST6, when the measurement is completed, the user turns off the power of the leakage current detection device 1.

このように構成される本願発明に係る漏洩電流検出装置1は、被測定電線路Aに流れている漏洩電流Iを検出し、検出した漏洩電流Iを電圧に変換し、変換後の電圧から高調波成分を除去し、高調波成分を除去した変換後電圧V1と、被測定電線路Aの電圧線路から電圧V2を検出し、検出した電圧V2から高調波成分を除去し、高調波成分を除去した電圧V2とに基づき、被測定電線路Aに流れている漏洩電流Iの位相角度θを正確に求め、その正確な位相角度θと、高調波成分が除去された変換後電圧V1の実効値Iとから対地絶縁抵抗に起因する漏洩電流Igrのみを検出する。したがって、本願発明に係る漏洩電流検出装置1は、被測定電線路が長大化し、また、高調波歪み電流を出力するインバータ等により対地静電容量に起因した漏洩電流(Igc)が増大しても、mA単位で確実に対地絶縁抵抗に起因する漏洩電流(Igr)のみを検出することができるので、本願発明を漏洩電流遮断装置に応用した場合には、Igr以外の要素(Igcの増大)による漏洩電流の増大によって誤動作せず、また、本願発明を漏電警報機に応用した場合には、同様に、Igr以外の要素により漏洩電流が増大しても誤報をすることがなく、使用することができる。したがって、本願発明に係る漏洩電流検出装置1は、漏洩電流を検出する際に、電路・機械設備等を一時的に停電状態にすることなく、安全かつ確実に漏電火災等の大惨事に至る前に漏電箇所の検出を行うことができる。 The leakage current detection device 1 according to the present invention configured as described above detects the leakage current I flowing through the measured electric wire A, converts the detected leakage current I into a voltage, and converts the detected voltage into a harmonic from the converted voltage. The converted voltage V1 from which the wave component has been removed and the harmonic component has been removed, and the voltage V2 from the voltage line of the line A to be measured are detected, the harmonic component is removed from the detected voltage V2, and the harmonic component is removed. On the basis of the measured voltage V2, the phase angle θ of the leakage current I flowing in the measured electrical line A is accurately determined, and the accurate phase angle θ and the effective value of the converted voltage V1 from which the harmonic component has been removed. only for detecting a leakage current Igr resulting from the ground insulation resistance from I 0 Metropolitan. Therefore, in the leakage current detection apparatus 1 according to the present invention, even if the measured electric line becomes long and the leakage current (Igc) due to the ground capacitance is increased by an inverter or the like that outputs a harmonic distortion current. , Since only the leakage current (Igr) caused by the ground insulation resistance can be reliably detected in units of mA, when the present invention is applied to the leakage current interrupting device, it depends on elements other than Igr (increased Igc). If the leakage current increases, the malfunction does not occur, and if the present invention is applied to a leakage alarm, it can be used without any false alarm even if the leakage current increases due to factors other than Igr. it can. Therefore, the leakage current detection device 1 according to the present invention is capable of safely and reliably causing a disaster such as a leakage fire without temporarily turning off the electric circuit / mechanical equipment when detecting the leakage current. In addition, it is possible to detect a leakage point.

また、本願発明に係る漏洩電流検出装置1は、周波数注入式のように基準点を他から持ってくるのではなく、基準点を伝送線路に発生している電圧から求めるので、被測定電線路Aに流れているIgrを正確に測定することができる。   In addition, the leakage current detection device 1 according to the present invention does not bring in a reference point from another as in the frequency injection type, but obtains the reference point from the voltage generated in the transmission line. Igr flowing in A can be accurately measured.

