JP2007040724A - Impulse detection method to inner wall of container and its detection system - Google Patents

Impulse detection method to inner wall of container and its detection system Download PDF

Info

Publication number
JP2007040724A
JP2007040724A JP2005222285A JP2005222285A JP2007040724A JP 2007040724 A JP2007040724 A JP 2007040724A JP 2005222285 A JP2005222285 A JP 2005222285A JP 2005222285 A JP2005222285 A JP 2005222285A JP 2007040724 A JP2007040724 A JP 2007040724A
Authority
JP
Japan
Prior art keywords
container
wall
impact
detecting
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005222285A
Other languages
Japanese (ja)
Other versions
JP4748415B2 (en
Inventor
Chao-Nan Xu
超男 徐
Yusuke Imai
今井祐介
Naohiro Ueno
上野直広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005222285A priority Critical patent/JP4748415B2/en
Publication of JP2007040724A publication Critical patent/JP2007040724A/en
Application granted granted Critical
Publication of JP4748415B2 publication Critical patent/JP4748415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impulse detection method to an inner wall of a container and its detection system capable of anticipating the damage to the inner wall of the container without changing the shape of the flow path and without damaging the measurement device by an optical remote measurement. <P>SOLUTION: The impulse detection method for the inner wall of the container is the method for detecting the impulse pressure caused by the cavitation to the inner wall of the container 2, wherein a stress luminescent particle is fixed on the inner wall of the container, at the time of impulse pressure is imparted to the inner wall of the container, the radiated light from the stress luminescent particle is received for detecting the impulse on the inner wall of the container. The reception of the light is performed under the condition that the liquid is flowing in the container 2 or the liquid is stored in the container 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、容器内壁への衝撃を検知する方法及びその検知システムに関し、更に詳しくは、応力発光粒子を使って、液体中のキャビテーションの発生に起因する容器内壁への衝撃を検知する検知方法及びその検知システムに関する。   The present invention relates to a method for detecting an impact on an inner wall of a container and a detection system thereof, and more specifically, a detection method for detecting an impact on an inner wall of a container due to the occurrence of cavitation in a liquid using stress luminescent particles, and It relates to the detection system.

従来、液体中で発生するキャビテーションの気泡の挙動やその発生量を調べることが行われている。
ここで、キャビテーションとは、液体の運動(流速等)の変化によって圧力が飽和蒸気圧以下に低下した際に液体が気化して空洞を生じる現象を言う。
この気泡の挙動や発生量を予備調査してデータを蓄積しておくと、キャビテーションによる環境へのダメージ(壊食等)の発生を設計段階で最小限に食い止めることができるので、このデータの蓄積は極めて重要である。
Conventionally, the behavior of cavitation bubbles generated in a liquid and the generation amount thereof are examined.
Here, cavitation refers to a phenomenon in which when a pressure drops below a saturated vapor pressure due to a change in liquid movement (such as a flow velocity), the liquid is vaporized to form a cavity.
Preliminary investigation of the behavior and generation amount of these bubbles and accumulation of data can minimize the occurrence of environmental damage (erosion etc.) due to cavitation at the design stage. Is extremely important.

そのため、近年、キャビテーション挙動等を観察したり測定したりする方法及びその方法に使用する装置等が種々開発された。
キャビテーションの挙動等を調べる方法としては、例えば、カメラ等により直接観察する方法、光散乱法により測定する方法(例えば、特許文献1参照)、及び静電容量を測定する方法(例えば、特許文献2参照)が開示されている。
Therefore, in recent years, various methods for observing and measuring cavitation behavior and the like, and devices used for the method have been developed.
As a method for examining the behavior of cavitation and the like, for example, a method of directly observing with a camera or the like, a method of measuring by a light scattering method (for example, see Patent Document 1), and a method of measuring a capacitance (for example, Patent Document 2) Reference).

気泡の発生量を定量化するには、光散乱法により測定する方法と静電容量を測定する方法との二通りの方法が有効である。
しかし、光散乱法により測定する方法の場合、ストロボやレーザー光源等の比較的大型で高価な装置が必要となる。
In order to quantify the amount of bubbles generated, two methods, a method of measuring by a light scattering method and a method of measuring a capacitance, are effective.
However, in the case of the measurement by the light scattering method, a relatively large and expensive apparatus such as a strobe or a laser light source is required.

また、静電容量を測定する方法の場合、被測定流体を二個の電極間に挟み込まなければならない。
その上、電極が管内に大きく飛び出す場合には、電極が存在しないときの流路とは異なった流路断面形状になり、液体の流れが通常の流路の場合と比べて変化する。
Further, in the case of a method for measuring the capacitance, the fluid to be measured must be sandwiched between two electrodes.
In addition, when the electrode largely jumps into the tube, the channel cross-sectional shape is different from the channel when the electrode is not present, and the liquid flow changes as compared with the normal channel.

このように、光散乱法により測定する方法にしても静電容量を測定する方法にしても、いずれも装置が複雑になるという欠点がある上、キャビテーションによる壊食を直接的に観察するものではないから容器内壁の損傷(壊食)の予測が困難である。   As described above, both of the measurement method using the light scattering method and the method of measuring the capacitance have the disadvantage that the apparatus becomes complicated, and erosion due to cavitation is not directly observed. Therefore, it is difficult to predict damage (erosion) of the inner wall of the container.

容器内壁の損傷状況の直接的な把握方法としては、圧電センサを用いてキャビテーション衝撃圧を測定するような容器内壁への衝撃の検知方法及びその検知システムが知られている(例えば、特許文献3参照)。   As a method for directly grasping the damage state of the inner wall of the container, a method for detecting an impact on the inner wall of the container and a detection system thereof for measuring the cavitation impact pressure using a piezoelectric sensor are known (for example, Patent Document 3). reference).

