JP2007044729A - Method for machining flat work - Google Patents

Method for machining flat work Download PDF

Info

Publication number
JP2007044729A
JP2007044729A JP2005231177A JP2005231177A JP2007044729A JP 2007044729 A JP2007044729 A JP 2007044729A JP 2005231177 A JP2005231177 A JP 2005231177A JP 2005231177 A JP2005231177 A JP 2005231177A JP 2007044729 A JP2007044729 A JP 2007044729A
Authority
JP
Japan
Prior art keywords
processing
surface side
workpiece
hole
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005231177A
Other languages
Japanese (ja)
Other versions
JP4711774B2 (en
Inventor
Tadashi Matsumoto
正 松本
Kunio Arai
邦夫 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2005231177A priority Critical patent/JP4711774B2/en
Publication of JP2007044729A publication Critical patent/JP2007044729A/en
Application granted granted Critical
Publication of JP4711774B2 publication Critical patent/JP4711774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a time and cost for machining a difficult-to-machine material such as a silicon substrate. <P>SOLUTION: Through-holes 31a, 31b are made from the surface side of a silicon substrate 3 (a workpiece W) through the rear surface side thereof on predetermined positions by a laser beam. A 1st XY coordinate system for machining the surface side is set based on the image data obtained by a camera 12 which captures the images of reference holes 30a, 30b formed at the rear side surface of the through-holes 31a, 31b, and the surface side is machined. After machining of the surface side is completed, a 2nd XY coordinate system is set based on the image data obtained by the camera 12 which captures the images of the reference holes 30a, 30b from the upper surface side of the workpiece W that is reversed around the Y axis, and the portions, of which the surface sides are machined, are machined while making the coordinate values on an axis, around which the workpiece W is reversed after machining of the surface side, mirror image values and leaving the coordinate values on the other axis as they are. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばシリコン基板等の難削材の加工方法に関する。   The present invention relates to a method for processing difficult-to-cut materials such as a silicon substrate.

例えば、シリコン基板では、シリコン基板に穴を形成し、形成した穴に回路素子の線状端子部を挿通して固定する場合がある。シリコン基板は難削材であるため、例えば、1mmのシリコン基板に、例えば直径0.7mmの穴を加工する場合、1本のドリルで加工できる穴数は数穴である。したがって、このような穴をドリル加工で形成することは得策ではないため、基準となる穴(以下、「基準穴」という。)はドリルで加工し、加工した基準穴に基づいてその他の穴をドライエッチングにより加工していた。この加工に際してエッチング速度を向上させるため、種々のエッチングガスが検討されている(特許文献1)。
特開平9−7996号公報
For example, in a silicon substrate, a hole may be formed in the silicon substrate, and a linear terminal portion of a circuit element may be inserted and fixed in the formed hole. Since a silicon substrate is a difficult-to-cut material, for example, when a hole with a diameter of 0.7 mm is processed on a 1 mm silicon substrate, the number of holes that can be processed with one drill is several. Therefore, since it is not a good idea to form such holes by drilling, the reference hole (hereinafter referred to as “reference hole”) is drilled and other holes are formed based on the processed reference hole. It was processed by dry etching. In order to improve the etching rate during this processing, various etching gases have been studied (Patent Document 1).
Japanese Patent Laid-Open No. 9-7996

近年、板厚が厚いシリコン基板の用途が大きくなっており、これに伴って、加工速度の向上が望まれている。そこで、前記特許文献1記載の発明では、エッチング速度を向上させるため、エッジングガスが検討されているが、エッジングガスの選択だけでは、現在目指している加工速度の向上に対応することはできない。   In recent years, the use of a silicon substrate having a large plate thickness has increased, and accordingly, an improvement in processing speed is desired. Therefore, in the invention described in Patent Document 1, an edging gas has been studied in order to improve the etching rate. However, the selection of the edging gas alone cannot cope with the improvement of the processing speed currently aimed at.

本発明はこのような背景に鑑みてなされたもので、その目的は、シリコン基板基板等の難削材であっても、加工に要する時間が短く、かつ、加工コストを低減することができる平板状ワークの加工方法を提供するにある。   The present invention has been made in view of such a background, and its purpose is a flat plate capable of reducing the processing cost and reducing the processing cost even for difficult-to-cut materials such as a silicon substrate substrate. It is in providing the processing method of a workpiece.