本発明に係る漏洩電流検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the leakage current detection apparatus which concerns on this invention. 電源が単相の場合と三相の場合におけるIgrとIgcの位相差を示す図である。It is a figure which shows the phase difference of Igr and Igc in the case where a power supply is a single phase and the case of three phases. 本発明に係る漏洩電流検出装置により行われる漏洩電流の検出する様子を波形で示した図である。It is the figure which showed a mode that the leakage current performed by the leakage current detection apparatus concerning this invention was detected. 本発明に係る漏洩電流検出装置により行われる漏洩電流の検出する様子をベクトルで示した図である。It is the figure which showed a mode that the leakage current performed by the leakage current detection apparatus based on this invention was detected with the vector. 本発明に係る漏洩電流検出装置の動作について説明するフローチャートである。It is a flowchart explaining the operation | movement of the leakage current detection apparatus which concerns on this invention. 本発明に係る漏洩電流検出装置により電線路を実際に測定したときの第1のデータ例を示す図である。It is a figure which shows the 1st data example when an electric wire path is actually measured by the leakage current detection apparatus which concerns on this invention. 本発明に係る漏洩電流検出装置により電線路を実際に測定したときの第2のデータ例を示す図である。It is a figure which shows the 2nd data example when an electric wire path is actually measured by the leakage current detection apparatus which concerns on this invention. 比較部に入力された変換後電圧V1と電圧V2の位相差を示す図である。It is a figure which shows the phase difference of the converted voltage V1 and the voltage V2 which were input into the comparison part. 図(a)は、比較部に入力されたときの変換後電圧V1の波形と、変換後電圧V1に基づき方形波変換したときの波形を示す図であり、図(b)は、比較部に入力されたときの電圧V2の波形と、電圧V2に基づき方形波変換したときの波形を示す図である。FIG. (A) is a diagram showing a waveform of the converted voltage V1 when input to the comparison unit and a waveform when square wave conversion is performed based on the converted voltage V1, and FIG. It is a figure which shows the waveform when the waveform of the voltage V2 when input, and square wave conversion based on the voltage V2. 図9に示した変換後電圧V1に基づき方形波変換したときの波形と、電圧V2に基づき方形波変換したときの波形に基づきEXORを実行した際に形成される波形を示す図である。It is a figure which shows the waveform formed when EXOR is performed based on the waveform when square-wave conversion is performed based on the voltage V1 after conversion shown in FIG. 9, and the waveform when square-wave conversion is performed based on the voltage V2.

符号の説明Explanation of symbols

1 漏洩電流検出装置、A 被測定電線路、10 カレントトランスセンサ部(CTセンサ部)、11 増幅部、12,16 ローパスフィルタ(LPF)、13,17 全波整流部、14 電圧検出部、15 変圧器、18 比較部、19 演算部、20 位相パルス幅測定部、21 電源周波数測定部、22 位相角度算出部、23,25 A/D変換部、24,26 実効値算出部、27 漏洩電流算出部、28 抵抗値算出部   DESCRIPTION OF SYMBOLS 1 Leakage current detection apparatus, A to-be-measured electric wire line, 10 Current transformer sensor part (CT sensor part), 11 Amplification part, 12, 16 Low-pass filter (LPF), 13, 17 Full wave rectification part, 14 Voltage detection part, 15 Transformer, 18 comparison unit, 19 calculation unit, 20 phase pulse width measurement unit, 21 power supply frequency measurement unit, 22 phase angle calculation unit, 23, 25 A / D conversion unit, 24, 26 rms value calculation unit, 27 leakage current Calculation unit, 28 Resistance value calculation unit

Claims (6)

