JP2007023522A - Earthquake-proof structure of buried pipe and its manufacturing method - Google Patents

Earthquake-proof structure of buried pipe and its manufacturing method Download PDF

Info

Publication number
JP2007023522A
JP2007023522A JP2005203942A JP2005203942A JP2007023522A JP 2007023522 A JP2007023522 A JP 2007023522A JP 2005203942 A JP2005203942 A JP 2005203942A JP 2005203942 A JP2005203942 A JP 2005203942A JP 2007023522 A JP2007023522 A JP 2007023522A
Authority
JP
Japan
Prior art keywords
pipe
sealing member
buried
annular sealing
buried pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005203942A
Other languages
Japanese (ja)
Inventor
Tamio Yamagishi
民夫 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO KENSETSU KK
TAMU TEC KK
Original Assignee
NIKKO KENSETSU KK
TAMU TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO KENSETSU KK, TAMU TEC KK filed Critical NIKKO KENSETSU KK
Priority to JP2005203942A priority Critical patent/JP2007023522A/en
Publication of JP2007023522A publication Critical patent/JP2007023522A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-proof structure of a buried pipe for preventing breakage of the pipe buried into the ground, in particular, a pipeline in the vicinity of a place restrained by a fixed constructed structure due to earthquake and preventing occurrence of functional disorder. <P>SOLUTION: This earthquake-proof structure of the buried pipe is constituted in such a way that the pipe buried into the ground constituted by providing an anti-corrosive internal pipe on an inner side of a rigid external pipe is provided with an integrated structure constituted by providing a cavity between an internal wall of the external pipe and an external wall of the internal pipe and filling and sealing soft elastic filler into a cavity corresponding to a section where the pipe buried into the ground is restrained by the underground fixed constructed structure and a section including a position in its vicinity, the anti-corrosive internal pipes connected by a flexible annular connection member are introduced into an inner side of the rigid buried pipe restrained by the underground fixed constructed structure by leaving a cavity on their outer sides, then a first annular sealing member for sealing the cavity is mounted in a cavity up to a position deviated further from an outer side face position of the constructed structure and a second annular sealing member being similar to it is mounted in a cavity at an inner side face position of the constructed structure, and a liquid-like raw material for generating the soft elastic filler is poured and filled into a cavity between the first annular sealing member and the second annular sealing member and is integrally solidified and elasticized for manufacture. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地下埋設管を耐震化するための改良構造に関し、特に信号線を通線する埋設導管や下水管等が地震の発生によって損傷を受けることを防止するための耐震化構造に関する。   The present invention relates to an improved structure for making earthquake resistance of underground buried pipes, and more particularly, to an earthquake resistant structure for preventing buried pipes and sewage pipes passing through signal lines from being damaged by the occurrence of an earthquake.

道路などの地下には、上水道、下水道、或いは都市ガス、電力、通信等の種々の管路が埋設されていることが多く、これらの管路は土圧に耐える強靱な材料で構築されているのが普通である。しかし、管路が埋設される地盤の構造が一定且つ均一であることは期待し難く、特にマンホールの壁等の固定構築物を貫通するように設置される管路では、固定構築物の周囲を充填する土砂の密度が不均一となり易いため、地震の発生時はもとより近傍を通行する重車両による振動などにより、固定構築物に拘束された位置の近傍で管路の折損や破断等が起こり、ライフラインの機能が停止するなどの心配がある。   Various underground pipes such as waterworks, sewerage, city gas, electric power, communication, etc. are often buried underground such as roads, and these pipes are constructed of tough materials that can withstand earth pressure. Is normal. However, it is difficult to expect that the structure of the ground in which the pipe is embedded is constant and uniform, and in particular, in the pipe installed so as to penetrate the fixed structure such as a manhole wall, the periphery of the fixed structure is filled. Since the density of earth and sand tends to be non-uniform, the pipeline breaks or breaks in the vicinity of the position restrained by the fixed structure due to vibrations caused by heavy vehicles passing in the vicinity as well as the occurrence of an earthquake. There is concern that the function will stop.

そこで、上述の問題の発生を避けるために、欠陥が生じる恐れがある管路の内面を清掃したうえ、内側から合成樹脂などによる新たなライニングを施す工法が提案されているが、材料が高価であるうえ、施工も容易でないという欠点がある。また管路の中に弾性の結合部材で連結した内管を導入して、管路と内管との間にコンクリートなどを充填して補強する工法も提案されているが、コンクリートの充填状態の品質を確保することが難しいという問題があった。   Therefore, in order to avoid the occurrence of the above-mentioned problems, a method of cleaning the inner surface of a pipeline that may cause a defect and applying a new lining with synthetic resin from the inside has been proposed, but the material is expensive. In addition, there is a drawback that the construction is not easy. In addition, a method has been proposed in which an inner pipe connected by an elastic coupling member is introduced into the pipe and the concrete is filled between the pipe and the inner pipe to reinforce it. There was a problem that it was difficult to ensure quality.

上述のように、従来から地下に設けられていた埋設管が、地震や交通振動などに伴う地盤の僅かな変形により、地盤内に設置された固定構築物に拘束を受ける位置の近傍で、管路の折損などの欠陥が生じ易く、それに伴う地下水の流入や管内水の漏出によって、管路の機能障害が発生する危険があった。そこで本発明は、地震等の災害や事故による管路の折損などガ起こっても管路の機能障害が発生し難く、しかも比較的に施工が容易であって品質の確保もし易い、地下埋設管の耐震化構造を提供しようとするものである。   As described above, the underground pipes that have been installed underground have a pipeline near the position where they are restrained by a fixed structure installed in the ground due to slight deformation of the ground due to earthquakes, traffic vibrations, etc. There was a risk that the malfunction of the pipe line would occur due to the inflow of groundwater and the leakage of pipe water. Therefore, the present invention provides an underground buried pipe that is unlikely to cause a malfunction of the pipeline even if a disaster such as an earthquake or a breakage of the pipeline occurs due to an accident, and that is relatively easy to construct and ensure quality. It is intended to provide an earthquake resistant structure.

