JP2007010202A - Heat exchange unit - Google Patents

Heat exchange unit Download PDF

Info

Publication number
JP2007010202A
JP2007010202A JP2005190168A JP2005190168A JP2007010202A JP 2007010202 A JP2007010202 A JP 2007010202A JP 2005190168 A JP2005190168 A JP 2005190168A JP 2005190168 A JP2005190168 A JP 2005190168A JP 2007010202 A JP2007010202 A JP 2007010202A
Authority
JP
Japan
Prior art keywords
heat exchange
plate
convex
plates
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005190168A
Other languages
Japanese (ja)
Inventor
Toyoaki Matsuzaki
豊明 松崎
Taro Watanabe
太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenesys Inc
Original Assignee
Xenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenesys Inc filed Critical Xenesys Inc
Priority to JP2005190168A priority Critical patent/JP2007010202A/en
Priority to US11/449,660 priority patent/US20070000654A1/en
Priority to TW095122909A priority patent/TW200712419A/en
Priority to EP06013348A priority patent/EP1739379A2/en
Priority to KR1020060058563A priority patent/KR20070001819A/en
Priority to CNA2006100942732A priority patent/CN1892163A/en
Publication of JP2007010202A publication Critical patent/JP2007010202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange unit using two kinds of plates having symmetric relationship on the shape of heat transfer portions, and providing front and rear faces of each plate with flow channels of different shapes to cope with difference in properties of heat exchange fluids, to sufficiently secure heat transferring performance to each fluid and to achieve high heat exchanging efficiency. <P>SOLUTION: This heat exchange unit uses two kinds of heat exchange plates 10, 20 having central recessed and projecting pattern portions 30, 40 opposite in recessed and projecting directions, and two kinds of plates are integrated in a state that the faces of symmetrical shapes of the recessed and projecting pattern portions 30, 40 are overlapped and faced to each other, to provide clearances 61, 62 between the plates with two kinds of shapes and dimensions different between front and rear sides of the plate, thus various heat transferring performances can be exercised as flow channels of different properties in each of the clearances, heat can be efficiently transferred between the plate and each fluid by allowing each flow channel to correspond to the property of each heat exchange fluid, and the heat exchange can be efficiently performed between the heat exchange fluids. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属薄板を成形して得られた熱交換用プレートを複数並列状態で一体化されてなり、熱交換器の要部を構成する熱交換ユニットに関し、特に、一体化された状態において各プレート間に形状の異なる流路を生じさせ、各熱交換用流体の性質の違いに対応して適切に熱伝達を行わせて熱交換効率を高められる熱交換ユニットに関する。   The present invention relates to a heat exchange unit in which a plurality of heat exchange plates obtained by molding a metal thin plate are integrated in a parallel state and constitutes a main part of a heat exchanger, and in particular, in each state in an integrated state. The present invention relates to a heat exchange unit that generates flow paths having different shapes between plates and appropriately performs heat transfer corresponding to the difference in properties of each heat exchange fluid to increase heat exchange efficiency.

高温流体と低温流体との間で熱の授受(熱交換)を行わせる熱交換器の使用にあたり、熱伝達率を大きくして熱交換性能を高めたい場合には、従来からプレート式の熱交換器が多く用いられていた。このプレート式の熱交換器は、複数の略板状のプレートを平行に所定間隔で重ね合せ、各プレート間をそれぞれ流路として、各流路にはプレート一枚おきに高温流体と低温流体を交互に流して、各プレートを介して熱交換させる構造である。このような従来のプレート式熱交換器の典型的な例としては、特開平3−91695号公報において従来の技術として記載され、且つ当該公報中で第5図及び第6図として図示されているものがある。
このような従来のプレート式の熱交換器では、プレート間を一定間隔に保つと共に流体の通路部として区画する弾性素材製のガスケットが各プレート間に配設されている。
When using a heat exchanger that transfers heat between a high-temperature fluid and a low-temperature fluid (heat exchange), if you want to increase the heat transfer rate and improve the heat exchange performance, then plate-type heat exchange has been used. Many vessels were used. In this plate heat exchanger, a plurality of substantially plate-like plates are stacked in parallel at a predetermined interval, each plate is used as a flow channel, and each channel is supplied with a high-temperature fluid and a low-temperature fluid every other plate. It is a structure which makes it flow alternately and heat-exchanges through each plate. A typical example of such a conventional plate heat exchanger is described as a conventional technique in Japanese Patent Laid-Open No. 3-91695, and is shown in FIGS. 5 and 6 in the publication. There is something.
In such a conventional plate-type heat exchanger, a gasket made of an elastic material is provided between the plates to keep a constant distance between the plates and to partition as a fluid passage portion.

一方、こうしたプレート式熱交換器の伝熱面形状としては、従来からヘリンボーンタイプの凹凸パターン形状が多く用いられていたが、この形状では圧力損失の低減と耐圧強度確保の両立が難しかったことから、近年、別の凹凸パターン形状が種々提案されており、例えば、特開2002−257488号公報に開示されるものがあった。   On the other hand, as the heat transfer surface shape of such a plate heat exchanger, a herringbone type concave / convex pattern shape has been conventionally used, but it was difficult to reduce pressure loss and ensure pressure resistance strength with this shape. In recent years, various other concavo-convex pattern shapes have been proposed, such as those disclosed in Japanese Patent Application Laid-Open No. 2002-257488.

この従来の熱交換器におけるプレートは、シール部(ガスケット)の内側部分に、プレートの厚さ方向に山状で上端部が平坦となるように、かつ上面から見て方型形状に形成される伝熱面要素を複数備える構成となっており、このプレートが複数枚積層されて一つの熱交換器をなす仕組みとなっている。
特開平3−91695号公報 特開2002−257488号公報
The plate in this conventional heat exchanger is formed in a square shape in the inner part of the seal part (gasket) so that it has a mountain shape in the thickness direction of the plate and the upper end part is flat, and when viewed from above. A plurality of heat transfer surface elements are provided, and a plurality of these plates are stacked to form one heat exchanger.
JP-A-3-91695 JP 2002-257488 A

従来の熱交換器は前記各特許文献に示される構成となっており、前記特許文献2に示された従来のプレートは、熱交換器を構成するにあたり、交互に上下辺を反転させつつ積層され、プレートにおける伝熱面要素の上端部(突出方向先端部)と、これに隣合うプレートの流路交差部分(突出方向底部)とが接触するようになっており、伝熱面要素の出張り方向を同じ向きに合わせて積層されていることで、プレートを挟む各流路の形状は同一となる。   The conventional heat exchanger has a configuration shown in each of the above-mentioned patent documents, and the conventional plate shown in the above-mentioned patent document 2 is stacked while alternately inverting the upper and lower sides when configuring the heat exchanger. The upper end of the heat transfer surface element in the plate (protruding direction tip) and the flow path crossing portion (bottom of the protrusion direction) of the adjacent plate are in contact with each other. By laminating with the directions aligned in the same direction, the shape of each flow path sandwiching the plates is the same.

一般に熱交換器で熱交換を行わせる二つの流体は、異なる物質であり、その性質はもとより熱交換時における圧力や流量等の使用条件も全く違うものとなっているため、熱交換の際にはそれぞれの流体に応じた伝熱を考慮するのが望ましいが、プレート表裏の流路形状が同じである場合、プレートに対する伝熱条件がほぼ同じとなり、各流路を流れる二つの熱交換用流体について熱的には等しい条件で対応せざるを得ないこととなり、プレートを挟んで熱交換を行う二つの熱交換用流体の温度や性質等の違いに対応した最適な伝熱条件を与えることはできず、効率のよい熱交換が行いにくいという課題を有していた。   In general, the two fluids that exchange heat with a heat exchanger are different substances, and their conditions such as pressure and flow rate during heat exchange are completely different. It is desirable to consider the heat transfer according to each fluid. However, if the flow path shapes on the front and back of the plate are the same, the heat transfer conditions for the plate will be almost the same, and two heat exchange fluids flowing through each flow path Therefore, it is necessary to provide the optimum heat transfer conditions corresponding to differences in temperature and properties of the two heat exchange fluids that exchange heat with the plate in between. The problem was that it was difficult to perform efficient heat exchange.