電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出手段と、
上記漏洩電流検出手段により検出された漏洩電流を電圧に変換する電圧変換手段と、
上記被測定電線路に印加されている電圧を検出する電圧検出手段と、
上記電圧検出手段によって検出された電圧の信号波形と、上記電圧変換手段からの電圧の信号波形との位相差を検出する位相差検出手段と、
上記電圧検出手段により検出された電圧の信号波形に基づき、上記被測定電線路に印加されている電源周波数を算出する周波数算出手段と、
上記位相差検出手段により検出された位相差と、上記周波数算出手段で算出された電源周波数に基づき、上記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出手段と、
上記漏洩電流検出手段により検出された漏洩電流の実効値を算出する実効値算出手段と、
上記実効値算出手段で算出された実効値と、上記位相角度算出手段により算出された上記被測定電線路に流れている漏洩電流の位相角度に基づき、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出手段と、を備え、
上記実効値算出手段は、上記漏洩電流検出手段により検出された漏洩電流の平均値をIとし、その実効値I
=I×(π/2)√2
により算出し、
上記対地絶縁抵抗漏洩電流成分算出手段は、上記実効値算出手段により算出された実効値Iと、上記位相角度算出手段により算出された上記被測定電線路に流れている漏洩電流の位相角度θから、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分Igrを
Igr=I×cosθ
により算出することを特徴とする漏洩電流検出装置。
Leakage current detection means for detecting a leakage current flowing in a measured electric line with a single phase electrical method;
Voltage conversion means for converting the leakage current detected by the leakage current detection means into a voltage;
Voltage detecting means for detecting a voltage applied to the measured electric line;
A phase difference detection means for detecting a phase difference between a voltage signal waveform detected by the voltage detection means and a voltage signal waveform from the voltage conversion means;
Based on the signal waveform of the voltage detected by the voltage detection means, a frequency calculation means for calculating a power supply frequency applied to the measured electric line,
A phase angle calculating means for calculating a phase angle of a leakage current flowing in the measured electric line based on the phase difference detected by the phase difference detecting means and the power supply frequency calculated by the frequency calculating means;
An effective value calculating means for calculating an effective value of the leakage current detected by the leakage current detecting means;
Based on the effective value calculated by the effective value calculating means and the phase angle of the leakage current flowing in the measured electric wire calculated by the phase angle calculating means, the leakage current flowing in the measured electric wire A ground insulation resistance leakage current component calculating means for calculating a leakage current component caused by the ground insulation resistance included in
The effective value calculation means sets the average value of the leakage current detected by the leakage current detection means to I, and sets the effective value I 0 to I 0 = I × (π / 2) √2
Calculated by
The ground insulation resistance leakage current component calculation means includes an effective value I 0 calculated by the effective value calculation means, and a phase angle θ of the leakage current flowing through the measured electric wire calculated by the phase angle calculation means. The leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing through the measured electric line is expressed as Igr = I 0 × cos θ
The leakage current detection device characterized by the above calculation.
上記位相角度算出手段は、上記位相差検出手段により検出された位相パルス幅Wと、上記周波数算出手段で算出された周波数Fから上記漏洩電流検出手段で検出された漏洩電流の位相角度θを
θ=360×W×F
により算出することを特徴とする請求項1記載の漏洩電流検出装置。
The phase angle calculation means calculates the phase angle θ of the leakage current detected by the leakage current detection means from the phase pulse width W detected by the phase difference detection means and the frequency F calculated by the frequency calculation means, θ = 360 x W x F
The leakage current detection device according to claim 1, wherein the leakage current detection device is calculated by:
上記漏洩電流検出手段により検出された漏洩電流をデジタル変換するデジタル変換手段を備え、
上記実効値算出手段は、上記デジタル変換手段でデジタル変換された上記漏洩電流の平均値Iの実効値Iを算出することを特徴とする請求項1記載の漏洩電流検出装置。
Comprising digital conversion means for digitally converting the leakage current detected by the leakage current detection means,
The effective value calculating means, the leak current detecting device according to claim 1, wherein calculating the effective value I 0 of the average value I of the digitally converted said leakage current in the digital conversion means.
上記漏洩電流検出手段は、接地線路を含む被測定電線路をクランプし、上記被測定電線路に流れている漏洩電流を検出することを特徴とする請求項1記載の漏洩電流検出装置。   2. The leakage current detecting device according to claim 1, wherein the leakage current detecting means clamps a measured electric wire including a ground line and detects a leakage current flowing through the measured electric wire. 電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出工程と、
