JP2007018812A - Lattice body for lead acid battery and method for manufacturing the same - Google Patents

Lattice body for lead acid battery and method for manufacturing the same Download PDF

Info

Publication number
JP2007018812A
JP2007018812A JP2005197612A JP2005197612A JP2007018812A JP 2007018812 A JP2007018812 A JP 2007018812A JP 2005197612 A JP2005197612 A JP 2005197612A JP 2005197612 A JP2005197612 A JP 2005197612A JP 2007018812 A JP2007018812 A JP 2007018812A
Authority
JP
Japan
Prior art keywords
lead
grid
upper frame
acid battery
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005197612A
Other languages
Japanese (ja)
Inventor
Takafumi Kondo
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005197612A priority Critical patent/JP2007018812A/en
Publication of JP2007018812A publication Critical patent/JP2007018812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】アイドリングスタートストップ車の使用モードを模擬した寿命サイクル試験で発生する負極板集電タブ及び上枠骨が薄くなる現象を抑制し、始動不能、爆発の危険性を回避した長寿命の鉛蓄電池を提供する。
【解決手段】エキスパンド格子体の集電タブ部3及び上枠骨4の表層にストロンチウムまたはバリウムを含む鉛‐スズ系合金箔を圧延により圧着させ、前記合金層で負極板集電タブ3及び上枠骨4が薄くなること抑制する。
【選択図】図1
An object of the present invention is to provide a long-life lead that suppresses the phenomenon of the negative electrode current collector tab and upper frame bone being thinned in a life cycle test simulating the use mode of an idling start / stop vehicle, thereby avoiding the possibility of starting failure and explosion. Provide a storage battery.
A lead-tin alloy foil containing strontium or barium is pressure-bonded to the surface layer of a current collecting tab portion 3 and an upper frame bone 4 of an expanded lattice by rolling, and the negative electrode current collecting tab 3 and the upper layer are bonded with the alloy layer. It suppresses that the frame bone 4 becomes thin.
[Selection] Figure 1

Description

本発明は鉛蓄電池用格子体及びその製造方法に関するものである。   The present invention relates to a grid for a lead storage battery and a method for manufacturing the same.

鉛蓄電池は自動車の始動用、電装品の電力供給用として広汎に用いられている。近年、
環境保護及び燃費改善の取り組みとして、停車時にはエンジンを止め、発車時に再始動するアイドリングスタートストップ(以下ISSと略す)が実施され始めている。ISSは鉛蓄電池側からすれば頻繁に始動、停止が繰り返されることになり、始動時の大電流放電回数が増え、停車中の電装品の使用と重なり放電負荷が多くなる。車両の充電はオルタネータによるが、これはエンジンの回転を動力源としているために停車中はストップしてしまう。これらISS特有の使用条件により、鉛蓄電池は充電が十分されずに放電過多で使用されることが多くなる。
Lead-acid batteries are widely used for starting automobiles and supplying electric power for electrical components. recent years,
As an effort to protect the environment and improve fuel efficiency, an idling start / stop (hereinafter abbreviated as ISS) that stops the engine when the vehicle is stopped and restarts the vehicle when the vehicle starts is beginning to be implemented. From the lead-acid battery side, the ISS is frequently started and stopped repeatedly, increasing the number of large current discharges at the time of start-up, increasing the use of electrical components while the vehicle is stopped and increasing the discharge load. The vehicle is charged by an alternator, which stops when the vehicle is stopped because the engine is used as a power source. Due to the use conditions peculiar to these ISSs, lead storage batteries are often used due to excessive discharge without being sufficiently charged.

このような状態で充放電サイクルが繰り返されると、鉛蓄電池内の極板で頻繁に使用される部分とそうでない部分が現れてくる。具体的には電流を取り出す集電タブの部分に近い極板上部と、集電タブから離れた極板下部で活物質の利用率に差が出てくる。このため極板下部では充放電の繰返しで充電不足になり、放電生成物の蓄積(サルフェーション)が起こり反応できなくなってしまう。また、電解液濃度も上部で薄く、下部で濃くなる成層化現象が発生して、さらにサルフェーションを進行させる。   When the charge / discharge cycle is repeated in such a state, a part that is frequently used on the electrode plate in the lead-acid battery and a part that is not so appear. Specifically, there is a difference in the utilization rate of the active material between the upper part of the electrode plate close to the current collecting tab and the lower part of the electrode plate far from the current collecting tab. For this reason, at the lower part of the electrode plate, charging becomes insufficient due to repeated charging and discharging, accumulation of discharge products (sulfation) occurs, and reaction becomes impossible. In addition, a stratification phenomenon occurs in which the electrolyte concentration is thin at the top and thick at the bottom, and sulfation further proceeds.