本発明は前記課題を解消するためになされたもので、伝熱部分形状が互いに対称関係となる二種類のプレートを用い、各プレート表裏で流路形状を異ならせてプレート間を流れる各流体の性質の違いに対応可能とし、各流体に対する熱伝達性能を十分に確保し、高い熱交換効率を得られる熱交換ユニットを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and uses two types of plates in which the heat transfer portion shapes are symmetrical to each other. An object of the present invention is to provide a heat exchange unit that can cope with the difference in properties, sufficiently ensure heat transfer performance for each fluid, and obtain high heat exchange efficiency.

本発明に係る熱交換ユニットは、所定の凹凸パターンを有する金属薄板製の熱交換用プレートを複数並列状態で一体化して形成され、前記各熱交換用プレート間に一の熱交換用流体の流通する第一隙間部と他の熱交換用流体の流通する第二隙間部とがそれぞれ一つおきに生じ、各熱交換用プレートを介して一の熱交換用流体と他の熱交換用流体との間で熱交換を行わせる熱交換ユニットにおいて、前記熱交換用プレートが、縁部形状を互いに略一致させてそれぞれ形成される一のプレートと他のプレートとの二種類からなり、当該二種類のプレート同士で前記縁部との配置関係を互いに異ならせた凹凸パターン部がそれぞれプレート略中央部分に形成され、前記凹凸パターン部のいずれも、凹凸パターンをなす各凹凸が裏側の凸凹とは形状を異ならせた表裏非対称凹凸形状とされる一方、前記一のプレートの凹凸パターン部が、前記他のプレートの凹凸パターン部における各凹凸を、表裏方向について縁部位置を基準として逆向きに入替えた形状として形成され、一のプレートの凹凸パターン部と他のプレートの凹凸パターン部とが互いに対称関係をなすものとされてなり、前記熱交換用プレートを、前記縁部が同じ向きとなり、且つ前記一のプレートと他のプレートとが交互に配置されるようにして複数重ね合せ、各縁部を所定間隔で対向、又はそれぞれ当接させた状態を得ると共に、前記凹凸パターン部の向い合う凸部分の頂部同士を当接させるものである。   The heat exchange unit according to the present invention is formed by integrating a plurality of thin metal plate heat exchange plates having a predetermined uneven pattern in a parallel state, and the flow of one heat exchange fluid between the heat exchange plates. The first gap portion and the second gap portion through which the other heat exchange fluid circulates each other, and one heat exchange fluid and another heat exchange fluid are passed through each heat exchange plate. In the heat exchange unit for exchanging heat between, the heat exchanging plate is composed of two types of one plate and the other plate, each of which is formed by substantially matching the edge shape with each other. An uneven pattern portion in which the arrangement relationship with the edge portion is made different between the plates is formed in a substantially central portion of each plate, and each of the uneven pattern portions has a shape of the unevenness on the back side of each unevenness. The A shape in which the uneven pattern portion of the one plate is replaced with each unevenness in the uneven pattern portion of the other plate in the reverse direction with respect to the edge position in the front / back direction The concavo-convex pattern portion of one plate and the concavo-convex pattern portion of another plate are symmetrical to each other, and the heat exchanging plate has the edge in the same direction and the one plate A plurality of the plates and the other plates are alternately arranged to obtain a state in which the edges are opposed to each other at a predetermined interval or are in contact with each other. The tops are brought into contact with each other.

このように本発明によれば、縁部は略同じ形状ながら、中央の凹凸パターン部が互いに凹凸の向きを逆にする対称形状とされて形成された二種類の熱交換用プレートを用い、この二種類のプレートを縁部が同じ向きになるようにしつつ交互に重ね合せて複数並列状態とし、各熱交換用プレートの縁部間にガスケット等を介在させて締付けたり、隣合う縁部同士をろう付けしたりして一体化されると、各プレート中央の凹凸パターン部が、他のプレートと対称形状の面同士を向い合わせにした配設状態に応じて、プレート間の各隙間が、プレート表側と裏側とでそれぞれ異なった二種類の形状及び大きさとなってあらわれることにより、各隙間が互いに異なる性状の流路をなすこととなり、それぞれ異なった伝熱性能を発揮でき、各流路を各熱交換用流体の性状に対応させればプレートと各流体との熱伝達を極めて効率的に進行させられ、熱交換用流体間で効率よく熱交換が行える。また、重ね合せた状態で、隣合うプレートの凸部分同士、並びに凹部分の裏面側にあたる凸部分同士を当接させられることから、縁部だけでなく凹凸パターン部においても多数の当接部位を生じさせることができ、熱交換用プレートの凹凸パターン部が表裏両側の別のプレートから支持されることとなり、強度を大幅に向上させられ、プレート間に導入される熱交換用流体の圧力が高くなっても確実に隙間形状を維持して熱交換を適切に行える。   As described above, according to the present invention, two types of heat exchange plates are used, in which the edge is substantially the same shape, but the central concavo-convex pattern is formed in a symmetrical shape in which the directions of the concavo-convex are reversed. Place two types of plates alternately in parallel with the edges facing in the same direction, and tighten them with gaskets between the edges of each heat exchange plate. When integrated by brazing, the gaps between the plates are changed according to the arrangement state in which the concave and convex pattern part at the center of each plate faces the symmetrical surface of the other plate. By appearing in two different shapes and sizes on the front side and the back side, each gap forms a flow path with a different property, and can exhibit different heat transfer performance. heat If made to correspond to the properties of the changeover fluid plate and is very efficiently allowed to proceed heat transfer between the fluids, efficient heat exchange can be performed between the heat exchange fluids. In addition, in the overlapped state, the convex portions of the adjacent plates and the convex portions corresponding to the back side of the concave portions can be brought into contact with each other. The uneven pattern portion of the heat exchange plate is supported by separate plates on both sides of the front and back, and the strength is greatly improved, and the pressure of the heat exchange fluid introduced between the plates is high. Even if it becomes, it can maintain a gap shape reliably and can perform heat exchange appropriately.

また、本発明に係る熱交換ユニットは必要に応じて、前記各熱交換用プレートが、矩形状又は方形状とされると共に、少なくとも前記凹凸パターン部が、横辺方向又は縦辺方向の各中間位置を挟む両側部分が対称関係となる形状とされるものである。   Further, in the heat exchange unit according to the present invention, each of the heat exchanging plates is formed in a rectangular shape or a rectangular shape as necessary, and at least the uneven pattern portion is in the middle of the horizontal side direction or the vertical side direction. The both sides sandwiching the position are shaped to be symmetrical.

このように本発明によれば、熱交換用プレートの凹凸パターン部がいずれかの辺方向の中間位置を中心として対称配置となる形状とされ、一方の熱交換用プレートを反転させて表裏の位置関係を入替えると、入替え前の配置に対して、凹凸の配置はそのままにしてちょうど凹凸の関係のみが入れ替った状態となり、反転させていない他方の熱交換用プレートと凹凸パターン部の形状を全く同じにできることにより、熱交換用プレートをプレス製造する場合に、少なくとも凹凸パターン部については一組の同じ型で成形できることとなり、二種類の異なるプレートにおける複雑な凹凸パターン部分に対し同じ一組の型で対応でき、低コスト化が図れると共に、生産効率を大きく向上させられる。   As described above, according to the present invention, the uneven pattern portion of the heat exchange plate is shaped to be symmetrical about the intermediate position in either side direction, and one heat exchange plate is reversed so that the positions of the front and back sides are reversed. When the relationship is changed, the arrangement of the unevenness remains unchanged with respect to the arrangement before the replacement, and only the relationship of the unevenness is changed, and the shape of the other heat exchange plate and the uneven pattern portion that is not reversed is changed. When the heat exchanging plate is press manufactured, it is possible to form at least the concave / convex pattern portion with the same set of molds, and the same set of complex concave / convex pattern portions on two different plates. It can be handled by molds, and it can reduce costs and greatly improve production efficiency.

