JP2007003469A - Tube group inspection device - Google Patents

Tube group inspection device Download PDF

Info

Publication number
JP2007003469A
JP2007003469A JP2005186765A JP2005186765A JP2007003469A JP 2007003469 A JP2007003469 A JP 2007003469A JP 2005186765 A JP2005186765 A JP 2005186765A JP 2005186765 A JP2005186765 A JP 2005186765A JP 2007003469 A JP2007003469 A JP 2007003469A
Authority
JP
Japan
Prior art keywords
tube
signal
excitation signal
received signal
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005186765A
Other languages
Japanese (ja)
Other versions
JP4674753B2 (en
Inventor
Yukio Nomazaki
行雄 野間崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005186765A priority Critical patent/JP4674753B2/en
Publication of JP2007003469A publication Critical patent/JP2007003469A/en
Application granted granted Critical
Publication of JP4674753B2 publication Critical patent/JP4674753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To establish an inspection technology that can accurately inspect a tube group constituted by tubes with the same shape such as boiler heat exchanger tubes in a short time, and can inspect thinning and crack occurring in the heat exchanger tubes inexpensively in the short time. <P>SOLUTION: In this tube group inspection device, a plurality of probes 11 for inputting transverse wave of horizontally polarized wave propagating in the direction of the axial center of a heat exchanger tube 1 at an angle of refraction of 90° and receiving the reflected signal are disposed on the outer peripheral surface of the heat exchanger tube 1. An excitation signal generated in an excitation signal generating section 18 is distributed in an excitation signal dispensing section 17 according to the number of the probes 11 and is transmitted to an excitation signal compensating section 16, excitation signal corrected every probe 11 is transmitted from the excitation signal compensating section 16, the intensity of the excitation signal to be transmitted from the excitation signal compensating section 16 to the probes 11 is controlled with reference to the received signal from a sensitivity compensation test body 14, and a received signal processing section 19 for processing a reflected signal from the inspected tube 1 received by the probes 11 is disposed to extract a useful signal from the received signal with reference to the database 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波を用いて管群の検査を行う装置に係わり、特に材質や形状が同様な管で構成されるボイラなどの熱交換器管に発生した腐食や亀裂などのキズを検査するのに好適な管群検査装置に関する。   The present invention relates to an apparatus for inspecting a tube group using ultrasonic waves, and in particular, inspects scratches such as corrosion and cracks generated in a heat exchanger tube such as a boiler composed of tubes having the same material and shape. The present invention relates to a tube group inspection apparatus suitable for the above.

ボイラ等の熱交換器管は、外面が火炎に曝されるため外面に腐食や亀裂などのキズが発生する。また、停止時には内部を循環していた蒸気が水に変態するため、内面にも腐食や亀裂などのキズが発生し、漏洩事故につながることがあるので定期検査が必要不可欠となる。   Since the outer surface of a heat exchanger tube such as a boiler is exposed to a flame, scratches such as corrosion and cracks are generated on the outer surface. Moreover, since the steam circulating inside transforms into water at the time of stoppage, scratches such as corrosion and cracks occur on the inner surface, which may lead to leakage accidents, so periodic inspection is indispensable.

これらの不具合をできるだけ抑えるために、従来はケーブルの先端に取り付けた超音波探触子を圧力水で熱交換器管の内部に送り込み、熱交換器管の内側から腐食や亀裂などのキズを検査している(特許文献1を参照)。   In order to suppress these problems as much as possible, conventionally, an ultrasonic probe attached to the end of the cable is sent to the inside of the heat exchanger tube with pressure water, and inspection of scratches such as corrosion and cracks from the inside of the heat exchanger tube (See Patent Document 1).

一方、被検管の外面からラム波を送信し、その反射信号を受信することで長距離を一括検査する装置も公開されている。例えば、特許文献2には、複数の送信子の試験体への接触状態をチェックし、そのチェック結果に基づいて受信信号に補正をかけ、補正後のデータを合成することにより、単一モードのラム波を送信したのと等価な状態を実現した超音波探傷装置が開示されている。   On the other hand, an apparatus that performs a batch inspection of a long distance by transmitting a Lamb wave from the outer surface of the test tube and receiving a reflection signal thereof is also disclosed. For example, in Patent Document 2, the contact state of a plurality of transmitters to a test body is checked, the received signal is corrected based on the check result, and the corrected data is synthesized, thereby combining the single mode. An ultrasonic flaw detector that realizes a state equivalent to transmitting a Lamb wave is disclosed.

また、特許文献3には、被検管の外周に沿って等間隔に配置された4個の送受信子群から構成される送受信子群二対を設け、合計8個の送受信子群から一つを送信用の送受信子群として選択するとともに一つ以上を受信用の送受信子群として選択し、前記送信用および受信用の送受信子群の組合せを変えて複数回の送受信を行い、この結果、得られた複数の受信信号を最低次ねじれモードが支配的になるまで足し合わせて、足し合わせた信号間の最大振幅の比から各送受信子群の接触状態に対応する補正係数を求め、この補正係数に基づいて前記複数の受信信号をそれぞれ補正した後、合成して時間シフト処理を施して受信信号の方向を識別する超音波探傷装置が示されている。
特開昭63−187152号公報 特開2003−57212号公報 特開2004−347549号公報
Further, in Patent Document 3, two pairs of transmitter / receiver groups composed of four transmitter / receiver groups arranged at equal intervals along the outer periphery of the test tube are provided, one from a total of eight transmitter / receiver groups. Is selected as a transmitter / receiver group for transmission and one or more are selected as a transmitter / receiver group for reception, and a plurality of transmissions are performed by changing a combination of the transmitter / receiver group for transmission, and as a result, This correction is performed by adding the received signals obtained until the lowest-order torsion mode becomes dominant, and obtaining a correction coefficient corresponding to the contact state of each transceiver group from the ratio of the maximum amplitude between the added signals. There is shown an ultrasonic flaw detector that corrects each of the plurality of received signals based on a coefficient and then synthesizes and applies a time shift process to identify the direction of the received signal.
JP-A-63-187152 JP 2003-57212 A JP 2004-347549 A

上述した特許文献1に示されている管の自動超音波探傷システムでは、ケーブルの先端に取り付けた超音波探触子を圧力水で熱交換器管の内部に送り込むために必要となる機器(例えば、挿入軸、挿入軸移動装置、圧力水噴出ノズル、ワイヤー制御装置、ケーブル収納装置、圧力水供給ポンプ、圧力水流量調整及び流れ方向制御装置等)が大掛かりとなり、さらには管の全長に亘り超音波探触子を送りながら検査する必要があるため、検査に多大な時間が掛かるという課題があった。   In the automatic ultrasonic flaw detection system for a pipe shown in Patent Document 1 described above, an apparatus (for example, a device required for sending an ultrasonic probe attached to the tip of a cable into the heat exchanger pipe with pressure water) , Insertion shaft, insertion shaft moving device, pressure water jet nozzle, wire control device, cable storage device, pressure water supply pump, pressure water flow rate adjustment and flow direction control device, etc.), and over the entire length of the pipe Since it is necessary to inspect while sending the acoustic probe, there is a problem that the inspection takes a long time.

また、上述した特許文献2に示されている装置では、送信用として選択された送受信子群から受信用として選択された送受信子群へ直接伝播して受信されたラム波の振幅レベルから求めた送受信子群の接触面におけるラム波送受信効率で各受信データを補正することで送受信子群の接触状態が均一である場合の受信データと等価な受信データを得ようとしている。ここで、送受信子群の接触面におけるラム波送受信効率の算出に用いているラム波は2次元の波動伝播形態で伝播・受信されたものであり、これに対し補正される各受信データは3次元の波動伝播形態で伝播・受信されたラム波であるので補正誤差が大きくなるという課題があった。また、被検管の端面で反射したラム波の振幅レベルから求めた送受信子群の接触面におけるラム波送受信効率で各受信データを補正し送受信子群の接触状態が均一である場合の受信データと等価な受信データを得ようとしているが、検査領域内に管端がない場合の配慮がなく、後述するように管端が存在しないボイラ熱交換器管の管群検査には適用できないという課題がある。   Further, in the apparatus disclosed in Patent Document 2 described above, the amplitude is determined from the amplitude level of the Lamb wave that is directly propagated from the transceiver group selected for transmission to the transceiver group selected for reception. The reception data equivalent to the reception data when the contact state of the transmitter / receiver group is uniform is obtained by correcting each received data with the Lamb wave transmission / reception efficiency on the contact surface of the transmitter / receiver group. Here, the Lamb wave used for the calculation of the Lamb wave transmission / reception efficiency on the contact surface of the transceiver group is propagated and received in a two-dimensional wave propagation form. There is a problem that the correction error becomes large because it is a Lamb wave propagated and received in a three-dimensional wave propagation form. In addition, each received data is corrected with the Lamb wave transmission / reception efficiency on the contact surface of the transceiver group obtained from the amplitude level of the Lamb wave reflected from the end face of the test tube, and the received data when the contact state of the transceiver group is uniform Although there is no consideration when there is no pipe end in the inspection area, it cannot be applied to the tube group inspection of boiler heat exchanger pipes that do not have a pipe end as described later. There is.