特開2003−057164号公報JP 2003-057164 A 特開平7−198710号公報JP-A-7-198710 特開2002−267584号公報JP 2002-267484 A

しかしながら、上述したような圧電センサを用いた容器内壁への衝撃の検知方法及びその検知システムでは、液体中に配置された圧電センサがキャビテーション衝撃波により影響を受け、測定装置そのものを損傷させることになるという問題があった。
また、圧電センサ自体が流路内に飛び出すので、圧電センサが存在しない通常の流路の流れ場とは異なった流れ場を生ずることとなる。
However, in the method and system for detecting an impact on the inner wall of the container using the piezoelectric sensor as described above, the piezoelectric sensor disposed in the liquid is affected by the cavitation shock wave and damages the measuring apparatus itself. There was a problem.
Further, since the piezoelectric sensor itself jumps out into the flow path, a flow field different from the flow field of the normal flow path where no piezoelectric sensor exists is generated.

本発明は、上記のような技術的背景のもとでなされたものである。
すなわち、本発明は、遠隔的に光測定することにより、測定装置を損傷させずに且つ流路の形状を変化させずに、容器内壁への衝撃を直接的に検知し、容器内壁の損傷の予測をすることができる容器内壁への衝撃の検知方法及びその検知システムを提供することを目的とする。
The present invention has been made under the above technical background.
That is, according to the present invention, by remotely measuring light, the impact on the inner wall of the container is directly detected without damaging the measuring device and without changing the shape of the flow path. It is an object of the present invention to provide a method for detecting an impact on the inner wall of a container and a detection system for the prediction.

かくして、本発明者は、このような課題背景に対して鋭意研究を重ねた結果、容器内壁に応力発光粒子を固着させておき、キャビテーションにより容器内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光することにより、上記課題を解決することができることを見出し、この知見により、本発明を完成するに至った。   Thus, as a result of earnest research on the background of such problems, the present inventor has stress-luminescent particles fixed to the inner wall of the container, and stress luminescence generated when impact pressure is applied to the inner wall of the container by cavitation. It has been found that the above-mentioned problems can be solved by receiving the radiated light from the particles, and this finding has led to the completion of the present invention.

すなわち、本発明は、(1)、キャビテーションにより容器内壁へ衝撃圧が加わったことを検知する容器内壁への衝撃の検知方法であって、容器内壁に応力発光粒子を固着させておき、キャビテーションにより容器内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光する容器内壁への衝撃の検知方法に存する。   That is, the present invention is (1) a method for detecting an impact on the inner wall of a container for detecting that an impact pressure is applied to the inner wall of the container by cavitation, wherein stress luminescent particles are fixed to the inner wall of the container, The present invention resides in a method for detecting an impact on an inner wall of a container that receives radiated light from stress luminescent particles generated when an impact pressure is applied to the inner wall of the container.

すなわち、本発明は、(2)、前記放射光の受光は、撮像素子を用いて行う上記(1)に記載の容器内壁への衝撃の検知方法に存する。   That is, the present invention resides in (2) the method for detecting an impact on the inner wall of the container as described in (1) above, wherein the radiation light is received using an image sensor.

すなわち、本発明は、(3)、前記放射光の受光は、液体が容器内を流れる状態で行う上記(1)に記載の容器内壁への衝撃の検知方法に存する。   That is, the present invention resides in (3) the method for detecting an impact on the inner wall of the container as described in (1) above, wherein the received light is received while the liquid flows in the container.

すなわち、本発明は、(4)、前記放射光の受光は、液体が容器内に貯蔵された状態で行う上記(1)に記載の容器内壁への衝撃の検知方法に存する。   That is, the present invention resides in (4) the method for detecting an impact on the inner wall of the container as described in (1) above, wherein the received light is received in a state where the liquid is stored in the container.

すなわち、本発明は、(5)、前記応力発光粒子の母体材料が、スタフドトリジマイト構造、3次元ネットワーク構造、長石構造、ウルツ構造、スピネル構造、コランダム構造又はβ−アルミナ構造を有する酸化物、硫化物、炭化物又は窒化物である上記(1)に記載の容器内壁への衝撃の検知方法に存する。   That is, the present invention provides (5) an oxide in which the matrix material of the stress-stimulated luminescent particles has a stuffed tridymite structure, a three-dimensional network structure, a feldspar structure, a wurtzite structure, a spinel structure, a corundum structure, or a β-alumina structure, It exists in the detection method of the impact to the container inner wall as described in said (1) which is sulfide, carbide, or nitride.

すなわち、本発明は、(6)、前記応力発光粒子の母体材料が、格子欠陥を含むα―SrAl2O4構造である上記(1)に記載の容器内壁への衝撃の検知方法に存する。   That is, the present invention resides in (6) the method for detecting an impact on the inner wall of the container according to the above (1), wherein the base material of the stress-stimulated luminescent particles has an α-SrAl 2 O 4 structure containing lattice defects.

すなわち、本発明は、(7)、前記応力発光粒子を固着した容器の一部を透明化して該透明化部分を介して放射光を受光する上記(1)に記載の容器内壁への衝撃の検知方法に存する。   That is, the present invention relates to (7) the impact on the inner wall of the container according to (1), wherein a part of the container to which the stress-stimulated luminescent particles are fixed is made transparent and the radiated light is received through the transparent part. It exists in the detection method.

すなわち、本発明は、(8)、キャビテーションにより容器内壁へ衝撃圧が加わったことを検知するための容器内壁への衝撃の検知システムであって、内壁に応力発光粒子を固着した液体入りの容器と、キャビテーションにより容器内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光する受光手段と、を備えた容器内壁への衝撃の検知システムに存する。   That is, the present invention is (8) a system for detecting an impact on an inner wall of a container for detecting that an impact pressure is applied to the inner wall of the container by cavitation, the container containing a liquid in which stress luminescent particles are fixed to the inner wall And a light receiving means for receiving radiated light from stress luminescent particles generated when an impact pressure is applied to the inner wall of the container by cavitation, and a system for detecting an impact on the inner wall of the container.

すなわち、本発明は、(9)、前記応力発光粒子を固着した部分の容器内壁の少なくとも一部が透明材料からなる上記(8)に記載の容器内壁への衝撃の検知システムに存する。   That is, the present invention resides in (9) the system for detecting an impact on the inner wall of the container as described in (8) above, wherein at least a part of the inner wall of the container to which the stress luminescent particles are fixed is made of a transparent material.