また、本発明に係る熱交換ユニットは必要に応じて、前記熱交換用プレートの凹凸パターン部が、前記凸部を、一方の面側に略円錐台状又は略多角錐台状に隆起した状態として形成される一方、各凸部のそれぞれ最も近い距離で隣合う同士における対向する錐面間の各中間部分で、凸部の対向する錐面にそれぞれ交わる平面及び/又は曲面を表面に有し、且つ凸部の頂部より低い所定高さの頂部を一又は複数有する隆起形状となる中間隆起部を多数形成され、前記各凸部が、それぞれ最も近い距離で隣合って中間に前記中間隆起部を介在させる他の凸部との組合わせを、同時に複数得られる配置状態とされてなり、前記各中間隆起部と隣合う他の中間隆起部との中間に、隆起高さ方向について最低高さ位置となる非隆起部分が存在し、当該非隆起部分が周囲を中間隆起部及び凸部に取囲まれて前記凹部をなすものである。   Further, in the heat exchange unit according to the present invention, if necessary, the uneven pattern portion of the heat exchange plate is raised in a substantially truncated cone shape or substantially polygonal truncated cone shape on one surface side of the raised portion. On the surface, each convex portion has a plane and / or curved surface that intersects the conical surfaces facing each other at each intermediate portion between the conical surfaces facing each other at the closest distance of each convex portion. In addition, a large number of intermediate raised portions having a raised shape having one or more apexes having a predetermined height lower than the apex of the convex portions are formed, and the intermediate protuberances are adjacent to each other at the closest distance and are in the middle. A plurality of combinations with other protrusions interposing the intermediate protrusions are arranged at the same time, and the intermediate height between each of the intermediate protrusions and another adjacent intermediate protrusion is the minimum height in the height direction of the protrusion. There is a non-raised part that becomes a position, Raised portion is a component of the recess surrounded around the intermediate ridges and protrusions.

このように本発明によれば、熱交換用プレートの凹凸パターン部に略円錐台状又は略多角錐台状に隆起した凸部を形成すると共にこの凸部間に中間隆起部を配設し、熱交換用プレートを複数並列状態で一体化すると、プレート間の隙間が、各凸部の配列方向に沿ってそれぞれ拡大縮小を繰返しながら直線状に連続し、且つ互いに交わる略網状構造の流路をなすことにより、熱交換用流体の流れ関係が並流、向流、及び直交流いずれの場合も熱交換用流体の流れに略同じ挙動を与えてほぼ等しい伝熱性能が得られ、各熱交換用流体の流れがいずれの向きの組合わせであっても低圧力損失でスムーズに熱伝達を行わせることができ、熱交換器設計の自由度を高くでき、汎用性に優れる。また、熱交換用流体がプレート上の各方向へ自由に流れることができ、熱交換用流体をプレート各部に行渡らせつつプレートの面積全てを有効な伝熱部分として寄与させることができると共に、各錐面間に中間隆起部を設けていることで、単純な角錐や円錐の組合せより流れ状態に変化を与えて熱伝達を促進させられ、結果的に単位面積あたりの伝熱量を大きく増大させられ、高性能化が図れる。さらに、他のプレートに当接する凸部が略錐台形状とされ、凸部に加わった力を各錐面方向に分散できることから、他の凹凸形状に比べ強度を高められ、熱交換用流体同士の圧力差が大きい状態にも対応してプレート間隔を維持でき、耐圧性能を高められる。   As described above, according to the present invention, the convex and concave pattern portion of the heat exchange plate is formed with a convex portion that is raised in a substantially truncated cone shape or a substantially polygonal frustum shape, and an intermediate raised portion is disposed between the convex portions. When a plurality of heat exchanging plates are integrated in a parallel state, the gaps between the plates are linearly continuous while repeating expansion and contraction along the direction of arrangement of the convex portions, and flow paths having a substantially reticulated structure intersecting each other. By doing so, almost equal heat transfer performance is obtained by giving substantially the same behavior to the flow of heat exchange fluid regardless of whether the flow relationship of heat exchange fluid is parallel flow, counter flow, or cross flow. Regardless of the direction of the flow of the working fluid, heat transfer can be performed smoothly with low pressure loss, the degree of freedom in designing the heat exchanger can be increased, and the versatility is excellent. In addition, the heat exchange fluid can freely flow in each direction on the plate, and the entire area of the plate can be contributed as an effective heat transfer portion while the heat exchange fluid is distributed to each part of the plate. By providing intermediate ridges between each conical surface, heat transfer can be promoted by changing the flow state from a combination of simple pyramids and cones, resulting in a large increase in heat transfer per unit area. And high performance can be achieved. Furthermore, since the convex part that contacts the other plate has a substantially frustum shape, and the force applied to the convex part can be distributed in the direction of each frustum surface, the strength can be increased compared to other concave and convex shapes, and the heat exchange fluids Corresponding to a large pressure difference, the plate interval can be maintained and the pressure resistance performance can be improved.

以下、本発明の一実施の形態を図1ないし図9に基づいて説明する。図1は本実施の形態に係る熱交換ユニットにおける一方の熱交換用プレートの概略構成説明図、図2は本実施の形態に係る熱交換ユニットにおける他方の熱交換用プレートの概略構成説明図、図3は本実施の形態に係る熱交換ユニットにおける熱交換用プレートの配列状態説明図、図4は本実施の形態に係る熱交換ユニットの一体化状態説明図、図5は本実施の形態に係る熱交換ユニットにおける一の熱交換用プレートの要部拡大図、図6は図5のA−A、B−B、及びC−C断面図、図7は本実施の形態に係る熱交換ユニットにおける他の熱交換用プレートの要部拡大図、図8は図7のD−D、E−E、及びF−F断面図、図9は本実施の形態に係る熱交換ユニットにおける熱交換用プレート凹凸パターン部位置での要部拡大断面図である。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic configuration explanatory diagram of one heat exchange plate in the heat exchange unit according to the present embodiment. FIG. 2 is a schematic configuration explanatory diagram of the other heat exchange plate in the heat exchange unit according to the present embodiment. FIG. 3 is an explanatory diagram of the arrangement of the heat exchange plates in the heat exchange unit according to the present embodiment, FIG. 4 is an explanatory diagram of the integrated state of the heat exchange unit according to the present embodiment, and FIG. 5 is the present embodiment. FIG. 6 is an AA, BB, and CC sectional view of FIG. 5, and FIG. 7 is a heat exchange unit according to the present embodiment. FIG. 8 is a cross-sectional view of DD, EE, and FF in FIG. 7, and FIG. 9 is for heat exchange in the heat exchange unit according to the present embodiment. It is a principal part expanded sectional view in a plate uneven | corrugated pattern part position.

前記各図において本実施の形態に係る熱交換ユニット1は、熱交換用流体と表裏で接触する凹凸パターン部30、40及びこの凹凸パターン部30、40周囲に配置される縁部50を含む所定形状に成形される二種類の熱交換用プレート10、20を備え、これらをガスケット60と共に複数並列状態で一体化して形成される構成である。   In each of the drawings, the heat exchanging unit 1 according to the present embodiment includes a predetermined pattern including concave and convex pattern portions 30 and 40 that are in contact with the heat exchanging fluid on the front and back sides and an edge portion 50 that is disposed around the concave and convex pattern portions 30 and 40. Two types of heat exchange plates 10 and 20 formed into a shape are provided, and a plurality of these plates are integrated with gasket 60 in a parallel state.

前記熱交換用プレート10、20は、略矩形状の金属薄板を素材とし、所定のプレス工程を経て略中央部分に伝熱部分となる凹凸パターン部30、40を成型されると共に、凹凸パターン部30、40を囲む外周に縁部50を成型されてなる構成である。一方の熱交換用プレート10における凹凸パターン部30と、他方の熱交換用プレート20における凹凸パターン部40は、各部の表裏凹凸関係が両者でちょうど逆の対称形状となっており、これら熱交換用プレート10、20は、周囲の同一形状の縁部50に対し中央の凹凸パターン部30、40の凹凸の向きが逆向きとなる二種類のプレートとなっている。   The heat exchange plates 10 and 20 are made of a substantially rectangular thin metal plate, and are formed with concave and convex pattern portions 30 and 40 serving as heat transfer portions in a substantially central portion through a predetermined pressing process. In this configuration, the edge portion 50 is molded on the outer periphery surrounding 30 and 40. The concavo-convex pattern portion 30 in one heat exchange plate 10 and the concavo-convex pattern portion 40 in the other heat exchange plate 20 have symmetrical shapes in which the front / back concavo-convex relationship of each portion is just opposite, and these heat exchange plates The plates 10 and 20 are two types of plates in which the concave and convex directions of the central concave and convex pattern portions 30 and 40 are opposite to the peripheral edge 50 having the same shape.