サルフェーション現象を解決する手段として、特許文献1に記載されているような充電受け入れ性を改善する手法が提案されている。   As a means for solving the sulfation phenomenon, a method for improving charge acceptability as described in Patent Document 1 has been proposed.

特公平6‐44487Japanese Patent Publication No. 6-44487

しかし、今回ISS車の使用モードを模擬したサイクル寿命試験で検証したところ、特異な現象が発生した。上述したように、集電タブは電流の流入路になり、なおかつ厚みが0.7mm前後と薄いため電気抵抗の大きな部分となる。ここで後述の図4のような充放電サイクルを繰り返すと、極板の集電タブ及びタブの基部である格子体の上枠骨の厚みが薄くなる現象が発生した。これは集電タブ及び格子体上枠骨の表層が徐々に剥離することで薄くなる見られる。この原因は明らかではないが、大電流放電により、電流が集中する部分に放電生成物が生成し、充電で元の鉛合金に戻る前に大電流放電が繰り返されるために、結合力の低い放電生成物が剥離すると考えられる。集電タブ及び格子体上枠骨の厚みが薄くなることで断面積が減少して電気抵抗が増大する。この状態で多頻度の大電流放電を繰り返すことで徐々に電池電圧が低下し、最後には放電不能に陥ってしまう。また、集電タブが薄くなることで破断する可能性があり、破断した場合にスパークで電池内部に充満した可燃性ガス(水素)に引火して爆発する危険性がある。   However, when this was verified by a cycle life test simulating the use mode of an ISS vehicle, a unique phenomenon occurred. As described above, the current collecting tab serves as a current inflow path, and has a large electrical resistance because the thickness is as thin as about 0.7 mm. Here, when a charge / discharge cycle as shown in FIG. 4 described later was repeated, a phenomenon occurred in which the current collecting tab of the electrode plate and the thickness of the upper frame bone of the lattice that was the base of the tab were reduced. This can be seen as the current collecting tabs and the surface layer of the upper frame of the grid become thinner as they gradually peel off. The cause of this is not clear, but because of the large current discharge, a discharge product is generated in the current-concentrated portion, and the large current discharge is repeated before returning to the original lead alloy by charging. It is believed that the product peels. As the thickness of the current collecting tab and the upper frame of the lattice body is reduced, the cross-sectional area is reduced and the electrical resistance is increased. In this state, the battery voltage is gradually lowered by repeating frequent high-current discharge, and finally, discharge becomes impossible. Moreover, there is a possibility that the current collecting tab will break due to thinning, and if it breaks, there is a risk that it will ignite and explode by flammable gas (hydrogen) filled inside the battery with sparks.

これらの問題は前述の特許文献1では想定されておらず、新たな対応策が必要となる。この対策のひとつとして負極板の集電タブを厚くする方法が考えられる。しかし、現在負極板の主流となっているエキスパンド格子体は鉛‐カルシウム系合金シートから打ち抜き、展開加工されており、集電タブのみを厚くするのは難しい。また、鉛蓄電池も燃費の改善のため軽量化が図られており、質量アップとなる負極板の厚板化は避けるべきである。つまり、ISS特有の使用条件による負極集電タブ及び上枠骨の厚み減少を抑制し、なおかつ極板の質量増加も抑制することが課題となる。   These problems are not assumed in Patent Document 1 described above, and new countermeasures are required. One possible countermeasure is to increase the thickness of the current collecting tab of the negative electrode plate. However, the expanded grid, which is currently the mainstream of negative plates, is stamped from a lead-calcium alloy sheet and developed, and it is difficult to increase the thickness of the current collecting tab alone. In addition, lead-acid batteries are also being reduced in weight to improve fuel efficiency, and should be avoided from increasing the thickness of the negative electrode plate, which increases the mass. That is, it is a problem to suppress a decrease in the thickness of the negative electrode current collector tab and the upper frame due to the use conditions peculiar to the ISS, and to suppress an increase in the mass of the electrode plate.

前記課題を解決するために、エキスパンド格子体の集電タブ部及び上枠骨について表面に組織が細かい合金層を配置することで腐食の進行を抑制し、極板の質量増加も抑える。   In order to solve the above-mentioned problem, the progress of corrosion is suppressed by arranging an alloy layer having a fine structure on the surface of the current collecting tab portion and the upper frame bone of the expanded lattice body, and the increase in the mass of the electrode plate is also suppressed.