本発明の埋設管の耐震化構造は、剛性の外管の内側に耐蝕性の内管を設けてなる地下埋設管において、該外管の内壁と該内管の外壁との間に空隙を設けると共に、該地下埋設管が地下の固定構造物に拘束された箇所とその近傍位置を含む箇所とに対応する前記空隙内に、軟質の弾性充填材を充填封止した一体構造を備えたことを特徴とするものである。   The seismicizing structure for an embedded pipe according to the present invention is an underground underground pipe in which a corrosion-resistant inner pipe is provided inside a rigid outer pipe, and a gap is provided between the inner wall of the outer pipe and the outer wall of the inner pipe. In addition, the underground buried pipe is provided with an integrated structure filled with a soft elastic filler in the gap corresponding to the place constrained by the underground fixed structure and the place including the vicinity thereof. It is a feature.

また、このような本発明の埋設管の耐震化構造は、地下の固定構造物に拘束された剛性の埋設管の内側に、可撓性の環状結合部材により順次に連結してなる耐蝕性の内管を、該内管の外側に空隙を残すように該埋設管の構造物側開放端より導入して設置し、次いで該構造物側開放端より該空隙を封止できる第1環状封止部材を該構造物の外側面位置から更に外れた位置までの空隙内に導入して装着し、更に該構造物側開放端より該空隙を封止できる第2環状封止部材を該構造物の内側面位置の空隙内に導入して装着し、その後該第1環状封止部材と該第2環状封止部材との間の該空隙空間内に軟質の弾性充填材を生成する液状原料を注入充填し、該液状原料を一体として弾性体化させることによって、製造することができる。   In addition, such a seismic structure of the buried pipe according to the present invention is a corrosion-resistant structure formed by sequentially connecting a rigid buried pipe restrained by an underground fixed structure by a flexible annular coupling member. A first annular seal that can be installed by introducing the inner pipe from the structure-side open end of the buried pipe so as to leave a gap outside the inner pipe, and then sealing the gap from the structure-side open end A second annular sealing member capable of sealing the gap from the open end of the structure is installed in the gap by introducing the member into the gap further from the outer surface position of the structure. Introduce into and install in the gap at the inner side surface position, and then inject a liquid raw material for generating a soft elastic filler into the gap space between the first annular sealing member and the second annular sealing member It can be manufactured by filling and making the liquid raw material into an elastic body.

更に、本発明の埋設管の耐震化構造の別な形態としては、地下の固定構造物に拘束された剛性の埋設管の内側に、該構造物の拘束範囲より長い第1内管であって前端部を囲む第1環状封止部材と後端部を囲む第2環状封止部材とを装着したものを、該埋設管と該第1内管との間に筒状空隙を残すように該埋設管の構造物側開放端より導入して、該埋設管と該第1内管の前端部の間及び該第1内管の後端部の間とにそれぞれ第1及び第2の封止部を形成し、次いで該第1及び第2の封止部により前後を封止された該空隙空間内に軟質の弾性充填材を生成する液状原料を注入充填して該液状原料を弾性体化させる工程と、該第1内管内に挿通可能な後端部を備えた耐蝕性の第2内管を、該第1内管の後端部から該埋設管内の所望の位置までの範囲に導入し、次いで該第2内管の後端部を該第1内管の後端部に結合する工程とを含むことによって、製造することができる。   Furthermore, another form of the seismic structure of the buried pipe according to the present invention is a first inner pipe that is longer than the restricted range of the structure inside the rigid buried pipe restrained by the underground fixed structure. The first annular sealing member that surrounds the front end and the second annular sealing member that surrounds the rear end are mounted so that a cylindrical gap is left between the buried pipe and the first inner pipe. The first and second seals are introduced from the structure-side open end of the buried pipe, between the buried pipe and the front end of the first inner pipe and between the rear end of the first inner pipe, respectively. A liquid raw material for generating a soft elastic filler is injected into and filled into the void space sealed at the front and rear by the first and second sealing portions to make the liquid raw material elastic. And a range of a corrosion-resistant second inner pipe having a rear end portion that can be inserted into the first inner pipe from a rear end portion of the first inner pipe to a desired position in the buried pipe. Introduced, followed by a step of coupling the rear end portion of the second inner tube in the rear end portion of the first inner tube can be manufactured.

本発明の埋設管の耐震化構造は、剛性の埋設管の内側に耐蝕性の内管を、その間に空隙を残すように設けたもので、地盤の土圧は剛性の外管で受け止められており、また固定構造物を貫通する埋設管、即ち拘束された外管部分は固定構造物と一体となって振動する一方、内管部分は軟質の弾性充填材により外管によって弾性的に支持されているので、地盤の振動の影響から免震された状態となっている。そのため、地震などの強い振動で地盤が変形を起こしても、その変形の程度が小さくて外管が折損するか破断する程度であれば、その変形は内管を囲む空隙部分で吸収され、内管に剪断を起こすような土圧の変化は生じない。また、耐蝕性の内管に変形が生じたとしても破断は起こらないから、外管の破損により地下水の流入があっても、内管に掛かる水圧は外側の空隙部分で平均化されるだけで、地盤が断層の発生等による剪断移動量が特に大きい場合でなければ、内管の機能には影響が及ぶことはなく、優れた耐震効果が得られる。   The seismic structure of the buried pipe according to the present invention is such that a corrosion-resistant inner pipe is provided inside a rigid buried pipe so as to leave a gap therebetween, and the earth pressure of the ground is received by the rigid outer pipe. In addition, the buried pipe penetrating the fixed structure, that is, the constrained outer pipe part vibrates integrally with the fixed structure, while the inner pipe part is elastically supported by the outer pipe by a soft elastic filler. Therefore, it is in a state of being isolated from the influence of ground vibration. Therefore, even if the ground is deformed by strong vibration such as an earthquake, if the degree of deformation is small and the outer tube breaks or breaks, the deformation is absorbed by the gap surrounding the inner tube, There is no change in earth pressure that causes shear in the tube. In addition, even if deformation occurs in the corrosion-resistant inner pipe, it will not break, so even if groundwater flows in due to damage to the outer pipe, the water pressure applied to the inner pipe is only averaged at the outer gap. Unless the amount of shear movement due to the occurrence of a fault is particularly large in the ground, the function of the inner pipe is not affected and an excellent seismic effect is obtained.