また、熱交換用プレート10には、公知のプレート同様、四隅の縁部50内側部位に、それぞれ開口孔11、12、13、14が穿設され、熱交換用流体を通過させる部分として用いられる。熱交換用プレート20にも、同様に開口孔21、22、23、24が穿設される。   Further, in the heat exchange plate 10, like the known plates, opening holes 11, 12, 13, and 14 are formed in the inner portions of the four corners 50, respectively, and are used as portions through which the heat exchange fluid passes. . Similarly, openings 21, 22, 23, and 24 are formed in the heat exchange plate 20.

前記凹凸パターン部30、40は、凹凸パターンの基本形状自体は共通のものとされる構成である。凹凸パターン部30は、一方の面側に略四角錐台状に隆起し、各錐面が隣接する他の略四角錐台状部分の錐面と対向する配置とされると共に各錐面のある四方向へ同じ配置ピッチとされるマトリクス配列で多数成型される凸部31と、隣合う前記凸部31の対向する錐面間の各中間部分を、対向する二錐面の各稜線の交差部分を最低高さ位置、前記各交差部分間の中間位置を頂部として、凸部31の頂部32より低い所定高さまで略山型に隆起させて形成される中間隆起部33と、この中間隆起部33を介さずに隣合う各凸部31の中間部分に非隆起部分として存在し、周囲を凸部31の錐面及び中間隆起部33の斜面に取囲まれてプレート法線方向について最低高さ位置となる凹部34とを備える構成である。   The concavo-convex pattern portions 30 and 40 are configured such that the basic shape of the concavo-convex pattern is the same. The concavo-convex pattern portion 30 protrudes in a substantially quadrangular frustum shape on one surface side, and each conical surface is arranged to face the conical surface of another adjacent substantially quadrangular frustum-shaped portion and has each conical surface. A plurality of convex portions 31 molded in a matrix arrangement having the same arrangement pitch in four directions, and each intermediate portion between the conical surfaces facing each other of the adjacent convex portions 31 are intersecting portions of the respective ridge lines of the opposing two conical surfaces. With the lowest height position, and the intermediate position between the intersecting portions as a top, an intermediate ridge 33 formed by raising it to a predetermined height lower than the top 32 of the convex portion 31, and this intermediate ridge 33 Present as a non-protruding portion in the intermediate portion of each adjacent convex portion 31 without being interposed, and the periphery is surrounded by the conical surface of the convex portion 31 and the slope of the intermediate protruding portion 33, and the lowest height position in the plate normal direction It is the structure provided with the recessed part 34 used.

一方、凹凸パターン部40は、熱交換用プレート10、20に共通する縁部50を基準とすると、凹凸パターン部30とは対称関係となる形状となっており、略四角錐台状の陥没部分としてマトリクス配列で多数成型される凹部41と、隣合う前記凹部41の対向する錐面間の各中間部分を凹部41の底部より浅い所定深さまで陥没させた形状として形成される中間谷部42と、この中間谷部42を介さずに隣合う各凹部41の中間部分でプレート法線方向について最高位置となる凸部43とを備える構成である。凹凸パターン部40の凹部41は、凹凸パターン部30の凸部31のちょうど裏側の凹形状に一致し、また、中間谷部42が中間隆起部33の裏側凹形状、凸部43が凹部34の裏側凸形状にそれぞれ一致する構成である。   On the other hand, the concavo-convex pattern portion 40 has a symmetrical shape with the concavo-convex pattern portion 30 on the basis of the edge portion 50 common to the heat exchange plates 10, 20, and is a substantially quadrangular pyramid-shaped recessed portion. A plurality of concave portions 41 formed in a matrix arrangement, and an intermediate valley portion 42 formed as a shape in which each intermediate portion between opposing conical surfaces of the adjacent concave portions 41 is recessed to a predetermined depth shallower than the bottom portion of the concave portion 41; The intermediate portion of each of the adjacent concave portions 41 without the intermediate valley portion 42 is provided with a convex portion 43 that is the highest position in the plate normal direction. The concave portion 41 of the concave / convex pattern portion 40 coincides with the concave shape on the back side of the convex portion 31 of the concave / convex pattern portion 30, the intermediate valley portion 42 is the concave shape on the back side of the intermediate raised portion 33, and the convex portion 43 is the concave portion 34. It is the structure corresponding to each back side convex shape.

前記凸部31と凹部34、また、凹部41と凸部43は、それぞれ互いに配列方向において半ピッチずつずれて存在する関係にあり、凸部31、43と凹部34、41は同じピッチでマトリクス配列として配置された状態となっている。ただし、これら凹凸パターン部30、40において、凸部31、43の裏側の凹部分と凹部34、41、また、凹部34、41の裏側の凸部分と凸部31、43の各形状はそれぞれ大きく異なっており、凹凸パターンは一プレートの表面側と裏面側とで非対称の形状である。   The convex portion 31 and the concave portion 34, and the concave portion 41 and the convex portion 43 are in a relationship of being shifted from each other by a half pitch in the arrangement direction, and the convex portions 31, 43 and the concave portions 34, 41 are arranged in a matrix at the same pitch. It is in the state arranged as. However, in the concave and convex pattern portions 30 and 40, the concave portions and the concave portions 34 and 41 on the back side of the convex portions 31 and 43, and the convex portions on the back side of the concave portions 34 and 41 and the shapes of the convex portions 31 and 43 are respectively large. The uneven pattern is asymmetrical between the front side and the back side of one plate.

さらに、凹凸パターン部30における各凸部31の配列のうち、各凸部31間に凹部34が介在する向きの配列方向、並びに、凹凸パターン部40における各凹部41の配列のうち、各凹部41間に凸部43が介在する向きの配列方向は、それぞれ矩形状のプレートの各辺に対し平行又は直角となっている。なお、凹凸パターン部30、40はこの他、前記配列方向がプレート各辺に対し45°、あるいは任意角度の傾きをなす凹凸パターン形状として形成される構成でもかまわない。   Furthermore, among the arrangement of the convex portions 31 in the concave / convex pattern portion 30, the concave portion 41 among the arrangement direction in which the concave portion 34 is interposed between the convex portions 31 and the arrangement of the concave portions 41 in the concave / convex pattern portion 40. The arrangement direction in which the convex portions 43 are interposed is parallel or perpendicular to each side of the rectangular plate. In addition, the concavo-convex pattern portions 30 and 40 may be configured to have a concavo-convex pattern shape in which the arrangement direction has an inclination of 45 ° or an arbitrary angle with respect to each side of the plate.

前記縁部50は、いずれの熱交換用プレート10、20においても、プレート各辺に沿う同じ平坦形状部分として成型される構成であり、プレート重ね合せの際には複数が表裏方向を全て同じ向きとされて所定間隔で対向する状態となり、且つ、この縁部50の間にガスケット60が挟み込まれる仕組みである。なお、この同一形状の縁部50を基準として、熱交換用プレート10においては、凸部31の隆起する側が表面であり、熱交換用プレート20においては、凸部43の隆起する側が表面となる。   The edge portion 50 is configured to be molded as the same flat shape portion along each side of each of the heat exchange plates 10 and 20, and when the plates are overlapped, a plurality of the front and back directions are all in the same direction. In this manner, the gaskets 60 are opposed to each other at a predetermined interval, and the gasket 60 is sandwiched between the edge portions 50. With reference to the edge 50 having the same shape, in the heat exchange plate 10, the protruding side of the convex portion 31 is the surface, and in the heat exchange plate 20, the protruding side of the convex portion 43 is the surface. .

熱交換用プレート10、20をそれぞれ表裏位置関係を同じにして複数重ね合せ、熱交換ユニット1として一体化した状態では、縁部50の他、熱交換用プレート10の凹凸パターン部30における凸部31と、熱交換用プレート20の凹凸パターン部40における凹部41裏側の凸状部分とが当接しており、また、熱交換用プレート10の凹凸パターン部30における凹部34裏側の凸状部分と、前記とは別の熱交換用プレート20の凹凸パターン部40における凸部43とが当接しており、当接箇所以外の各プレート間に熱交換用流体が流通可能な隙間が生じることとなる。   In a state where the heat exchange plates 10 and 20 are overlapped with the same front and back positional relationship and integrated as the heat exchange unit 1, in addition to the edge portion 50, the convex portion in the concavo-convex pattern portion 30 of the heat exchange plate 10. 31 is in contact with the convex portion on the back side of the concave portion 41 in the concave and convex pattern portion 40 of the heat exchange plate 20, and the convex portion on the back side of the concave portion 34 in the concave and convex pattern portion 30 of the heat exchange plate 10; The convex part 43 in the uneven | corrugated pattern part 40 of the plate 20 for heat exchange different from the above is contact | abutting, and the clearance gap which can distribute | circulate the fluid for heat exchange will arise between each plate other than a contact location.