また、被検管には多数のキズが発生することがあるが、このような場合、上述した特許文献3に示されている装置ではキズからの受信信号の方向を識別できない場合がある。この例を図12と図13を用いて説明する。なお説明に用いる符号、名称は特許文献3と統一しているので同じ意味をもつ。図12は特許文献3に係る超音波探傷装置の一部分を示し、4個の送受信子群4a〜4dで構成される送受信子群4Aの左にキズ2a1とキズ2a2が、また4個の送受信子群4e〜4hで構成される送受信子群4Bの右にキズ2b1とキズ2b2が管にそれぞれ存在している場合を想定している。ここで、送受信子群4Aと送受信子群4Bの間隔L3、送受信子群4Aとキズ2a1の間隔L2、キズ2a1とキズ2a2の間隔L1、送受信子群4Bとキズ2b1の間隔L4、キズ2b1とキズ2b2の間隔L5は等しいものと仮定している。   In addition, a large number of scratches may occur in the test tube. In such a case, the device shown in Patent Document 3 described above may not be able to identify the direction of the received signal from the scratch. This example will be described with reference to FIGS. In addition, since the code | symbol and name used for description are united with patent document 3, it has the same meaning. FIG. 12 shows a part of the ultrasonic flaw detector according to Patent Document 3. Scratches 2a1 and 2a2 are located on the left side of a transceiver group 4A composed of four transceiver groups 4a to 4d, and four transceivers. It is assumed that a flaw 2b1 and a flaw 2b2 are present on the pipe to the right of the transmitter / receiver group 4B composed of the groups 4e to 4h. Here, an interval L3 between the transmitter / receiver group 4A and the transmitter / receiver group 4B, an interval L2 between the transmitter / receiver group 4A and the scratch 2a1, an interval L1 between the scratch 2a1 and the scratch 2a2, an interval L4 between the transmitter / receiver group 4B and the scratch 2b1, and a scratch 2b1 It is assumed that the interval L5 of the scratch 2b2 is equal.

以上のような設定において、特許文献3の説明で、図4に示されているステップ115の処理によって得られるであろうと推察されるデータAA’、BB’、CC’、DD’は図13に示す概念となり、データAA’ではキズ2a2とキズ2b1の受信信号が重なり、データBB’ではキズ2a1とキズ2b1およびキズ2a2とキズ2b2の受信信号が、データCC’ではキズ2a1とキズ2b1およびキズ2a2とキズ2b2の受信信号が、データDD’ではキズ2a1とキズ2b2の受信信号がそれぞれ重なり合うため、ステップ116においてデータAA’、BB’、CC’、DD’に対して時間シフト処理を行っても重なり合ったキズ信号からは各キズの方向を識別することは困難である。   In the setting as described above, the data AA ′, BB ′, CC ′, and DD ′ that are assumed to be obtained by the process of step 115 shown in FIG. In the data AA ′, the received signals of the scratches 2a2 and 2b1 overlap. In the data BB ′, the received signals of the scratches 2a1 and 2b1 and the scratches 2a2 and 2b2. Since the received signals of 2a2 and 2b2 overlap with each other in the data DD ′, the received signals of 2a1 and 2b2 overlap each other. Therefore, in step 116, time shift processing is performed on the data AA ′, BB ′, CC ′, and DD ′. However, it is difficult to identify the direction of each scratch from overlapping scratch signals.

このように従来技術では、ボイラ伝熱管の内部に超音波センサーを挿入して伝熱管に発生する減肉や割れ等の検査を行っているため、大規模な装置を必要とし膨大な費用と時間が必要である。   As described above, in the conventional technology, since an ultrasonic sensor is inserted into the boiler heat transfer tube to inspect the thinning and cracking generated in the heat transfer tube, a large-scale device is required and enormous cost and time are required. is required.

そこで本発明の課題は、ボイラ伝熱管のように同じ形状の管で構成された管群の検査を高精度かつ短時間で行い、伝熱管に発生する減肉や割れの検査が廉価かつ短期間できる検査技術を確立することである。   Therefore, an object of the present invention is to perform inspection of a tube group composed of tubes of the same shape like a boiler heat transfer tube in a high accuracy and in a short time, and to inspect for thinning and cracks occurring in the heat transfer tube at a low cost and in a short period of time. It is to establish inspection technology that can be used.

上記本発明の課題は次の解決手段により解決される。
請求項1記載の発明は、被検管の軸心方向に伝播する水平偏波の横波を屈折角90度で入射させ、その反射信号を受信する一つ以上の探触子を被検管の端部付近の同一横断面の外周面上に設け、該被検管の探触子設置部の反対側の端部付近の同一横断面の外周面上に前記1つ以上の探触子で被検管に入射した水平偏波の横波を反射させる機能を有する感度補償試験体を設け、前記探触子毎に送るための励振信号を発生させる励振信号発生部と、該励振信号発生部で発生した励振信号を前記探触子の数に応じて分配する励振信号分配部と、前記探触子毎に補正した励振信号を送るための励振信号補償部と、前記感度補償試験体からの受信信号を参照して前記励振信号補償部から前記探触子に送る励振信号の強度を制御する機能及び予め作成されているデータベースを参照して前記受信信号から有用な信号を抽出する機能を有し、前記探触子で受信した被検管からの反射信号を処理する受信信号処理部とを備えた管群検査装置である。
The problems of the present invention are solved by the following means.
According to the first aspect of the present invention, one or more probes for receiving a reflected signal by causing a horizontally polarized transverse wave propagating in the axial direction of the test tube to be incident at a refraction angle of 90 degrees are provided on the test tube. Provided on the outer peripheral surface of the same cross section near the end, and covered by the one or more probes on the outer peripheral surface of the same cross section near the end opposite to the probe installation portion of the test tube. A sensitivity compensation test body having a function of reflecting the horizontally polarized wave that has entered the test tube is provided, and an excitation signal generator that generates an excitation signal to be sent to each probe is generated by the excitation signal generator. An excitation signal distributor for distributing the excitation signal according to the number of the probes, an excitation signal compensator for transmitting the excitation signal corrected for each probe, and a received signal from the sensitivity compensation test body The function of controlling the intensity of the excitation signal sent from the excitation signal compensation unit to the probe with reference to FIG. A tube group inspection apparatus having a function of extracting a useful signal from the received signal with reference to a database, and a received signal processing unit for processing a reflected signal from the test tube received by the probe It is.

請求項2記載の発明は、一つ以上の探触子から被検管の軸心方向に伝播する水平偏波の横波は該被検管の同一横断面の外周面上の等間隔位置から同位相で入射する請求項1記載の管群検査装置である。   According to the second aspect of the present invention, the horizontally polarized transverse waves propagating from one or more probes in the axial direction of the test tube are the same from the equidistant positions on the outer peripheral surface of the same cross section of the test tube. 2. The tube group inspection apparatus according to claim 1, which is incident in phase.

請求項3記載の発明は、探触子には圧電素子が内蔵され、該圧電素子は被検管と同心円の曲率を有する請求項1又は2記載の管群検査装置である。   A third aspect of the present invention is the tube group inspection device according to the first or second aspect, wherein the probe includes a piezoelectric element, and the piezoelectric element has a curvature concentric with the test tube.

請求項4記載の発明は、データベースは被検管と材質および形状が等しい健全管あるいは模造管からの受信信号である請求項1ないし3のいずれかに記載の管群検査装置である。   According to a fourth aspect of the present invention, there is provided the tube group inspection apparatus according to any one of the first to third aspects, wherein the database is a received signal from a healthy tube or a dummy tube having the same material and shape as the test tube.

請求項5記載の発明は、受信信号処理部はデータベースの全体あるいは特定範囲を指定してデータベースの前記健全管あるいは模造管からの受信信号を被検管からの受信信号から減算でき、その結果を表示部に送る機能を有する請求項1ないし4のいずれかに記載の管群検査装置である。   In the invention according to claim 5, the reception signal processing unit can subtract the reception signal from the healthy tube or the imitation tube of the database from the reception signal from the test tube by designating the entire database or a specific range. 5. The tube group inspection apparatus according to claim 1, which has a function of sending to a display unit.