以下、本発明の埋設管の耐震化構造を、図に基づいて説明する。
図において、1は下水管の中繼地点に設けられている構造物のマンホールであり、このマンホール1は、上流側下水管の流れ方向を転換して、別な下流側下水管の流れ方向に下水を向かわせるための、コンクリ−ト製の固定構造物である。このマンホール1の側壁1aには、上流側と下流側の下水管と結合される接続孔1bが設けてあり、例えば上流側下水管2の端末部2aが前記の接続孔1bに挿着され、セメントモルタルなどを用いて漏水が起こらないように接着されている。
Hereinafter, the earthquake-proof structure of the buried pipe of the present invention will be described with reference to the drawings.
In the figure, 1 is a manhole of a structure provided at the middle point of a sewage pipe, and this manhole 1 changes the flow direction of an upstream sewage pipe to the flow direction of another downstream sewage pipe. A concrete fixed structure for directing sewage. The side wall 1a of the manhole 1 is provided with a connection hole 1b coupled to the upstream and downstream sewage pipes. For example, the terminal portion 2a of the upstream sewage pipe 2 is inserted into the connection hole 1b. It is bonded with cement mortar to prevent water leakage.

上記の下水管2は、以前の設備では陶管等を順次に接続して構成されていたが、近時ではコンクリート管が多用されており、大型で強度を要求される場合には、繊維を用いた補強コンクリート管なども用いられるようになっている。しかし、地盤の安定性に懸念が残る場合や、環境から受ける振動の強さや頻度に対する安全率を高めたい場合などには、地下に埋設された下水管2が破損したときでも、その下水管としての機能が消滅しないように備えておく必要がある。   The sewage pipe 2 was constructed by connecting ceramic pipes or the like sequentially in the previous equipment, but recently, concrete pipes are frequently used. The reinforced concrete pipe used is also used. However, if there are concerns about the stability of the ground, or if you want to increase the safety factor against the intensity and frequency of vibrations received from the environment, even if the sewer pipe 2 buried underground is damaged, It is necessary to be prepared so that the function of will not disappear.

そこで本発明の第1の態様においては、コンクリート管などの剛性の下水管2の内壁面を充分に清掃した後に、必要に応じて弾性充填材との接着性を高めるための下処理などを加えたうえ、耐蝕性で使用寿命が長く、且つ脆さが少なくて破損し難い材料、例えば塩化ビニルや繊維強化合成樹脂などの管を、下水を流通させるための内管3として導入し、図2のように設置する。このような内管としては、必ずしも上記の合成樹脂に限られるものではなく、下水に接触しても腐食されずに長期間使用でき、ある程度の外力が掛かって変形しても破損を起こさない材質のものであれば、適宜に選択して利用することができる。そして更に、こうした材質で形成された内管3は、屈曲した形状に敷設された下水管2内に設置できるために、好ましくは弾性合成樹脂などで形成された環状結合部材31によって、内管ユニット3aを順次に結合して、内管3を形成しながら下水管2内に導入し、設置することが望ましい。   Therefore, in the first aspect of the present invention, after sufficiently cleaning the inner wall surface of the rigid sewage pipe 2 such as a concrete pipe, a bottom treatment or the like is added to enhance the adhesion to the elastic filler as necessary. In addition, a material that is corrosion resistant, has a long service life, is less brittle and hardly breaks, such as a pipe made of vinyl chloride or fiber reinforced synthetic resin, is introduced as an inner pipe 3 for circulating sewage. Install as follows. Such an inner pipe is not necessarily limited to the above-mentioned synthetic resin, and can be used for a long time without being corroded even if it comes into contact with sewage, and does not cause damage even if deformed by applying a certain external force Can be selected and used as appropriate. Further, since the inner pipe 3 formed of such a material can be installed in the sewage pipe 2 laid in a bent shape, the inner pipe unit is preferably formed by an annular coupling member 31 formed of an elastic synthetic resin or the like. It is desirable to connect 3a sequentially and introduce and install in the sewer pipe 2 while forming the inner pipe 3.

更に、下水管2内に導入された内管3は、外管である下水管2の内壁と内管3の外壁との間に空隙4が形成されるように、必要に応じて下水管2の底面上に枕材などを設置したのち、例えば下水管2の上流側のマンホールから引き込んだロープなどを用いて、上流に向かって引き込むことが望ましい。そして、内管3の上流端末部を上流側マンホールの接続孔(図示しない)に仮固定すると共に、内管3の下流端末部3bを下流側マンホール1の接続孔1bに仮固定し、次いで、後述する手順を経て、内管3の上流端末部と下流端末部3bとを、それぞれ上流側の接続孔と下流側の接続孔1bとの近傍に、仮固定する。   Further, the inner pipe 3 introduced into the sewage pipe 2 has a sewage pipe 2 as necessary so that a gap 4 is formed between the inner wall of the sewage pipe 2 as an outer pipe and the outer wall of the inner pipe 3. It is desirable to install a pillow or the like on the bottom surface of the sewage pipe and then draw it in the upstream direction using, for example, a rope drawn from a manhole on the upstream side of the sewage pipe 2. And while temporarily fixing the upstream terminal part of the inner pipe 3 to the connection hole (not shown) of the upstream manhole, the downstream terminal part 3b of the inner pipe 3 is temporarily fixed to the connection hole 1b of the downstream manhole 1, Through the procedure described later, the upstream terminal portion and the downstream terminal portion 3b of the inner pipe 3 are temporarily fixed in the vicinity of the upstream connection hole and the downstream connection hole 1b, respectively.