すなわち、本発明は、(10)、前記液体入りの容器は、液体が流れることが可能な容器である上記(8)に記載の容器内壁への衝撃の検知システムに存する。   That is, the present invention resides in (10) the system for detecting an impact on the inner wall of the container according to (8), wherein the container containing the liquid is a container through which the liquid can flow.

すなわち、本発明は、(11)、前記液体入りの容器は、液体を貯蔵しておくことが可能な容器である上記(8)に記載の容器内壁への衝撃の検知システムに存する。   That is, the present invention resides in (11) the system for detecting an impact on the inner wall of the container according to (8), wherein the container containing the liquid is a container capable of storing a liquid.

なお、本発明の目的に添ったものであれば、上記(1)から(11)を適宜組み合わせた構成も採用可能である。   In addition, as long as the objective of this invention is met, the structure which combined said (1) to (11) suitably is also employable.

本発明によれば、容器内壁に応力発光粒子を固着させておき、キャビテーションにより容器内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光する。
そのため、放射光を撮像素子で受光すれば、容器内壁での衝撃が加わった位置やその衝撃の程度が正確に分かる。
According to the present invention, stress luminescent particles are fixed to the inner wall of the container, and radiated light from the stress luminescent particles generated when an impact pressure is applied to the inner wall of the container by cavitation is received.
Therefore, if the radiated light is received by the image sensor, the position where the impact is applied to the inner wall of the container and the degree of the impact can be accurately known.

更に、応力発光粒子を容器内壁に固着するので、通常の流路と流路断面形状が変わらず、容器内の液体の流れを妨げることがない。
測定装置を損傷させずに且つ流路の形状を変化させずに、容器内壁への衝撃を直接的に検知することができ、容器内壁の損傷を予測することができる。
Furthermore, since stress-stimulated luminescent particles are fixed to the inner wall of the container, the normal flow path and the cross-sectional shape of the flow path do not change, and the flow of liquid in the container is not hindered.
Without damaging the measuring apparatus and without changing the shape of the flow path, the impact on the inner wall of the container can be directly detected, and damage to the inner wall of the container can be predicted.

以下、本発明を実施するための最良の形態を図面を用いて説明する。
〔第一実施形態〕
図1は、本発明の容器内壁への衝撃の検知方法及びその検知システムの第一実施形態を示している。
図の容器は液体が流れる液体流通管2の例である。
ここでは、液体流通管2内で発生するキャビテーション衝撃圧による容器内壁への衝撃を検知する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
[First embodiment]
FIG. 1 shows a first embodiment of a method and system for detecting an impact on the inner wall of a container according to the present invention.
The container in the figure is an example of a liquid circulation pipe 2 through which a liquid flows.
Here, the impact on the inner wall of the container due to the cavitation impact pressure generated in the liquid circulation pipe 2 is detected.

先ず、参考までにキャビテーションの発生原理について簡単に述べる。
例えば、絞り部を介して大径部と小径部とが連結された一本の管においては、上流側の大径部を流れる液体が口絞り部を経て下流側の小径部に流入すると、流路断面積が減少するため液体の流速が増し、その結果、圧力が低下する。
この圧力が飽和蒸気圧以下まで低下すると、その状態では沸点が低くなっているので、沸騰と同様の気化現象が発生、すなわちキャビテーションが発生するのである。
First, the principle of cavitation generation is briefly described for reference.
For example, in a single pipe in which a large-diameter portion and a small-diameter portion are connected via a throttle portion, when a liquid flowing through the large-diameter portion on the upstream side flows into the small-diameter portion on the downstream side through the mouth throttle portion, Since the path cross-sectional area decreases, the liquid flow rate increases, and as a result, the pressure decreases.
When this pressure drops below the saturated vapor pressure, the boiling point is low in that state, and the vaporization phenomenon similar to boiling occurs, that is, cavitation occurs.

キャビテーションが発生した液体が下流に流されて再び大径部に流入すると、流路断面積が増加し、液体の流速が低下して圧力が増加する。
そのため、キャビテーションは縮小し消滅するのである。
このキャビテーションの縮小や消滅時に、数百気圧程の大きな圧力(すなわち衝撃力)が発生する。
When the liquid in which cavitation has occurred flows downstream and flows into the large diameter portion again, the flow path cross-sectional area increases, the liquid flow velocity decreases, and the pressure increases.
As a result, cavitation shrinks and disappears.
When the cavitation is reduced or eliminated, a large pressure of about several hundred atmospheres (that is, impact force) is generated.

本発明は、容器内壁に応力発光粒子を固着した場合に応力発光粒子がキャビテーション衝撃圧により発光する原理を利用したものである。
ここで応力発光粒子とは、母体材料に発光中心を添加させたものである(例えば、特開2000−63824号公報参照)。
母体材料としては、例えば、スタフドトリジマイト構造、三次元ネットワーク構造、長石構造、格子欠陥制御をした結晶構造、ウルツ構造、スピネル構造、コランダム構造又はβ−アルミナ構造を有する酸化物、硫化物、炭化物又は窒化物を用いることができる。
The present invention utilizes the principle that stress-stimulated luminescent particles emit light by cavitation impact pressure when stress-stimulated luminescent particles are fixed to the inner wall of the container.
Here, the stress-stimulated luminescent particles are obtained by adding a luminescent center to a base material (see, for example, JP-A-2000-63824).
Examples of the matrix material include stuffed tridymite structure, three-dimensional network structure, feldspar structure, crystal structure with lattice defect control, wurtzite structure, spinel structure, corundum structure, β-alumina structure oxide, sulfide, carbide Alternatively, nitride can be used.

発光中心としては、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの希土類イオン、及び、Ti,Zr,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Nb,Mo,Ta,Wの遷移金属イオンを用いることができる。   As the emission center, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu rare earth ions, and Ti, Zr, V, Transition metal ions of Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ta, and W can be used.

