JP2007024343A - Safety heat exchanging plate and safety heat exchanger using the same - Google Patents

Safety heat exchanging plate and safety heat exchanger using the same Download PDF

Info

Publication number
JP2007024343A
JP2007024343A JP2005203341A JP2005203341A JP2007024343A JP 2007024343 A JP2007024343 A JP 2007024343A JP 2005203341 A JP2005203341 A JP 2005203341A JP 2005203341 A JP2005203341 A JP 2005203341A JP 2007024343 A JP2007024343 A JP 2007024343A
Authority
JP
Japan
Prior art keywords
plate
heat exchange
fluid
safety heat
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005203341A
Other languages
Japanese (ja)
Inventor
Soichi Mizui
総一 水井
Yoshiyuki Joko
善行 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LUFT WASSER PROJECT KK
Original Assignee
LUFT WASSER PROJECT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LUFT WASSER PROJECT KK filed Critical LUFT WASSER PROJECT KK
Priority to JP2005203341A priority Critical patent/JP2007024343A/en
Publication of JP2007024343A publication Critical patent/JP2007024343A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger or the like capable of easily confirming formation of a corroded pore from the external when the corroded pore is formed on a heat exchanging plate, preventing mixing of fluids in heat exchanging, and securing safety. <P>SOLUTION: In this heat exchanger constituted by successively holding a first composite board element, the heat exchanging plate 50 and a second composite board element by side plates and joining the same, a fluid discharge passage 53 is formed on the heat exchanging plate 50 in a state of being branched from an opening 54 of a side face and extending like a comb. The fluid flowing in from the corroded pore 55 to a fluid discharge passage 53 is discharged from the opening 54 to the external of the heat exchanger, even when the corroded pore 55 is formed by corrosion of front and rear surfaces of the heat exchanging plate 50 caused by contact with the fluid. Thus the mixing of the fluids can be prevented, and the existence or nonexistence of the corroded pore 55 can be easily confirmed by monitoring the opening 54. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、熱交換板に破孔が生じた場合に、それを容易に確認可能な安全熱交換板及びその製造方法並びにそれを用いた安全熱交換器に関する。   The present invention relates to a safety heat exchange plate, a method of manufacturing the safety heat exchange plate, and a safety heat exchanger using the same, which can easily check when a hole has occurred in the heat exchange plate.

熱交換板の表裏面に沿って異なる流体の流通路を設けた熱交換器において、流体間の熱交換を媒介する熱交換板は、常時高温高圧等の過酷な条件に晒されているため、腐食が進行し破孔が生じることがよくある。   In heat exchangers with different fluid flow paths along the front and back surfaces of the heat exchange plate, the heat exchange plate that mediates heat exchange between fluids is always exposed to harsh conditions such as high temperature and pressure, Often corrosion progresses and breaks occur.

このように破孔が生じると熱交換板の性能が低下し、円滑な熱交換が行われなくなる。さらには、熱交換を行う流体同士が混合してしまうため、たとえば、飲料水を不凍液で冷却する場合に、飲料水に不凍液が混入して人体に害をなすなど、安全面での不具合があった。   Thus, when a hole breaks, the performance of the heat exchange plate is lowered and smooth heat exchange is not performed. Furthermore, since fluids that perform heat exchange are mixed with each other, for example, when drinking water is cooled with antifreeze liquid, there is a problem in safety such as the antifreeze liquid is mixed into the drinking water and harms the human body. It was.

ところが、従来の熱交換器においては、外部から破孔が生じたことを確認する手段が講じられておらず、安全面がおろそかにされてきた。   However, in the conventional heat exchanger, no means for confirming that a broken hole has occurred from the outside has been taken, and safety has been neglected.

そこでこの発明の解決すべき課題は、熱交換板に破孔が生じた場合に、外部から容易に確認でき、また熱交換をおこなう流体同士の混合を防止することのできる、安全性を担保した熱交換板及びその製造方法並びにそれを用いた熱交換器を提供することにある。   Therefore, the problem to be solved by the present invention is that it is possible to easily confirm from the outside when a hole is formed in the heat exchange plate, and to prevent mixing of fluids that perform heat exchange, ensuring safety. An object of the present invention is to provide a heat exchange plate, a manufacturing method thereof, and a heat exchanger using the same.

上記した課題を解決するためこの発明は、外面の一又は複数の開口から内部に向けて、所定のパターンで延びる流体排出路を設けた安全熱交換板を構成したのである。   In order to solve the above-described problems, the present invention configures a safety heat exchange plate provided with a fluid discharge path extending in a predetermined pattern from one or more openings on the outer surface toward the inside.