上記下流側マンホール1の接続孔1b部分に内管3の下流側端部3bを結合する作業は、先ず、接続孔1bの内側に結合された上流側下水管2の端末部2aの端縁と、内管3の下流端末部3bの端縁との位置合わせを行い、仮止めしておく。そして、上記の端末部2aと上記の下流側端部3bとの間に形成された空隙4内に、例えば膨張可能な第1環状封止部材41を、内管3の周に沿って密着するように装着して、該第1環状封止部材41を膨張させることで、空隙4の幅が略均一となるよう調整すると共に、第1環状封止部材41を境として、空隙4を上流側部分と下流側マンホール1の近傍部分、即ち空隙空間4aとの2つの部分に分割する。   The operation of connecting the downstream end 3b of the inner pipe 3 to the connection hole 1b portion of the downstream manhole 1 is as follows. First, the end edge of the end 2a of the upstream sewage pipe 2 connected to the inside of the connection hole 1b Then, alignment with the edge of the downstream end portion 3b of the inner pipe 3 is performed and temporarily fixed. Then, for example, an expandable first annular sealing member 41 is brought into close contact with the circumference of the inner tube 3 in the gap 4 formed between the terminal portion 2a and the downstream end portion 3b. The first annular sealing member 41 is expanded and the first annular sealing member 41 is expanded so that the width of the void 4 is adjusted to be substantially uniform. The portion is divided into two portions, that is, a portion near the downstream manhole 1, that is, a gap space 4 a.

ここで、第1環状封止部材41の内部には膨張可能な中空部分が設けてあり、例えば逆止弁を設けた膨張材注入コネクタ41aなどを介して、例えば空気などの加圧流体や、固化して弾性体を形成する液状樹脂などを送入する膨張材注入チューブなどと,着脱可能に結合できるように構成されているが、膨張材としてはこれらに限られることなく、例えば水を吸収して膨張する吸水性樹脂などを中空部分に充填しておいて、水を注入するようにしてもよく、第1環状封止部材41の構造やその膨張手段は、特に限定されない。   Here, an inflatable hollow portion is provided inside the first annular sealing member 41, for example, via an expansion material injection connector 41a provided with a check valve, for example, a pressurized fluid such as air, It is configured so that it can be detachably connected to an expansion material injection tube that feeds liquid resin that solidifies to form an elastic body, but the expansion material is not limited to these and absorbs, for example, water Then, the hollow portion may be filled with a water-absorbing resin that expands and water may be injected, and the structure of the first annular sealing member 41 and the expansion means are not particularly limited.

ところで、第1環状封止部材41の下水管2に対する装着位置は、例えば地震などで外管である下水管2の折損が発生し易いと考えられる範囲の外方位置、即ち、マンホール1の側壁1aの外側面位置より、少なくとも下水管2の直径程度離れた位置までとすることが好ましい。従って第1環状封止部材41は、内管3の後端3bの外側、即ち空隙4に導入されたのち、下水管2の端部、即ちマンホール1の側壁1aの内側面位置より、更に上流側の所望の装着位置まで、空隙4内を移動させることが必要である。そこで、狭い空隙4内の所望位置に第1環状封止部材41を装着するために、施工対象の下水管2の状況や寸法に適合した封止部材導入具5を準備しておき、それぞれ施工現場の状況に適したものを選択して作業を進めることが好ましい。   By the way, the mounting position of the first annular sealing member 41 with respect to the sewage pipe 2 is an outer position within a range where the sewage pipe 2 that is the outer pipe is likely to break due to, for example, an earthquake, that is, the side wall of the manhole 1. It is preferable to be at least a position about the diameter of the sewer pipe 2 from the position of the outer surface 1a. Therefore, after the first annular sealing member 41 is introduced into the outer side of the rear end 3b of the inner pipe 3, that is, into the gap 4, it is further upstream from the end of the sewer pipe 2, that is, the inner side surface position of the side wall 1a of the manhole 1. It is necessary to move in the gap 4 to the desired mounting position on the side. Therefore, in order to mount the first annular sealing member 41 at a desired position in the narrow gap 4, a sealing member introducing tool 5 suitable for the situation and dimensions of the sewage pipe 2 to be constructed is prepared, and each construction is performed. It is preferable to select an item suitable for the situation at the site and proceed with the work.

上記の封止部材導入具5の例を図3に示すが、その前端には内管3を挿通できる円孔が形成された円環状の押送体5a、後端には該押送体5aと同様な寸法の操作体5bが設けられ、該押送体5aと該操作体5bとは、軸と平行な複数の管状の連結体5cによって一体に結合されている。また、該押送体5aの内側縁には、前方に向かう複数の舌状突起5dが略等間隔に設けてあり、内管3の後端3bを押送体5aの円孔内に挿通するときは、封止部材導入具5が内管3を取り囲んで前後に移動できるように構成されている。そして更に、このような封止部材導入具5には、第1環状封止部材41を膨張させるための膨張材供給チューブ5eが、操作体5b付近を経由して押送体5aの位置まで配設されており、膨張材供給チューブ5eの先端に設けたノズル5fは、上記複数の舌状突起5dの周囲に掛け回して保持された該第1環状封止部材41の、膨張材注入コネクタ41aに結合できるように構成されている。なお、膨張材注入後の上記の膨張材注入コネクタ41aとノズル5fとの切り離しは、操作体5bに設けた操作ハンドル(図示しない)などによって、遠隔操作により実施することが望ましい。   An example of the sealing member introducing tool 5 is shown in FIG. 3, and an annular pusher 5a in which a circular hole through which the inner tube 3 can be inserted is formed at the front end, and the pusher 5a at the rear end. An operation body 5b having a large size is provided, and the push body 5a and the operation body 5b are integrally coupled by a plurality of tubular coupling bodies 5c parallel to the shaft. Further, a plurality of tongue-like projections 5d directed forward are provided at substantially equal intervals on the inner edge of the pusher 5a, and when the rear end 3b of the inner tube 3 is inserted into the circular hole of the pusher 5a. The sealing member introduction tool 5 is configured to be able to move back and forth surrounding the inner tube 3. Further, in such a sealing member introducing tool 5, an expansion material supply tube 5e for expanding the first annular sealing member 41 is disposed up to the position of the pusher 5a via the vicinity of the operating body 5b. The nozzle 5f provided at the tip of the expansion material supply tube 5e is attached to the expansion material injection connector 41a of the first annular sealing member 41 held around the plurality of tongue-shaped projections 5d. It is configured so that it can be combined. It should be noted that the above-described expansion material injection connector 41a and the nozzle 5f after the expansion material injection are preferably separated by remote control using an operation handle (not shown) provided on the operation body 5b.