材料の化学式数字の下付きに関しては粒子の特許、先ほど修正版と同様です。ご参照ください。
母体材料として、例えばストロンチウム及びアルミニウム含有複合酸化物を用いる場合、応力発光粒子として、xSrO・yAl・zMO(Mは二価金属、Mg,Ca,Ba,x,y,zは整数である)、xSrO・yAl・zSiO(x,y,zは整数である)を用いると良い。
中でも、SrMgAl10O17:Eu、(SrxBa1−x)Al:Eu(0<x<1)、BaAlSi:Eu等が望ましい。
特に、格子欠陥を含むα―SrAl構造が好ましい。
The subscript of the chemical formula number of the material is the same as that of the particle patent and the revised version. Please refer to it.
For example, when strontium and aluminum-containing composite oxide is used as the base material, xSrO.yAl 2 O 3 .zMO (M is a divalent metal, Mg, Ca, Ba, x, y, and z are integers) as stress luminescent particles. XSrO.yAl 2 O 3 .zSiO 2 (x, y, z are integers) may be used.
Among them, SrMgAl10O 17 : Eu, (SrxBa1-x) Al 2 O 4 : Eu (0 <x <1), BaAl 2 Si 2 O 8 : Eu, and the like are desirable.
In particular, an α-SrAl 2 O 4 structure containing lattice defects is preferable.

応力発光粒子の粒子径については、高分子材料中に全体に均一に分散し易いものであれば良く、特に限定されない。
しかし、分解能を高くして光強度を測定するのであれば、粒子径は小さい方が好ましい。
具体的には、平均粒子径が50μm以下であることが好ましい。
本実施形態では、高分子材料と応力発光粒子とを混合してペースト状にしたものを被測定対象部に層状に塗布して衝撃の検知を行う。
高分子材料としては、応力発光粒子を強く保持固定できるものであれば、特に限定されない。
例えば一液硬化型又は二液硬化型のアクリル系樹脂やエポキシ系樹脂、ウレタン樹脂を用いることができる。
The particle diameter of the stress-stimulated luminescent particles is not particularly limited as long as it is easily dispersed uniformly throughout the polymer material.
However, if the resolution is increased and the light intensity is measured, the particle diameter is preferably small.
Specifically, the average particle diameter is preferably 50 μm or less.
In this embodiment, a polymer material and stress-stimulated luminescent particles mixed to form a paste are applied in layers to the measurement target portion to detect impact.
The polymer material is not particularly limited as long as it can strongly hold and fix the stress-luminescent particles.
For example, one-pack curable or two-pack curable acrylic resin, epoxy resin, or urethane resin can be used.

さて、本実施形態の検知システムは、測定装置1と、応力発光粒子を固着した応力発光層Sと、透明な窓3が設けられる液体流通管2とを有している。
測定装置1は、受光手段4、演算手段5、パーソナルコンピュータ6、及びモニタ7を有している。
図1では、液体流通管2の一部に透明化部分である窓3が設けられている。
この窓3のような透明化部分は液体流通管2の少なくとも一部を、例えば透明樹脂、ガラス等の透明材料とすることで容易に設けることができる。
Now, the detection system of this embodiment has the measuring apparatus 1, the stress light emission layer S which fixed the stress light emission particle | grains, and the liquid distribution pipe 2 in which the transparent window 3 is provided.
The measuring device 1 has a light receiving means 4, a computing means 5, a personal computer 6, and a monitor 7.
In FIG. 1, a window 3 that is a transparent portion is provided in a part of the liquid circulation pipe 2.
The transparent portion such as the window 3 can be easily provided by using at least a part of the liquid circulation pipe 2 as a transparent material such as transparent resin or glass.

応力発光層Sは、高分子材料中に応力発光粒子を分散させて塗布することにより形成される。
そのため、応力発光層Sはミクロンオーダの厚みで極めて薄く形成することができ、透光性となり且つ流路断面形状はほとんど変化しない。
The stress luminescent layer S is formed by dispersing and applying stress luminescent particles in a polymer material.
Therefore, the stress-stimulated luminescent layer S can be formed very thin with a thickness on the order of microns, becomes translucent and the flow channel cross-sectional shape hardly changes.

この応力発光層Sの近傍でキャビテーションによって発生した気泡が消滅すると、衝撃波が応力発光層Sを直撃することになる。
その結果、応力発光層Sから(詳しくは応力発光粒子から)光が放射され、透明な窓3を通して、受光手段4に入射する。
この受光手段4には、集光レンズ41や撮像素子(受光素子)42が備えられており、応力発光粒子から放射された光は集光レンズ41を介して撮像素子42に受光される。
When bubbles generated by cavitation disappear in the vicinity of the stress luminescent layer S, a shock wave hits the stress luminescent layer S directly.
As a result, light is emitted from the stress luminescent layer S (specifically, from the stress luminescent particles) and enters the light receiving means 4 through the transparent window 3.
The light receiving means 4 includes a condensing lens 41 and an imaging element (light receiving element) 42, and light emitted from the stress luminescent particles is received by the imaging element 42 via the condensing lens 41.

撮像素子42では光電変換が行われ、電気信号が演算手段5に送信される。
演算手段5では、電気信号がA/D変換され、撮像素子42の画素毎の光強度が数値化され、JPEG形式やTIFF形式等でデータが記録媒体に格納される。
The image sensor 42 performs photoelectric conversion, and an electric signal is transmitted to the arithmetic means 5.
In the arithmetic means 5, the electric signal is A / D converted, the light intensity for each pixel of the image sensor 42 is digitized, and the data is stored in the recording medium in JPEG format, TIFF format, or the like.

図1に示す測定装置1では、演算手段5にパーソナルコンピュータ6が接続されており、このパーソナルコンピュータ6に接続されたモニタ7に測定結果が表示される。
具体的な表示形態としては、例えば、応力発光層Sにおける衝撃圧の分布状態が発生位置をXY軸(応力発光層Sに沿った面)とし、光強度をZ軸として立体的な表示が行われる。
In the measuring apparatus 1 shown in FIG. 1, a personal computer 6 is connected to the computing means 5, and the measurement result is displayed on a monitor 7 connected to the personal computer 6.
As a specific display form, for example, a three-dimensional display is performed with the distribution of impact pressure in the stress-stimulated luminescent layer S as the XY axis (surface along the stress luminescent layer S) and the light intensity as the Z-axis. Is called.