上記課題を解決するため、本発明は、平板状ワークの加工方法として、平板状ワークの予め定める位置に、表面(一面)側から裏面(他面)に貫通する少なくとも1個の穴をレーザにより加工し、前記表面(一面)側から前記貫通穴の前記裏面(他面)における穴形状を撮像し、得られた撮像データから前記表面(一面)側を加工するための第1のXY加工座標系を定め、定めた前記加工座標系により前記表面(一面)側に加工を行い、前記表面(一面)側の加工が終了した後、前記平板状ワークをY軸またはX軸回りに反転させ、反転された前記平板状ワークの上面(他面)側から前記貫通穴の穴形状を撮像し、得られた撮像データに基づいて第2のXY加工座標系を定め、前記表面(一面)側を加工したときの反転させた軸に関する座標値を鏡像値とし、他方の軸に関する座標値を同一にして前記表面(一面)側を加工した箇所を加工することにより、前記平板状ワークの同一箇所を両面から加工することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a method for processing a flat workpiece, wherein at least one hole penetrating from the front surface (one surface) side to the back surface (other surface) is formed by a laser at a predetermined position of the flat workpiece. 1st XY processing coordinate for processing and imaging the hole shape in the said back surface (other surface) of the said through hole from the said surface (one surface) side, and processing the said surface (one surface) side from the acquired imaging data Determine the system, perform the processing on the surface (one surface) side by the determined processing coordinate system, after the processing of the surface (one surface) side is finished, the plate-like workpiece is inverted around the Y axis or the X axis, The hole shape of the through hole is imaged from the upper surface (other surface) side of the inverted flat workpiece, a second XY processing coordinate system is defined based on the obtained imaging data, and the surface (one surface) side is defined. Coordinates for the reversed axis when machining Was a mirror image values, by processing a portion obtained by processing the surface (one surface) side by the coordinate values for the other axes in the same, and wherein the processing the same point of the flat workpiece from both sides.

本発明によれば、ドリル加工を行わないので、トータルの加工コストを低減することができると共に、加工に要する時間を減らすことができる。   According to the present invention, since drilling is not performed, the total machining cost can be reduced and the time required for machining can be reduced.

以下、図面を参照し、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る平板状ワーク加工装置の全体構成図、図2はXYテーブル部の要部拡大断面図である。   FIG. 1 is an overall configuration diagram of a flat workpiece processing apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of an XY table portion.

図2に示すように、シリコン基板3は第1の治具20a、20bと第2の治具21a、21bとの間に挟み込まれ、ボルト22により一体である。以下、シリコン基板3、第1の治具20a、20b、第2の治具21a、21bをまとめて「ワークW」という。   As shown in FIG. 2, the silicon substrate 3 is sandwiched between the first jigs 20 a and 20 b and the second jigs 21 a and 21 b, and is integrated by bolts 22. Hereinafter, the silicon substrate 3, the first jigs 20 a and 20 b, and the second jigs 21 a and 21 b are collectively referred to as “work W”.

第2の治具21a、21bの高さl2は、シリコン基板3の下面から第1の治具20a、20bの上面までの距離l1に等しくなるように形成されている。   The height l2 of the second jigs 21a and 21b is formed to be equal to the distance l1 from the lower surface of the silicon substrate 3 to the upper surfaces of the first jigs 20a and 20b.

ワークWは、端部がガイド24の側面24aに当接するようにして、ボルト23によりXYテーブル4上に固定されている。ガイド24の側面24aはX軸に平行になるようにしてXYテーブル4上に固定されている。XYテーブル4はX方向およびY方向に移動自在である。   The workpiece W is fixed on the XY table 4 with bolts 23 so that the end portion is in contact with the side surface 24 a of the guide 24. A side surface 24a of the guide 24 is fixed on the XY table 4 so as to be parallel to the X axis. The XY table 4 is movable in the X direction and the Y direction.

XYテーブル4に設けられた空間部4aには、ライト25が配置されている。XYテーブル4と対向する位置にはカメラ12とfθレンズ1が配置されている。カメラ12は、第2の治具21a、21bの上面に焦点が合う第2の治具21a、21bの上面からhの高さに位置決めされている。   A light 25 is disposed in the space 4 a provided in the XY table 4. A camera 12 and an fθ lens 1 are disposed at a position facing the XY table 4. The camera 12 is positioned at a height h from the upper surfaces of the second jigs 21a and 21b that are in focus on the upper surfaces of the second jigs 21a and 21b.