上記漏洩電流検出工程により検出された漏洩電流を電圧に変換する電圧変換工程と、
上記被測定電線路に印加されている電圧を検出する電圧検出工程と、
上記電圧検出工程によって検出された電圧の信号波形と、上記電圧変換工程からの電圧の信号波形との位相差を検出する位相差検出工程と、
上記電圧検出工程により検出された電圧の信号波形に基づき、上記被測定電線路に印加されている電源周波数を算出する周波数算出工程と、
上記位相差検出工程により検出された位相差と、上記周波数算出工程で算出された電源周波数に基づき、上記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出工程と、
上記漏洩電流検出工程により検出された漏洩電流の実効値を算出する実効値算出工程と、
上記実効値算出工程で算出された実効値と、上記位相角度算出工程により算出された上記被測定電線路に流れている漏洩電流の位相角度に基づき、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出工程と、を備え、
上記実効値算出工程は、上記漏洩電流検出工程により検出された漏洩電流の平均値をIとし、その実効値I
=I×(π/2)√2
により算出し、
上記対地絶縁抵抗漏洩電流成分算出工程は、上記実効値算出工程により算出された実効値Iと、上記位相角度算出工程により算出された上記被測定電線路に流れている漏洩電流の位相角度θから、上記被測定電線路に流れている漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分Igrを
Igr=I×cosθ
により算出することを特徴とする漏洩電流検出方法。
A leakage current detection step for detecting a leakage current flowing in a measured electric line having a single-phase electrical method;
A voltage conversion step for converting the leakage current detected by the leakage current detection step into a voltage;
A voltage detection step of detecting a voltage applied to the measured electric line;
A phase difference detection step of detecting a phase difference between a voltage signal waveform detected by the voltage detection step and a voltage signal waveform from the voltage conversion step;
Based on the signal waveform of the voltage detected by the voltage detection step, a frequency calculation step for calculating the power supply frequency applied to the measured electric line,
A phase angle calculation step of calculating a phase angle of a leakage current flowing through the measured electric line based on the phase difference detected in the phase difference detection step and the power supply frequency calculated in the frequency calculation step;
An effective value calculation step of calculating an effective value of the leakage current detected by the leakage current detection step;
Based on the effective value calculated in the effective value calculating step and the phase angle of the leakage current flowing in the measured electric wire calculated in the phase angle calculating step, the leakage current flowing in the measured electric wire A ground insulation resistance leakage current component calculation step for calculating a leakage current component due to the ground insulation resistance included in
In the effective value calculating step, the average value of the leakage current detected in the leakage current detecting step is set as I, and the effective value I 0 is set as I 0 = I × (π / 2) √2
Calculated by
The ground insulation resistance leakage current component calculation step includes the effective value I 0 calculated by the effective value calculation step and the phase angle θ of the leakage current flowing through the measured electric wire calculated by the phase angle calculation step. The leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing through the measured electric line is expressed as Igr = I 0 × cos θ
The leakage current detection method characterized by calculating by this.
上記位相角度算出工程において、上記位相差検出工程において検出された位相パルス幅Wと、上記周波数算出工程で算出された周波数Fから、上記漏洩電流検出工程において検出された漏洩電流の位相角度θを
θ=360×W×F
により算出することを特徴とする請求項5記載の漏洩電流検出方法。
In the phase angle calculation step, the phase angle θ of the leakage current detected in the leakage current detection step is calculated from the phase pulse width W detected in the phase difference detection step and the frequency F calculated in the frequency calculation step. θ = 360 × W × F
The leakage current detection method according to claim 5, wherein the leakage current detection method is calculated by:
JP2006251440A 2003-11-04 2006-09-15 Leakage current detection apparatus and method Expired - Lifetime JP4920357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251440A JP4920357B2 (en) 2003-11-04 2006-09-15 Leakage current detection apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003374485A JP2005140532A (en) 2003-11-04 2003-11-04 Device and method for calculating phase angle, device and method for detecting leakage current
JP2006251440A JP4920357B2 (en) 2003-11-04 2006-09-15 Leakage current detection apparatus and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003374485A Division JP2005140532A (en) 2003-11-04 2003-11-04 Device and method for calculating phase angle, device and method for detecting leakage current