ここで、キャビテーションが発生していない状態の光強度のバックグラウンドデータを前もって測定しておけば、それを使ってキャビテーション発生時の光強度を補正することにより、その衝撃圧の相対的大きさをより正確に表示することができる。   Here, if the background data of the light intensity in the state where cavitation does not occur is measured in advance, the relative intensity of the impact pressure can be determined by correcting the light intensity at the time of cavitation generation using that data. It can be displayed more accurately.

本発明によれば、液体流通管2の内壁に応力発光粒子を固着させておき、液体流通管2の内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光する。
そのため、放射光を撮像素子42で受光すれば、衝撃が加わった位置や衝撃の度合いが正確に分かり、結果的に衝撃圧による内壁の破壊食状態が把握できることとなる。
According to the present invention, stress luminescent particles are fixed to the inner wall of the liquid circulation tube 2, and the emitted light from the stress luminescence particles generated when an impact pressure is applied to the inner wall of the liquid circulation tube 2 is received.
Therefore, if the radiated light is received by the image pickup device 42, the position where the impact is applied and the degree of the impact can be accurately known, and as a result, the state of destruction of the inner wall due to the impact pressure can be grasped.

更に、応力発光粒子を容器内壁に層状に固着するので、通常の流路と流路断面形状が変わらず、容器内の液体の流れを妨げることがない。
測定装置を損傷させずに且つ流路の形状を変化させずに、容器内壁への衝撃を直接的に検知することができ、容器内壁の損傷を予測することができる。
Furthermore, since the stress-stimulated luminescent particles are fixed to the inner wall of the container in a layered manner, the normal flow path and the cross-sectional shape of the flow path do not change, and the liquid flow in the container is not hindered.
Without damaging the measuring apparatus and without changing the shape of the flow path, the impact on the inner wall of the container can be directly detected, and damage to the inner wall of the container can be predicted.

なお、上述した第一実施形態において応力発光層Sが比較的厚い場合は、液体流通管2の内壁に凹部を形成した部分に設けることで内壁が面一となって好ましい。   In addition, when the stress light emitting layer S is relatively thick in the first embodiment described above, it is preferable that the inner wall is flush with the inner wall of the liquid circulation pipe 2 provided in a portion where a recess is formed.

〔第二実施形態〕
第一実施形態では液体流通管2に形成した透明の部分的な窓3を通して光を受光しているが、この第二実施形態は、図2に示すように、液体が流れる液体流通管2の全体を透明にした窓3に対応するように応力発光層Sを形成したものである。
液体流通管2のどの位置においても衝撃圧が加わったことを検知することができるようにすることが可能である。
受光手段4を液体流通管2に沿って移動させ、所望の位置で衝撃波による衝撃状態を観測することができる。
[Second Embodiment]
In the first embodiment, light is received through a transparent partial window 3 formed in the liquid circulation pipe 2. However, in the second embodiment, as shown in FIG. The stress light emitting layer S is formed so as to correspond to the window 3 made transparent as a whole.
It is possible to detect that an impact pressure has been applied at any position of the liquid circulation pipe 2.
The light receiving means 4 can be moved along the liquid circulation pipe 2, and the impact state by the shock wave can be observed at a desired position.

〔第三実施形態〕
第一実施形態及び第二実施形態では、液体が容器内を流れる状態にある例、すなわち液体流通管2内を流れる状態の例について説明したが、液体が容器2A内に貯蔵された状態の例がこの第三実施形態である。
図3に示す検知システムは、流れのない液体中において、超音波の影響等の何らかの原因でキャビテーションが発生した場合を想定している。
[Third embodiment]
In the first embodiment and the second embodiment, the example in which the liquid flows in the container, that is, the example in the state in which the liquid flows in the liquid circulation pipe 2 has been described, but the example in which the liquid is stored in the container 2A. This is the third embodiment.
The detection system shown in FIG. 3 assumes a case where cavitation occurs for some reason such as the influence of ultrasonic waves in a liquid that does not flow.

以上、本発明を説明してきたが、本発明は上述した実施形態にのみ限定されるものではなく、その本質を逸脱しない範囲で、種々の変形が可能であることは言うまでもない。
例えば、上述した実施形態では、容器として流体流通管2や容器2Aを用いた例について説明したが、これに限定されることはなく、要するに、液体を収容又は流通させることができるものであればよい。
Although the present invention has been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the essence thereof.
For example, in the above-described embodiment, the example in which the fluid circulation pipe 2 or the container 2A is used as the container has been described. However, the present invention is not limited to this, and in short, any liquid can be accommodated or circulated. Good.

また、上述した実施形態では、液体として水を例に挙げたが、これに限定されることはなく、キャビテーヒョンを発生するものであれば適用可能である。
また、受光手段4として、レンズとカメラの例で示したが、光ファイバーを受光素子に導くような構成にすることも可能である。
In the above-described embodiment, water is used as an example of the liquid. However, the present invention is not limited to this, and any liquid can be used as long as it generates cavitation.
Moreover, although the example of the lens and the camera is shown as the light receiving means 4, it is also possible to adopt a configuration in which the optical fiber is guided to the light receiving element.

以下、実施例を挙げて説明するが、本発明は、これらの実施例に限定されるものではない。   Hereinafter, although an example is given and explained, the present invention is not limited to these examples.

図4は、キャビテーションにより容器内壁へ衝撃圧が加わったことを検知する実験に用いた検知システムを示している。
図に示すように、測定装置1によって、液体(ここでは水)が貯蔵された容器であるビーカー2B内で発生するキャビテーションの測定を行った。
なお、この実施例では、上述した実施形態と同一の構成要素には同一の符号を付しその詳細な説明を省略する。
FIG. 4 shows a detection system used in an experiment for detecting the impact pressure applied to the inner wall of the container by cavitation.
As shown in the figure, the measurement apparatus 1 measured cavitation generated in a beaker 2B that is a container in which a liquid (here, water) is stored.
In this example, the same components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

この検知システムは、受光手段4を含む測定装置1と、ステンレス製の発生容器81を備えた箱型の超音波発生セル8と、液体(水)が満たされたステンレス製の発生容器81の底部に載置されたビーカー2Bとを有している。
なお、超音波発生セル8としては、SNT社製超音波洗浄器(US−1型、38kHz、80W)を用いた。
This detection system includes a measuring device 1 including a light receiving means 4, a box-shaped ultrasonic generation cell 8 having a stainless steel generation container 81, and a bottom of a stainless steel generation container 81 filled with liquid (water). And a beaker 2B mounted on the vehicle.
In addition, as the ultrasonic wave generation cell 8, an SNT ultrasonic cleaner (US-1 type, 38 kHz, 80 W) was used.