次に、加工手順を説明する。
図3は本実施形態における基準穴の説明図であり、同図(a)は基準穴部分の平面図、同図(b)は基準穴近傍の正面断面図、同図(c)は同図(a)の底面図である。また、図4は本実施形態における加工手順の説明図であり、同図(a)は表面側の場合、同図(b)は裏面側の場合である。
Next, a processing procedure will be described.
3A and 3B are explanatory views of the reference hole in the present embodiment. FIG. 3A is a plan view of the reference hole portion, FIG. 3B is a front sectional view in the vicinity of the reference hole, and FIG. It is a bottom view of (a). FIG. 4 is an explanatory diagram of a processing procedure in the present embodiment, where FIG. 4A shows the case of the front side and FIG. 4B shows the case of the back side.

レーザによりワークWの予め定める位置に穴31a,31bを加工する場合、形成された穴は入射側の直径が出口側の直径よりも大きいテーパ状の穴になる。また、穴の断面が真円になることは少ない。そこで、裏面側に形成された穴を基準穴30a,30bとして、ライト25を点灯し、カメラ12により撮像する。そして、図4(a)に示すように、基準穴30aのX座標の最大値と最小値の平均座標を基準穴30aの中心O1のX座標、Y座標の最大値と最小値の平均座標を基準穴30aの中心O1のY座標とする。同様にして基準穴30bの中心O2のX座標とY座標を定める。さらに、直線O1−O2のX軸に対する角度αを求めておく。   When the holes 31a and 31b are processed at predetermined positions of the workpiece W by a laser, the formed holes are tapered holes having a diameter on the incident side larger than a diameter on the exit side. In addition, the cross section of the hole is rarely a perfect circle. Therefore, the light 25 is turned on using the holes formed on the back surface side as the reference holes 30a and 30b, and images are taken by the camera 12. Then, as shown in FIG. 4A, the average coordinates of the maximum and minimum values of the X coordinate of the reference hole 30a are set as the X coordinate of the center O1 of the reference hole 30a, and the average coordinates of the maximum and minimum values of the Y coordinate are set. The Y coordinate of the center O1 of the reference hole 30a is assumed. Similarly, the X coordinate and Y coordinate of the center O2 of the reference hole 30b are determined. Further, an angle α with respect to the X axis of the straight line O1-O2 is obtained.

次に、中心O1を加工の原点として表面側(図2における上面)の指定された位置にレーザを照射し、表面の二酸化珪素(二酸化シリコン層)を除去する。通常、穴(図2における加工穴)の深さを表面から5μm程度とすれば表面の二酸化珪素層を除去することができ、シリコン層を露出させることができる。なお、図2では、表面側の加工穴(実線)は加工された状態を、裏面側の加工穴(2点鎖線)は加工前の状態をそれぞれ示している。   Next, a laser is irradiated to a designated position on the surface side (upper surface in FIG. 2) with the center O1 as the processing origin, and the surface silicon dioxide (silicon dioxide layer) is removed. Usually, if the depth of the hole (processed hole in FIG. 2) is about 5 μm from the surface, the silicon dioxide layer on the surface can be removed and the silicon layer can be exposed. In FIG. 2, the processing hole on the front surface side (solid line) indicates a processed state, and the processing hole on the back surface side (two-dot chain line) indicates a state before processing.

表面の加工が終了したら、ワークWをY軸の廻りに反転させてXYテーブル4に固定する。次に、ライト25を点灯させ、カメラ12により基準穴30a,30bを撮像し、上記の場合と同様にして中心O1および中心O2の座標を求める。そして、直線O1−O2のX軸に対する角度が−αであることを確認し、中心O1を原点として表面側を加工した時のX座標をマイナスにして(鏡像値にして)加工をする。すなわち、例えば、表面側の点Qs(x、y)において加工を行った場合、点Qb(−x,y)の位置(鏡像となる位置)を加工する。すなわち、点Qsの反対側の面上の点Qbにおいて加工を行う。この結果、シリコン基板3の両側からドライエッチングを行うことにより貫通穴を形成すると、貫通穴の軸線をほぼ同軸にすることができる。   When the surface processing is completed, the workpiece W is reversed around the Y axis and fixed to the XY table 4. Next, the light 25 is turned on, the reference holes 30a and 30b are imaged by the camera 12, and the coordinates of the center O1 and the center O2 are obtained in the same manner as described above. Then, it is confirmed that the angle of the straight line O1-O2 with respect to the X axis is −α, and processing is performed with the X coordinate when the surface side is processed with the center O1 as the origin as a negative value (with a mirror image value). That is, for example, when processing is performed at the point Qs (x, y) on the surface side, the position of the point Qb (−x, y) (the position that becomes a mirror image) is processed. That is, processing is performed at the point Qb on the surface opposite to the point Qs. As a result, when the through hole is formed by performing dry etching from both sides of the silicon substrate 3, the axis of the through hole can be made substantially coaxial.