Publications (2)

Publication Number Publication Date
JP2007047181A true JP2007047181A (en) 2007-02-22
JP4920357B2 JP4920357B2 (en) 2012-04-18

Family

ID=62152183

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003374485A Pending JP2005140532A (en) 2003-11-04 2003-11-04 Device and method for calculating phase angle, device and method for detecting leakage current
JP2006251440A Expired - Lifetime JP4920357B2 (en) 2003-11-04 2006-09-15 Leakage current detection apparatus and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003374485A Pending JP2005140532A (en) 2003-11-04 2003-11-04 Device and method for calculating phase angle, device and method for detecting leakage current

Country Status (1)

Country Link
JP (2) JP2005140532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264393A (en) * 2013-05-27 2016-01-20 德利信电机株式会社 Leakage current calculation device and method for calculating leakage current

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE539355T1 (en) * 2005-01-31 2012-01-15 Toyotsugu Atoji LEAKAGE CURRENT INTERRUPTER AND METHOD
JP4945727B2 (en) * 2005-01-31 2012-06-06 豊次 阿閉 Leakage current interruption device and method
JP2006349424A (en) * 2005-06-14 2006-12-28 Toyoji Ahei System and method for detecting leak current
JP2007003329A (en) * 2005-06-23 2007-01-11 Hitachi Industrial Equipment Systems Co Ltd Insulation monitor
JP5216958B2 (en) * 2005-07-06 2013-06-19 株式会社三和技術総合研究所 Leakage current detection device and leakage current detection method
JP2007114190A (en) * 2005-09-20 2007-05-10 Daihen Corp Leakage current resistance fraction detection method and device for it
JP4734177B2 (en) * 2006-05-23 2011-07-27 河村電器産業株式会社 Three-phase three-wire circuit leakage detection device and leakage detection method
WO2008072287A1 (en) * 2006-12-08 2008-06-19 Ohno, Takemi Leakage current determining apparatus and leakage current determining method
JP5190635B2 (en) * 2007-09-26 2013-04-24 テンパール工業株式会社 Device for detecting resistance ground fault current
JP5380702B2 (en) * 2008-11-28 2014-01-08 株式会社三和技術総合研究所 Leakage current measuring device and measuring method
JP6289846B2 (en) * 2013-09-25 2018-03-07 株式会社関電工 Leakage current detection apparatus and method
CN104950172B (en) * 2015-07-01 2017-11-17 东南大学 Double clamped beams switch GaAs base low-leakage current microwave phase detector device
JP6718394B2 (en) * 2017-02-06 2020-07-08 株式会社日立産機システム Insulation monitoring device and insulation monitoring system
JP6704368B2 (en) * 2017-03-16 2020-06-03 佐鳥電機株式会社 Insulation monitoring device, method and program
WO2018221619A1 (en) * 2017-05-30 2018-12-06 株式会社 シーディエヌ Electricity leakage detecting method
KR102220329B1 (en) 2020-01-22 2021-02-25 한국표준과학연구원 Apparatus for measuring leakage current in low voltage electric power lines and method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523125A (en) * 1975-06-27 1977-01-11 Mitsubishi Electric Corp Leak detection apparatus
JPS523126A (en) * 1975-06-27 1977-01-11 Mitsubishi Electric Corp Leak detection apparatus
JPS5473681A (en) * 1977-11-24 1979-06-13 Nippon Seimitsu Keisoku Kk Device for detecting effective component of leaking current from threeephase circuit
JPH0382970A (en) * 1989-08-25 1991-04-08 Shikoku Keisoku Kogyo Kk Apparatus for measuring phase difference of ac waveform
JPH0729477U (en) * 1993-10-28 1995-06-02 株式会社ムサシ電機計器製作所 Insulation leakage current measuring device
JPH0919046A (en) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp Insulation-degradation diagnostic apparatus
JP2576003Y2 (en) * 1992-12-25 1998-07-09 河村電器産業株式会社 Leakage detection device in three-phase three-wire circuit
JPH10221397A (en) * 1997-02-04 1998-08-21 Tempearl Ind Co Ltd Leakage current detector
JPH11287830A (en) * 1998-04-01 1999-10-19 Kawasaki Steel Corp Detection method and device of phase component of sign wave signal
JP2001311754A (en) * 2000-04-28 2001-11-09 Yokogawa Electric Corp Time measuring device
JP2002040079A (en) * 2000-07-27 2002-02-06 Tempearl Ind Co Ltd Leakage indicator
JP2002125313A (en) * 2000-10-16 2002-04-26 Kansai Denki Hoan Kyokai Leakage detector, and leakage alarm and leakage breaker therewith
JP2004012147A (en) * 2002-06-03 2004-01-15 Kawamura Electric Inc Insulation monitoring device and insulation monitoring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51635A (en) * 1974-06-20 1976-01-06 Nippon Seimitsu Keisoku Kk
JPS55148664U (en) * 1980-04-24 1980-10-25
JP2560772B2 (en) * 1988-02-19 1996-12-04 株式会社明電舎 Deterioration detection device for lightning arrester