ビーカー2Bの底部には、エポキシ系樹脂と応力発光粒子とを重量比で1:1で混合したペーストを塗布して応力発光層Sを形成した。
材料の化学式数字の下付きに関しては粒子の特許、先ほど修正版と同様です。ご参照ください。
ここで使用した応力発光粒子の平均粒子径は1μmであり、材質はSr0.90Eu0.01Alである。
A stress light emitting layer S was formed on the bottom of the beaker 2B by applying a paste in which an epoxy resin and stress light emitting particles were mixed at a weight ratio of 1: 1.
The subscript of the chemical formula number of the material is the same as that of the particle patent and the revised version. Please refer to it.
The average particle diameter of the stress luminescent particles used here is 1 μm, and the material is Sr 0.90 Eu 0.01 Al 2 O 4 .

以上のような検知システムを用いて、超音波発生セル8の電源をオンにして超音波振動を発生させると、発生容器81の液体に超音波振動が伝達され、ビーカー2B内の液体にもキャビテーションが発生した。
このキャビテーションに起因して発生する光を受光手段4で受光し、演算手段5を介してコンピュータ処理を行った。
受光手段4のゲート時間は、20msとした。
その結果を図5ないし図11に示す。
When the ultrasonic generation cell 8 is turned on using the detection system as described above to generate ultrasonic vibrations, the ultrasonic vibrations are transmitted to the liquid in the generation container 81, and the cavitation also occurs in the liquid in the beaker 2B. There has occurred.
Light generated due to this cavitation was received by the light receiving means 4, and computer processing was performed via the calculation means 5.
The gate time of the light receiving means 4 was 20 ms.
The results are shown in FIGS.

図5それぞれ、超音波振動を発生させる前の画像データ、及びそのグラフ化処理データ(ここではバックグラウンドデータ)を示している。   FIG. 5 shows image data before the generation of ultrasonic vibration and graph processing data (here, background data).

図6は、時間(s)と光強度との関係を示している。
これは図5に示す正方形領域の光強度の平均値を算出してグラフ化したものである。
FIG. 6 shows the relationship between time (s) and light intensity.
This is a graph obtained by calculating the average value of the light intensity in the square area shown in FIG.

図7ないし図10は、超音波振動を発生させた後の画像を示している。
ここでは86ページ(1コマ)の直後から超音波振動を発生させている。
7 to 10 show images after ultrasonic vibration is generated.
Here, ultrasonic vibration is generated immediately after 86 pages (one frame).

参考までに、幾つかのグラフ化処理データを以下に示す。
図11〜図15は、それぞれ、図7〜図10における、89ページ(3コマ目)、90ページ(4コマ目)、102ページ(16コマ目)、187ページ(101コマ目)、242ページ(156コマ目)のデータである。
図16は、ページ数で示した時間(横軸)と光強度(Intensity) の平均値(縦軸)との関係を示す。
For reference, some graph processing data is shown below.
FIGS. 11 to 15 show pages 89 (third frame), 90 pages (fourth frame), 102 pages (16th frame), 187 pages (101 frame) and 242 pages in FIGS. 7 to 10, respectively. (156th frame) data.
FIG. 16 shows the relationship between the time (horizontal axis) indicated by the number of pages and the average value (vertical axis) of light intensity (Intensity).

本発明は、測定装置を損傷させずに且つ流路の形状を変化させずに、容器内壁への衝撃を直接的に検知し、容器内壁の壊食を予測することができる容器内壁への衝撃の検知方法及びその検知システムに関するものであるが、その原理を利用する限り、液体中にある物体の表面の衝撃を直接検知することも当然適用可能である。   The present invention can directly detect the impact on the inner wall of the container without damaging the measuring apparatus and changing the shape of the flow path, and can predict the erosion of the inner wall of the container. However, as long as the principle is utilized, it is naturally applicable to directly detect the impact of the surface of the object in the liquid.

図1は、本発明の容器内壁への衝撃の検知方法及びその検知システムの第一実施形態を示す説明図である。FIG. 1 is an explanatory view showing a first embodiment of a method for detecting an impact on an inner wall of a container and a detection system thereof according to the present invention. 図2は、本発明の容器内壁への衝撃の検知方法及びその検知システムの第二実施形態を示す説明図である。FIG. 2 is an explanatory diagram showing a second embodiment of the method for detecting an impact on the inner wall of the container and the detection system thereof according to the present invention. 図3は、本発明の容器内壁への衝撃の検知方法及びその検知システムの第三実施形態を示す説明図である。FIG. 3 is an explanatory view showing a third embodiment of the method for detecting an impact on the inner wall of the container and the detection system thereof according to the present invention. 図4は、本発明の容器内壁への衝撃の検知方法及びその検知システムの実施例を示す説明図である。FIG. 4 is an explanatory diagram showing an embodiment of the method for detecting an impact on the inner wall of the container and the detection system according to the present invention. 図5は、実施例における結果を示す図であり、(a)は画像データ、(b)は、そのグラフ化処理データを示している。FIG. 5 is a diagram showing the results in the example, where (a) shows image data and (b) shows the graphed data. 図6は、時間(s)と光強度との関係を示している。FIG. 6 shows the relationship between time (s) and light intensity. 図7は、超音波振動を発生させた後の画像データの結果(86ページ〜93ページ)を示す。FIG. 7 shows the results of image data (pages 86 to 93) after generating ultrasonic vibrations. 図8は、超音波振動を発生させた後の画像データの結果(94ページ〜101ページ)を示す。FIG. 8 shows the results of image data (pages 94 to 101) after generating ultrasonic vibrations. 図9は、超音波振動を発生させた後の画像データの結果(102ページ〜109ページ)を示す。FIG. 9 shows the results of image data (pages 102 to 109) after generating ultrasonic vibrations. 図10は、超音波振動を発生させた後の画像データの結果(110ページ〜242ページ)を示す。FIG. 10 shows the result of image data (pages 110 to 242) after generating ultrasonic vibrations. 図11は、超音波振動を発生させた後のグラフ化処理データの結果(89ページ)を示す。FIG. 11 shows the result (page 89) of the graph processing data after the generation of ultrasonic vibration. 図12は、超音波振動を発生させた後のグラフ化処理データの結果(90ページ)を示す。FIG. 12 shows the graph processing data result (90 pages) after the generation of ultrasonic vibration. 図13は、超音波振動を発生させた後のグラフ化処理データの結果(102ページ)を示す。FIG. 13 shows the result (page 102) of the graph processing data after the generation of ultrasonic vibration. 図14は、超音波振動を発生させた後のグラフ化処理データの結果(187ページ)を示す。FIG. 14 shows the result (page 187) of the graph processing data after the generation of ultrasonic vibration. 図15は、超音波振動を発生させた後のグラフ化処理データの結果(242ページ)を示す。FIG. 15 shows the result (page 242) of the graph processing data after the generation of the ultrasonic vibration. 図16は、ページ数で示した時間(横軸)と光強度(Intensity) の平均値(縦軸)との関係を示す。FIG. 16 shows the relationship between the time (horizontal axis) indicated by the number of pages and the average value (vertical axis) of light intensity (Intensity).