凹凸パターン部30における凸部31の隆起した側の隙間である第一隙間部61では、凸部31より隆起高さの低い中間隆起部33と中間谷部42の裏側部分、及びさらに低い凹部34と凸部43の裏側部分が、それぞれ所定の間隔で対向する状態となっており、これら中間隆起部33表面側と凹部34表面側に生じている各隙間が連通して直線状の流路をなしている。これらの流路は中間隆起部33近傍より凹部34近傍で流路断面積が大きくなっており、各流路は拡大、縮小を繰返しながら直線状に連続し、且つ互いに交差・連通している。そして、この第一隙間部61は、熱交換用プレート10、20の同じ側の二つの隅部にある開口孔11、13、21、23で第一隙間部61同士及び外部とそれぞれ連通することとなる。   In the first gap portion 61 that is the gap on the raised side of the convex portion 31 in the concavo-convex pattern portion 30, the back side portions of the intermediate raised portion 33 and the intermediate valley portion 42 that are lower than the raised portion 31, and the lower recessed portion 34. And the rear portion of the convex portion 43 are opposed to each other at a predetermined interval, and the gaps formed on the surface side of the intermediate raised portion 33 and the surface side of the concave portion 34 communicate with each other to form a linear flow path. There is no. These channels have a channel cross-sectional area that is larger in the vicinity of the recess 34 than in the vicinity of the intermediate raised portion 33, and each channel continues linearly while repeatedly expanding and contracting, and intersects and communicates with each other. The first gap 61 communicates with the first gap 61 and the outside through the opening holes 11, 13, 21, and 23 at the two corners on the same side of the heat exchange plates 10 and 20, respectively. It becomes.

一方、凹凸パターン部40の凸部43の隆起側の隙間である第二隙間部62においては、中間谷部42と中間隆起部33裏側部分との間のトンネル状隙間部分が、凹部41と凸部31裏側部分との間に生じる空間同士を連通させる状態となっており、直線状の流路が形成される。これらの流路は中間谷部42近傍より凹部41近傍で流路断面積が大きくなっており、各流路は拡大、縮小を繰返しながら凹部41の並んだ方向に直線状に連続し、且つ互いに交差・連通している。そして、この第二隙間部62は、前記開口孔11、13、21、23とは別の隅部にある開口孔12、14、22、24で第二隙間部62同士及び外部とそれぞれ連通することとなる。   On the other hand, in the second gap portion 62 that is a gap on the raised side of the convex portion 43 of the concavo-convex pattern portion 40, the tunnel-like gap portion between the intermediate valley portion 42 and the back side portion of the intermediate raised portion 33 is convex with the concave portion 41. It is in the state which connects the space which arises between the part 31 back side parts, and a linear flow path is formed. These channels have a channel cross-sectional area that is larger in the vicinity of the recess 41 than in the vicinity of the intermediate valley portion 42, and each channel continues linearly in the direction in which the recess 41 is arranged while repeating expansion and contraction, and Crossing and communicating. The second gap portion 62 communicates with the second gap portions 62 and the outside through the opening holes 12, 14, 22, 24 at corners different from the opening holes 11, 13, 21, 23, respectively. It will be.

これら第一隙間部61と第二隙間部62の形状及び大きさは、一プレートの凹凸が表裏で非対称形状であり、且つプレート一体化状態で各プレートの対称をなす面同士を向い合わせて重ねられているために、互いに異なったものとなっている。第一隙間部61と第二隙間部62は、その形状及び大きさの差異に基づいて、互いに異なる伝熱特性をそれぞれ有することになるが、あらかじめ熱交換を行わせる二つの流体の性質を考慮して、これに合わせた流動及び伝熱特性となるように、各隙間の形状及び大きさがプレート凹凸形状の調整により設定される。そして、これら第一隙間部61と第二隙間部62に、その特性に合った性質を有する方の熱交換用流体がそれぞれ導入されるよう、熱交換器全体の構造も設定される。   The shapes and sizes of the first gap portion 61 and the second gap portion 62 are such that the unevenness of one plate is asymmetrical on the front and back, and the surfaces that make symmetry of each plate in the integrated state of the plates face each other. Therefore, they are different from each other. The first gap portion 61 and the second gap portion 62 have different heat transfer characteristics based on the difference in shape and size, but consider the properties of the two fluids that cause heat exchange in advance. Thus, the shape and size of each gap are set by adjusting the plate unevenness so that the flow and heat transfer characteristics can be matched. And the structure of the whole heat exchanger is also set so that the fluid for the heat exchange which has the property suitable for the characteristic may be introduce | transduced into these 1st clearance gap parts 61 and 2nd clearance gap parts 62, respectively.

また、熱交換用プレート10、20における他の特徴として、縁部50より内側の各開口孔部分及び凹凸パターン部30、40の領域における短辺方向の中心位置を挟んで、この短辺方向の両側部分がちょうど対称関係をなす形状とされている。これにより、一方の熱交換用プレート10を長辺方向の位置関係はそのままに180°反転させて表裏の位置関係を入替えると、入替え前の配置に対して、凹凸や開口孔の位置はそのままにしてちょうど凹凸の関係のみが入れ替った配置状態となり、この反転させたプレート10と反転させていない他のプレート20とは互いに縁部50より内側の領域の形状が全く同じになる仕組みである。   Further, as another feature of the heat exchange plates 10 and 20, the short side direction center position is sandwiched between each opening hole portion inside the edge portion 50 and the region of the concave and convex pattern portions 30 and 40. The two side portions are just symmetrical. As a result, when one of the heat exchanging plates 10 is inverted by 180 ° while maintaining the positional relationship in the long side direction and the positional relationship between the front and back sides is changed, the positions of the irregularities and the opening holes remain unchanged with respect to the arrangement before the replacement. Thus, the arrangement is such that only the relationship between the concaves and convexes is switched, and the inverted plate 10 and the other non-inverted plate 20 have the same shape of the region inside the edge portion 50. .

こうして、凹凸パターン部30、40を含む所定範囲を、一方の表裏を反転すると他方と全く同じ形状となるように設定すれば、各プレートのプレス製造の際、二種類の熱交換用プレート10、20における凹凸パターン部30、40を同様の手法で製造でき、この場合、プレス装置の型における縁部50に対応する部分の位置を他部分に対しそれぞれ調整可能なプレス装置、例えば本発明者の発明した特開2003−275824号公報に記載されるプレス装置などを用いて製造することができ、型において凹凸パターン部30、40を生じさせる中央主型部分に対し縁部50に対応する補助型部分の位置をプレス方向に調節してプレスを行えば良い。この場合、同じ型で二種類の異なるプレートを製造でき、生産効率が極めて高い。   Thus, if the predetermined range including the concavo-convex pattern portions 30 and 40 is set so that when one of the front and back surfaces is inverted, the shape is exactly the same as the other, two types of heat exchange plates 10 and 20 can be manufactured by the same method, and in this case, a press device that can adjust the position of the portion corresponding to the edge 50 in the mold of the press device with respect to other portions, for example, the present inventors' Auxiliary die that can be manufactured using the invented press device described in Japanese Patent Application Laid-Open No. 2003-275824 and corresponds to the edge portion 50 with respect to the central main mold portion that causes the uneven pattern portions 30 and 40 in the die. What is necessary is just to press by adjusting the position of a part to a press direction. In this case, two different plates can be manufactured with the same mold, and the production efficiency is extremely high.