請求項6記載の発明は、受信信号処理部はデータベースの特定範囲を指定して周波数変調でき、さらには時間シフトを可能として、得られたデータベースの前記健全管あるいは模造管からの受信信号を被検管からの受信信号から減算でき、その結果を表示部に送る機能を有する請求項1ないし5のいずれかに記載の管群検査装置である。   According to the sixth aspect of the present invention, the received signal processing unit can perform frequency modulation by designating a specific range of the database, and further allows time shift, and receives the received signal from the healthy tube or the imitation tube of the obtained database. 6. The tube group inspection device according to claim 1, wherein the tube group inspection device has a function of subtracting from a reception signal from the inspection tube and sending the result to a display unit.

請求項7記載の発明は、感度補償試験体は分割可能に構成され、被検管の任意の位置に取り付け自在である請求項1ないし6のいずれかに記載の管群検査装置である。   A seventh aspect of the present invention is the tube group inspection apparatus according to any one of the first to sixth aspects, wherein the sensitivity compensation test body is configured to be separable and can be attached to any position of the test tube.

請求項1記載の発明によれば、被検管の同一横断面の外周線上の複数の位置から同位相で入射された水平偏波の横波が長距離を伝播し、その反射信号を被検管の端部付近の同一横断面の外周面上に設けた一つ以上の探触子で受信することで長尺管の検査が一度にできるようになるので大規模な装置を必要とせず検査に時間が掛かることはない。また、管群検査装置を構成する探触子から被検管中に屈折角90度で入射された水平偏波の横波は、被検管の一方向に伝播するので受信信号が探触子の左右どちらの方向からのものであるかを識別する必要がない。さらに前記探触子に送る励振信号の強度を補正するのに受信信号と同じ波動伝播形態の感度補償試験体からの受信信号を用いているので補正誤差が大きくなることがない。   According to the first aspect of the present invention, horizontally polarized horizontal waves incident at the same phase from a plurality of positions on the outer circumference of the same cross section of the test tube propagate in a long distance, and the reflected signal is transmitted to the test tube. Since it is possible to inspect a long tube at a time by receiving it with one or more probes provided on the outer peripheral surface of the same cross section near the end of the tube, it is possible to inspect without requiring a large-scale device It does not take time. Also, the horizontally polarized transverse wave that is incident from the probe constituting the tube group inspection apparatus into the test tube at a refraction angle of 90 degrees propagates in one direction of the test tube, so that the received signal is transmitted from the probe. There is no need to identify the left or right direction. Further, since the received signal from the sensitivity compensation test body having the same wave propagation form as the received signal is used to correct the intensity of the excitation signal sent to the probe, the correction error does not increase.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、被検管の同一横断面の外周線上の等間隔の位置から同位相で入射された水平偏波の横波の反射信号を被検管の端部付近の同一横断面の外周面上に設けた一つ以上の探触子で受信できるので長尺管の一括検査ができる。   According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, in addition to the effect of the invention according to the first aspect, the horizontally polarized horizontal wave incident at the same phase from the equally spaced positions on the outer circumference of the same cross section of the test tube. Since the reflected signal can be received by one or more probes provided on the outer peripheral surface of the same cross section near the end of the test tube, the long tube can be inspected collectively.

請求項3記載の発明によれば、請求項1又は2記載の発明の効果に加えて、探触子に内蔵される圧電素子で水平偏波の横波を送受信することができ、また圧電素子を被検管と同心円の曲率を有する構造にすることで前記水平偏波の横波の粒子の動きを被検管の外周面に沿った動きになり、平板状の圧電素子を用いる場合に比べて水平偏波の横波を被検管に効率よく伝えることができる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, it is possible to transmit / receive a horizontally polarized transverse wave by the piezoelectric element incorporated in the probe. By adopting a structure having a curvature that is concentric with the test tube, the movement of the horizontally polarized particles of the transverse wave moves along the outer peripheral surface of the test tube, which is horizontal compared to the case of using a plate-like piezoelectric element. The polarized transverse wave can be efficiently transmitted to the test tube.

請求項4記載の発明によれば、請求項1ないし3のいずれかに記載の発明の効果に加えて、データベースを被検管と材質および形状が等しい健全管あるいは模造管からの受信信号を用いることができるので、被検管に健全管がなくても管群検査ができる。   According to the invention described in claim 4, in addition to the effect of the invention described in any one of claims 1 to 3, the database uses a received signal from a healthy tube or a dummy tube having the same material and shape as the test tube. Therefore, the tube group inspection can be performed even if the test tube does not have a healthy tube.

請求項5記載の発明によれば、請求項1ないし4のいずれかに記載の発明の効果に加えて、データベースを参照して受信信号から有用信号を抽出しているのでノイズレベルが低い受信信号を得ることができる。   According to the fifth aspect of the present invention, in addition to the effect of the first aspect of the present invention, the useful signal is extracted from the received signal with reference to the database, so that the received signal has a low noise level. Can be obtained.

請求項6記載の発明によれば、請求項1ないし5のいずれかに記載の発明の効果に加えて、データベースの特定範囲を指定して周波数変調でき、さらには時間シフトを可能として、得られたデータベースの前記健全管あるいは模造管からの受信信号を被検管からの受信信号から減算できるので、被検管に例えば突き合わせ溶接部、隅肉溶接の位置関係にバラツキなどがあり、また不要モードの受信信号があっても、キズからの受信信号を抽出できる。   According to the invention described in claim 6, in addition to the effects of the invention described in any one of claims 1 to 5, the frequency can be modulated by designating a specific range of the database, and further, a time shift is possible. Since the received signal from the healthy tube or imitation tube in the database can be subtracted from the received signal from the test tube, there is a variation in the positional relationship between the butt weld and fillet weld, for example, and the unnecessary mode Even if there is a received signal, the received signal from the scratch can be extracted.

請求項7記載の発明は、によれば、請求項1ないし6のいずれかに記載の発明の効果に加えて、感度補償試験体は分割可能に構成され、被検管の任意の位置に取り付け自在であるので、管端がない被検管でも検査できる。   According to the seventh aspect of the invention, in addition to the effect of the first aspect of the invention, the sensitivity compensation test body is configured to be separable and attached to an arbitrary position of the test tube. Because it is flexible, it can be inspected even with a test tube without a tube end.

本発明の実施の形態に係わる管群検査装置について図面を参照しながら説明する。図1は本発明の実施の形態に係わる管群検査装置の構成を示す図である。図2は本発明の実施の形態に係わる管軸を横断する方向からの探触子の詳細構成を示す図であり、図2(a)は管軸方向断面図、図2(b)は管軸を横断する方向の横断面図である。また、図3は本発明の実施の形態に係わる管軸を横断する方向から感度補償試験体を見た図である。   A tube group inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a tube group inspection apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing a detailed configuration of the probe from a direction crossing the tube axis according to the embodiment of the present invention, FIG. 2 (a) is a sectional view in the tube axis direction, and FIG. 2 (b) is a tube. It is a cross-sectional view of the direction which crosses an axis | shaft. FIG. 3 is a view of the sensitivity-compensated test body viewed from the direction crossing the tube axis according to the embodiment of the present invention.

図1において、熱交換器管1(外径60.5mm、肉厚3.9mm)は全長20mにも及ぶため、管1と管1を突き合わせ溶接部2で継ぎ足し、曲がり部5を有している。そして、熱交換器管1の両端には管寄せ3a、3bが隅肉溶接4a、4bによって取り付けられている。また、熱交換器管1には外径3mm、深さ2mmのキズ6(6a、6b、6c、6d)が存在している。   In FIG. 1, since the heat exchanger tube 1 (outer diameter 60.5 mm, wall thickness 3.9 mm) reaches 20 m in total length, the tube 1 and the tube 1 are joined to each other by a butt weld portion 2 and a bent portion 5 is provided. Yes. The headers 3a and 3b are attached to both ends of the heat exchanger tube 1 by fillet welds 4a and 4b. Further, the heat exchanger tube 1 has scratches 6 (6a, 6b, 6c, 6d) having an outer diameter of 3 mm and a depth of 2 mm.

このような構造の熱交換器管1の一端の同一横断面の外周面上に4個の探触子11(11a、11b、11c、11d)が取り付けられ、熱交換器管1の他端の同一横断面の外周面上に感度補償試験体14がボルト15によって取り付けられている。励振信号補償部16には、4個の探触子11(11a、11b、11c、11d)が並列に接続されており、4個の探触子11(11a、11b、11c、11d)を同時に励振させることができる。また、励振信号補償部16には励振信号分配部17と励振信号発生部18がこの順で直列に接続されており、励振信号発生部18からの信号を励振信号分配部17を介して探触子11の数に応じて分配して励振信号補償部16に送っている。   Four probes 11 (11a, 11b, 11c, 11d) are mounted on the outer peripheral surface of the same cross section at one end of the heat exchanger tube 1 having such a structure, and the other end of the heat exchanger tube 1 is attached. A sensitivity compensation test body 14 is attached by bolts 15 on the outer peripheral surface of the same cross section. Four probes 11 (11a, 11b, 11c, 11d) are connected in parallel to the excitation signal compensator 16, and the four probes 11 (11a, 11b, 11c, 11d) are connected simultaneously. Can be excited. An excitation signal distributor 17 and an excitation signal generator 18 are connected in series in this order to the excitation signal compensator 16, and signals from the excitation signal generator 18 are probed via the excitation signal distributor 17. The signals are distributed according to the number of children 11 and sent to the excitation signal compensator 16.