符号の説明Explanation of symbols

1 測定装置
2 容器(液体流通管)
2A 容器
2B ビーカー
3 窓
4 受光手段
41 集光レンズ
42 撮像素子
5 演算手段
6 パーソナルコンピュータ
7 モニタ
8 超音波発生セル
81 発生容器
S 応力発光層
1 Measuring device 2 Container (liquid distribution pipe)
2A container 2B beaker 3 window 4 light receiving means 41 condensing lens 42 imaging element 5 computing means 6 personal computer 7 monitor 8 ultrasonic wave generating cell 81 generating container S stress light emitting layer

Claims (11)

キャビテーションにより容器内壁へ衝撃圧が加わったことを検知する容器内壁への衝撃の検知方法であって、
容器内壁に応力発光粒子を固着させておき、キャビテーションにより容器内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光することを特徴とする容器内壁への衝撃の検知方法。
A method for detecting an impact on the inner wall of a container for detecting that an impact pressure is applied to the inner wall of the container by cavitation,
A method for detecting an impact on an inner wall of a container, wherein stress luminescent particles are fixed to the inner wall of the container, and radiated light from the stressed luminescent particles generated when an impact pressure is applied to the inner wall of the container by cavitation is received.
前記放射光の受光は、撮像素子を用いて行うことを特徴とする請求項1に記載の容器内壁への衝撃の検知方法。   2. The method for detecting an impact on the inner wall of a container according to claim 1, wherein the radiation light is received using an image sensor. 前記放射光の受光は、液体が容器内を流れる状態で行うことを特徴とする請求項1に記載の容器内壁への衝撃の検知方法。   The method for detecting an impact on the inner wall of the container according to claim 1, wherein the reception of the radiated light is performed in a state where the liquid flows in the container. 前記放射光の受光は、液体が容器内に貯蔵された状態で行うことを特徴とする請求項1に記載の容器内壁への衝撃の検知方法。   2. The method for detecting an impact on an inner wall of a container according to claim 1, wherein the received light is received in a state where a liquid is stored in the container. 前記応力発光粒子の母体材料が、スタフドトリジマイト構造、3次元ネットワーク構造、長石構造、ウルツ構造、スピネル構造、コランダム構造又はβ−アルミナ構造を有する酸化物、硫化物、炭化物又は窒化物であることを特徴とする請求項1に記載の容器内壁への衝撃の検知方法。   The matrix material of the stress-stimulated luminescent particles is an oxide, sulfide, carbide or nitride having a stuffed tridymite structure, a three-dimensional network structure, a feldspar structure, a wurtzite structure, a spinel structure, a corundum structure, or a β-alumina structure. The method for detecting an impact on the inner wall of the container according to claim 1. 前記応力発光粒子の母体材料が、格子欠陥を含むα―SrAl2O4構造であることを特徴とする請求項1に記載の容器内壁への衝撃の検知方法。   The method for detecting an impact on an inner wall of a container according to claim 1, wherein the base material of the stress-stimulated luminescent particles has an α-SrAl2O4 structure including lattice defects. 前記応力発光粒子を固着した容器の一部を透明化して該透明化部分を介して放射光を受光することを特徴とする請求項1に記載の容器内壁への衝撃の検知方法。   The method for detecting an impact on the inner wall of the container according to claim 1, wherein a part of the container to which the stress-stimulated luminescent particles are fixed is made transparent and the radiated light is received through the transparent part. キャビテーションにより容器内壁へ衝撃圧が加わったことを検知するための容器内壁への衝撃の検知システムであって、
内壁に応力発光粒子を固着した液体入りの容器と、
キャビテーションにより容器内壁へ衝撃圧が加わった際に発生する応力発光粒子からの放射光を受光する受光手段と、
を備えたことを特徴とする容器内壁への衝撃の検知システム。
A system for detecting an impact on an inner wall of a container for detecting the impact pressure applied to the inner wall of the container by cavitation,
A container containing liquid with stress-stimulated luminescent particles fixed to the inner wall;
A light receiving means for receiving radiated light from stress luminescent particles generated when an impact pressure is applied to the inner wall of the container by cavitation;
A system for detecting an impact on the inner wall of the container.
前記応力発光粒子を固着した部分の容器内壁の少なくとも一部が透明材料からなることを特徴とする請求項8に記載の容器内壁への衝撃の検知システム。   The system for detecting an impact on the inner wall of the container according to claim 8, wherein at least a part of the inner wall of the container to which the stress luminescent particles are fixed is made of a transparent material. 前記液体入りの容器は、液体が流れることが可能な容器であることを特徴とする請求項8に記載の容器内壁への衝撃の検知システム。   The system for detecting an impact on the inner wall of the container according to claim 8, wherein the container containing the liquid is a container through which a liquid can flow. 前記液体入りの容器は、液体を貯蔵しておくことが可能な容器であることを特徴とする請求項8に記載の容器内壁への衝撃の検知システム。   The system for detecting an impact on an inner wall of a container according to claim 8, wherein the container containing the liquid is a container capable of storing a liquid.
JP2005222285A 2005-07-29 2005-07-29 Method and system for detecting impact on inner wall of container Active JP4748415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222285A JP4748415B2 (en) 2005-07-29 2005-07-29 Method and system for detecting impact on inner wall of container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222285A JP4748415B2 (en) 2005-07-29 2005-07-29 Method and system for detecting impact on inner wall of container