次に、本実施の形態に係る熱交換ユニットの組立について説明する。あらかじめ、金属薄板のプレス成型により、縁部50形状が同じで、中央部分の凹凸パターン部30、40が互いに対称関係にある二種類の熱交換用プレート10、20がそれぞれ複数得られているものとする。   Next, assembly of the heat exchange unit according to the present embodiment will be described. A plurality of two types of heat exchanging plates 10 and 20 each having the same shape of the edge portion 50 and the concavo-convex pattern portions 30 and 40 in the central portion being symmetrical to each other are obtained in advance by press molding of a metal thin plate. And

これら熱交換用プレート10、20の縁部50を基準とした表裏方向を同じくして、凹凸パターン部30、40における対称関係となる面同士を向い合わせるようにして、熱交換用プレート10、20を交互に重ね合せる点の他は、従来公知のプレート式熱交換器の場合と同様に、各プレートの縁部50間や所定の開口孔周囲部分にガスケット60を挟み込みながら熱交換用プレート10、20を重ね合せ、所定数重ね合せた状態で、重ね合せ方向の両側から締付け状態で固定し、全てのプレートが水密状態で一体化した熱交換ユニット1とする。   The heat exchange plates 10, 20 are arranged so that the symmetrical surfaces of the concavo-convex pattern portions 30, 40 face each other with the same front and back directions with respect to the edge 50 of the heat exchange plates 10, 20. In the same manner as in the case of a conventionally known plate heat exchanger, the heat exchange plate 10 while sandwiching the gasket 60 between the edge portions 50 of each plate or around a predetermined opening hole, A heat exchange unit 1 is obtained in which 20 are overlapped and fixed in a tightened state from both sides in the overlapping direction in a state where a predetermined number of layers are overlapped, and all the plates are integrated in a watertight state.

得られた熱交換ユニット1では、各熱交換用プレート10の凸部31のある側に第一隙間部61が生じており、開口孔11、13、21、23がこの第一隙間部61に連通する。また、第一隙間部61と熱交換用プレート10、20を隔てて隣合う位置の隙間として第二隙間部62も生じており、開口孔12、14、22、24がこれに連通する。この熱交換ユニット1として一体化された状態において、通常、プレート各辺は水平又は垂直方向にそれぞれ一致させて支持されることから、各プレート間の隙間部61、62における主な流路部分、すなわち、熱交換用プレート10の各凹部34と中間隆起部33に沿って連続する隙間部分、及び熱交換用プレート20の各凹部41と中間谷部42に沿って連続する隙間部分は、それぞれ斜めに傾くこととなる。   In the obtained heat exchange unit 1, the first gap portion 61 is formed on the side where the convex portion 31 of each heat exchange plate 10 is present, and the opening holes 11, 13, 21, and 23 are formed in the first gap portion 61. Communicate. Moreover, the 2nd clearance gap part 62 is also produced as a clearance gap between the 1st clearance gap 61 and the heat exchange plates 10 and 20, and the opening holes 12, 14, 22, and 24 are connected to this. In the state integrated as the heat exchange unit 1, usually, each side of the plate is supported by being aligned in the horizontal or vertical direction, so that the main flow path portions in the gap portions 61 and 62 between the plates, That is, the gap portions that continue along the concave portions 34 and the intermediate raised portions 33 of the heat exchange plate 10 and the gap portions that continue along the concave portions 41 and the intermediate valley portions 42 of the heat exchange plate 20 are slanted, respectively. Will be inclined to.

続いて、本実施の形態に係る熱交換ユニットの熱交換器における使用状態について説明する。熱交換ユニット1をなす各熱交換用プレート10、20の二つの開口孔11、13、21、23を通じて、第一隙間部61に一方の熱交換用流体を流入・流出させる一方、別の二つの開口孔12、14、22、24を通じて、第二隙間部62に他方の熱交換用流体を流通させる。   Then, the use condition in the heat exchanger of the heat exchange unit which concerns on this Embodiment is demonstrated. One heat exchange fluid flows into and out of the first gap 61 through the two opening holes 11, 13, 21, and 23 of each heat exchange plate 10, 20 constituting the heat exchange unit 1, while another two The other heat exchange fluid is circulated through the second gap 62 through the two opening holes 12, 14, 22, 24.

熱交換用流体の流通する各隙間部61、62では、各凸部31、43や各凹部34、41の並ぶ斜め各方向に向け、凹部分間と中間隆起部33又は中間谷部42の近傍を主とする流体流路が直線状に連続し、これを熱交換用流体が流通する状態となっている。熱交換用流体は各隙間部61、62を斜めに進みながら自然に合流、分岐して熱交換用プレート10、20の凹凸パターン部30、40の表裏面各部にもれなくスムーズに行渡ることとなり、仮に、各隙間部61、62にそれぞれ流通させる二つの熱交換用流体の流れ関係が並流、向流、又は直交流のいずれの場合でも、プレートにおける独特の凹凸パターン形状により、流れについて熱交換用流体に略同じ条件を与えられ、二つの流体がいずれの向きの組合わせであっても、流路における圧力損失を抑えてスムーズに各隙間部61、62を流通させられる。   In the gaps 61 and 62 through which the heat exchange fluid flows, the recesses and the vicinity of the intermediate raised portion 33 or the intermediate valley portion 42 are directed toward the oblique directions in which the convex portions 31 and 43 and the concave portions 34 and 41 are arranged. The main fluid flow path is continuous in a straight line, and the heat exchange fluid flows through this. The heat exchange fluid naturally joins and branches while proceeding diagonally through the gaps 61 and 62, and smoothly flows to the front and back surfaces of the uneven pattern portions 30 and 40 of the heat exchange plates 10 and 20, Even if the flow relationship between the two heat exchange fluids flowing through the gaps 61 and 62 is parallel flow, countercurrent flow, or cross flow flow, heat exchange is performed on the flow due to the unique uneven pattern shape on the plate. Substantially the same conditions are given to the working fluid, and even if the two fluids are in any combination, the pressure loss in the flow path can be suppressed and the gaps 61 and 62 can be circulated smoothly.

こうして熱交換用流体がプレート間の各隙間部61、62全体に広く行渡ることでプレートと各流体間の熱伝達が促されることに加え、プレート間の各隙間部61、62がそれぞれ拡大、縮小を繰返して連続する独特な形状を有し、且つプレート表裏両側において各熱交換用流体の性質を十分に考慮した熱伝達特性に設定される互いに異なる形状の流路をなすことで、これを通過する各熱交換用流体と各熱交換用プレート10、20間では効率よく熱伝達が進行することとなり、、各熱交換用プレート10、20を介して二つの熱交換用流体の間でロス無くスムーズに熱交換を行わせることができる。   In this way, the heat exchange fluid widely spreads across the gaps 61 and 62 between the plates, thereby promoting heat transfer between the plates and the fluids, and the gaps 61 and 62 between the plates are enlarged. By forming channels with different shapes that have a unique shape that continues to be reduced and that has heat transfer characteristics that take into consideration the properties of each heat exchange fluid on both sides of the plate. Heat transfer efficiently proceeds between each passing heat exchange fluid and each heat exchange plate 10, 20, and a loss occurs between the two heat exchange fluids via each heat exchange plate 10, 20. Heat exchange can be performed smoothly.

このように、本実施の形態に係る熱交換ユニットにおいては、縁部50は同じ形状ながら、中央の凹凸パターン部30、40が互いに凹凸の向きを逆にする対称形状とされて形成された二種類の熱交換用プレート10、20を用い、この二種類のプレートを縁部50が同じ向きになるようにしつつ交互に重ね合せて複数並列状態とし、各熱交換用プレート10、20の縁部50間にガスケット60を介在させて締付けると、各プレート中央の凹凸パターン部30、40が、互いに対称形状となる面同士を向い合わせにされた配設状態に応じて、プレート間の各隙間部61、62が、プレート表側と裏側とでそれぞれ異なった二種類の形状及び大きさとなってあらわれることから、各隙間部61、62が互いに異なる性状の流路をなすこととなり、それぞれ異なった伝熱性能を発揮でき、各流路を各熱交換用流体の性状に対応させれば、プレートと各流体との熱伝達を極めて効率的に進行させられ、熱交換用流体間で効率よく熱交換が行える。   As described above, in the heat exchange unit according to the present embodiment, the edge 50 has the same shape, but the central uneven pattern portions 30 and 40 are formed in a symmetrical shape in which the directions of the unevenness are opposite to each other. Two types of heat exchange plates 10 and 20 are used, and these two types of plates are alternately overlapped so that the edge 50 is in the same direction to form a plurality of parallel plates, and the edges of each of the heat exchange plates 10 and 20 When the gasket 60 is interposed between 50 and tightened, the concave and convex pattern portions 30 and 40 at the center of each plate are arranged in a space between the plates according to the arrangement state in which the surfaces having symmetrical shapes face each other. Since 61 and 62 appear in two different shapes and sizes on the front side and the back side of the plate, the gaps 61 and 62 form flow paths having different properties. If each flow path can correspond to the properties of each heat exchange fluid, heat transfer between the plate and each fluid can be carried out very efficiently, so that the heat transfer performance can be improved. Efficient heat exchange.