さらに受信信号処理部19には、4個の探触子11(11a、11b、11c、11d)が並列に接続され、さらに受信信号処理部19には励振信号補償部16、データベース20及び表示部21とも繋がっている。   Further, four probes 11 (11a, 11b, 11c, 11d) are connected in parallel to the received signal processing unit 19, and further, the received signal processing unit 19 includes an excitation signal compensating unit 16, a database 20, and a display unit. 21 is also connected.

なお、探触子11の数は4個に限定するものではなく、多数の探触子11で熱交換器管1の全周を覆うことが望ましい。従って、その数は探触子11の幅や熱交換器管1の外径に応じて増減すればよい。   The number of probes 11 is not limited to four, and it is desirable to cover the entire circumference of the heat exchanger tube 1 with a large number of probes 11. Therefore, the number may be increased or decreased according to the width of the probe 11 or the outer diameter of the heat exchanger tube 1.

受信信号処理部19は、感度補償試験体14からの受信信号を参照して励振信号補償部16を制御する機能を有し、また、データベース20の全体あるいは特定範囲を参照して受信信号から有用な信号を抽出する機能を有する。さらに、受信信号処理部19は、データベース20の特定範囲を指定して周波数を変調し、時間シフトを加えて熱交換器管1からの受信信号を減算する機能を有する。   The reception signal processing unit 19 has a function of controlling the excitation signal compensation unit 16 with reference to the reception signal from the sensitivity compensation test specimen 14, and is useful from the reception signal with reference to the entire database 20 or a specific range. Has a function of extracting a simple signal. Further, the reception signal processing unit 19 has a function of modulating a frequency by designating a specific range of the database 20 and subtracting a reception signal from the heat exchanger tube 1 by adding a time shift.

励振信号補償部16は、受信信号処理部19からの制御によって探触子11(11a、11b、11c、11d)に送る励振信号の強度を補正する機能を有している。
表示部21は、受信信号処理部19における処理結果を表示ものであり、キズ6の有無、キズ6の位置、キズ6のサイズといった内容を図形表示する。
The excitation signal compensator 16 has a function of correcting the intensity of the excitation signal sent to the probe 11 (11a, 11b, 11c, 11d) under the control of the received signal processor 19.
The display unit 21 displays the processing result in the reception signal processing unit 19 and graphically displays contents such as the presence / absence of the scratch 6, the position of the scratch 6 and the size of the scratch 6.

図2は、熱交換器管1の一端に取り付けた探触子11(11a、11b、11c、11d)と各探触子11a、11b、11c、11dに圧電素子12a、12b、12c、12dとを取り付けるための楔13a、13b、13c、13dを示す熱交換器管1の軸心を通る断面図(図2(a))と熱交換器管1の横断面図(図2(b))を示す。   FIG. 2 shows a probe 11 (11a, 11b, 11c, 11d) attached to one end of the heat exchanger tube 1 and piezoelectric elements 12a, 12b, 12c, 12d on each probe 11a, 11b, 11c, 11d. Sectional view through the axial center of the heat exchanger tube 1 showing the wedges 13a, 13b, 13c, 13d for attaching (Fig. 2 (a)) and a transverse sectional view of the heat exchanger tube 1 (Fig. 2 (b)) Indicates.

図2に示すように、探触子11(11a、11b、11c、11d)は熱交換器管1の同一横断面の外周面上の円周方向に等間隔で配置されているので、同位相で水平偏波の横波を熱交換器管1に入射できる。また、探触子11の内部には熱交換器管1と同心円の曲率Rを有する圧電素子12(12a、12b、12c、12d)が楔13(13a、13b、13c、13d)に取り付けられた状態で納まっている。   As shown in FIG. 2, the probes 11 (11a, 11b, 11c, and 11d) are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the same cross section of the heat exchanger tube 1, so that the same phase Thus, a horizontally polarized wave can be incident on the heat exchanger tube 1. In addition, a piezoelectric element 12 (12a, 12b, 12c, 12d) having a curvature R concentric with the heat exchanger tube 1 is attached to the wedge 13 (13a, 13b, 13c, 13d) inside the probe 11. It is in a state.

圧電素子12(12a、12b、12c、12d)は電気音響変換を司り、水平偏波の横波を送受信する。また、楔13は圧電素子12で電気音響変換した水平偏波の横波に入射角αを与えて、水平偏波の横波の楔13からの出射角に屈折角度θを与えるもので、これによって熱交換器管1の右方向のみに水平偏波の横波を入射したり、右方向からの反射信号のみを圧電素子に伝えたりすることができる。また各圧電素子12a、12b、12c、12dと各楔13a、13b、13c、13dは熱交換器管1の外周面の曲率と同一の曲率を有する円弧状の部材で構成されている。   The piezoelectric elements 12 (12a, 12b, 12c, 12d) are responsible for electroacoustic conversion and transmit / receive horizontally polarized transverse waves. The wedge 13 gives an incident angle α to the horizontally polarized transverse wave electroacoustic-converted by the piezoelectric element 12 and gives a refraction angle θ to the outgoing angle from the horizontally polarized transverse wave wedge 13. A horizontally polarized transverse wave can be incident only in the right direction of the exchanger tube 1 or only a reflected signal from the right direction can be transmitted to the piezoelectric element. The piezoelectric elements 12a, 12b, 12c, and 12d and the wedges 13a, 13b, 13c, and 13d are formed of arcuate members having the same curvature as that of the outer peripheral surface of the heat exchanger tube 1.

図3に熱交換器管1とその外周に取り付けられた感度補償試験体14の横断面方向を見た図を示すが、感度補償試験体14は内径が熱交換器管1の外径と等しい円筒を二分割したものであり、二本のボルト15で二分割された感度補償試験体14a、14bを締め付けることによって熱交換器管1の任意の位置に取り付けることができる。   FIG. 3 shows a cross-sectional direction of the heat exchanger tube 1 and the sensitivity compensation test body 14 attached to the outer periphery thereof. The sensitivity compensation test body 14 has an inner diameter equal to the outer diameter of the heat exchanger tube 1. The cylinder is divided into two parts, and can be attached to any position of the heat exchanger tube 1 by tightening the sensitivity compensation test bodies 14a, 14b divided into two parts with two bolts 15.

次に、前記構成からなる管群の検査装置の動作について図面を参照しながら説明する。
図4は本実施例の管群の検査装置によって、ボイラの熱交換器管1の検査を行うフローを示しており、該フローは励振信号補正モードと検査モードから構成されている。
Next, the operation of the tube group inspection apparatus having the above configuration will be described with reference to the drawings.
FIG. 4 shows a flow of inspecting the heat exchanger tube 1 of the boiler by the tube group inspection device of this embodiment, and this flow is composed of an excitation signal correction mode and an inspection mode.

先ず、励振信号補正モードについて説明する。ステップS1において、励振信号発生部18は探触子11を励振する基本となる励振信号を発生する。励振信号の波形としてはサイン波、矩形波、三角波、ランプアップ波、ランプダウン波などのパルス波が発生可能であるが、キズ6の評価精度を重視する場合は狭帯域特性を持つサイン波の適用が望まれる。また周波数は、被検管(熱交換器管)1を検査する長さや検出するべきキズ6のサイズに応じて決めればよく、図1に示すような被検管(熱交換器管)1に対しては50KHz〜200KHzを適用する。   First, the excitation signal correction mode will be described. In step S <b> 1, the excitation signal generator 18 generates a basic excitation signal for exciting the probe 11. As a waveform of the excitation signal, a sine wave, a rectangular wave, a triangular wave, a ramp-up wave, a ramp-down wave, or the like can be generated. However, when importance is attached to the evaluation accuracy of the scratch 6, a sine wave having a narrow band characteristic is generated. Application is desired. The frequency may be determined according to the length of the test tube (heat exchanger tube) 1 to be inspected and the size of the scratch 6 to be detected. The test tube (heat exchanger tube) 1 as shown in FIG. For this, 50 KHz to 200 KHz is applied.