Publications (2)

Publication Number Publication Date
JP2007040724A true JP2007040724A (en) 2007-02-15
JP4748415B2 JP4748415B2 (en) 2011-08-17

Family

ID=37798868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222285A Active JP4748415B2 (en) 2005-07-29 2005-07-29 Method and system for detecting impact on inner wall of container

Country Status (1)

Country Link
JP (1) JP4748415B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040723A (en) * 2005-07-29 2007-02-15 National Institute Of Advanced Industrial & Technology Measuring method of cavitation generation amount, and measuring device of cavitation generation amount
JP2010002415A (en) * 2008-05-20 2010-01-07 National Institute Of Advanced Industrial & Technology Method for measuring sound pressure intensity distribution of ultrasonic wave, method and device of measuring energy density distribution of ultrasonic wave
US7878052B2 (en) 2008-07-31 2011-02-01 Perkins Engines Company Limited High pressure cavitation system
CN103528739A (en) * 2013-09-29 2014-01-22 北京市三一重机有限公司 Impulse testing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116418A (en) * 1987-10-30 1989-05-09 Yokogawa Medical Syst Ltd Cavitation detector
JPH11211664A (en) * 1998-01-28 1999-08-06 Shokuhin Sangyo Denshi Riyou Gijutsu Kenkyu Kumiai Sono luminescence probe
JP2001215157A (en) * 2000-02-02 2001-08-10 Natl Inst Of Advanced Industrial Science & Technology Meti Method and system for measuring stress or stress distribution with use of stress emission material
JP2002267584A (en) * 2001-03-09 2002-09-18 Hitoshi Soyama Method for specifying threshold of cavitation impact force inherent in material, method for quantitatively predicting erosion amount caused by cavitation jet, and device quantitatively predicting erosion amount therefor
JP2003262558A (en) * 2002-03-11 2003-09-19 Railway Technical Res Inst Method and apparatus for detecting external force of structure body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116418A (en) * 1987-10-30 1989-05-09 Yokogawa Medical Syst Ltd Cavitation detector
JPH11211664A (en) * 1998-01-28 1999-08-06 Shokuhin Sangyo Denshi Riyou Gijutsu Kenkyu Kumiai Sono luminescence probe
JP2001215157A (en) * 2000-02-02 2001-08-10 Natl Inst Of Advanced Industrial Science & Technology Meti Method and system for measuring stress or stress distribution with use of stress emission material
JP2002267584A (en) * 2001-03-09 2002-09-18 Hitoshi Soyama Method for specifying threshold of cavitation impact force inherent in material, method for quantitatively predicting erosion amount caused by cavitation jet, and device quantitatively predicting erosion amount therefor
JP2003262558A (en) * 2002-03-11 2003-09-19 Railway Technical Res Inst Method and apparatus for detecting external force of structure body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040723A (en) * 2005-07-29 2007-02-15 National Institute Of Advanced Industrial & Technology Measuring method of cavitation generation amount, and measuring device of cavitation generation amount
JP4595091B2 (en) * 2005-07-29 2010-12-08 独立行政法人産業技術総合研究所 Cavitation generation amount measuring method and cavitation generation amount measuring apparatus
JP2010002415A (en) * 2008-05-20 2010-01-07 National Institute Of Advanced Industrial & Technology Method for measuring sound pressure intensity distribution of ultrasonic wave, method and device of measuring energy density distribution of ultrasonic wave
US7878052B2 (en) 2008-07-31 2011-02-01 Perkins Engines Company Limited High pressure cavitation system
CN103528739A (en) * 2013-09-29 2014-01-22 北京市三一重机有限公司 Impulse testing system

Also Published As

Publication number Publication date
JP4748415B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
Birkin et al. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip
Liu et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis
JP5093478B2 (en) Object to be measured for stress analysis, coating liquid and stress light emitting structure for forming a coating layer on the object to be measured
JP2009092644A (en) Method and system for detecting defect of structure
JP4595091B2 (en) Cavitation generation amount measuring method and cavitation generation amount measuring apparatus
Ohl et al. Shock-wave-induced jetting of micron-size bubbles
JP4748415B2 (en) Method and system for detecting impact on inner wall of container
Leighton et al. Acoustic bubble sizing by combination of subharmonic emissions with imaging frequency
JP2015061310A (en) Acoustic sensor and acoustic sensor system
JP2001215157A (en) Method and system for measuring stress or stress distribution with use of stress emission material
Shneider et al. Cavitation in dielectric fluid in inhomogeneous pulsed electric field
Offin et al. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment
Luo et al. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation
JP2010002415A (en) Method for measuring sound pressure intensity distribution of ultrasonic wave, method and device of measuring energy density distribution of ultrasonic wave
Kersemans et al. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence
Kreider et al. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles
JP6362280B1 (en) Bubble number density measuring device
Hertl et al. On the replacement of water as coupling medium in scanning acoustic microscopy analysis of sensitive electronics components
US20130205869A1 (en) Method of determining void rate by nonlinear acoustic resonance spectrometry in a biphase medium and application in a nuclear reactor
JP2005114376A (en) Method and device for inspecting object using ultrasonic wave
JP2001159700A (en) Device for monitoring integrity of intermediate storage canister for spent fuel and facility for intermediate storage thereof equipped with such device
JP7165415B2 (en) Destruction visualization sensor and destruction visualization system using it
Meyer et al. Nondestructive examination guidance for dry storage casks
JP2024032120A (en) Impurity concentration measuring device
Han et al. Multimodal characterization of the anisotropic behaviors of shale rocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4748415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250