以下、本発明を実施例に基づいて詳細に説明するが、本発明は下記実施例に限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができる。
(比較例)
比較例の鉛蓄電池用格子体について以下に述べる。まず、鉛(Pb)カルシウム(Ca)スズ(Sn)系合金で、組成がPb‐0.04%Ca‐0.7%Snからなる厚み0.7mm、幅55.4mmの帯状シート1を作製した。この前記圧延シートの幅方向中央部を除く、左右両端部に順次スリットを入れ、前記圧延シートの幅方向に展開加工によって図1に示す網目状格子部5を形成した。またシートの非展開部から打ち抜き加工により集電タブ3を、また網目状格子部5を所定の寸法に切断することによって、エキスパンド格子体を作製した。
(実施例)
実施例については前記帯状シートを作製する段階で図1のように、帯状シート1の長手方向中央部に表1の組成のストロンチウム(Sr)又はバリウム(Ba)を含む合金箔2を圧延ローラによる圧着により合金層を形成した。前記合金箔の幅は36.0mmで、圧着位置はエキスパンド加工した際に、集電タブ3及び格子体の上枠骨4を被覆するようにする。前述の集電タブ3及び格子体の上枠骨4の厚みが薄くなる現象は、両面から進行するので、前記合金箔は帯状シートの両面から圧着する。圧着後の合金層の総厚みは0.05mmとした。その後は比較例と同じようにスリット加工、打ち抜きをし本発明のエキスパンド格子体を作製した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following Example, In the range which does not change the summary, it can change suitably and can implement.
(Comparative example)
The lead-acid battery grid of the comparative example will be described below. First, a belt-like sheet 1 made of lead (Pb) calcium (Ca) tin (Sn) alloy and having a composition of Pb-0.04% Ca-0.7% Sn and having a thickness of 0.7 mm and a width of 55.4 mm is manufactured. did. Slits were sequentially formed at both left and right end portions excluding the central portion in the width direction of the rolled sheet, and a mesh-like lattice portion 5 shown in FIG. 1 was formed by developing in the width direction of the rolled sheet. Further, an expanded lattice body was manufactured by cutting the current collecting tab 3 and the mesh lattice portion 5 into predetermined dimensions by punching from a non-development portion of the sheet.
(Example)
In the embodiment, as shown in FIG. 1, at the stage of producing the belt-like sheet, an alloy foil 2 containing strontium (Sr) or barium (Ba) having the composition shown in Table 1 at the center in the longitudinal direction of the belt-like sheet 1 is obtained using a rolling roller. An alloy layer was formed by pressure bonding. The width of the alloy foil is 36.0 mm, and the crimping position is to cover the current collecting tab 3 and the upper frame bone 4 of the lattice when expanded. Since the phenomenon that the thickness of the current collecting tab 3 and the upper frame 4 of the lattice body is reduced proceeds from both sides, the alloy foil is pressed from both sides of the belt-like sheet. The total thickness of the alloy layer after pressure bonding was set to 0.05 mm. After that, slit processing and punching were performed in the same manner as in the comparative example to produce an expanded lattice body of the present invention.

Figure 2007018812
Figure 2007018812

Sr、Baの添加量としては0.1%〜1.0%の範囲で同様の効果が得られることが確認さている。なお、添加元素はSnとの共存が必要である。原因は明らかではないが、BaやSrはSnと金属間化合物が生成して耐食性を上げていると考えられる。Snについては、添加量が2.0%を超えると腐食が進行しやすくなり、高価な材料であることからもこれを上限値とした。   It has been confirmed that the same effect can be obtained when the amount of Sr and Ba added is in the range of 0.1% to 1.0%. The additive element needs to coexist with Sn. Although the cause is not clear, it is considered that Ba and Sr are formed by the formation of Sn and an intermetallic compound to increase the corrosion resistance. With respect to Sn, when the addition amount exceeds 2.0%, corrosion tends to proceed, and this is also an expensive material.

なお、本実施例では前記合金箔の厚み0.05mmとしたが、0.01mm〜0.1mmの範囲で同様の効果が得られる。鉛蓄電池の質量アップを抑制するためには、薄いほうが好ましいが、帯状シート1への圧着工程で切れやすくなるので、製造設備の能力(生産速度等)に応じて適宜選択する。   In addition, although the thickness of the said alloy foil was 0.05 mm in the present Example, the same effect is acquired in the range of 0.01 mm-0.1 mm. In order to suppress the increase in the mass of the lead storage battery, it is preferable that it is thin. However, since it becomes easy to cut in the crimping process to the belt-like sheet 1, it is appropriately selected according to the capacity of the manufacturing equipment (production speed and the like).