次に、ステップS2において、励振信号分配部17は励振信号発生部18から送られてきた励振信号を4つの系統に分配して励振信号補償部16に送る。
さらに、ステップS3においては励振信号補償部16は励振信号分配部17から送られてきた4系統の励振信号を各探触子11a、11b、11c、11dに送信する。
Next, in step S <b> 2, the excitation signal distribution unit 17 distributes the excitation signal sent from the excitation signal generation unit 18 into four systems and sends it to the excitation signal compensation unit 16.
Furthermore, in step S3, the excitation signal compensator 16 transmits the four systems of excitation signals sent from the excitation signal distributor 17 to the probes 11a, 11b, 11c, and 11d.

次のステップS4において、それぞれの圧電素子12a、12b、12c、12dは分極軸と電界軸が直交していることから厚みすべりの振動動作をするため、励振信号補償部16から送られてきた励振信号(電気信号)を水平偏波の横波に変換する。さらに図2(b)に示すように各圧電素子12a、12b、12c、12dは熱交換器管1と同心円の曲率Rを有しているため、水平偏波の横波の粒子の動きは熱交換器管1の外周面に沿った動きになるので、図6に示す平板状の圧電素子12’(12a’、12b’、12c’、12d’)が直線動作によって変換する水平偏波の横波に比べ効率良く熱交換器管1に伝えられる効果がある。   In the next step S4, the piezoelectric elements 12a, 12b, 12c, and 12d each vibrate with thickness because the polarization axis and the electric field axis are orthogonal to each other. Signals (electrical signals) are converted into horizontally polarized transverse waves. Further, as shown in FIG. 2 (b), since each piezoelectric element 12a, 12b, 12c, 12d has a curvature R that is concentric with the heat exchanger tube 1, the movement of the horizontally polarized particles is the heat exchange. Since the movement is along the outer peripheral surface of the vessel 1, the plate-like piezoelectric element 12 ′ (12 a ′, 12 b ′, 12 c ′, 12 d ′) shown in FIG. Compared with the heat exchanger tube 1, the heat exchanger tube 1 is effectively transmitted.

次に、ステップS5において、各楔13a、13b、13c、13dは各圧電素子12a、12b、12c、12dで電気音響変換した水平偏波の横波に入射角αを与えて、熱交換器管1に入射する水平偏波の横波をスネルの法則に従って屈折させる。例えば、プラスチック製の楔13に音速Csが1430m/sであるプラスチックを用い、電気音響変換された水平偏波の横波に26度の入射角αを与えると熱交換器管1に屈折角θ=90度で入射されるので、入射された水平偏波の横波は熱交換器管1の外表面上を図2(a)の右方向のみに伝播される。ここで、熱交換器管1を伝播する水平偏波の横波は屈折角が90度となるので、モードパラメータは0次になり周波数による速度分散がなくなる効果がある。
なお、スネルの法則はsinθ=Cgsinα/Csで示され、水平伝播の横波が熱交換器管1を伝播する群速度Cgは3262m/sとしている。
Next, in step S5, each wedge 13a, 13b, 13c, 13d gives an incident angle α to the horizontally polarized transverse wave electroacoustic-converted by each piezoelectric element 12a, 12b, 12c, 12d, and the heat exchanger tube 1 Refracts horizontally polarized transverse waves incident on the light according to Snell's law. For example, if a plastic wedge 13 is made of plastic having a sound velocity Cs of 1430 m / s and an incident angle α of 26 degrees is given to the horizontally polarized wave which has been electroacoustic converted, the refraction angle θ = Since it is incident at 90 degrees, the incident horizontally polarized wave is propagated only on the outer surface of the heat exchanger tube 1 in the right direction of FIG. Here, since the horizontally polarized transverse wave propagating through the heat exchanger tube 1 has a refraction angle of 90 degrees, the mode parameter is zero order, and there is an effect of eliminating velocity dispersion due to frequency.
Snell's law is expressed as sin θ = Cgsin α / Cs, and the group velocity Cg at which the horizontal wave of horizontal propagation propagates through the heat exchanger tube 1 is 3262 m / s.

次に、ステップS6において、熱交換器管1を伝播した水平偏波の横波は、キズ6(6a、6b、6c、6d)、突き合わせ溶接部2、曲がり部5、感度補償試験体14及び隅肉溶接4bで反射され探触子11で受信される。   Next, in step S6, the horizontally polarized waves that have propagated through the heat exchanger tube 1 are flaws 6 (6a, 6b, 6c, 6d), butt welds 2, bends 5, sensitivity compensation specimens 14 and corners. It is reflected by the meat weld 4 b and received by the probe 11.

さらに、ステップS7において、各探触子11a、11b、11c、11dで受信された反射信号は、それぞれ楔13a、13b、13c、13dを介して対応する各圧電素子12a、12b、12c、12dに伝わり、圧電素子12a、12b、12c、12dで音響電気変換される。   Further, in step S7, the reflected signals received by the probes 11a, 11b, 11c, and 11d are respectively transmitted to the corresponding piezoelectric elements 12a, 12b, 12c, and 12d via the wedges 13a, 13b, 13c, and 13d. Then, acoustoelectric conversion is performed by the piezoelectric elements 12a, 12b, 12c, and 12d.

次いで、ステップS8において、受信信号処理部19は探触子11a、11b、11c、11dから送られてくる受信信号のうち探触子11aから送られてくる受信信号を選択する。そして、選択した受信信号の中に含まれる感度補償試験体14からの受信信号14’にゲートを設定し、振幅を検知して、この振幅が予め決めていた高さになるような制御信号を励振信号補償部16へ送る。なおゲートとは、特定の時間領域に発生する信号を取り出す手段であり、ゲートを設定するとは、実質的には既知である探触子から感度補償試験体までの距離と水平偏波の横波が熱交換器管を伝播する速度をもとに感度補償試験体からの受信信号が得られる時間を計算し、その時間領域に発生する信号を取り出す手段を設定する事である。
図7に探触子11aから送られてきた受信信号の中に含まれる感度補償試験体14からの受信信号14’にゲートを設定した状況を示す。
Next, in step S8, the reception signal processing unit 19 selects a reception signal transmitted from the probe 11a among reception signals transmitted from the probes 11a, 11b, 11c, and 11d. Then, a gate is set to the received signal 14 ′ from the sensitivity compensation test body 14 included in the selected received signal, the amplitude is detected, and a control signal is set so that the amplitude becomes a predetermined height. The signal is sent to the excitation signal compensator 16. The gate is a means for extracting a signal generated in a specific time domain. Setting the gate means that the distance from the probe to the sensitivity-compensated specimen and the laterally polarized horizontal wave are substantially known. The time for obtaining the received signal from the sensitivity compensation test specimen is calculated based on the speed of propagation through the heat exchanger tube, and a means for extracting the signal generated in the time domain is set.
FIG. 7 shows a situation in which a gate is set for the received signal 14 ′ from the sensitivity compensation test body 14 included in the received signal sent from the probe 11a.

次に、ステップS9において、励振信号補償部16は受信信号処理部19からの制御信号を受け、探触子11aに送る励振信号の強度を補正する。
次いで、ステップS8に戻り順次、探触子11b〜11dを切り替え、励振信号を補正するステップを繰り返す。最終的に、感度補償試験体14からの受信信号の振幅が全ての探触子11a、11b、11c、11dで予め決めていた高さになっていること確認し、励振信号補正モードを終了する。
Next, in step S9, the excitation signal compensator 16 receives the control signal from the reception signal processor 19 and corrects the intensity of the excitation signal sent to the probe 11a.
Next, returning to step S8, the steps of sequentially switching the probes 11b to 11d and correcting the excitation signal are repeated. Finally, it is confirmed that the amplitude of the received signal from the sensitivity compensation test body 14 is a predetermined height for all the probes 11a, 11b, 11c, and 11d, and the excitation signal correction mode is terminated. .