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523125A (en) * 1975-06-27 1977-01-11 Mitsubishi Electric Corp Leak detection apparatus
JPS523126A (en) * 1975-06-27 1977-01-11 Mitsubishi Electric Corp Leak detection apparatus
JPS5473681A (en) * 1977-11-24 1979-06-13 Nippon Seimitsu Keisoku Kk Device for detecting effective component of leaking current from threeephase circuit
JPH0382970A (en) * 1989-08-25 1991-04-08 Shikoku Keisoku Kogyo Kk Apparatus for measuring phase difference of ac waveform
JP2576003Y2 (en) * 1992-12-25 1998-07-09 河村電器産業株式会社 Leakage detection device in three-phase three-wire circuit
JPH0729477U (en) * 1993-10-28 1995-06-02 株式会社ムサシ電機計器製作所 Insulation leakage current measuring device
JPH0919046A (en) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp Insulation-degradation diagnostic apparatus
JPH10221397A (en) * 1997-02-04 1998-08-21 Tempearl Ind Co Ltd Leakage current detector
JPH11287830A (en) * 1998-04-01 1999-10-19 Kawasaki Steel Corp Detection method and device of phase component of sign wave signal
JP2001311754A (en) * 2000-04-28 2001-11-09 Yokogawa Electric Corp Time measuring device
JP2002040079A (en) * 2000-07-27 2002-02-06 Tempearl Ind Co Ltd Leakage indicator
JP2002125313A (en) * 2000-10-16 2002-04-26 Kansai Denki Hoan Kyokai Leakage detector, and leakage alarm and leakage breaker therewith
JP2004012147A (en) * 2002-06-03 2004-01-15 Kawamura Electric Inc Insulation monitoring device and insulation monitoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264393A (en) * 2013-05-27 2016-01-20 德利信电机株式会社 Leakage current calculation device and method for calculating leakage current

Also Published As

Publication number Publication date
JP2005140532A (en) 2005-06-02
JP4920357B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4920357B2 (en) Leakage current detection apparatus and method
JP4945727B2 (en) Leakage current interruption device and method
JP4159590B2 (en) Leakage current interruption device and method
JP3763852B2 (en) Method and circuit for monitoring insulation and fault current in AC power supply
US20090287430A1 (en) System and Method for Detecting Leak Current
JP5216958B2 (en) Leakage current detection device and leakage current detection method
WO2008072287A1 (en) Leakage current determining apparatus and leakage current determining method
JP5748797B2 (en) Leakage current detection apparatus and method
JP5329470B2 (en) Leakage current detection apparatus and method
JP2004012147A (en) Insulation monitoring device and insulation monitoring method
AU2006219731B2 (en) Method and apparatus for monitoring the earth loop impedance of an electrical installation
KR101117870B1 (en) Apparatus and method for detecting leak current
RU2358272C1 (en) Device and technique for leakage current disconnection
KR102452127B1 (en) Apparatus for monitoring overcurrent and earth leakage for both ac and dc, and method thereof
JPH11295362A (en) Impedance measuring apparatus
JPS6290579A (en) Faulty section discriminating apparatus for electric power apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term