なお、前記実施の形態に係る熱交換ユニットにおいて、凹凸パターン部30は、一つの凸部31に対し四方に中間隆起部33を介在させつつ凸部31をそれぞれ配置し、且つ半ピッチずれた位置に凹部34を配置した構成とし、凹凸パターン部40も略同様の配置にする構成としているが、これに限らず、熱交換用プレート10、20における凹凸パターン部30、40の形状は、互いに対称関係となるように設定する点以外については任意の構成とすることができ、凹凸パターン部における凸部の形状、中間隆起部の介在の有無や、一つの凸部に隣合う他の凸部の配置数設定等の調整でパターン形状を変更した構成とすることもでき、プレート間の隙間に導入される熱交換用流体の特性に適切に対応させたものとなるように調整できることとなる。   In the heat exchanging unit according to the above embodiment, the concave / convex pattern portion 30 is a position in which the convex portions 31 are arranged with the intermediate raised portions 33 interposed in four directions with respect to one convex portion 31 and are shifted by a half pitch. However, the present invention is not limited to this, and the shapes of the concave and convex pattern portions 30 and 40 in the heat exchange plates 10 and 20 are symmetrical to each other. Except for the point set to be related, it can be an arbitrary configuration, the shape of the convex part in the concave and convex pattern part, the presence or absence of the intermediate raised part, and the other convex part adjacent to one convex part The pattern shape can be changed by adjusting the number of arrangements, etc., and it can be adjusted to appropriately correspond to the characteristics of the heat exchange fluid introduced into the gap between the plates. It made.

また、前記実施の形態に係る熱交換ユニットにおいて、凹凸パターン部30における凸部31の形状は四角錐状とする構成としているが、この他、凸部を五角錐や六角錐等、他の多角錐台状に形成したり、円錐台状に形成したりすることもでき、熱交換器として得たい特性に合わせて適宜設定してもかまわない。   Further, in the heat exchange unit according to the embodiment, the shape of the convex portion 31 in the concavo-convex pattern portion 30 is a quadrangular pyramid, but in addition to this, the convex portion may be other various shapes such as a pentagonal pyramid and a hexagonal pyramid. It may be formed in a truncated pyramid shape or a truncated cone shape, and may be appropriately set according to the characteristics to be obtained as a heat exchanger.

また、前記実施の形態に係る熱交換ユニットにおいては、熱交換用プレート10、20をガスケット60を介して重ね合せて一体化するタイプについて、凹凸パターン部30、40を所定の対称形状とした二種類のプレートを用いて形成する構成としているが、これに限らず、隣合うプレート同士をろう付けにより水密状態で連結して複数並列一体化する場合についても、前記同様に縁部は共通ながら凹凸パターン部を所定の対称形状とした二種類のプレートを用いて形成する構成とすることができ、前記同様の熱交換特性を備えつつ、より高圧に耐えうる熱交換ユニットが得られることとなる。   Further, in the heat exchange unit according to the above-described embodiment, for the type in which the heat exchanging plates 10 and 20 are overlapped and integrated via the gasket 60, the concave and convex pattern portions 30 and 40 have a predetermined symmetrical shape. Although it is configured to use various types of plates, the present invention is not limited to this, and even when adjacent plates are connected in a watertight state by brazing and integrated in parallel, the edges are common but uneven as described above. The pattern portion can be formed using two types of plates having a predetermined symmetrical shape, and a heat exchange unit that can withstand higher pressure while having the same heat exchange characteristics as described above can be obtained.

本発明の一実施の形態に係る熱交換ユニットにおける一方の熱交換用プレートの概略構成図である。It is a schematic block diagram of one heat exchange plate in the heat exchange unit which concerns on one embodiment of this invention. 本発明の一実施の形態に係る熱交換ユニットにおける他方の熱交換用プレートの概略構成図である。It is a schematic block diagram of the other plate for heat exchange in the heat exchange unit which concerns on one embodiment of this invention. 本発明の一実施の形態に係る熱交換ユニットにおける熱交換用プレートの配列状態説明図である。It is arrangement | sequence state explanatory drawing of the plate for heat exchange in the heat exchange unit which concerns on one embodiment of this invention. 本発明の一実施の形態に係る熱交換ユニットの一体化状態説明図である。It is an integrated state explanatory view of the heat exchange unit concerning one embodiment of the present invention. 本発明の一実施の形態に係る熱交換ユニットにおける一の熱交換用プレートの要部拡大図である。It is a principal part enlarged view of the plate for one heat exchange in the heat exchange unit which concerns on one embodiment of this invention. 図5のA−A、B−B、及びC−C断面図である。It is AA, BB, and CC sectional drawing of FIG. 本発明の一実施の形態に係る熱交換ユニットにおける他の熱交換用プレートの要部拡大図である。It is a principal part enlarged view of the other plate for heat exchange in the heat exchange unit which concerns on one embodiment of this invention. 図7のD−D、E−E、及びF−F断面図である。It is DD, EE, and FF sectional drawing of FIG. 本発明の一実施の形態に係る熱交換ユニットにおける熱交換用プレート凹凸パターン部位置での要部拡大断面図である。It is a principal part expanded sectional view in the plate uneven | corrugated pattern part position for heat exchange in the heat exchange unit which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 熱交換ユニット
10、20 熱交換用プレート
11、12、13、14 開口孔
21、22、23、24 開口孔
30、40 凹凸パターン部
31 凸部
32 頂部
33 中間隆起部
34 凹部
41 凹部
42 中間谷部
43 凸部
50 縁部
60 ガスケット
61 第一隙間部
62 第二隙間部
DESCRIPTION OF SYMBOLS 1 Heat exchange unit 10, 20 Heat exchange plate 11, 12, 13, 14 Open hole 21, 22, 23, 24 Open hole 30, 40 Uneven pattern part 31 Convex part 32 Top part 33 Middle protuberance part 34 Concave part 41 Concave part 42 Middle Valley part 43 Convex part 50 Edge part 60 Gasket 61 First gap part 62 Second gap part

Claims (3)