このような封止部材導入具5を使用して、第1環状封止部材41を所望の装着位置まで導入するには、先ず、第1環状封止部材41を内管3の下流側端末部3bの周りに仮装着し、次いで、封止部材導入具5の押送体5a部分を上記の下流側端末部3bに被せた後、第1環状封止部材41を下流側端末部3bの周りから、複数の舌状突起5dの周りを囲む位置に移す。そして更に、第1環状封止部材41の最高位置となる部位に、例えば繊維束をシートで巻いて構成した排気チューブ45を、前後に跨がせておく。こうすると、第1環状封止部材41は封止部材導入具5の舌状突起5dに支持されて、空隙4の内部を自由に移動させ得る状態となり、封止部材導入具5の操作体5bを把持して移動すれば、第1環状封止部材41を所望の位置に導入し、装着作業を進めることができる。   In order to introduce the first annular sealing member 41 to a desired mounting position using such a sealing member introduction tool 5, first, the first annular sealing member 41 is connected to the downstream end portion of the inner tube 3. After temporarily mounting around 3b and then covering the downstream end portion 3b with the feeding member 5a portion of the sealing member introduction tool 5, the first annular sealing member 41 is placed around the downstream end portion 3b. Then, it is moved to a position surrounding the plurality of tongue-like projections 5d. Further, an exhaust tube 45 configured by winding a fiber bundle with a sheet, for example, is straddled in the front-rear direction at a position that is the highest position of the first annular sealing member 41. If it carries out like this, the 1st annular sealing member 41 will be in the state which can be freely moved in the inside of the space | gap 4 by being supported by the tongue-shaped protrusion 5d of the sealing member introduction tool 5, and the operation body 5b of the sealing member introduction tool 5 will be in it. If it grasps and moves, the 1st annular sealing member 41 can be introduced into a desired position, and attachment work can be advanced.

こうして、所望の装着位置まで移動した第1環状封止部材41には、図4に示すように、膨張材供給チューブ5eが結合されているから、直ちに第1環状封止部材41に膨張材を注入し膨張させると、図5に示すように、第1環状封止部材41を所望位置に装着し固定することができる。そしてその後に、操作体5bからの遠隔操作で、膨張材注入コネクタ41aから膨張材供給チューブ5eをノズル5fごと取り外せば、封止部材導入具5を後退させて、膨張材供給チューブ5eと共に撤去する一方、図6に示すように、膨張した第1環状封止部材41を装着位置にそのまま残すことができる。   In this way, as shown in FIG. 4, the expansion material supply tube 5e is coupled to the first annular sealing member 41 that has moved to the desired mounting position, so that the expansion material is immediately applied to the first annular sealing member 41. When injected and expanded, the first annular sealing member 41 can be mounted and fixed at a desired position, as shown in FIG. After that, if the expansion material supply tube 5e is removed from the expansion material injection connector 41a together with the nozzle 5f by remote operation from the operation body 5b, the sealing member introduction tool 5 is retracted and removed together with the expansion material supply tube 5e. On the other hand, as shown in FIG. 6, the expanded first annular sealing member 41 can be left as it is in the mounting position.

次いで、上記と同様な方法で、マンホール1の側壁1aの内側面位置近傍の内管3に、膨張材注入チューブ43を取り付けた逆止弁付の第2環状封止部材42を仮装着し、更にその最も低い位置の下側に、後述の弾性充填材の原料を送入するための充填材注入チューブ44を配設した後に、該第2環状封止部材42に膨張材注入チューブ43などを介して膨張材などを注入し、膨張させることで第2環状封止部材42を装着固定する。こうすると図7に示すように、第1環状封止部材41と第2環状封止部材42との間に、閉鎖された筒状の空隙空間4aが形成される。   Next, in the same manner as described above, a second annular sealing member 42 with a check valve, to which an expansion material injection tube 43 is attached, is temporarily attached to the inner tube 3 in the vicinity of the inner surface position of the side wall 1a of the manhole 1, Furthermore, after the filler injection tube 44 for feeding the raw material of the elastic filler described later is disposed below the lowest position, the expansion material injection tube 43 and the like are attached to the second annular sealing member 42. The second annular sealing member 42 is mounted and fixed by injecting an expansion material or the like through the expansion. Thus, as shown in FIG. 7, a closed cylindrical gap space 4 a is formed between the first annular sealing member 41 and the second annular sealing member 42.