以下に、検査モードについて説明する。ステップ1〜ステップS7は励振信号補正モードと同じ動作である。
ステップ7の次のステップS10において、受信信号処理部19は4個の探触子11a、11b、11c、11dから送られてきた受信信号を合成する。図8に合成した受信信号を示す。図8に示す合成した受信信号には、キズ6aからの受信信号6a’、キズ6bからの受信信号6b’、キズ6cからの受信信号6c’およびキズ6dからの受信信号6d’はそれぞれ確認できるものの、突き合わせ溶接部2からの受信信号2’、2’’、曲がり部5からの受信信号5’、隅肉溶接4bからの受信信号4b’によって識別が難しい状況にある。 ここで突き合わせ溶接部2からの受信信号2’’では図5に示すように、突き合わせ溶接部2で反射した信号が伝播してきた経路を逆進し、隅肉溶接部4aでさらに反射し、ふたたび突き合わせ溶接部2で反射した信号の受信信号である。さらに突き合わせ溶接部2で発生した不要モードの受信信号2’’’や隅肉溶接4bで発生した不要モードの受信信号4b’’も見られることから、キズ信号の識別を一層困難なものにしている。
The inspection mode will be described below. Steps 1 to S7 are the same operations as those in the excitation signal correction mode.
In step S10 following step 7, the reception signal processing unit 19 synthesizes the reception signals sent from the four probes 11a, 11b, 11c, and 11d. FIG. 8 shows the synthesized received signal. In the synthesized received signal shown in FIG. 8, the received signal 6a ′ from the scratch 6a, the received signal 6b ′ from the scratch 6b, the received signal 6c ′ from the scratch 6c, and the received signal 6d ′ from the scratch 6d can be confirmed. However, it is difficult to discriminate by the received signals 2 ′, 2 ″ from the butt welded portion 2, the received signal 5 ′ from the bent portion 5, and the received signal 4b ′ from the fillet weld 4b. Here, in the received signal 2 ″ from the butt weld 2, as shown in FIG. 5, the signal reflected by the butt weld 2 travels backward through the path, further reflected by the fillet weld 4 a, and again. It is a reception signal of the signal reflected by the butt welding part 2. FIG. Further, since the reception signal 2 ′ ″ of the unnecessary mode generated at the butt weld 2 and the reception signal 4b ″ of the unnecessary mode generated at the fillet weld 4b are also seen, it is further difficult to identify the scratch signal. Yes.

そこで、次のステップS11において、受信信号処理部19はステップS10で得た合成信号から、予めデータベース20に記憶していた健全管1aの受信信号の全体、あるいは特定した一部、さらには周波数変調した一部を減算し、キズ6a、6b、6c、6dからの受信信号6a’、6b’、6c’、6d’を抽出する。   Therefore, in the next step S11, the reception signal processing unit 19 uses the synthesized signal obtained in step S10 to obtain the whole or a specified part of the reception signal of the healthy tube 1a stored in the database 20 in advance, and further frequency modulation. The received signals 6a ′, 6b ′, 6c ′ and 6d ′ from the scratches 6a, 6b, 6c and 6d are extracted.

ここで、図9を用いてデータベース20に記憶してある健全管1aの受信信号を得る手段を説明する。
図9に示すようにボイラの管群は材質および形状が等しい数百本の熱交換器管1で構成されている。キズ6は炉幅方向の中央に位置する熱交換器管1aには発生せず、健全であることが経験上知られている。そこで、炉幅中央部に位置する熱交換器管(健全管)1aを対象に図4に示したステップS1〜ステップS10の動作を行い、ステップS10で得た受信信号を健全管1aの受信信号としてデータベース20に記憶しておくものである。 図10にデータベース20に記憶している健全管の受信信号を示す。
なお、健全管1aが無い場合でも熱交換器管1と材質および形状等が等しい模造管を用いステップS1〜ステップS10の動作で得た受信信号を用いても、同じ効果が得られる。
Here, means for obtaining the received signal of the healthy pipe 1a stored in the database 20 will be described with reference to FIG.
As shown in FIG. 9, the tube group of the boiler is composed of several hundred heat exchanger tubes 1 having the same material and shape. It is known from experience that scratches 6 are not generated in the heat exchanger tube 1a located in the center in the furnace width direction and are healthy. Therefore, the operation of Steps S1 to S10 shown in FIG. 4 is performed on the heat exchanger tube (sound tube) 1a located in the center of the furnace width, and the reception signal obtained in Step S10 is the reception signal of the sound tube 1a. Is stored in the database 20. FIG. 10 shows the received signal of the healthy pipe stored in the database 20.
Even when there is no sound pipe 1a, the same effect can be obtained by using the imitation pipe having the same material and shape as the heat exchanger pipe 1 and using the received signal obtained by the operations in steps S1 to S10.

次に、ステップS12において、表示部21はキズ6a、6b、6c、6dからの受信信号6a’、6b’、6c’、6d’をそれぞれ抽出した結果を表す。図11にステップS10で得た合成信号から、予めデータベース20に記憶していた健全管1aの全体の受信信号を減算した結果を示す。図11に示す表示において、縦軸は受信信号の出力を表し、キズ6のサイズ情報に関係するものである。横軸は受信信号の受信時間を表し、キズ6の位置情報に関係するものである。図11に示された結果から分かるように障害となっていた突き合わせ溶接部2からの受信信号2’、2’’、 曲がり部5からの受信信号5’、隅肉溶接4bからの受信信号4b’、さらには、突き合わせ溶接部2で発生した不要モードの受信信号2’’’、隅肉溶接4bで発生した不要モードの受信信号4b’’などは相殺され、キズ6a、6b、6c、6dからの受信信号6a’、6b’、6c’、6d’を抽出している。またキズ6a、6b、6c、6dからの受信信号の受信時間はキズ位置と符号している。さらに受信信号6a’、6b’、6c’、6d’の出力はほぼ等しく、キズ6a、6b、6c、6dのサイズが等しいことと符合している。   Next, in step S12, the display unit 21 represents the result of extracting the received signals 6a ', 6b', 6c ', and 6d' from the scratches 6a, 6b, 6c, and 6d, respectively. FIG. 11 shows the result of subtracting the entire received signal of the healthy pipe 1a stored in the database 20 in advance from the combined signal obtained in step S10. In the display shown in FIG. 11, the vertical axis represents the output of the received signal and is related to the size information of the scratch 6. The horizontal axis represents the reception time of the received signal, and is related to the position information of the scratch 6. As can be seen from the results shown in FIG. 11, the received signals 2 ′ and 2 ″ from the butt weld 2 which have become obstacles, the received signal 5 ′ from the bent portion 5, and the received signal 4b from the fillet weld 4b Further, the unnecessary mode received signal 2 ′ ″ generated at the butt weld 2 and the unnecessary mode received signal 4b ″ generated at the fillet weld 4b are canceled out, and scratches 6a, 6b, 6c, 6d The received signals 6a ′, 6b ′, 6c ′ and 6d ′ are extracted. The reception time of the received signals from the scratches 6a, 6b, 6c and 6d is denoted as a scratch position. Further, the outputs of the received signals 6a ', 6b', 6c ', 6d' are substantially equal, and the sizes of the scratches 6a, 6b, 6c, 6d are equal.

次に、ステップS12において、ステップS10で得た合成信号から、健全管1aの受信信号の一部を減算する動作を説明する。
熱交換器管1を形成する突き合わせ溶接部2、曲がり部5、感度補償試験体14及び隅肉溶接4bの位置関係にバラツキが生ずることがある。この場合、予めデータベース20に記憶している健全管1aの受信信号の中から突き合わせ溶接部2、曲がり部5、感度補償試験体14及び隅肉溶接4bからの受信信号領域を、それぞれについて特定し、それぞれについてゲート設定をして、これに位置ズレに相当する時間量をシフトさせて、ステップS10で得られた合成信号から減算することで、熱交換器管1を形成する突き合わせ溶接部2、曲がり部5、感度補償試験体14及び隅肉溶接4bの位置関係にバラツキがある場合でもキズ6a、6b、6c、6dからの受信信号6a’、6b’、6c’、6d’を抽出する。
Next, an operation of subtracting a part of the reception signal of the healthy tube 1a from the combined signal obtained in step S10 in step S12 will be described.
There may be variations in the positional relationship between the butt weld 2, the bend 5, the sensitivity compensation test piece 14, and the fillet weld 4 b that form the heat exchanger tube 1. In this case, the reception signal regions from the butt weld 2, the bend 5, the sensitivity compensation test specimen 14, and the fillet weld 4 b are specified for each of the reception signals of the healthy pipe 1 a stored in the database 20 in advance. The butt weld 2 that forms the heat exchanger tube 1 by setting the gate for each, shifting the amount of time corresponding to the positional shift to this, and subtracting it from the combined signal obtained in step S10, Even when there is a variation in the positional relationship between the bent portion 5, the sensitivity compensation test specimen 14, and the fillet weld 4b, the received signals 6a ′, 6b ′, 6c ′, and 6d ′ from the scratches 6a, 6b, 6c, and 6d are extracted.

次に、ステップS12において、予めデータベース20に記憶していた健全管1aの受信信号の特定部位を周波数変調し、これをステップS10で得た合成信号から減算する動作を説明する。   Next, in step S12, the operation of frequency-modulating a specific part of the received signal of the healthy tube 1a previously stored in the database 20 and subtracting this from the synthesized signal obtained in step S10 will be described.