比較例と実施例の金属顕微鏡による表面ミクロ組織観察図を図2、3に示す。図2の比較例の鉛‐カルシウム系合金シート表面に対して本実施例の図3では、圧着した合金層の結晶サイズが細かくなっていることが分かる。   FIGS. 2 and 3 show surface microstructure observation diagrams of the comparative example and the example using a metallographic microscope. It can be seen that the crystal size of the pressed alloy layer is finer in FIG. 3 of this embodiment than the lead-calcium alloy sheet surface of the comparative example of FIG.

次に正極、負極ともに活物質ペーストを格子体に充填し、熟成・乾燥することで正極、負極板を作製した。ここで作製した負極板については袋セパレータに挿入し、正極板とを交互に積層することで極板群を作製した。これらについてCOS(キャストオンストラップ)方式にて集電タブ同士を溶接しストラップを形成した。さらに前記極板群を電槽内に挿入し希硫酸を注液後、通電電流9.6Aで42時間の化成を行った。化成後、希硫酸の比重を1.280に調整して55D23サイズ相当の2V単電池を作製した。   Next, both the positive electrode and the negative electrode were filled with an active material paste in a lattice, and aged and dried to produce a positive electrode and a negative electrode plate. About the negative electrode plate produced here, it inserted in the bag separator and produced the electrode plate group by laminating | stacking a positive electrode plate alternately. About these, the current collection tabs were welded by the COS (cast on strap) system, and the strap was formed. Further, the electrode plate group was inserted into a battery case, and diluted sulfuric acid was injected, followed by 42 hours of chemical conversion with an energizing current of 9.6 A. After the chemical conversion, the specific gravity of dilute sulfuric acid was adjusted to 1.280 to produce a 2V single cell corresponding to 55D23 size.

比較例および実施例で取り上げた各電池について図4に示した充放電サイクルパターン試験を実施した。これは前述のISS使用を模擬したパターンである。サイクル中に7.2Vを下回った時点を寿命とした。図5にサイクル中の300A放電時の電圧推移を示す。比較例は早期に電圧が低下し寿命になっているのに対し、本実施例1及び2は電圧が高い状態で推移し、長寿命になっていることが分かる。   The charge / discharge cycle pattern test shown in FIG. 4 was carried out for each battery taken up in the comparative example and the example. This is a pattern that simulates the use of the ISS described above. The time when the voltage dropped below 7.2 V during the cycle was regarded as the life. FIG. 5 shows the voltage transition during 300 A discharge during the cycle. In the comparative example, the voltage is lowered early and the life is reached, whereas in Examples 1 and 2, the voltage is high and the life is long.

この原因を調べるため、再試験を実施し比較例が寿命となった11000サイクル時で各電池を解体し、極板群を取り出し、負極格子集電タブ3と上枠骨4に関して試験後の厚みから数1の式に示すとおり残存率を算出した。   In order to investigate this cause, each test battery was disassembled at the time of 11000 cycles when the comparative example reached the end of life, the electrode plate group was taken out, and the thickness after the test with respect to the negative electrode grid current collecting tab 3 and the upper frame bone 4 The residual rate was calculated as shown in Equation (1).

Figure 2007018812
Figure 2007018812

これらについて比較した結果を図6に示す。比較例は初期に対して約14%しか残存していなかったのに対して、実施例に挙げた仕様については同サイクル時で約46%残存していた。このことから、負極格子集電タブと上枠骨の腐食が抑制されたおり、これが実施例が長寿命化していることの理由といえる。すなわち、本実施例が図3のような細かい合金組織をもつことで、ISSサイクルパターンでの特異な劣化現象に対して有効な耐食性を得ることができる。   FIG. 6 shows the result of comparing these. In the comparative example, only about 14% remained in the initial stage, whereas in the specification given in the example, about 46% remained in the same cycle. From this, the corrosion of the negative electrode grid current collecting tab and the upper frame bone was suppressed, which can be said to be the reason why the life of the example was extended. That is, since the present embodiment has a fine alloy structure as shown in FIG. 3, it is possible to obtain effective corrosion resistance against a specific deterioration phenomenon in the ISS cycle pattern.

本発明の帯状シートからエキスパンド格子体を作製する概略図。Schematic which produces an expanded lattice body from the strip | belt-shaped sheet | seat of this invention. 帯状シートの表面ミクロ組織観察図。The surface microstructure observation figure of a strip | belt-shaped sheet | seat. 帯状シートに圧着した合金層の表面ミクロ組織観察図。The surface microstructure observation figure of the alloy layer crimped | bonded to the strip | belt-shaped sheet | seat. 充放電サイクルパターン。Charge / discharge cycle pattern. 寿命サイクル試験中の300A放電時の電圧推移。Voltage transition at 300A discharge during life cycle test. 寿命サイクル試験による集電タブと上枠骨の残存率の比較図。The comparison figure of the residual rate of the current collection tab and upper frame bone | frame by a life cycle test.