前記の空隙空間4aに充填される軟質の弾性充填材は、地震などによって下水管2が折損したときに、該下水管2の折損部が内管3に直接接触することを防いで、破損の拡大を抑制するものであり、充填材自体は大きな力による変形に耐えて破壊を起こさない、即ち優れたゴム状弾性体であることが好ましい。しかし、本発明において使用される充填材の場合には、外管である下水管2と内管3との間に形成された空隙空間4aの全部を、均一に充填することが望ましいので、空隙空間4a内に先ず液状の原料を注入して行き渡らせた後に、この原料を架橋させてゴム状弾性体に転化させるようにした。このような弾性充填材としては、例えば液状シリコーンゴムやポリウレタンゴムなどを利用することができるが、耐震化に適した強度特性と柔軟性とを備えた材料であれば、これらに限定されることなく、適宜に選択して使用することができる。   The soft elastic filler filled in the void space 4a prevents the broken portion of the sewer pipe 2 from coming into direct contact with the inner pipe 3 when the sewer pipe 2 is broken due to an earthquake or the like, and is not damaged. It is intended to suppress expansion, and the filler itself is preferably an excellent rubber-like elastic body that resists deformation due to a large force and does not break. However, in the case of the filler used in the present invention, it is desirable to uniformly fill the entire void space 4a formed between the sewage pipe 2 and the inner pipe 3 which are outer pipes. First, a liquid raw material was poured into the space 4a and spread, and then the raw material was cross-linked to be converted into a rubber-like elastic body. As such an elastic filler, for example, liquid silicone rubber or polyurethane rubber can be used, but any material having strength characteristics and flexibility suitable for earthquake resistance may be used. However, it can be appropriately selected and used.

上記の空隙空間4aに注入する充填材は、低い位置に配設された充填材注入チューブ44を介して空隙空間4a内に注入されるが、その際に空隙空間4a内の空気は、第1環状封止部材41の最高位置と下水管2との間に挟み込まれた排気チューブ45を通じて、高い位置から排出される。そして、低い位置から注入された充填材が空隙空間4a内に充満するに至ると、排気チューブ45には空気に代わって充填材が入り込むので、排気チューブ45の流通抵抗が高くなって充填材の注入圧が急上昇する。そこで充填材の注入を停止して充填材の架橋反応が進むのを待つこととなる。こうして所定の架橋時間が経過すると、空隙空間4aに充填された充填材は弾性化して所望の耐震特性を備えるに至り、同時に外管と内管とが軟質の弾性充填材6を介して一体に結合された状態(図8)となる。   The filler injected into the gap space 4a is injected into the gap space 4a via the filler injection tube 44 disposed at a low position. At this time, the air in the gap space 4a is the first air. It is discharged from a high position through the exhaust tube 45 sandwiched between the highest position of the annular sealing member 41 and the sewer pipe 2. When the filler injected from a low position fills the void space 4a, the filler enters the exhaust tube 45 instead of air, so that the flow resistance of the exhaust tube 45 increases and the filler The injection pressure rises rapidly. Therefore, the injection of the filler is stopped and waiting for the filler cross-linking reaction to proceed. Thus, when the predetermined cross-linking time elapses, the filler filled in the gap space 4a becomes elastic and has desired earthquake resistance, and at the same time, the outer tube and the inner tube are integrated with each other via the soft elastic filler 6. It will be in the combined state (FIG. 8).

そこで、マンホール1の側壁1aの内面側接続孔1b部分には、内管3の端部が露出したまま残った状態となっているので、次には、露出している内管3の端部や第2環状封止部材42などのうち、不要な部分を取り除いたうえ、外管である下水管2の端部と内管3の端部との間を、コンクリートなどで充填結合するか、或いは必要ならば新しいフランジ部材32などを使用して結合するなどの手段を用いて、マンホール1の内壁面を補修すると共に、耐震化構造を備えた新しい下水管系とマンホール1とを接続し、図1に示したような、本発明の埋設管の耐震化構造を完成させることができる。   Therefore, since the end portion of the inner tube 3 remains exposed in the inner surface side connection hole 1b portion of the side wall 1a of the manhole 1, next, the exposed end portion of the inner tube 3 Or removing the unnecessary portion of the second annular sealing member 42 and the like, and filling and bonding between the end of the sewage pipe 2 that is the outer pipe and the end of the inner pipe 3 with concrete or the like, Alternatively, if necessary, the inner wall surface of the manhole 1 is repaired by using a means such as a new flange member 32 or the like, and the new sewer pipe system having a seismic structure is connected to the manhole 1. As shown in FIG. 1, it is possible to complete the seismic structure of the buried pipe of the present invention.

以上のようにして製造された本発明の埋設管の耐震化構造は、剛性の外管の内側に耐蝕性の内管を設けて、該外管の内壁と該内管の外壁との間に空隙を設けると共に、該地下埋設管が地下の固定構造物に拘束された箇所とその近傍位置を含む箇所とに対応する前記空隙内に、軟質の弾性充填材を充填封止した構造を備えたものであるが、耐震化構造の別な形態としては、先ず剛性の外管の内側に空隙が形成されるように第1内管を設け、上記と同様に該外管の内壁と該内管の外壁との間に軟質の弾性充填材を充填封止して、耐震化構造を形成した後に、該第1内管の内壁面を覆うことができる耐蝕性の第2内管を設けて、埋設管の耐久性を高めることができる。これらの何れの方法によって得られた耐震化構造も、地震などの強い振動により、地盤内に地盤の構造変化のために剛性の外管が破損した場合、外管の破損による形状変化は、内管を包囲して充填封止されている軟質の弾性充填材により緩和されて、内管には軽度の歪力として分散して伝達されるため、埋設管としての機能が失われる恐れが大幅に低減される。   The seismic structure of the buried pipe of the present invention manufactured as described above is provided with a corrosion-resistant inner pipe inside the rigid outer pipe, and between the inner wall of the outer pipe and the outer wall of the inner pipe. Provided with a structure in which a soft elastic filler is filled and sealed in the space corresponding to the place where the underground buried pipe is constrained by the underground fixed structure and the position including the vicinity thereof, while providing a space. However, as another form of the earthquake resistant structure, first, a first inner pipe is provided so that a gap is formed inside the rigid outer pipe, and the inner wall of the outer pipe and the inner pipe are formed in the same manner as described above. After filling and sealing with a soft elastic filler between the outer wall and forming an earthquake resistant structure, a corrosion-resistant second inner pipe capable of covering the inner wall surface of the first inner pipe is provided, The durability of the buried pipe can be increased. In the seismic structure obtained by any of these methods, when the rigid outer tube is damaged due to the structural change of the ground due to strong vibration such as an earthquake, the shape change due to the outer tube damage is Since it is relaxed by the soft elastic filling material that surrounds the tube and is sealed, it is dispersed and transmitted to the inner tube as a slight strain force, so there is a significant risk of losing the function as a buried tube Reduced.