突き合わせ溶接部2および隅肉溶接4bからは不要モードの信号も発生する。この不要モードの信号は音速が周波数によって変化する性質があるため熱交換器管1を形成する突き合わせ溶接部2および隅肉溶接4bの位置関係にバラツキがある場合は、ステップS10で得た合成信号から、予めデータベース20に記憶していた健全管1aの受信信号の全体、あるいは特定した一部を減算してもキズ6a、6b、6c、6dからの受信信号6a’、6b’、6c’、6d’を明瞭に抽出できない場合がある。この場合、ステップS10で得られた合成信号の中から突き合わせ溶接部2および隅肉溶接4bからの受信信号領域をそれぞれについて特定し、それぞれについてゲート設定をし、それぞれについて周波数を計測する。次に、データベース20に記憶している健全管1aの受信信号の中から突き合わせ溶接部2および隅肉溶接4bからの受信信号領域を、それぞれについて特定し、それぞれについてゲートを設定して、それぞれの周波数がステップS10で得られた合成信号のそれと同一になるように周波数変調を施す。そして、これに位置ズレに相当する時間量をシフトさせて、ステップS10で得られた合成信号から減算することで熱交換器管1を形成する突き合わせ溶接部2および隅肉溶接4bの位置関係にバラツキがあり、かつ不要モードの信号が受信される場合でもキズ6a、6b、6c、6dからの受信信号6a’、6b’、6c’、6d’を抽出する。しかし、信号処理が煩雑になる反面もある。   An unnecessary mode signal is also generated from the butt weld 2 and fillet weld 4b. Since the signal of the unnecessary mode has a property that the speed of sound changes depending on the frequency, if the positional relationship between the butt weld 2 and the fillet weld 4b forming the heat exchanger tube 1 varies, the composite signal obtained in step S10. From the received signals 6a ', 6b', 6c ', flaws 6a, 6b, 6c, 6d even if the whole received signal of the healthy tube 1a stored in the database 20 in advance or a specified part is subtracted from 6d ′ may not be extracted clearly. In this case, the reception signal areas from the butt weld 2 and fillet weld 4b are specified for each of the composite signals obtained in step S10, the gate is set for each, and the frequency is measured for each. Next, the reception signal areas from the butt weld 2 and fillet weld 4b are identified for each of the reception signals of the healthy pipe 1a stored in the database 20, and a gate is set for each, Frequency modulation is performed so that the frequency is the same as that of the synthesized signal obtained in step S10. Then, by shifting the amount of time corresponding to the positional deviation to this and subtracting it from the combined signal obtained in step S10, the positional relationship between the butt weld 2 and fillet weld 4b forming the heat exchanger tube 1 is obtained. Even when there is variation and signals in the unnecessary mode are received, the received signals 6a ′, 6b ′, 6c ′, and 6d ′ from the scratches 6a, 6b, 6c, and 6d are extracted. However, the signal processing is complicated.

前記の例では、ボイラの熱交換器管1のキズ検査について説明したが、本発明の管群検査装置は被検体の材質や形状によって適用が制限されるものではなく、長さ数キロにもおよぶパイプラインなどを数十メートル単位で区切り順次検査する場合でも、広く適用できるものである。さらに、キズ信号を抽出する機能も発揮できるものである。   In the above example, the flaw inspection of the heat exchanger tube 1 of the boiler has been described, but the application of the tube group inspection apparatus of the present invention is not limited by the material and shape of the subject, and the length is several kilometers. Even in the case of sequentially inspecting pipelines that span several tens of meters, it can be widely applied. Furthermore, the function of extracting a scratch signal can also be exhibited.

原子力発電のサポート的運用に移行しつつある火力発電設備は停止時間が長期化し、ボイラの伝熱管内に発生する孔食の問題が顕在化しつつあるので、本発明は将来に亘り継続的に活用が見込める。また、検査費用の削減が計画されつつある将来に向け、特に有利な技術となる可能性がある。   Thermal power generation facilities that are shifting to support operation of nuclear power generation have prolonged downtime, and the problem of pitting corrosion occurring in the heat transfer tubes of boilers is becoming apparent, so the present invention will be used continuously in the future. Can be expected. It may also be a particularly advantageous technology for the future when inspection costs are being reduced.

本発明の実施例に係わる管群検査装置の構成を示す図である。It is a figure which shows the structure of the pipe group test | inspection apparatus concerning the Example of this invention. 図1の管群検査装置の探触子の詳細構成を示す図であり、図2(a)は熱交換器管の軸心を通る断面図、図2(b)は熱交換器管の横断面図である。It is a figure which shows the detailed structure of the probe of the tube group inspection apparatus of FIG. 1, (a) is sectional drawing which passes along the axial center of a heat exchanger pipe | tube, FIG.2 (b) is crossing of a heat exchanger pipe | tube. FIG. 熱交換器管の外周に取り付けた図1の管群検査装置の感度補償試験体の横断面方向を見た図である。It is the figure which looked at the cross-sectional direction of the sensitivity compensation test body of the pipe group inspection apparatus of FIG. 1 attached to the outer periphery of a heat exchanger pipe | tube. 図1の管群検査装置でボイラの熱交換器管の検査を行うフローを示す図である。It is a figure which shows the flow which inspects the heat exchanger pipe | tube of a boiler with the pipe group test | inspection apparatus of FIG. 図1の管群検査装置でボイラの熱交換器管の検査時における突き合わせ溶接部で2回反射した信号の受信信号を説明する図である。It is a figure explaining the received signal of the signal reflected twice by the butt welding part at the time of the test | inspection of the heat exchanger pipe | tube of a boiler with the pipe group test | inspection apparatus of FIG. 図1の管群検査装置の他の実施例の探触子を構成する圧電素子が平板状であった場合の動作を説明する図である。It is a figure explaining the operation | movement when the piezoelectric element which comprises the probe of the other Example of the pipe group test | inspection apparatus of FIG. 1 is flat form. 図1の管群検査装置の一つの探触子から送られてきた受信信号に含まれる感度補償試験体からの受信信号にゲートを設定した状況を示す図である。It is a figure which shows the condition which set the gate to the received signal from the sensitivity compensation test body contained in the received signal sent from one probe of the tube group test | inspection apparatus of FIG. 図1の管群検査装置の受信信号処理部で得られた合成信号を示す図である。It is a figure which shows the synthetic | combination signal obtained in the received signal processing part of the tube group test | inspection apparatus of FIG. 図1の管群検査装置のデータベースに記憶してある健全管の受信信号を得る手段を説明する図である。It is a figure explaining the means to obtain the received signal of the healthy pipe memorize | stored in the database of the pipe group test | inspection apparatus of FIG. 図1の管群検査装置のデータベースに記憶している健全管の受信信号を示す図である。It is a figure which shows the received signal of the healthy pipe | tube memorize | stored in the database of the pipe group test | inspection apparatus of FIG. 図1の管群検査装置の受信信号処理において合成した受信信号から健全管の受信信号を減算して得た検査結果を示す図である。It is a figure which shows the test result obtained by subtracting the received signal of a healthy pipe | tube from the received signal synthesize | combined in the received signal process of the tube group test | inspection apparatus of FIG. 従来の超音波探傷装置に関する説明図である。It is explanatory drawing regarding the conventional ultrasonic flaw detector. 従来の超音波探傷装置に関するデータの概念を推察した図である。It is the figure which guessed the concept of the data regarding the conventional ultrasonic flaw detector.

符号の説明Explanation of symbols

1 熱交換器管 1a 健全管
2 突き合わせ溶接 2’,2’’ 突き合わせ溶接からの受信信号
2’’’ 突き合わせ溶接部で発生した不要モードの受信信号
2a1,2a2,2b1,2b2 キズ
3a,3b 管寄せ 4A,4B 送受信子群
4a,4b 隅肉溶接 4b’ 隅肉溶接からの受信信号
4b’’ 隅肉溶接で発生した不要モードの受信信号
5 曲がり部 5’ 曲がり部からの受信信号
6a,6b,6c6d キズ
6a’,6b’,6c’6d’ キズからの受信信号
11a,11b,11c,11d 探触子
12a,12b,12c,12d 圧電素子
12a’,12b’,12c’,12d’ 平面圧電素子
13a,13b,13c,13d 楔
14,14a,14b 感度補償試験体
14’ 感度補償試験体からの受信信号
15 ボルト 16 励振信号補償部
17 励振信号分配部 18 励振信号発生部
19 受信信号処理部 20 データベース
21 表示部
1 Heat Exchanger Tube 1a Healthy Pipe 2 Butt Weld 2 ', 2''Received Signal from Butt Weld 2''' Received Signal 2a1, 2a2, 2b1, 2b2 Scratch 3a, 3b Pipe Generated at Butt Weld 4A, 4B Transceiver group 4a, 4b Fillet weld 4b 'Received signal from fillet weld 4b''Received signal of unnecessary mode generated by fillet weld 5 Curved part 5' Received signal 6a, 6b from curved part , 6c6d scratch
6a ', 6b', 6c'6d 'Received signal from scratch
11a, 11b, 11c, 11d probe
12a, 12b, 12c, 12d Piezoelectric element
12a ′, 12b ′, 12c ′, 12d ′ planar piezoelectric elements
13a, 13b, 13c, 13d wedge
14, 14a, 14b Sensitivity compensation specimen 14 'Received signal from sensitivity compensation specimen
15 Volt 16 Excitation signal compensator
17 Excitation signal distribution unit 18 Excitation signal generation unit
19 Received signal processor 20 Database
21 Display section