このような構造の熱交換板に破孔が生じると、破孔が内部の流体排出路と連通するため、破孔から流入した流体は流体排出路を通り、開口から外部に排出される。このため、熱交換器にこの熱交換板を用いた場合、排出された流体により、外部から破孔が生じたことが容易に確認可能であり、また、熱交換を行う流体相互が混ざり合うこともないため安全である。   When a broken hole is generated in the heat exchange plate having such a structure, the broken hole communicates with the internal fluid discharge path, so that the fluid flowing in from the broken hole passes through the fluid discharge path and is discharged to the outside through the opening. For this reason, when this heat exchange plate is used in a heat exchanger, it can be easily confirmed that a hole has been ruptured from the outside due to the discharged fluid, and the fluids that perform heat exchange are mixed with each other. There is no safety.

上記流体排出路は、熱交換板の外面に設けられた一つの開口から分岐し、内部に向けて櫛状に延びるように形成すると、破孔が生じたことが、一つの開口を監視することで確認可能なため監視が容易である。また、流体排出路が熱交換板全体に櫛状に万遍なく配されているため、破孔の検知の精度が向上する。   When the fluid discharge path is formed so as to branch from one opening provided on the outer surface of the heat exchange plate and extend in a comb shape toward the inside, it is monitored that one hole has occurred. Monitoring is easy because it can be confirmed with Moreover, since the fluid discharge path is uniformly arranged in a comb shape over the entire heat exchange plate, the accuracy of detecting a broken hole is improved.

上記開口を熱交換板周面に設けると、熱交換を行う流体の流通路を熱交換板表裏面の全面にわたって広く形成できるため、熱交換の効率がよい。   When the opening is provided in the peripheral surface of the heat exchange plate, the flow path of the fluid for heat exchange can be widely formed over the entire front and back surfaces of the heat exchange plate, so that the efficiency of heat exchange is good.

上記安全熱交換板の外面を耐腐食性素材から形成すると、流体と接触する外面は腐食しにくいため、破孔が生じにくい。また、安全熱交換板の内部を高伝熱性素材から形成すると、熱交換板内部の伝熱性が高いため、熱交換効率が向上する。ここで、耐腐食性素材とは、チタンやステンレスなどの腐食に対する耐性の優れた素材を指し、高伝熱性素材とは、銅やアルミニウムなど熱伝導性の優れた素材を指す。   If the outer surface of the safety heat exchange plate is formed from a corrosion-resistant material, the outer surface that comes into contact with the fluid is unlikely to corrode, and therefore, a broken hole is less likely to occur. Moreover, when the inside of the safety heat exchange plate is formed from a highly heat conductive material, the heat exchange efficiency is improved because the heat transfer inside the heat exchange plate is high. Here, the corrosion-resistant material refers to a material having excellent resistance to corrosion such as titanium or stainless steel, and the high heat transfer material refers to a material having excellent heat conductivity such as copper or aluminum.

気密な第一の板状体と、気密な第二の板状体との間に、周面に達する所定のパターンの貫通溝を設けた第三の板状体を挟み込み、接合することにより安全熱交換板を製造すると、板状原材をプレス加工等により打抜き、圧接するだけの工程ですむため、手間がかからず製造コストを抑えられる。また、流体排出路のパターンを打ち抜きにより形成するため、エッチング等の他の手段によりパターンを形成する場合と比較して、所望のパターンに精度よく作ることができる。   It is safe by sandwiching and joining a third plate with a predetermined pattern of through grooves reaching the peripheral surface between the airtight first plate and the airtight second plate. When a heat exchange plate is manufactured, it is only necessary to punch and press the plate-shaped raw material by pressing or the like, so that it does not take time and manufacturing costs can be reduced. Further, since the pattern of the fluid discharge path is formed by punching, it can be accurately formed into a desired pattern as compared with the case where the pattern is formed by other means such as etching.

上記第一と第二の板状体を耐腐食性素材で、上記第三の板状体のフレームを耐腐食性素材で、前記フレームに囲まれた部分を高伝熱性素材で形成しこれらを接合すると、外面が腐食しにくく、内部が熱伝導性の高い安全熱交換板を、上述した工程により、簡単かつ安価に製造することができる。   The first and second plates are made of a corrosion-resistant material, the frame of the third plate-like body is made of a corrosion-resistant material, and the portion surrounded by the frame is made of a highly heat-conductive material. When joined, a safe heat exchange plate whose outer surface is hardly corroded and whose inside has high thermal conductivity can be easily and inexpensively manufactured by the above-described steps.

上記安全熱交換板の一面に一の流体流通路を、他面に他の流体流通路を、上記流体排出路と連通しないように設けると、熱交換器の外部から容易に破孔が確認できる安全な熱交換器を形成することができる。   If one fluid flow passage is provided on one surface of the safety heat exchange plate and another fluid flow passage is provided on the other surface so as not to communicate with the fluid discharge passage, a broken hole can be easily confirmed from the outside of the heat exchanger. A safe heat exchanger can be formed.

一の流体流通路を安全熱交換板の一面に積層接合した一の板状エレメントに形成し、他の流体流通路を安全熱交換板の他面に積層接合した他の板状エレメントに形成すると熱交換器の厚みを抑えることができ、小型化が図られる。   When one fluid flow passage is formed on one plate-like element laminated and joined to one surface of the safety heat exchange plate, and another fluid flow passage is formed on another plate-like element laminated and joined to the other surface of the safety heat exchange plate The thickness of the heat exchanger can be suppressed, and the size can be reduced.

一の板状エレメントと他の板状エレメントとで安全熱交換板を挟み込んだアセンブリを複数積層し接合して安全熱交換器を形成すると、熱交換を媒介する熱交換板の数を適宜増やすことができ、熱交換の効率を向上させることができる。   When a safety heat exchanger is formed by stacking and joining multiple assemblies with a safety heat exchange plate sandwiched between one plate element and another plate element, the number of heat exchange plates that mediate heat exchange is increased as appropriate. And the efficiency of heat exchange can be improved.

熱交換板内部から熱交換板外面に連通する流体排出路を設けたことにより、この熱交換板を熱交換器に用いると、破孔の有無が熱交換器の外部から容易に確認可能であり、また破孔が生じても、熱交換を行う流体相互が混ざり合うこともないため安全である。   By providing a fluid discharge path that communicates from the inside of the heat exchange plate to the outer surface of the heat exchange plate, if this heat exchange plate is used in a heat exchanger, the presence or absence of broken holes can be easily confirmed from the outside of the heat exchanger. In addition, even if a puncture occurs, the fluids that perform heat exchange do not mix with each other, which is safe.

以下、図面を参照しつつこの発明の実施形態について説明する。図1はこの発明にかかる安全熱交換器の実施形態を示す分解斜視図である。図示のように、安全熱交換器は、全体を密封するための平坦な一対の側板10、20と、これらの側板10、20に挾まれて一の流体流通路を形成する第1の複合板状エレメント30と、他の流体流通路を形成する第2の複合板状エレメント40と、これらの板状体30と40との間に挟まれて、流体同士の熱交換を媒介する安全熱交換板50より成る。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing an embodiment of a safety heat exchanger according to the present invention. As shown in the figure, the safety heat exchanger includes a pair of flat side plates 10 and 20 for sealing the whole, and a first composite plate that is sandwiched between the side plates 10 and 20 to form one fluid flow path. Heat exchange that mediates heat exchange between fluids, sandwiched between the plate-like element 30, the second composite plate-like element 40 forming another fluid flow path, and these plate-like bodies 30 and 40 It consists of a plate 50.

図示のように、上記側板10、20は、ほぼ長方形で輪郭が同形の平坦なステンレス製の板状部材であって、一方の側板10の両端隅角部には、ポート11、12が設けられ、他方の側板20の両側隅角部には、前記ポート11、12と重ならないようにポート21、22が設けられている。これらのポート以外は完全に気密状態である。   As shown in the figure, the side plates 10 and 20 are flat plate members made of stainless steel having a substantially rectangular shape and the same contour, and ports 11 and 12 are provided at the corners of both ends of one side plate 10. Ports 21 and 22 are provided at both corners of the other side plate 20 so as not to overlap the ports 11 and 12. Other than these ports are completely airtight.

上記第1の複合板状エレメント30は、図2(a)及び(b)に示すような均一な厚みのステンレス製の第1の単板エレメント30aと第2の単板エレメント30bとを図2(c)に示すように重ね合せたものである。   The first composite plate element 30 includes a first single plate element 30a and a second single plate element 30b made of stainless steel having a uniform thickness as shown in FIGS. 2 (a) and 2 (b). As shown in FIG.

図2(a)のように、第1の単板エレメント30aは、外形が側板10、20と同形のフレーム31aに取り囲まれ、内部がほぼ長方形の空間32aになっており、この空間32aの内部に流体流通路を区画する多数のリブ33aが一端から他端まで設けられている。リブ33aの端部はフレーム31aに支持されている。リブ33aは、全体としてく字形に屈曲したものを等間隔に配置したパターンで形成され、またそれぞれのリブ33aは滑らかな波形に屈曲している。そして、リブ33aが設けられた空間32aの両端隅角部には、前記一方の側板10のポート11、12と対応する同形の流体出入口11a、12aが設けられている。   As shown in FIG. 2 (a), the first single plate element 30a is surrounded by a frame 31a having the same outer shape as the side plates 10 and 20, and the inside is a substantially rectangular space 32a. A large number of ribs 33a for partitioning the fluid flow passage are provided from one end to the other end. The end of the rib 33a is supported by the frame 31a. The ribs 33a are formed in a pattern in which those bent in a square shape as a whole are arranged at equal intervals, and each rib 33a is bent in a smooth waveform. The same shape fluid inlets and outlets 11a and 12a corresponding to the ports 11 and 12 of the one side plate 10 are provided at the corners of both ends of the space 32a provided with the ribs 33a.

図2(b)のように、上記第2の単板エレメント30bは、第1の単板エレメント30aを平面上で全体に180°回転させたものである。図中符号31bはフレーム、32bは空間、33bはリブ、11b、12bは流体出入口である。   As shown in FIG. 2 (b), the second single plate element 30b is obtained by rotating the first single plate element 30a by 180 ° as a whole on a plane. In the figure, reference numeral 31b is a frame, 32b is a space, 33b is a rib, and 11b and 12b are fluid inlets and outlets.

これらの単板エレメント30aと30bを重ね合せると、図2(c)のように、リブ33a、33bによってほぼハニカム状に区画された流体流通路が形成される。この流体流通路は、単板エレメント30aまたは30bだけでは、く字形のリブ33a、33bで行き止まりになっているが、重ね合せることによって、リブ33aと33bが重なり合っていない部分でリブ33a、33bの厚み分だけの空隙が生じるため、流体出入口11a(11b)から流体出入口12a(12b)まで流体流通路が連通し、一方の流体出入口から流体を供給すると、ハニカム状の流体流通路を通って他方の流体出入口から流体が排出される。   When these single plate elements 30a and 30b are overlapped with each other, as shown in FIG. 2 (c), fluid flow passages that are partitioned in a substantially honeycomb shape by the ribs 33a and 33b are formed. This fluid flow passage is dead end only by the square-shaped ribs 33a and 33b in the single plate element 30a or 30b, but by overlapping, the ribs 33a and 33b are not overlapped. Since a gap corresponding to the thickness is generated, the fluid flow passage communicates from the fluid inlet / outlet port 11a (11b) to the fluid inlet / outlet port 12a (12b), and when the fluid is supplied from one fluid inlet / outlet, the other fluid passes through the honeycomb-like fluid flow passage. The fluid is discharged from the fluid inlet / outlet.

上記第2の複合板状エレメント40は、図3(a)及び(b)に示すような均一な厚みのステンレス製の第1の単板エレメント40aと第2の単板エレメント40bを図3(c)に示すように重ね合せたものである。   The second composite plate element 40 includes a first single plate element 40a and a second single plate element 40b made of stainless steel having a uniform thickness as shown in FIGS. 3 (a) and 3 (b). As shown in c).

図3(a)のように、第1の単板エレメント40aは、外形が側板10、20と同形のフレーム41aに取り囲まれ、内部がほぼ長方形の空間42aになっており、この空間内に流体流通路を区画する多数のく字形リブ43aが一端から他端まで設けられている。これらのリブ43aが設けられた空間42aの両側隅角部には、前記他方の側板20のポート21、22と対応しかつ同形の流体出入口21a、22aが設けられている。   As shown in FIG. 3A, the first single plate element 40a is surrounded by a frame 41a having the same outer shape as that of the side plates 10 and 20, and the inside is a substantially rectangular space 42a. A number of rectangular ribs 43a that define the flow passage are provided from one end to the other end. At both corners of the space 42a where the ribs 43a are provided, fluid inlets 21a and 22a having the same shape as the ports 21 and 22 of the other side plate 20 are provided.

図3(b)のように、第2の単板エレメント40bは、第1の単板エレメント40aを平面上で全体に180°回転させたものである。図中符号41bはフレーム、42bは空間、43bはリブ、21b、22bは流体出入口である。   As shown in FIG. 3B, the second single plate element 40b is obtained by rotating the first single plate element 40a on the whole surface by 180 °. In the figure, reference numeral 41b is a frame, 42b is a space, 43b is a rib, and 21b and 22b are fluid inlets and outlets.