このように両面の二酸化珪素を除去したワークは、ドライエッチングを両面から行うことができるので、エッチング速度を従来の2倍にすることができる。   Thus, since the workpiece | work from which the silicon dioxide of both surfaces was removed can perform dry etching from both surfaces, an etching rate can be doubled conventionally.

また、レーザにより表面の二酸化珪素を除去するので、従来のドライエッチングにより二酸化珪素を除去する場合に比べて加工速度を向上させることができる。   Further, since the silicon dioxide on the surface is removed by the laser, the processing speed can be improved as compared with the case of removing the silicon dioxide by the conventional dry etching.

また、この実施形態では、ワークWを反転した場合の基準穴のテーブル上面からの高さが変わらないので、カメラの焦点を合わせる作業が不要であるため、作業能率を向上させることができる。   In this embodiment, since the height of the reference hole from the upper surface of the table when the workpiece W is reversed does not change, the work of focusing the camera is unnecessary, so that the work efficiency can be improved.

なお、ワークWを反転させた際、直線O1−O2のX軸に対する角度が−αでない場合は、ワークWの固定をやり直しても良いし、座標変換して加工しても良い。   When the workpiece W is reversed, if the angle of the straight line O1-O2 with respect to the X axis is not −α, the workpiece W may be fixed again or may be processed by coordinate conversion.

また、基準穴を2個設けたが、1個にしても良い。   Further, although two reference holes are provided, one reference hole may be used.

次に、レーザの照射手順を説明する。
図1において、レーザ発振器8はパルス状のUVレーザを出力する。レーザ発振器8から出射されたレーザビーム2はアパーチャ9により外形を整形され、ガルバノミラー6,7で反射されてfθレンズ1に入射し、fθレンズ1により集光されてXYテーブル4上に配置されたワークWの表面を加工する。ガルバノミラー6を回転させることによりレーザビーム2をワークW上のY方向に、また、ガルバノミラー7を回転させることによりレーザビーム2をワークW上のX方向に、それぞれ移動させることができる。
Next, a laser irradiation procedure will be described.
In FIG. 1, a laser oscillator 8 outputs a pulsed UV laser. The external shape of the laser beam 2 emitted from the laser oscillator 8 is shaped by the aperture 9, reflected by the galvanometer mirrors 6 and 7, incident on the fθ lens 1, condensed by the fθ lens 1, and disposed on the XY table 4. The surface of the workpiece W is processed. The laser beam 2 can be moved in the Y direction on the workpiece W by rotating the galvanometer mirror 6, and the laser beam 2 can be moved in the X direction on the workpiece W by rotating the galvanometer mirror 7.

ガルバノミラー6,7およびfθレンズ1で定まる加工領域11(ガルバノスキャンニング領域)の大きさは50mm×50mm程度である。1つの加工領域11の穴の加工が終了すると、XYテーブル4を移動させ、次の加工領域11をfθレンズ1に対して位置決めする。以下、ワークW全域の加工が終了するまで、上記の動作を繰り返す。制御装置13は、ガルバノミラー6,7、レーザ発振器8及びカメラ12を制御する。   The size of the processing region 11 (galvano scanning region) determined by the galvanometer mirrors 6 and 7 and the fθ lens 1 is about 50 mm × 50 mm. When the processing of the hole in one processing region 11 is completed, the XY table 4 is moved and the next processing region 11 is positioned with respect to the fθ lens 1. Thereafter, the above operation is repeated until the machining of the entire work W is completed. The control device 13 controls the galvanometer mirrors 6 and 7, the laser oscillator 8, and the camera 12.

なお、上記実施形態ではレーザにより二酸化珪素層を除去するようにしたが、一面側と他面側からレーザを照射して貫通穴を形成することもできる。このようにすると、中央部の穴径を入り口径に近い穴径にすることができる。   In the above-described embodiment, the silicon dioxide layer is removed by laser, but a through hole may be formed by irradiating laser from one side and the other side. If it does in this way, the hole diameter of a center part can be made into the hole diameter close | similar to an entrance diameter.

また、レーザ照射部を一面側と他面側の両方に設け、基準穴に基づいて両側から加工するようにすると、加工速度を更に向上させることができる。   Moreover, if the laser irradiation part is provided on both the one surface side and the other surface side, and processing is performed from both sides based on the reference hole, the processing speed can be further improved.

本発明を適用するのに好適な平板状ワーク加工装置の全体構成図である。1 is an overall configuration diagram of a flat work processing apparatus suitable for applying the present invention. 本発明におけるXYテーブル部の要部拡大断面図である。It is a principal part expanded sectional view of the XY table part in this invention. 本発明における基準穴の説明図である。It is explanatory drawing of the reference | standard hole in this invention. 本発明における加工手順の説明図である。It is explanatory drawing of the process sequence in this invention.

符号の説明Explanation of symbols

3 シリコン基板(ワークW)
12 カメラ
30a,30b 基準穴
31a,31b 貫通穴
3 Silicon substrate (work W)
12 Camera 30a, 30b Reference hole 31a, 31b Through hole

Claims (3)

平板状ワークの予め定める位置に、一面側から他面側に貫通する少なくとも1個の穴をレーザにより加工し、
前記一面側から前記貫通穴の前記他面における穴形状を撮像し、
得られた撮像データから前記一面側を加工するための第1のXY加工座標系を定め、
定めた前記加工座標系により前記一面側に加工を行い、
前記一面側の加工が終了した後、前記平板状ワークをY軸またはX軸の回りに反転させ、
反転させた前記平板状ワークの前記他面側から前記貫通穴の穴形状を撮像し、
得られた撮像データに基づいて第2のXY加工座標系を定め、
前記一面側を加工したときの反転させた軸に関する座標値を鏡像値とし、他方の軸に関する座標値を同一にして前記一面側を加工した箇所を加工することにより前記平板状ワークの同一箇所を両面から加工することを特徴とする平板状ワークの加工方法。
Processing at least one hole penetrating from one side to the other side with a laser at a predetermined position of the flat workpiece,
Image the hole shape in the other surface of the through hole from the one surface side,
A first XY processing coordinate system for processing the one surface side is determined from the obtained imaging data,
Processing on the one surface side by the determined processing coordinate system,
After the processing on the one surface side is finished, the flat workpiece is inverted around the Y axis or the X axis,
Image the hole shape of the through hole from the other surface side of the inverted flat plate workpiece,
Based on the obtained imaging data, a second XY processing coordinate system is defined,
A coordinate value related to the inverted axis when processing the one surface side is set as a mirror image value, and the same position of the flat work is processed by processing the one surface side with the same coordinate value regarding the other axis. A processing method of a flat work characterized by processing from both sides.
前記平板状ワークがシリコン基板であることを特徴とする請求項1に記載の平板状ワークの加工方法。   The flat plate workpiece processing method according to claim 1, wherein the flat plate workpiece is a silicon substrate. 前記加工が前記シリコン基板表面の二酸化シリコン層を除去するためのレーザ照射であることを特徴とする請求項2に記載の平板状ワークの加工方法。   3. The flat workpiece processing method according to claim 2, wherein the processing is laser irradiation for removing a silicon dioxide layer on the surface of the silicon substrate.
JP2005231177A 2005-08-09 2005-08-09 Processing method for flat work Active JP4711774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231177A JP4711774B2 (en) 2005-08-09 2005-08-09 Processing method for flat work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231177A JP4711774B2 (en) 2005-08-09 2005-08-09 Processing method for flat work

Publications (2)

Publication Number Publication Date
JP2007044729A true JP2007044729A (en) 2007-02-22
JP4711774B2 JP4711774B2 (en) 2011-06-29

Family

ID=37848021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231177A Active JP4711774B2 (en) 2005-08-09 2005-08-09 Processing method for flat work

Country Status (1)