所定の凹凸パターンを有する金属薄板製の熱交換用プレートを複数並列状態で一体化して形成され、前記各熱交換用プレート間に一の熱交換用流体の流通する第一隙間部と他の熱交換用流体の流通する第二隙間部とがそれぞれ一つおきに生じ、各熱交換用プレートを介して一の熱交換用流体と他の熱交換用流体との間で熱交換を行わせる熱交換ユニットにおいて、
前記熱交換用プレートが、縁部形状を互いに略一致させてそれぞれ形成される一のプレートと他のプレートとの二種類からなり、当該二種類のプレート同士で前記縁部との配置関係を互いに異ならせた凹凸パターン部がそれぞれプレート略中央部分に形成され、
前記凹凸パターン部のいずれも、凹凸パターンをなす各凹凸が裏側の凸凹とは形状を異ならせた表裏非対称凹凸形状とされる一方、前記一のプレートの凹凸パターン部が、前記他のプレートの凹凸パターン部における各凹凸を、表裏方向について縁部位置を基準として逆向きに入替えた形状として形成され、一のプレートの凹凸パターン部と他のプレートの凹凸パターン部とが互いに対称関係をなすものとされてなり、
前記熱交換用プレートを、前記縁部が同じ向きとなり、且つ前記一のプレートと他のプレートとが交互に配置されるようにして複数重ね合せ、各縁部を所定間隔で対向、又はそれぞれ当接させた状態を得ると共に、前記凹凸パターン部の向い合う凸部分の頂部同士を当接させることを
特徴とする熱交換ユニット。
A plurality of heat exchange plates made of a thin metal plate having a predetermined uneven pattern are integrally formed in a parallel state, and the first gap portion through which one heat exchange fluid flows between each of the heat exchange plates and the other heat Heat is generated to cause heat exchange between one heat exchange fluid and the other heat exchange fluid via each heat exchange plate. In the exchange unit,
The heat exchange plate is composed of two types, one plate and another plate, which are formed so that the edge shapes are substantially coincided with each other, and the arrangement relationship between the two types of plates and the edge is mutually Different uneven pattern portions are formed in the substantially central part of the plate,
Each of the concavo-convex pattern portions has an uneven concavo-convex shape in which each concavo-convex pattern forming the concavo-convex pattern is different from the concavo-convex shape on the back side, while the concavo-convex pattern portion of the one plate is the concavo-convex pattern of the other plate. Each unevenness in the pattern part is formed as a shape that is reversed in the front and back directions with respect to the edge position, and the uneven pattern part of one plate and the uneven pattern part of the other plate are symmetrical with each other Being
A plurality of the heat exchange plates are overlapped so that the edges are in the same direction and the one plate and the other plate are alternately arranged, and the edges are opposed to each other at a predetermined interval or respectively. A heat exchanging unit characterized by obtaining a contacted state, and abutting the tops of convex portions facing each other of the concave and convex pattern portions.
前記請求項1に記載の熱交換ユニットにおいて、
前記各熱交換用プレートが、矩形状又は方形状とされると共に、
少なくとも前記凹凸パターン部が、横辺方向又は縦辺方向の各中間位置を挟む両側部分が対称関係となる形状とされることを
特徴とする熱交換ユニット。
In the heat exchange unit according to claim 1,
Each of the heat exchange plates is rectangular or rectangular,
At least the uneven pattern portion has a shape in which both side portions sandwiching each intermediate position in the horizontal side direction or the vertical side direction have a symmetrical relationship.
前記請求項1又は2に記載の熱交換ユニットにおいて、
前記熱交換用プレートの凹凸パターン部が、前記凸部を、一方の面側に略円錐台状又は略多角錐台状に隆起した状態として形成される一方、各凸部のそれぞれ最も近い距離で隣合う同士における対向する錐面間の各中間部分で、凸部の対向する錐面にそれぞれ交わる平面及び/又は曲面を表面に有し、且つ凸部の頂部より低い所定高さの頂部を一又は複数有する隆起形状となる中間隆起部を多数形成され、
前記各凸部が、それぞれ最も近い距離で隣合って中間に前記中間隆起部を介在させる他の凸部との組合わせを、同時に複数得られる配置状態とされてなり、
前記各中間隆起部と隣合う他の中間隆起部との中間に、隆起高さ方向について最低高さ位置となる非隆起部分が存在し、当該非隆起部分が周囲を中間隆起部及び凸部に取囲まれて前記凹部をなすことを
特徴とする熱交換ユニット。
In the heat exchange unit according to claim 1 or 2,
The concavo-convex pattern portion of the heat exchange plate is formed as a state in which the convex portion is raised in a substantially truncated cone shape or a substantially polygonal frustum shape on one surface side, and at the closest distance of each convex portion. Each intermediate portion between adjacent conical surfaces of adjacent ones has a flat surface and / or a curved surface on the surface that intersect with the conical surfaces facing each other of the convex portion, and a top portion having a predetermined height lower than the top portion of the convex portion. Or a number of intermediate ridges that have a plurality of ridge shapes,
Each of the convex portions is adjacent to each other at the closest distance, and a combination with other convex portions interposing the intermediate raised portion in the middle is in an arrangement state in which a plurality of combinations are obtained at the same time.
There is a non-bumped portion which is the lowest height position in the height direction of the ridge in the middle between each of the intermediate ridges and the other adjacent intermediate ridges. A heat exchange unit characterized by being surrounded and forming the recess.
JP2005190168A 2005-06-29 2005-06-29 Heat exchange unit Pending JP2007010202A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005190168A JP2007010202A (en) 2005-06-29 2005-06-29 Heat exchange unit
US11/449,660 US20070000654A1 (en) 2005-06-29 2006-06-09 Heat exchange unit
TW095122909A TW200712419A (en) 2005-06-29 2006-06-26 Heat exchange unit
EP06013348A EP1739379A2 (en) 2005-06-29 2006-06-28 Heat exchange unit
KR1020060058563A KR20070001819A (en) 2005-06-29 2006-06-28 Heat exchange unit
CNA2006100942732A CN1892163A (en) 2005-06-29 2006-06-28 Heat exchange unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190168A JP2007010202A (en) 2005-06-29 2005-06-29 Heat exchange unit

Publications (1)

Publication Number Publication Date
JP2007010202A true JP2007010202A (en) 2007-01-18

Family

ID=37074560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190168A Pending JP2007010202A (en) 2005-06-29 2005-06-29 Heat exchange unit

Country Status (6)

Country Link
US (1) US20070000654A1 (en)
EP (1) EP1739379A2 (en)
JP (1) JP2007010202A (en)
KR (1) KR20070001819A (en)
CN (1) CN1892163A (en)
TW (1) TW200712419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034219A (en) * 2018-08-29 2020-03-05 株式会社日阪製作所 Plate-type heat exchanger

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858703B (en) * 2010-06-28 2012-07-18 天津国际机械有限公司 Sheet structure used for plate heat exchanger
CN103533838B (en) * 2011-03-17 2015-06-10 雀巢产品技术援助有限公司 Systems and methods for heat exchange
CN102564182A (en) * 2012-03-01 2012-07-11 纪玉龙 Plate type heat exchanger with pulsating heat pipes
DE102012105144B4 (en) * 2012-06-14 2021-12-02 Gea Wtt Gmbh Plate heat exchanger in asymmetrical design
ES2749507T3 (en) * 2012-06-14 2020-03-20 Alfa Laval Corp Ab A plate heat exchanger with injection means
EP2719985B1 (en) * 2012-10-09 2015-08-26 Danfoss Silicon Power GmbH A flow distribution module with a patterned cover plate
TWI507649B (en) * 2012-11-22 2015-11-11 Ind Tech Res Inst Cold plate
WO2015086343A1 (en) * 2013-12-10 2015-06-18 Swep International Ab Heat exchanger with improved flow
LT2957851T (en) * 2014-06-18 2017-06-26 Alfa Laval Corporate Ab Heat transfer plate and plate heat exchanger comprising such a heat transfer plate
DE102016100608A1 (en) * 2016-01-14 2017-07-20 Karl-Heinz Scholz Structural element in panel form, in particular floor covering panel, as well as floor covering using these components and methods for their arrangement
CN107255425B (en) * 2017-06-27 2020-05-05 中国船舶重工集团公司第七一九研究所 Heat exchange plate, machining method and heat exchanger
EP3803251A1 (en) * 2018-06-07 2021-04-14 Pessach Seidel A plate of plate heat exchangers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236014A (en) * 1967-04-14 1971-06-16 Nat Res Dev Heat exchangers
US4374542A (en) * 1977-10-17 1983-02-22 Bradley Joel C Undulating prismoid modules
DE8522627U1 (en) * 1985-08-06 1985-09-19 Röhm GmbH, 6100 Darmstadt Plate heat exchanger
US4919200A (en) * 1989-05-01 1990-04-24 Stanislas Glomski Heat exchanger wall assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034219A (en) * 2018-08-29 2020-03-05 株式会社日阪製作所 Plate-type heat exchanger

Also Published As

Publication number Publication date
TW200712419A (en) 2007-04-01
US20070000654A1 (en) 2007-01-04
EP1739379A2 (en) 2007-01-03
KR20070001819A (en) 2007-01-04
CN1892163A (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP2007010202A (en) Heat exchange unit
JP2006214646A (en) Heat exchanging plate
JP2008116138A (en) Heat exchange plate
KR101445474B1 (en) A heat exchanger plate and a plate heat exchanger
KR101234500B1 (en) A plate heat exchanger
JP4666463B2 (en) Heat exchange plate
KR101210673B1 (en) A plate heat exchanger
JP2006317029A (en) Heat exchanging unit
JPH11248391A (en) Heat exchange plate
EP2775246B1 (en) Dimple pattern gasketed heat exchanger
JPH0468556B2 (en)
JP3212350B2 (en) Plate heat exchanger
KR101225357B1 (en) A plate heat exchanger
JP3543992B2 (en) Plate heat exchanger
JP2008209073A (en) Heat exchanger manufacturing method and heat exchange plate
JP4462653B2 (en) Plate heat exchanger
US11413714B2 (en) Method for producing a brazed plate heat exchanger
JP2007162974A (en) Heat exchange plate
JP2001280887A (en) Plate type heat exchanger
JP7214923B2 (en) heat transfer plate
JPH07260385A (en) Plate type heat exchanger
CN212320510U (en) Heat exchange plate with variable flow cross-sectional area and heat exchanger thereof
JP2008133999A (en) Heat exchange plate
JP2005221222A (en) Plate for heat exchange, and heat exchange unit
JP3543993B2 (en) Plate heat exchanger