これらの単板エレメント40aと40bを重ね合せると、図3(c)のように、リブ43a、43bによって斜め格子状の杉綾模様に区画された流体流通路が形成される。この流体流通路は、単板エレメント40aまたは40bだけでは、く字形リブ43a、43bで行き止まりになっているが、重ね合せることによって、リブ43aと43bが重なり合っていない部分でリブ43a、43bの厚み分だけの空隙が生じるため、流体出入口21a(21b)から流体出入口22a(22b)まで流体流通路が連通し、一方の流体出入口から流体を供給すると、他方の流体出入口から流体が排出される。   When these single plate elements 40a and 40b are overlapped with each other, as shown in FIG. 3 (c), fluid flow passages partitioned into an oblique lattice-like herringbone pattern are formed by the ribs 43a and 43b. In this fluid flow path, the single plate element 40a or 40b alone has a dead end with the rectangular ribs 43a and 43b. However, by overlapping, the thickness of the ribs 43a and 43b is the portion where the ribs 43a and 43b do not overlap. Since a gap corresponding to that amount is generated, the fluid flow path communicates from the fluid inlet / outlet port 21a (21b) to the fluid inlet / outlet port 22a (22b), and when fluid is supplied from one fluid inlet / outlet, the fluid is discharged from the other fluid inlet / outlet.

上記安全熱交換板50は、図4(a)及び(c)に示すような均一な厚みのステンレス製の第1の外板エレメント50aと第2の外板エレメント50cとで、図4(b)に示すような均一な厚みの内板エレメント50bを挟み込むように重ね合わせたものである。   The safety heat exchange plate 50 includes a first outer plate element 50a and a second outer plate element 50c made of stainless steel having a uniform thickness as shown in FIGS. 4 (a) and 4 (c). The inner plate elements 50b having a uniform thickness as shown in FIG.

図4(a)及び(c)のように、外板エレメント50a、50cは、外形が側板10,20と同一の気密な板状体51a、51cからなり、完全な気密状態である。   As shown in FIGS. 4A and 4C, the outer plate elements 50a and 50c are formed of airtight plate-like bodies 51a and 51c having the same outer shape as the side plates 10 and 20, and are completely airtight.

図4(b)のように、内板エレメント50bは、外形が側板10,20と同形のステンレス製のフレーム51bに取り囲まれ、内部がほぼ長方形の銅製の高伝熱部52bになっており、フレーム51bの側面から高伝熱部52bにかけて貫通溝53bが設けられている。図示のように、貫通溝53bは、フレーム51bの側面の1点から高伝熱部52bに延び、高伝熱部52bにおいて分岐して平行に延び、全体として櫛状の外観を呈する。   As shown in FIG. 4B, the inner plate element 50b is surrounded by a stainless steel frame 51b whose outer shape is the same as that of the side plates 10 and 20, and the inside is a high heat transfer portion 52b made of copper having a substantially rectangular shape. A through groove 53b is provided from the side surface of the frame 51b to the high heat transfer portion 52b. As shown in the figure, the through groove 53b extends from one point on the side surface of the frame 51b to the high heat transfer portion 52b, branches in the high heat transfer portion 52b and extends in parallel, and has a comb-like appearance as a whole.

これら外板エレメント50a、50cと内板エレメント50bを、図4(a)、(b)、(c)の順に重ね合わせると、図4(d)のように、貫通溝53bが板状体51a、51cに挟み込まれることにより隔離された通路となり、この櫛状の流体排出路53が安全熱交換板50の側面の開口54から内部に向けて形成される。   When these outer plate elements 50a, 50c and inner plate element 50b are overlapped in the order of FIGS. 4 (a), (b), (c), the through-groove 53b becomes a plate-like body 51a as shown in FIG. 4 (d). , 51c is formed as an isolated passage, and this comb-like fluid discharge passage 53 is formed from the side opening 54 of the safety heat exchange plate 50 toward the inside.

図1のように、上記側板10、単板エレメント30a、30b、内外板エレメント50a、50b、50c、単板エレメント40a、40b及び側板20を積層し、拡散接合等公知の接合法により接合すると、図5のような安全熱交換器が完成する。   As shown in FIG. 1, when the side plate 10, the single plate elements 30a and 30b, the inner and outer plate elements 50a, 50b and 50c, the single plate elements 40a and 40b, and the side plate 20 are laminated and bonded by a known bonding method such as diffusion bonding, The safety heat exchanger as shown in FIG. 5 is completed.

ここで図5(a)のように、安全熱交換器の第1の側板10に設けられた一方のポート11から流体を供給すると、ポート11に連通する複合板状エレメント30の流体出入口11aから流体が複合板状エレメント30の流体流通路に流入し流体流通路を通って他の流体出入口12aに達し、この出入口12aに連通するポート12から排出される。同様に図5(b)のように、第2の側板20の一方のポート21から他の流体を供給すると、ポート21に連通する複合板状エレメント40の流体出入口21aからエレメント40内に入って流通し、他の流体出入口22aに達し、これに連通するポート22から排出される。これらの流体が、複合板状エレメント30及び40を流通する間に、安全熱交換板50を介して熱交換が行なわれる。ここで、安全熱交換板50の流体と接触する外面はステンレス製であるため、耐腐食性に優れ破孔が生じにくい。また安全熱交換板50内部の高伝熱部52bは銅製であるため、熱伝導性に優れ、内部もステンレス製である場合と比較すると熱交換効率がよい。   Here, as shown in FIG. 5A, when a fluid is supplied from one port 11 provided in the first side plate 10 of the safety heat exchanger, the fluid inlet / outlet 11a of the composite plate element 30 communicating with the port 11 is used. The fluid flows into the fluid flow passage of the composite plate element 30, reaches the other fluid inlet / outlet 12a through the fluid passage, and is discharged from the port 12 communicating with the inlet / outlet 12a. Similarly, as shown in FIG. 5B, when another fluid is supplied from one port 21 of the second side plate 20, it enters the element 40 from the fluid inlet / outlet 21 a of the composite plate element 40 communicating with the port 21. It circulates, reaches the other fluid inlet / outlet port 22a, and is discharged from the port 22 communicating therewith. While these fluids flow through the composite plate elements 30 and 40, heat exchange is performed via the safety heat exchange plate 50. Here, since the outer surface of the safety heat exchange plate 50 that comes into contact with the fluid is made of stainless steel, it has excellent corrosion resistance and is less likely to cause broken holes. Further, since the high heat transfer portion 52b inside the safety heat exchange plate 50 is made of copper, it has excellent heat conductivity, and the heat exchange efficiency is better than the case where the inside is also made of stainless steel.

いま図6のように、複合板状エレメント30を流通する流体との接触により、安全熱交換板50外面が腐食し、破孔55が生じた場合を考えると、破孔55が流体排出路53と連通し、破孔55から流体は流体排出路53へと流入し、開口54から熱交換器の外部へ排出される。そのため、熱交換板50が腐食しても流体が混ざり合うことがなく安全である。また、熱交換を行う流体の種類に応じて、開口54周辺にガスセンサ、液漏れセンサなどを取り付けて監視しておけば破孔55の有無が容易に確認可能である。   Considering the case where the outer surface of the safety heat exchange plate 50 is corroded by contact with the fluid flowing through the composite plate element 30 as shown in FIG. The fluid flows into the fluid discharge passage 53 from the hole 55 and is discharged from the opening 54 to the outside of the heat exchanger. Therefore, even if the heat exchange plate 50 corrodes, the fluid does not mix and is safe. Further, if a gas sensor, a liquid leak sensor, or the like is attached and monitored around the opening 54 in accordance with the type of fluid for heat exchange, the presence or absence of the broken hole 55 can be easily confirmed.

図1で示す熱交換器は、複合板状エレメント30、40を2個用いた例を示したが、安全熱交換板50を介して3個以上の複合板状エレメントを積層してもよい。また、流体出入口の位置を変えることによって3流体以上の熱交換も可能である。   The heat exchanger shown in FIG. 1 shows an example in which two composite plate elements 30 and 40 are used, but three or more composite plate elements may be stacked via a safety heat exchange plate 50. Further, heat exchange of three or more fluids is possible by changing the position of the fluid inlet / outlet.

また、流体出入口11a、11b、12a、12b、21a、21b、22a、22bを板状エレメントの端面または側面に開放することによって、流体の供給排出ポートを熱交換器の端面及び側面に形成することができる。このように、流体を熱交換器の端面及び側面から給排した場合でも、安全熱交換板50の外面はステンレス製であるため、耐腐食性に優れているとともに、内部の銅製の高伝熱部52bが流体に接触することがないため、銅イオンが流体に溶け出すこともなく安心である。   Also, the fluid inlet / outlet port 11a, 11b, 12a, 12b, 21a, 21b, 22a, 22b is opened to the end face or side face of the plate-like element, thereby forming the fluid supply / discharge port on the end face and side face of the heat exchanger. Can do. As described above, even when the fluid is supplied and discharged from the end face and side face of the heat exchanger, the outer surface of the safety heat exchange plate 50 is made of stainless steel, so that it has excellent corrosion resistance and high internal copper heat transfer. Since the part 52b does not come into contact with the fluid, the copper ions are safe without being dissolved into the fluid.

また、図1では長方形の板状体を示したが、長方形以外の多角形や楕円形など、用途に応じて任意の形状を選択することができる。また、流通させる流体も、気・気、気・液、液・液、気液混合体と他の流体など種々選択可能である。また、流体流通路を区画するリブのパターンも図示に限定されず種々選択可能である。   Moreover, although the rectangular plate-shaped body was shown in FIG. 1, arbitrary shapes, such as a polygon other than a rectangle and an ellipse, can be selected. Various fluids such as gas / gas, gas / liquid, liquid / liquid, gas / liquid mixture and other fluids can be selected. Moreover, the pattern of the rib which divides the fluid flow path is not limited to the illustration, and various patterns can be selected.

この発明の熱交換器の一例を示す分解斜視図The exploded perspective view which shows an example of the heat exchanger of this invention (a)第1の単板エレメントの平面図(b)第2の単板エレメントの平面図(c)複合板状エレメントの平面図(A) Plan view of the first single plate element (b) Plan view of the second single plate element (c) Plan view of the composite plate element (a)第1の単板エレメントの平面図(b)第2の単板エレメントの平面図(c)複合板状エレメントの他の例を示す平面図(A) Plan view of the first single plate element (b) Plan view of the second single plate element (c) Plan view showing another example of the composite plate element (a)第1の外板エレメントの平面図(b)内板エレメントの平面図(c)第2の外板エレメントの平面図(d)安全熱交換板の平面図(A) Plan view of first outer plate element (b) Plan view of inner plate element (c) Plan view of second outer plate element (d) Plan view of safety heat exchange plate (a)、(b)は完成した安全熱交換器を示す斜視図(a), (b) is a perspective view showing a completed safety heat exchanger 安全熱交換板に破孔が生じた場合の平面図Top view when a hole is generated in the safety heat exchange plate

符号の説明Explanation of symbols

10、20 側板
11、12、21、22 ポート
11a、11b 流体出入口
12a、12b 流体出入口
21a、21b 流体出入口
22a、22b 流体出入口
30、40 複合板状エレメント
30a、30b、40a、40b 単板エレメント
31a、31b、41a、41b フレーム
32a、32b、42a、42b 空間
33a、33b、43a、43b リブ
50 安全熱交換板
50a、50c 外板エレメント
50b 内板エレメント
51a、51c 板状体
51b フレーム
52b 高伝熱部
53 流体排出路
53b 貫通溝
54 開口
55 破孔
10, 20 Side plate 11, 12, 21, 22 Port 11a, 11b Fluid inlet / outlet 12a, 12b Fluid inlet / outlet 21a, 21b Fluid inlet / outlet 22a, 22b Fluid inlet / outlet 30, 40 Composite plate element 30a, 30b, 40a, 40b Single plate element 31a , 31b, 41a, 41b Frames 32a, 32b, 42a, 42b Spaces 33a, 33b, 43a, 43b Ribs 50 Safety heat exchange plates 50a, 50c Outer plate elements 50b Inner plate elements 51a, 51c Plate-like body 51b Frame 52b High heat transfer Portion 53 Fluid discharge passage 53b Through groove 54 Opening 55 Broken hole

Claims (9)

板状体の外面の一又は複数の開口から内部に向けて、所定のパターンで延びる流体排出路を設けた安全熱交換板。   A safety heat exchange plate provided with a fluid discharge path extending in a predetermined pattern from one or a plurality of openings on the outer surface of the plate-like body. 上記流体排出路は、板状体の外面に設けられた一つの開口から分岐し、内部に向けて櫛状に延びる請求項1に記載の安全熱交換板。   The safety heat exchange plate according to claim 1, wherein the fluid discharge path branches from one opening provided on an outer surface of the plate-like body and extends in a comb shape toward the inside. 上記開口は板状体の周面に設けられた請求項1又は2に記載の安全熱交換板。   The safety heat exchange plate according to claim 1 or 2, wherein the opening is provided on a peripheral surface of the plate-like body. 外面を耐腐食性素材から形成し、内部を高伝熱性素材から形成した請求項1から3のいずれかに記載の安全熱交換板。   The safety heat exchange plate according to any one of claims 1 to 3, wherein the outer surface is formed from a corrosion-resistant material and the inside is formed from a highly heat-conductive material. 気密な第一の板状体と、気密な第二の板状体との間に、周面に達する所定のパターンの貫通溝を設けた第三の板状体を挟み込み、接合する請求項1から4のいずれかに記載の安全熱交換板の製造方法。   The third plate-like body provided with a through groove having a predetermined pattern reaching the peripheral surface is sandwiched and joined between the air-tight first plate-like body and the air-tight second plate-like body. To 4. The method for producing a safety heat exchange plate according to any one of items 1 to 4. 上記第一と第二の板状体として、耐腐食性素材から形成されたものを用い、上記第三の板状体として、フレームが耐腐食性素材で形成され、前記フレームに囲まれた部分が高伝熱性素材で形成されたものを用いた請求項5に記載の安全熱交換板の製造方法。   As the first and second plate-like bodies, those formed from a corrosion-resistant material are used, and as the third plate-like body, a frame is formed of a corrosion-resistant material and is surrounded by the frame. The method for producing a safe heat exchange plate according to claim 5, wherein the material is made of a highly heat conductive material. 請求項1から4のいずれかに記載の安全熱交換板の一面に一の流体流通路を、他面に他の流体流通路を、上記流体排出路と連通しないように設けた安全熱交換器。   5. A safety heat exchanger in which one fluid flow passage is provided on one surface of the safety heat exchange plate according to claim 1 and another fluid flow passage is provided on the other surface so as not to communicate with the fluid discharge passage. . 上記一の流体流通路を安全熱交換板の一面に積層接合した一の板状エレメントに形成し、他の流体流通路を安全熱交換板の他面に積層接合した他の板状エレメントに形成した請求項7に記載の安全熱交換器。   The one fluid flow passage is formed in one plate-like element laminated and joined to one surface of the safety heat exchange plate, and the other fluid flow passage is formed in another plate-like element laminated and joined to the other surface of the safety heat exchange plate. The safety heat exchanger according to claim 7. 上記一の板状エレメントと上記他の板状エレメントとで請求項1から4のいずれかに記載の安全熱交換板を挟み込んだアセンブリを複数積層し接合した安全熱交換器。   A safety heat exchanger in which a plurality of assemblies each including the safety heat exchange plate according to any one of claims 1 to 4 are stacked and joined between the one plate-like element and the other plate-like element.
JP2005203341A 2005-07-12 2005-07-12 Safety heat exchanging plate and safety heat exchanger using the same Pending JP2007024343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203341A JP2007024343A (en) 2005-07-12 2005-07-12 Safety heat exchanging plate and safety heat exchanger using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203341A JP2007024343A (en) 2005-07-12 2005-07-12 Safety heat exchanging plate and safety heat exchanger using the same

Publications (1)

Publication Number Publication Date
JP2007024343A true JP2007024343A (en) 2007-02-01

Family

ID=37785343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203341A Pending JP2007024343A (en) 2005-07-12 2005-07-12 Safety heat exchanging plate and safety heat exchanger using the same

Country Status (1)

Country Link
JP (1) JP2007024343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536933A (en) * 2010-09-07 2013-09-26 スパラ クライシュ エーエス Heat exchanger
WO2014122890A1 (en) * 2013-02-06 2014-08-14 株式会社神戸製鋼所 Heat exchanger
CN114518052A (en) * 2022-02-23 2022-05-20 陕西益信伟创智能科技有限公司 Heat exchange core body containing compact laminated turning section structure and heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536933A (en) * 2010-09-07 2013-09-26 スパラ クライシュ エーエス Heat exchanger
WO2014122890A1 (en) * 2013-02-06 2014-08-14 株式会社神戸製鋼所 Heat exchanger
JP2014152963A (en) * 2013-02-06 2014-08-25 Kobe Steel Ltd Heat exchanger
CN114518052A (en) * 2022-02-23 2022-05-20 陕西益信伟创智能科技有限公司 Heat exchange core body containing compact laminated turning section structure and heat exchanger
CN114518052B (en) * 2022-02-23 2024-03-22 陕西益信伟创智能科技有限公司 Heat exchange core body and heat exchanger comprising compact laminated turning section structure

Similar Documents

Publication Publication Date Title
JP5545198B2 (en) Plate heat exchanger
JP6987074B2 (en) Plate heat exchanger with heat transfer plate and multiple such heat transfer plates
JPH11513785A (en) Plate heat exchanger
JP5882179B2 (en) Internal heat exchanger with external manifold
US8881797B2 (en) Compact plate-fin heat exchanger utilizing an integral heat transfer layer
JPWO2019176565A1 (en) Plate heat exchanger, heat pump device including plate heat exchanger, and heat pump cooling and heating hot water supply system including heat pump device
KR102217703B1 (en) Heat exchange plate for plate-type heat exchanger and plate-type heat exchanger provided with said heat exchange plate
JP4555114B2 (en) Heat storage device
JP6094510B2 (en) Microchannel heat exchanger
JP2019530845A (en) Heat exchange plate and heat exchanger
KR20150006013A (en) Plate heat exchanger
JP2006010130A (en) Multi-fluid heat exchanger
JP2007024343A (en) Safety heat exchanging plate and safety heat exchanger using the same
US20070235174A1 (en) Heat exchanger
JP5105183B2 (en) Heat exchange unit and heat exchanger using the same
JP6249611B2 (en) Laminated structure
JP7164893B2 (en) Heat exchanger
JP4738116B2 (en) Cross flow core plate heat exchanger
JP6938960B2 (en) Micro flow path heat exchanger
JP2009192140A (en) Plate type heat exchanger
JP2007085594A5 (en)
JP2006317026A (en) Stacked heat exchanger and its manufacturing method
JP2004333064A (en) Plate-like heat exchanger
JP2007010225A (en) Plate heat exchanger
JP2005083623A (en) Heat exchange unit and multilayer heat exchanger