本発明の埋設管の耐震化構造は、地震などの地盤に加わる振動によって埋設管の機能が損なわれることを防ぐために、新設埋設管の安全性強化手段として利用できるばかりでなく、地盤構造の変動などによって損傷を受けた既設の埋設管を補修して、その機能を回復させるのに利用することができ、更に既設の埋設管が同様な損傷を受けて、その機能を損なう危険を予防するための手段としても、利用することができる。   The seismic structure of the buried pipe of the present invention can be used not only as a means for enhancing the safety of the buried pipe, but also to prevent changes in the ground structure in order to prevent the function of the buried pipe from being damaged by vibration applied to the ground such as an earthquake. In order to prevent the risk of damaging the function of existing buried pipes, which can be used to repair and restore their functions by repairing existing buried pipes damaged by It can also be used as a means.

本発明の埋設管の耐震化構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the earthquake resistant structure of the buried pipe of this invention. 耐震化構造を設ける前の埋設管に内管を導入した状態を示す断面図である。It is sectional drawing which shows the state which introduced the inner pipe | tube to the buried pipe | tube before providing an earthquake resistant structure. 本発明の埋設管の耐震化構造を製造する際に用いる封止部材導入具の斜視図である。It is a perspective view of the sealing member introducing tool used when manufacturing the earthquake resistant structure of the buried pipe of the present invention. 本発明の埋設管の耐震化構造の製造法における第1環状封止部材を導入する工程の説明図である。It is explanatory drawing of the process of introduce | transducing the 1st cyclic | annular sealing member in the manufacturing method of the earthquake resistant structure of the buried pipe of this invention. 本発明の埋設管の耐震化構造の製造法における第1環状封止部材を装着する工程の説明図である。It is explanatory drawing of the process of mounting | wearing with the 1st cyclic | annular sealing member in the manufacturing method of the earthquake resistant structure of the buried pipe of this invention. 本発明の埋設管の耐震化構造の製造法における第2環状封止部材を導入する工程の説明図である。It is explanatory drawing of the process of introducing the 2nd cyclic | annular sealing member in the manufacturing method of the earthquake-proof structure of the buried pipe of this invention. 本発明の埋設管の耐震化構造の製造法における第2環状封止部材を装着する工程の説明図である。It is explanatory drawing of the process of mounting | wearing with the 2nd cyclic | annular sealing member in the manufacturing method of the earthquake resistant structure of the buried pipe of this invention. 本発明の埋設管の耐震化構造の製造法における空隙空間に弾性充填材を充填する工程の説明図である。It is explanatory drawing of the process of filling the void space in the manufacturing method of the seismic-proof structure of the buried pipe of this invention.

符号の説明Explanation of symbols

1 マンホール
1a 側壁
1b 接続孔
2 下水管
2a 端末部
3 内管
3a 内管ユニット
3b 下流側端末部
31 環状結合部材
32 フランジ部材
4 空隙
4a 空隙空間
41 第1環状封止部材
41a 膨張材注入コネクタ
42 第2環状封止部材
43 膨張材注入チューブ
44 充填材注入チューブ
45 排気チューブ
5 封止部材導入具
5a 押送体
5b 操作体
5c 連結体
5d 舌状突起
5e 膨張材供給チューブ
5f ノズル
6 弾性充填材
DESCRIPTION OF SYMBOLS 1 Manhole 1a Side wall 1b Connection hole 2 Sewage pipe 2a End part 3 Inner pipe 3a Inner pipe unit 3b Downstream side end part 31 Annular coupling member 32 Flange member 4 Cavity 4a Cavity space 41 1st annular sealing member 41a Expansion material injection | pouring connector 42 Second annular sealing member 43 Expansion material injection tube 44 Filling material injection tube 45 Exhaust tube 5 Sealing member introduction tool 5a Pushing body 5b Operation body 5c Connection body 5d Tongue projection 5e Expansion material supply tube 5f Nozzle 6 Elastic filler

Claims (4)

剛性の外管の内側に耐蝕性の内管を設けてなる地下埋設管において、該外管の内壁と該内管の外壁との間に空隙を設けると共に、該地下埋設管が地下の固定構造物に拘束された箇所とその近傍位置を含む箇所とに対応する前記空隙内に、軟質の弾性充填材を充填封止した一体構造を備えたことを特徴とする、埋設管の耐震化構造。   An underground buried pipe in which a corrosion-resistant inner pipe is provided inside a rigid outer pipe, and a gap is provided between the inner wall of the outer pipe and the outer wall of the inner pipe, and the underground buried pipe is fixed to the underground. An earthquake resistant structure for a buried pipe, characterized in that an integrated structure in which a soft elastic filler is filled and sealed in the space corresponding to a place constrained by an object and a place including a position in the vicinity thereof. 地下の固定構造物に拘束された剛性の埋設管の内側に、可撓性の環状結合部材により順次に連結してなる耐蝕性の内管を、該内管の外側に空隙を残すように該埋設管の構造物側開放端より導入して設置し、次いで該構造物側開放端より該空隙を封止できる第1環状封止部材を該構造物の外側面位置から更に外れた位置までの空隙内に導入して装着し、更に該構造物側開放端より該空隙を封止できる第2環状封止部材を該構造物の内側面位置の空隙内に導入して装着し、その後該第1環状封止部材と該第2環状封止部材との間の該空隙空間内に軟質の弾性充填材を生成する液状原料を注入充填し、該液状原料を一体として弾性体化させることを特徴とする、埋設管の耐震化構造の製造法。   Corrosion-resistant inner pipes, which are sequentially connected by a flexible annular coupling member inside a rigid buried pipe constrained by an underground fixed structure, are left so as to leave a gap outside the inner pipe. The first annular sealing member that can be installed by being introduced from the structure-side open end of the buried pipe and then can seal the gap from the structure-side open end is further removed from the position of the outer surface of the structure. A second annular sealing member capable of sealing the gap from the structure side open end is introduced and installed in the gap at the inner side surface of the structure, and then installed. A liquid raw material for generating a soft elastic filler is injected and filled in the space between the first annular sealing member and the second annular sealing member, and the liquid raw material is integrally made into an elastic body. And manufacturing method of earthquake resistant structure of buried pipe. 地下の固定構造物に拘束された剛性の埋設管の内側に、該構造物の拘束範囲より長い第1内管であって前端部を囲む第1環状封止部材と後端部を囲む第2環状封止部材とを装着したものを、該埋設管と該第1内管との間に筒状空隙を残すように該埋設管の構造物側開放端より導入して、該埋設管と該第1内管の前端部の間及び該第1内管の後端部の間とにそれぞれ第1及び第2の封止部を形成し、次いで該第1及び第2の封止部により前後を封止された該空隙空間内に軟質の弾性充填材を生成する液状原料を注入充填して該液状原料を弾性体化させる工程と、該第1内管内に挿通可能な後端部を備えた耐蝕性の第2内管を、該第1内管の後端部から該埋設管内の所望の位置までの範囲に導入し、次いで該第2内管の後端部を該第1内管の後端部に結合する工程とを含むことを特徴とする、埋設管の耐震化構造の製造法。   Inside the rigid buried pipe constrained by the underground fixed structure, a first inner pipe that is longer than the confining range of the structure and is surrounded by a first annular sealing member surrounding the front end and a second surrounding the rear end. An annular sealing member mounted is introduced from the structure-side open end of the buried pipe so as to leave a cylindrical gap between the buried pipe and the first inner pipe, and the buried pipe and the First and second sealing portions are formed between the front end portion of the first inner tube and between the rear end portions of the first inner tube, and then front and back by the first and second sealing portions. A step of injecting and filling a liquid material for generating a soft elastic filler into the void space sealed to form an elastic body of the liquid material, and a rear end portion that can be inserted into the first inner tube. The second corrosion-resistant second inner pipe is introduced into a range from the rear end portion of the first inner pipe to a desired position in the buried pipe, and then the rear end portion of the second inner pipe is introduced into the first inner pipe. Trailing edge Preparation of earthquake resistance structure characterized, buried pipes to include a step of binding to. 前記第2内管が可撓性を備えたものである、請求項3に記載の埋設管の耐震化構造の製造法。   The manufacturing method of the earthquake-proof structure of a buried pipe according to claim 3, wherein the second inner pipe has flexibility.
JP2005203942A 2005-07-13 2005-07-13 Earthquake-proof structure of buried pipe and its manufacturing method Pending JP2007023522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203942A JP2007023522A (en) 2005-07-13 2005-07-13 Earthquake-proof structure of buried pipe and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203942A JP2007023522A (en) 2005-07-13 2005-07-13 Earthquake-proof structure of buried pipe and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007023522A true JP2007023522A (en) 2007-02-01

Family

ID=37784657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203942A Pending JP2007023522A (en) 2005-07-13 2005-07-13 Earthquake-proof structure of buried pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007023522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201891A (en) * 2009-03-06 2010-09-16 Inoac Tokuzai Kk Method for repairing double tube
CN103410210A (en) * 2013-08-02 2013-11-27 周居正 Water-absorbing fiber percolation pipe and dewatering device
KR102569864B1 (en) 2023-05-02 2023-08-23 삼영기술주식회사 Earthquake-proof valve chamber and control method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201891A (en) * 2009-03-06 2010-09-16 Inoac Tokuzai Kk Method for repairing double tube
CN103410210A (en) * 2013-08-02 2013-11-27 周居正 Water-absorbing fiber percolation pipe and dewatering device
KR102569864B1 (en) 2023-05-02 2023-08-23 삼영기술주식회사 Earthquake-proof valve chamber and control method for the same

Similar Documents

Publication Publication Date Title
US20120267863A1 (en) Apparatus and method for sealing pipes and underground structures
US8636036B2 (en) Apparatus and method for sealing pipes
JP4261733B2 (en) Repair method of existing pipelines, repair materials used therefor, and pipelines
WO2001084037A1 (en) Duct repairing material, repairing structure, and repairing method
JP5501664B2 (en) Seismic waterproof structure for existing pipes
JP2009133477A (en) Method for regenerating existing pipe
US20080075538A1 (en) Method and apparatus for repairing underground pipes
JP2007023522A (en) Earthquake-proof structure of buried pipe and its manufacturing method
JP5199164B2 (en) Connection structure between manhole and rehabilitation pipe and its connection method
KR101615971B1 (en) Method for repaering a non-excavation drainpipecapable
JP5320262B2 (en) Connection structure and connection method between manhole and composite pipe
JP4864067B2 (en) Repair method of existing pipelines, repair materials used therefor, and pipelines
JP4632592B2 (en) Seismic rehabilitation method and seismic rehabilitation structure
JP2007303535A (en) Method for regenerating pipeline
JP5036370B2 (en) Sewer pipe, construction method thereof, and water stop member
JP2009138434A (en) Construction method for making manhole connecting section of existing pipe aseismic
KR100836512B1 (en) Duct repairing material, repairing structure, and repairing method
RU2429404C1 (en) Section of under water pipeline and procedure for its fabrication
JP2008238738A (en) Pipeline bridge regeneration method
JP2011110856A (en) Existing conduit repairing method
JP5909207B2 (en) Underground pipe rehabilitation pipe material
JP5532490B2 (en) Seismic reinforcement method for existing pipelines
CA2873329C (en) Apparatus and method for sealing pipes and underground structures
JP5512492B2 (en) How to repair sewer pipes
JP2006181862A (en) Regeneration method of existing pipe