Country Link
JP (1) JP4711774B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006332A (en) * 2007-06-26 2009-01-15 Sumitomo Heavy Ind Ltd Laser beam machining apparatus and laser beam machining method
EP2130630A1 (en) 2008-06-06 2009-12-09 Status Pro Maschinenmesstechnik GmbH Method for face milling workpiece surfaces
JP2010521314A (en) * 2007-03-16 2010-06-24 ザウエル ゲーエムベーハー レーザーテック Method and apparatus for machining a workpiece
WO2011128966A1 (en) * 2010-04-12 2011-10-20 三菱電機株式会社 Laser-machining device, laser-machining method, and laser-machining control device
JP2015003327A (en) * 2013-06-19 2015-01-08 キヤノン株式会社 Laser processing device, substrate processing method, and method for production of substrate
JP2018094616A (en) * 2016-12-16 2018-06-21 澁谷工業株式会社 Laser processing apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267094A (en) * 1986-05-14 1987-11-19 Hitachi Ltd Laser beam processing method
JP2004335655A (en) * 2003-05-06 2004-11-25 Internatl Business Mach Corp <Ibm> Hole forming method, printed wiring board, and hole forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267094A (en) * 1986-05-14 1987-11-19 Hitachi Ltd Laser beam processing method
JP2004335655A (en) * 2003-05-06 2004-11-25 Internatl Business Mach Corp <Ibm> Hole forming method, printed wiring board, and hole forming device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521314A (en) * 2007-03-16 2010-06-24 ザウエル ゲーエムベーハー レーザーテック Method and apparatus for machining a workpiece
US8525076B2 (en) 2007-03-16 2013-09-03 Sauer Gmbh Lasertec Method and device for machining a workpiece
JP2009006332A (en) * 2007-06-26 2009-01-15 Sumitomo Heavy Ind Ltd Laser beam machining apparatus and laser beam machining method
EP2130630A1 (en) 2008-06-06 2009-12-09 Status Pro Maschinenmesstechnik GmbH Method for face milling workpiece surfaces
WO2011128966A1 (en) * 2010-04-12 2011-10-20 三菱電機株式会社 Laser-machining device, laser-machining method, and laser-machining control device
CN102844142A (en) * 2010-04-12 2012-12-26 三菱电机株式会社 Laser-machining device, laser-machining method, and laser-machining control device
JPWO2011128966A1 (en) * 2010-04-12 2013-07-11 三菱電機株式会社 LASER MACHINE, LASER PROCESSING METHOD, AND LASER PROCESSING CONTROL DEVICE
JP5279949B2 (en) * 2010-04-12 2013-09-04 三菱電機株式会社 LASER MACHINE, LASER PROCESSING METHOD, AND LASER PROCESSING CONTROL DEVICE
KR101352731B1 (en) 2010-04-12 2014-01-17 미쓰비시덴키 가부시키가이샤 Laser-machining device, laser-machining method, and laser-machining control device
CN102844142B (en) * 2010-04-12 2015-03-04 三菱电机株式会社 Laser-machining device, laser-machining method, and laser-machining control device
JP2015003327A (en) * 2013-06-19 2015-01-08 キヤノン株式会社 Laser processing device, substrate processing method, and method for production of substrate
JP2018094616A (en) * 2016-12-16 2018-06-21 澁谷工業株式会社 Laser processing apparatus and method

Also Published As

Publication number Publication date
JP4711774B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4752488B2 (en) Laser internal scribing method
JP4490883B2 (en) Laser processing apparatus and laser processing method
JP2004515365A (en) Laser processing of semiconductor materials
CN108538740A (en) Inspection method, check device and the laser processing device of semiconductor ingot
JP4711774B2 (en) Processing method for flat work
JP2006319198A (en) Laser machining method for wafer and device thereof
KR20040007663A (en) Laser segmented cutting
TW525240B (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
TWI386269B (en) Laser processing method and laser processor
JP7307001B2 (en) LASER PROCESSING APPARATUS AND METHOD, CHIP TRANSFER APPARATUS AND METHOD
CN109425612B (en) Wafer for inspection and method for inspecting energy distribution
JP2007185664A (en) Laser beam inside-scribing method
JP2000334594A (en) Laser beam machine and method for laser beam machining
JP2007029990A (en) Laser beam machining apparatus, and laser beam machining method
JP2007021527A (en) Laser beam machining method
JP2009252892A (en) Laser machining method, method for manufacturing printed board, and laser machining apparatus
JP3667709B2 (en) Laser processing method
JP6422182B2 (en) Laser processing equipment
JP2004098120A (en) Method and device of laser beam machining
JP4039306B2 (en) 3D circuit pattern forming method, apparatus, and 3D circuit board manufactured using the same
JP6600237B2 (en) Wafer dividing method and laser processing apparatus
JP2005014050A (en) Laser beam machining device
CN220029001U (en) Laser processing device for manufacturing display device
JP4177730B2 (en) Laser processing method and apparatus
CN111975211B (en) Laser processing method for wafer special-shaped structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Ref document number: 4711774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350