符号の説明Explanation of symbols

1 帯状シート
2 合金箔
3 集電タブ
4 格子体の上枠骨
5 網目状格子部
DESCRIPTION OF SYMBOLS 1 Strip-shaped sheet 2 Alloy foil 3 Current collection tab 4 Upper frame bone | frame 5 of grid | lattice-like lattice part

Claims (4)

鉛‐カルシウム系合金からなる鉛蓄電池用格子体であって、格子体の集電タブ及び上枠骨の表層にストロンチウム又はバリウムを含む鉛‐スズ系合金層を存在させたことを特徴とする鉛蓄電池用格子体。   A lead-acid battery grid made of a lead-calcium alloy, wherein a lead-tin alloy layer containing strontium or barium is present on the surface of the current collector tab and upper frame of the grid. Storage battery grid. 前記格子体がエキスパンド格子体であることを特徴とする請求項1記載の鉛蓄電池用格子体。   The lead-acid battery grid according to claim 1, wherein the grid is an expanded grid. 前記格子体の集電タブ及び上枠骨表層に存在させた合金層の結晶サイズは鉛‐カルシウム系合金に比べ、細かいことを特徴とする請求項1乃至2記載の鉛蓄電池用格子体。   3. The lead-acid battery grid according to claim 1, wherein a crystal size of an alloy layer present on the current collecting tab and the upper frame bone surface layer of the grid is smaller than that of a lead-calcium alloy. 鉛‐カルシウム系合金からなる鉛蓄電池用格子体の製造方法であって、格子体の集電タブ及び上枠骨の表層にストロンチウムまたはバリウムを含む鉛‐スズ系合金箔を圧延により圧着させることを特徴とする鉛蓄電池用格子体の製造方法。   A method for manufacturing a lead-acid battery grid made of a lead-calcium alloy, comprising rolling a lead-tin alloy foil containing strontium or barium onto a surface of a current collector tab and an upper frame of the grid by rolling. A method for producing a lead-acid battery grid.
JP2005197612A 2005-07-06 2005-07-06 Lattice body for lead acid battery and method for manufacturing the same Pending JP2007018812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197612A JP2007018812A (en) 2005-07-06 2005-07-06 Lattice body for lead acid battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197612A JP2007018812A (en) 2005-07-06 2005-07-06 Lattice body for lead acid battery and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007018812A true JP2007018812A (en) 2007-01-25

Family

ID=37755806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197612A Pending JP2007018812A (en) 2005-07-06 2005-07-06 Lattice body for lead acid battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007018812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193693A (en) * 2008-02-12 2009-08-27 Panasonic Corp Lead acid battery
WO2010032782A1 (en) 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2016106173A (en) * 2011-12-09 2016-06-16 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Novel polyethylene
WO2022113627A1 (en) * 2020-11-27 2022-06-02 株式会社Gsユアサ Lead acid storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193693A (en) * 2008-02-12 2009-08-27 Panasonic Corp Lead acid battery
WO2010032782A1 (en) 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2016106173A (en) * 2011-12-09 2016-06-16 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Novel polyethylene
WO2022113627A1 (en) * 2020-11-27 2022-06-02 株式会社Gsユアサ Lead acid storage battery

Similar Documents

Publication Publication Date Title
JP2008243487A (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
CN103109412A (en) Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted
JP4953600B2 (en) Lead acid battery
JP2014123510A (en) Lead storage battery
JP5326291B2 (en) Lead acid battery
JP4515902B2 (en) Lead acid battery
JP2005302395A (en) Lead storage battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP4815665B2 (en) Lead acid battery
JP5228601B2 (en) Lead acid battery
JP2007018812A (en) Lattice body for lead acid battery and method for manufacturing the same
JP6244801B2 (en) Lead acid battery
JP4529707B2 (en) Lead acid battery
JP7149046B2 (en) liquid lead acid battery
JP2003338310A (en) Lead storage battery
JP6921037B2 (en) Lead-acid battery
JP2021163676A (en) Liquid type lead-acid battery
JP2007305370A (en) Lead storage cell
JP4686808B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP4894211B2 (en) Lead acid battery
JP3637603B2 (en) Lead acid battery
JP2006066252A (en) Lead-acid storage battery