Claims (7)

被検管の軸心方向に伝播する水平偏波の横波を屈折角90度で入射させ、その反射信号を受信する一つ以上の探触子を被検管の端部付近の同一横断面の外周面上に設け、該被検管の探触子設置部の反対側の端部付近の同一横断面の外周面上に前記1つ以上の探触子で被検管に入射した水平偏波の横波を反射させる機能を有する感度補償試験体を設け、
前記探触子毎に送るための励振信号を発生させる励振信号発生部と、該励振信号発生部で発生した励振信号を前記探触子の数に応じて分配する励振信号分配部と、前記探触子毎に補正した励振信号を送るための励振信号補償部と、前記感度補償試験体からの受信信号を参照して前記励振信号補償部から前記探触子に送る励振信号の強度を制御する機能及び予め作成されているデータベースを参照して前記受信信号から有用な信号を抽出する機能を有し、前記探触子で受信した被検管からの反射信号を処理する受信信号処理部とを備えたことを特徴とする管群検査装置。
One or more probes for receiving a reflected wave of a horizontally polarized transverse wave propagating in the axial direction of the test tube are incident on the same cross section near the end of the test tube. Horizontally polarized light that is provided on the outer peripheral surface and is incident on the test tube by the one or more probes on the outer peripheral surface of the same cross section near the end opposite to the probe installation portion of the test tube A sensitivity compensation test body having a function of reflecting the transverse wave of
An excitation signal generator for generating an excitation signal to be sent for each probe, an excitation signal distributor for distributing the excitation signal generated by the excitation signal generator according to the number of the probes, and the probe An excitation signal compensator for sending a corrected excitation signal for each of the transducers, and controlling the intensity of the excitation signal sent from the excitation signal compensator to the probe with reference to the received signal from the sensitivity compensation test specimen A reception signal processing unit that has a function and a function of extracting a useful signal from the received signal with reference to a database created in advance, and that processes a reflected signal from the test tube received by the probe; A tube group inspection apparatus characterized by comprising:
一つ以上の探触子から被検管の軸心方向に伝播する水平偏波の横波は該被検管の同一横断面の外周面上の等間隔位置から同位相で入射することを特徴とする請求項1記載の管群検査装置。   Horizontally polarized transverse waves propagating from one or more probes in the axial direction of the test tube are incident at the same phase from equidistant positions on the outer peripheral surface of the same cross section of the test tube. The tube group inspection apparatus according to claim 1. 探触子には圧電素子が内蔵され、該圧電素子は被検管と同心円の曲率を有することを特徴とする請求項1又は2記載の管群検査装置。   3. The tube group inspection apparatus according to claim 1, wherein the probe includes a piezoelectric element, and the piezoelectric element has a concentric curvature with the test tube. データベースは被検管と材質および形状が等しい健全管あるいは模造管からの受信信号であることを特徴とする請求項1ないし3のいずれかに記載の管群検査装置。   4. The tube group inspection apparatus according to claim 1, wherein the database is a received signal from a healthy tube or a dummy tube having the same material and shape as the test tube. 受信信号処理部はデータベースの全体あるいは特定範囲を指定してデータベースの前記健全管あるいは模造管からの受信信号を被検管からの受信信号から減算でき、その結果を表示部に送る機能を有することを特徴とする請求項1ないし4のいずれかに記載の管群検査装置。   The received signal processing unit has the function of specifying the entire database or a specific range and subtracting the received signal from the healthy tube or the imitation tube of the database from the received signal from the test tube and sending the result to the display unit The tube group inspection apparatus according to claim 1, wherein 受信信号処理部はデータベースの特定範囲を指定して周波数変調でき、さらには時間シフトを可能として、得られたデータベースの前記健全管あるいは模造管からの受信信号を被検管からの受信信号から減算でき、その結果を表示部に送る機能を有することを特徴とする請求項1ないし5のいずれかに記載の管群検査装置。   The received signal processing unit can specify the specific range of the database and perform frequency modulation, and also allows time shift, and subtracts the received signal from the healthy tube or imitation tube of the obtained database from the received signal from the test tube 6. The tube group inspection apparatus according to claim 1, further comprising a function of sending the result to a display unit. 感度補償試験体は分割可能に構成され、被検管の任意の位置に取り付け自在であることを特徴とする請求項1ないし6のいずれかに記載の管群検査装置。   The tube group inspection apparatus according to any one of claims 1 to 6, wherein the sensitivity compensation test body is configured to be separable and can be attached to an arbitrary position of the test tube.
JP2005186765A 2005-06-27 2005-06-27 Tube group inspection device Expired - Fee Related JP4674753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186765A JP4674753B2 (en) 2005-06-27 2005-06-27 Tube group inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186765A JP4674753B2 (en) 2005-06-27 2005-06-27 Tube group inspection device

Publications (2)

Publication Number Publication Date
JP2007003469A true JP2007003469A (en) 2007-01-11
JP4674753B2 JP4674753B2 (en) 2011-04-20

Family

ID=37689237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186765A Expired - Fee Related JP4674753B2 (en) 2005-06-27 2005-06-27 Tube group inspection device

Country Status (1)

Country Link
JP (1) JP4674753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091427B2 (en) 2007-07-31 2012-01-10 Hitachi-Ge Nuclear Energy, Ltd. Nondestructive inspection apparatus and nondestructive inspection method using guided wave

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385442A (en) * 1989-08-30 1991-04-10 Ngk Insulators Ltd Ultrasonic method for flaw-detecting inspection
JP2004020333A (en) * 2002-06-14 2004-01-22 Osaka Gas Co Ltd Ultrasonic flaw detecting apparatus
JP2004301613A (en) * 2003-03-31 2004-10-28 Idemitsu Eng Co Ltd Method for inspecting tube by using sh wave
JP2005010055A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Non-destructive inspection apparatus and non-destructive inspection method using guide wave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385442A (en) * 1989-08-30 1991-04-10 Ngk Insulators Ltd Ultrasonic method for flaw-detecting inspection
JP2004020333A (en) * 2002-06-14 2004-01-22 Osaka Gas Co Ltd Ultrasonic flaw detecting apparatus
JP2004301613A (en) * 2003-03-31 2004-10-28 Idemitsu Eng Co Ltd Method for inspecting tube by using sh wave
JP2005010055A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Non-destructive inspection apparatus and non-destructive inspection method using guide wave

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6008046767, 永島良昭 外1名, "ガイド波を用いた高感度な配管検査技術の検討", 平成15年秋季大会講演概要集, 20031106, 第15−16ページ, JP, 社団法人 日本非破壊検査協会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091427B2 (en) 2007-07-31 2012-01-10 Hitachi-Ge Nuclear Energy, Ltd. Nondestructive inspection apparatus and nondestructive inspection method using guided wave
US8820163B2 (en) 2007-07-31 2014-09-02 Hitachi-Ge Nuclear Energy, Ltd. Nondestructive inspection apparatus and nondestructive inspection method using guided wave

Also Published As

Publication number Publication date
JP4674753B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US10151610B2 (en) Flow rate measurement device and flow rate measurement method
JP4589280B2 (en) Pipe inspection method using guide wave and pipe inspection apparatus
US7950284B2 (en) Inspection device and method for inspection
CN102016564A (en) System for ultrasonically detecting defects in a pipe wall
CN108548869B (en) Nuclear power station polyethylene pipe phased array ultrasonic detection method
JP2001041404A (en) Method for inspecting steam generator piping
JPH11218436A (en) Ultrasonic liquid level measuring device
JP4625747B2 (en) Piping inspection device and piping inspection method
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5530405B2 (en) Nondestructive inspection method and nondestructive inspection device
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
JP4674753B2 (en) Tube group inspection device
JP5893538B2 (en) Nondestructive inspection method and apparatus using guide wave
JP2005274583A (en) Ultrasonic flaw detection method and its system
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2008134141A (en) Apparatus and method for inspecting thickness loss of tube bundle
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP2009168707A (en) Inspection device for pipe having curved part
JP2020091145A (en) Thickness measurement method of pipeline reduced thickness part and thickness measurement device used for the same
JP6458167B2 (en) Pipe thickness measuring apparatus and method using ultrasonic waves
JPS62194454A (en) Method for inspecting flaw of steel pipe welded part
JP7235643B2 (en) Measuring method and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees