JP2006336048A - Cemented carbide - Google Patents

Cemented carbide Download PDF

Info

Publication number
JP2006336048A
JP2006336048A JP2005159845A JP2005159845A JP2006336048A JP 2006336048 A JP2006336048 A JP 2006336048A JP 2005159845 A JP2005159845 A JP 2005159845A JP 2005159845 A JP2005159845 A JP 2005159845A JP 2006336048 A JP2006336048 A JP 2006336048A
Authority
JP
Japan
Prior art keywords
cemented carbide
high temperature
wear resistance
holding
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159845A
Other languages
Japanese (ja)
Other versions
JP4680684B2 (en
Inventor
Takahiro Kudo
高裕 工藤
Takashi Onishi
隆 大西
Osamu Tatsuta
修 立田
Atsushi Shigeno
敦士 滋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005159845A priority Critical patent/JP4680684B2/en
Publication of JP2006336048A publication Critical patent/JP2006336048A/en
Application granted granted Critical
Publication of JP4680684B2 publication Critical patent/JP4680684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide cemented carbide by which, even in the case that, after being joined to a base material (basis material) by welding or brazing, the resultant joined object (joined material) is subjected to holding at a high temperature, cracking and deterioration in wear resistance after the high temperature holding can be prevented. <P>SOLUTION: (1) The cemented carbide uses Co and/or Ni as a binding material, and in which WC is dispersed in the binding material, and further, the particle size of the WC is 1.5 to 4μm and the total content of the Co and/or Ni is 25 to 45 mass% and 6 to 25 mass% W is contained in the binding material. (2) The cemented carbide is produced by substituting not more than 15 vol.% of the WC with fine powder of 0.3 to 3μm particle size composed of one or more kinds among the carbides, nitrides and carbonitrides of at least one element selected from Ti, Ta, Nb, V and Cr. (3) The cemented carbide is used by being joined to the surface of the basis material of a sliding member. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超硬合金に関する技術分野に属するものであり、特には、摺動部材の耐摩耗特性を向上させるため、その表面に接合(溶接、ロウ付け)されて用いられる超硬合金に関する技術分野に属するものである。   The present invention belongs to a technical field related to cemented carbide, and in particular, a technology related to cemented carbide used by being joined (welded, brazed) to the surface thereof in order to improve the wear resistance of the sliding member. Belongs to the field.

特開平7-126792号公報(特許文献1)には、Coおよび/またはNiよりなる結合材中にWCが分散された超硬合金であって、前記WCの粒径が0.3〜3μm、前記Coおよび/またはNiの総含有量が25〜45質量%であることを特徴とする溶接用超硬合金が記載されている。また、この超硬合金におけるWCの15体積%以下を、Ti,Ta,Nb,V,Crから選択される少なくとも1種の元素の炭化物、窒化物および炭・窒化物の1種以上からなる粒径0.3〜3μmの微粉末で置換したものが記載されている。   Japanese Patent Application Laid-Open No. 7-126792 (Patent Document 1) discloses a cemented carbide in which WC is dispersed in a binder made of Co and / or Ni, and the particle size of the WC is 0.3 to 3 μm, A cemented carbide for welding is described, wherein the total content of Co and / or Ni is 25 to 45% by mass. Further, 15% by volume or less of WC in the cemented carbide is a grain composed of at least one element selected from Ti, Ta, Nb, V, and Cr, nitride, and carbon / nitride. The one substituted with fine powder having a diameter of 0.3 to 3 μm is described.

これらの超硬合金は、溶接部や溶接熱影響部に割れ等の欠陥を生じることがなく、優れた溶接性を有し、且つ、良好な耐摩耗性を有するものである。従って、これらの超硬合金は、各種摩耗部品の溶接成形や補修などに幅広く活用でき、例えば、切削チップ、引き抜きダイス、土木建築用機械の摩耗部分(井戸掘りビット削岩機など)やメカニカルシール材の摺動摩耗部、金型などの摩耗部品の溶接成形や補修などに幅広く活用できるものである。
特開平7-126792号公報
These cemented carbides do not cause defects such as cracks in the welded part and the weld heat-affected zone, have excellent weldability and good wear resistance. Therefore, these cemented carbides can be widely used for welding forming and repairing various wear parts, such as cutting tips, drawing dies, wear parts of civil engineering construction machines (well drilling bit rock drills, etc.) and mechanical seals. It can be widely used for welding and repairing wear parts such as sliding wear parts and dies.
Japanese Patent Application Laid-Open No.7-126792

特開平7-126792号公報に記載された超硬合金は、前述のように、優れた溶接性を有し、且つ、良好な耐摩耗性を有する。しかしながら、溶接やロウ付けにより接合された後、高温に保持された場合、この高温保持後に接合部の接合界面もしくは超硬合金にクラックが発生したり、耐摩耗性が劣化するということがある。即ち、上記に例示したような活用の場においては、母材(基材)に対して超硬合金が溶接やロウ付けにより接合された後、この接合されたもの(以下、接合材ともいう)は時に高温環境下で使用されて高温に保持されることがある。このように接合材が高温に保持された場合には、接合材の超硬合金が上記公報に記載された超硬合金である場合であっても、この高温に保持された後に、接合材の超硬合金もしくは接合(溶接、ロウ付け)部の接合界面にクラックが発生したり、耐摩耗性が劣化するというようなことがある。   The cemented carbide described in Japanese Patent Application Laid-Open No. 7-126792 has excellent weldability and good wear resistance as described above. However, when it is held at a high temperature after being joined by welding or brazing, cracks may occur in the joint interface or cemented carbide of the joint after this high temperature holding, or the wear resistance may deteriorate. That is, in the utilization place as exemplified above, the cemented carbide is joined to the base material (base material) by welding or brazing and then joined (hereinafter also referred to as a joining material). Is sometimes used in a high temperature environment and kept at a high temperature. Thus, when the bonding material is held at a high temperature, even if the cemented carbide of the bonding material is the cemented carbide described in the above publication, Cracks may occur at the cemented carbide or joint (welding, brazing) joint interface, and wear resistance may deteriorate.

本発明はこのような事情に着目してなされたものであって、その目的は、母材(基材)に対して溶接やロウ付けにより接合された後、この接合されたもの(接合材)が高温に保持された場合でも、この高温保持後のクラックの発生および耐摩耗性の劣化を抑制し得る超硬合金を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to join the base material (base material) by welding or brazing and then join the base material (joining material). Therefore, the present invention intends to provide a cemented carbide capable of suppressing the generation of cracks and the deterioration of wear resistance after maintaining at a high temperature.

本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   In order to achieve the above object, the present inventors have intensively studied, and as a result, completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成されて上記目的を達成することができた本発明は、超硬合金に係わり、特許請求の範囲の請求項1〜3記載の超硬合金(第1〜3発明に係る超硬合金)であり、それは次のような構成としたものである。   The present invention, which has been completed in this way and has achieved the above object, relates to a cemented carbide, and the cemented carbide according to claims 1 to 3 of the claims (superstructures according to the first to third inventions). Hard alloy), which has the following configuration.

即ち、請求項1記載の超硬合金は、Coおよび/またはNiを結合材とし、この結合材中にWCが分散された超硬合金であって、前記WCの粒径が1.5〜4μm、前記Coおよび/またはNiの総含有量が25〜45質量%であると共に、前記結合材中にWを6〜25質量%含有することを特徴とする超硬合金である〔第1発明〕。   That is, the cemented carbide according to claim 1 is a cemented carbide in which Co and / or Ni is used as a binder and WC is dispersed in the binder, and the grain size of the WC is 1.5 to 4 μm. The cemented carbide is characterized in that the total content of Co and / or Ni is 25 to 45% by mass, and W is contained in the binder by 6 to 25% by mass [first invention]. .

請求項2記載の超硬合金は、前記WCの15体積%以下を、Ti,Ta,Nb,V,Crから選択される少なくとも1種の元素の炭化物、窒化物および炭・窒化物の1種以上からなる粒径0.3〜3μmの微粉末で置換した請求項1記載の超硬合金である〔第2発明〕。   The cemented carbide according to claim 2, wherein at least 15% by volume of the WC is one of carbide, nitride, and carbon / nitride of at least one element selected from Ti, Ta, Nb, V, and Cr. The cemented carbide according to claim 1, wherein the cemented carbide is replaced with a fine powder having a particle size of 0.3 to 3 µm [second invention].

請求項3記載の超硬合金は、摺動部材の基材の表面に接合されて用いられる請求項1または2記載の超硬合金である〔第3発明〕。   The cemented carbide according to claim 3 is the cemented carbide according to claim 1 or 2 used by being bonded to the surface of the base material of the sliding member [third invention].

本発明に係る超硬合金によれば、これが母材(基材)に対して溶接やロウ付けにより接合された後、この接合されたもの(接合材)が高温に保持された場合でも、この高温保持後のクラックの発生および耐摩耗性の劣化を抑制し得る。即ち、かかる高温保持後であってもクラックが発生し難く、また、耐摩耗性が劣化し難くなる。   According to the cemented carbide according to the present invention, after this is joined to the base material (base material) by welding or brazing, even if this joined material (joining material) is kept at a high temperature, Generation of cracks after holding at high temperature and deterioration of wear resistance can be suppressed. That is, even after such high temperature holding, cracks are hardly generated and wear resistance is not easily deteriorated.

本発明に係る超硬合金は、前述のように、Coおよび/またはNiを結合材とし、この結合材中にWCが分散された超硬合金であって、前記WCの粒径が1.5〜4μm、前記Coおよび/またはNiの総含有量が25〜45質量%であると共に、前記結合材中にWを6〜25質量%含有することを特徴とする超硬合金であることとしている。   As described above, the cemented carbide according to the present invention is a cemented carbide in which Co and / or Ni is used as a binder and WC is dispersed in the binder, and the grain size of the WC is 1.5. The cemented carbide is characterized in that the total content of Co and / or Ni is 25 to 45% by mass and W is contained in the binder by 6 to 25% by mass. .

本発明に係る超硬合金は、上記のように結合材として含まれるCoおよび/またはNiの総含有量を25〜45質量%に特定し、この結合材中に分散されるWCの粒径を1.5〜4μmに特定すると共に、この結合材中にWを含有することとし、このWの含有量を6〜25質量%に特定したものである。以下、その特定の理由等について、説明する。   In the cemented carbide according to the present invention, the total content of Co and / or Ni contained as a binder as described above is specified as 25 to 45 mass%, and the particle size of WC dispersed in the binder is determined. In addition to being specified as 1.5 to 4 μm, W is included in the binder, and the content of W is specified as 6 to 25% by mass. Hereinafter, the specific reason will be described.

超硬合金中のCoおよびNiは、結合材であり、超硬合金のマトリックス成分としてWC微粉末を支持固着すると共に、割れ感受性を鈍くする作用効果を発揮するものであり、Coおよび/またはNiの総含有量が25質量%(重量%)未満では割れ感受性が敏感になり、接合材の接合部もしくは超硬合金に割れが発生し易くなる。しかし、Coおよび/またはNiの総含有量が45質量%を超えると、超硬合金成形体を粉末冶金法によって製造するときの焼結工程で変形を生じ易くなり、所定形状・寸法の成形体が得られ難くなるばかりでなく、WCの含有量が相対的に少なくなるために耐摩耗性も不足気味となる。従って、Coおよび/またはNiの総含有量:25〜45質量%と特定する。   Co and Ni in the cemented carbide are binders, and support and fix the WC fine powder as a matrix component of the cemented carbide and exhibit an effect of reducing the cracking sensitivity. Co and / or Ni If the total content of is less than 25% by mass (% by weight), the cracking sensitivity becomes sensitive, and cracking is likely to occur in the bonded portion of the bonding material or the cemented carbide. However, if the total content of Co and / or Ni exceeds 45% by mass, deformation is likely to occur in the sintering process when a cemented carbide alloy body is produced by powder metallurgy, and a molded body having a predetermined shape and size. Not only becomes difficult to obtain, but also the wear resistance tends to be insufficient due to the relatively low content of WC. Accordingly, the total content of Co and / or Ni is specified as 25 to 45% by mass.

結合材中に分散されるWCの粒径は超硬合金の耐摩耗性と密接な関連を有しており、WC粒径:4μm超の粗粒物であると、使用時にWC粒の脱落が生じ易くなるため、充分な耐摩耗性が得られなくなる。一方、WC粒径:1.5μm未満の微粒であると、高硬度化して割れ感受性が敏感になり、接合部もしくは超硬合金に割れが発生し易くなる。従って、WCの粒径:1.5〜4μmと特定する。   The particle size of WC dispersed in the binder is closely related to the wear resistance of the cemented carbide. If the WC particle size is a coarse particle having a particle size of more than 4 μm, the WC particles may fall off during use. Since it tends to occur, sufficient wear resistance cannot be obtained. On the other hand, if the WC particle size is less than 1.5 μm, the hardness is increased and the sensitivity to cracking becomes sensitive, and cracking is likely to occur in the joint or cemented carbide. Therefore, the particle size of WC is specified as 1.5 to 4 μm.

結合材中に含有されたWは接合後の時効処理等の高温保持中の再結晶に影響し、結合材中にWが含有されていない場合や、Wが含有されていてもWの含有量:6質量%未満の場合には、接合後の時効処理等の高温保持中に結合材が再結晶してポアが集積し、耐摩耗特性が劣化する。かかる再結晶に起因するポア集積による耐摩耗特性の劣化を防止するには、Wの含有量を6質量%以上とする必要がある。より高い水準でかかる耐摩耗特性の劣化を防止するには、10質量%以上とすることが望ましい。   W contained in the binder affects recrystallization during holding at a high temperature such as aging after bonding, and when W is not contained in the binder, or even if W is contained, the W content When the amount is less than 6% by mass, the binder recrystallizes during the high temperature holding such as aging treatment after the joining, and pores accumulate, resulting in deterioration of wear resistance. In order to prevent deterioration of wear resistance due to pore accumulation due to such recrystallization, the W content needs to be 6% by mass or more. In order to prevent deterioration of the wear resistance at a higher level, it is desirable that the content be 10% by mass or more.

W添加量:25質量%超の場合には、η相〔:イータ相(Co3 3 C)〕を生じやすく、機械的特性を劣化させる。 When the added amount of W exceeds 25% by mass, the η phase [: eta phase (Co 3 W 3 C)] is likely to be generated, and the mechanical properties are deteriorated.

従って、結合材中にWを含有することとし、このWの含有量を6〜25質量%に特定する。   Accordingly, W is contained in the binder, and the content of W is specified to be 6 to 25% by mass.

本発明に係る超硬合金は、以上のような理由により、前述のように結合材として含まれるCoおよび/またはNiの総含有量、この結合材中に分散されるWCの粒径、この結合材中のWの含有量を特定している。従って、母材(基材)に対して溶接やロウ付けにより接合された後、接合材が高温に保持された場合でも、この高温保持後のクラックの発生および耐摩耗性の劣化を抑制し得る。即ち、かかる高温保持後であってもクラックが発生し難く、また、耐摩耗性が劣化し難くなる。   For the reasons described above, the cemented carbide according to the present invention includes the total content of Co and / or Ni contained as a binder as described above, the particle size of WC dispersed in this binder, and this bond. The content of W in the material is specified. Therefore, even when the bonding material is held at a high temperature after being joined to the base material (base material) by welding or brazing, generation of cracks and deterioration of wear resistance after the high temperature holding can be suppressed. . That is, even after such high temperature holding, cracks are hardly generated and wear resistance is not easily deteriorated.

なお、接合後、接合材が高温に保持される場合には、接合材が高温環境下で使用されて高温に保持される場合の他、接合材が時効処理を受ける場合も含まれる。この時効処理は母材(基材)がSUS630等の析出硬化系(型)の金属である場合に行われる。本発明に係る超硬合金の接合材は、このような時効処理を受ける場合にも、この時効処理後のクラックの発生や耐摩耗性の劣化が起り難い。   In addition, after joining, when a joining material is hold | maintained at high temperature, the case where a joining material receives an aging treatment other than the case where a joining material is used in a high temperature environment and kept at high temperature is included. This aging treatment is performed when the base material (base material) is a precipitation hardening (type) metal such as SUS630. Even when the cemented carbide joining material according to the present invention is subjected to such an aging treatment, the occurrence of cracks and the deterioration of the wear resistance after the aging treatment hardly occur.

前記WCの15体積%以下を、Ti,Ta,Nb,V,Crから選択される少なくとも1種の元素の炭化物、窒化物および炭・窒化物の1種以上からなる粒径0.3〜3μmの微粉末で置換すると、耐摩耗性,高温強度,靭性,耐酸化性,耐食性等を高めることができる〔第2発明〕。なお、WCの15体積%を超えて、これらの微粉末で置換すると、接合材の接合部で割れが生じ易くなる。   15% by volume or less of the WC has a particle size of 0.3 to 3 μm composed of at least one of carbide, nitride, and carbon / nitride of at least one element selected from Ti, Ta, Nb, V, and Cr. By substituting with the fine powder, it is possible to improve wear resistance, high temperature strength, toughness, oxidation resistance, corrosion resistance, etc. [second invention]. In addition, when it exceeds 15 volume% of WC and it substitutes with these fine powders, it will become easy to produce a crack in the junction part of a joining material.

本発明に係る超硬合金は、摺動部材の基材の表面に接合されて用いることができる〔第3発明〕。この場合、摺動部材が高温に保持された場合でも、この高温保持後のクラックの発生や耐摩耗性の劣化が起り難い。   The cemented carbide according to the present invention can be used by being joined to the surface of the base material of the sliding member [third invention]. In this case, even when the sliding member is held at a high temperature, the generation of cracks and the deterioration of wear resistance after the high temperature holding are unlikely to occur.

本発明に係る超硬合金が接合される基材の種類については、特には限定されないが、通常は鋼が用いられる。   The type of the substrate to which the cemented carbide according to the present invention is joined is not particularly limited, but steel is usually used.

本発明の実施例および比較例について、以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

Co粉末、Ni粉末、Cr3C2 粉末、WC粉末およびW粉末を総重量で1kgとなるように配合し、これに5kgの超硬ボールと、700CC のヘキサンを加えてアトライターで4時間混合した。この混合物から超硬ボールを除き、この混合物を乾燥した後、1トン/cm2 の圧力で75×75×8mmの圧粉体に成形し、この圧粉体を真空炉で窒素雰囲気にて1時間焼結し、焼結体(超硬合金)を得た。 Co powder, Ni powder, Cr 3 C 2 powder, WC powder and W powder are mixed so that the total weight is 1 kg, and 5 kg of carbide balls and 700 CC of hexane are added to it and mixed in an attritor for 4 hours. did. After removing the cemented carbide balls from the mixture and drying the mixture, the mixture was formed into a green compact of 75 × 75 × 8 mm at a pressure of 1 ton / cm 2. Sintered for a time to obtain a sintered body (super hard alloy).

このようにして得られた焼結体(超硬合金)について、ロウ付けによる接合時の熱履歴を模擬した熱処理を行った。また、この熱処理の後、高温環境下での使用を想定して高温保持を行った。このとき、接合時の熱履歴を模擬した熱処理としては、760 ℃で30分間保持した後、850 ℃で10分間保持し、この後炉冷する処理とした。高温保持としては、300 ℃で5時間の保持とした。なお、高温保持後は炉冷した。   The sintered body (superhard alloy) thus obtained was subjected to heat treatment simulating the thermal history during joining by brazing. In addition, after this heat treatment, high temperature holding was performed assuming use in a high temperature environment. At this time, the heat treatment simulating the thermal history at the time of joining was held at 760 ° C. for 30 minutes, then held at 850 ° C. for 10 minutes, and then furnace-cooled. The high temperature was held at 300 ° C. for 5 hours. The furnace was cooled after maintaining the high temperature.

これらの材料(超硬合金)について、SEM(走査型電子顕微鏡)による組成分析、組織観察(WC粒径測定)、及び、摺動試験を行った。組成分析は、上記熱処理後の超硬合金を用いて行った。組織観察は、上記焼結体(焼結後のもの)について行った。摺動試験は、上記熱処理後の超硬合金および上記高温保持後の超硬合金のそれぞれについて行った。   About these materials (super hard alloy), the composition analysis by SEM (scanning electron microscope), structure | tissue observation (WC particle size measurement), and the sliding test were done. The composition analysis was performed using the cemented carbide after the heat treatment. The structure observation was performed on the sintered body (after sintering). The sliding test was performed for each of the cemented carbide after the heat treatment and the cemented carbide after the high temperature holding.

このとき、組成分析およびWC粒径測定は次のようにして行った。上記熱処理後の超硬合金から供試材を切り出し、この供試材の切断面を鏡面研磨した後、SEM (日立製作所製S-4500)にて加速電圧20kVで観察した。この際に、結合材にビームをあて、EDX にてW,C,Ni,Coの定量分析を行った。WC粒径測定は、SEM により2000倍で撮影した写真を画像解析(ナノシステム株式会社製 NanoHunter NS2K-Lt ; コベルコ科研仕様)によりWC粒(白く観察される)部分と結合材(黒く観察される)とに2値化して測定し、平均粒径を算出した。   At this time, composition analysis and WC particle size measurement were performed as follows. A specimen was cut out from the cemented carbide after the heat treatment, the cut surface of the specimen was mirror-polished, and then observed with an SEM (Hitachi S-4500) at an acceleration voltage of 20 kV. At this time, a beam was applied to the binder, and quantitative analysis of W, C, Ni, and Co was performed by EDX. For WC particle size measurement, photographs taken at a magnification of 2000 by SEM are analyzed by image analysis (NanoSystem Co., Ltd. NanoHunter NS2K-Lt; Kobelco Research Institute specification) and WC grain (observed white) and binder (observed black) ) And binarized, and the average particle size was calculated.

摺動試験は、ベーンオンディスク試験により行った。この試験の詳細を以下説明する。試験片のベーンのサイズは、全長20mm、厚さ3.5mm 、幅5mmとし、片側先端をR4(0.8S仕上げ)とする試験片を用意した。また、ディスクは、材質をサーメットとし、サイズは直径50mm×厚み6.5mm であり、ディスクの摩擦面は鏡面研磨によりRa0.01μm に仕上げたものを用いた。摺動試験機は株式会社東京試験機製作所製FPD-100BD-J であり、上部アンビルに直径30mmの円周上に2本のベーン(試験片)を回転軸中心に対称に取り付け、容器の底に固定するように取付けられたディスクに 300Nの荷重で接触させてアンビルを1m/sec で回転させた。摺動距離は 500mである。摺動試験前後のベーンの重量変化を測定し、2本の平均を摩耗量とした。   The sliding test was performed by a vane on disk test. Details of this test will be described below. The test piece vane had a total length of 20 mm, a thickness of 3.5 mm, and a width of 5 mm, and a test piece having one end at R4 (0.8S finish) was prepared. The disc was made of cermet and had a diameter of 50 mm x thickness of 6.5 mm. The disc friction surface was mirror-polished to Ra0.01 µm. The sliding tester is FPD-100BD-J manufactured by Tokyo Test Machine Co., Ltd., and two vanes (test pieces) are mounted on the upper anvil symmetrically around the circumference of the diameter of 30mm, and the bottom of the container The anvil was rotated at 1 m / sec by contacting with a 300 N load to a disk mounted to be fixed to the disk. The sliding distance is 500m. The change in the weight of the vane before and after the sliding test was measured, and the average of the two was taken as the amount of wear.

一方、上記熱処理後の超硬合金をロウ付けにより基材のSUS410に接合し、クラックの発生状況をみる割れ試験を行った。このとき、ロウ付けについては、超硬合金と基材(SUS 410)との間にインサート材(Tiを含む銀ロウ)、応力緩和材(無酸素銅)、インサート材を挟み、積層した状態にしたものを、真空中で760 ℃で30分間保持した後、850 ℃で10分間保持することにより行った。このようにして得られた接合材について、SEM 観察試料を採取し、SEM 観察により、超硬合金および接合部と基材との接合界面のクラックの発生状況を調べた。   On the other hand, the cemented carbide after the heat treatment was joined to the base material SUS410 by brazing, and a crack test was performed to check the occurrence of cracks. At this time, with regard to brazing, the insert material (silver brazing containing Ti), the stress relaxation material (oxygen-free copper), and the insert material are sandwiched between the cemented carbide and the base material (SUS 410) and laminated. This was performed by holding at 760 ° C. for 30 minutes in a vacuum and then holding at 850 ° C. for 10 minutes. With respect to the bonding material thus obtained, SEM observation samples were collected, and the occurrence of cracks in the cemented carbide and the bonding interface between the bonded portion and the substrate were examined by SEM observation.

更に、上記ロウ付けにより得られた接合材について、これを高温環境下での使用を想定して高温保持を行った。このとき、高温保持としては、300 ℃で5時間の保持とした。なお、高温保持後は自然冷却した。しかる後、この接合材からSEM 観察試料を採取し、SEM 観察により、超硬合金および接合部と基材との接合界面のクラックの発生状況を調べた。   Further, the bonding material obtained by brazing was held at a high temperature assuming that it was used in a high temperature environment. At this time, the high temperature was held at 300 ° C. for 5 hours. In addition, it cooled naturally after holding high temperature. Thereafter, an SEM observation sample was taken from this bonding material, and the occurrence of cracks at the cemented carbide and the bonded interface between the bonded portion and the substrate was examined by SEM observation.

上記試験(組成分析、組織観察、摺動試験、および、ロウ付けによる割れ発生状況の調査試験)の結果を表1に示す。   Table 1 shows the results of the above tests (composition analysis, structure observation, sliding test, and investigation test of crack occurrence by brazing).

なお、表1において、結合材量の欄のCo量(wt%)、Ni量(wt%)はいずれも超硬合金中での重量%(wt%)であり、total 量(wt%)はCo量(wt%)とNi量(wt%)との合計量(wt%)、即ち、結合材の総含有量(wt%)である。Cr3C2 量(vol%)は、WC量(vol)とCr3C2 量(vol)の合計量(vol)に対するCr3C2 量(vol)の百分率(体積%)である。W量(wt%)は、結合材(CoおよびNi)中での重量%(wt%)である。 In Table 1, the Co amount (wt%) and Ni amount (wt%) in the column of binder amount are both wt% (wt%) in the cemented carbide, and the total amount (wt%) is The total amount (wt%) of the Co amount (wt%) and the Ni amount (wt%), that is, the total content (wt%) of the binder. Cr 3 C 2 content (vol%) is the percentage of WC amount (vol) and the Cr 3 C 2 weight relative to the total amount (vol) of Cr 3 C 2 content (vol) (vol) (% by volume). The amount of W (wt%) is weight% (wt%) in the binder (Co and Ni).

耐摩耗性は、前述の摺動試験による摩耗量(mg)で表示している。この摩耗量(mg)は小さいほど耐摩耗性に優れている。接合後の耐摩耗性は、上記熱処理後の超硬合金(ロウ付けによる接合時の熱履歴を模擬した熱処理がなされた超硬合金)についての摺動試験結果、即ち、耐摩耗性である。高温保持後の耐摩耗性は、上記高温保持後の超硬合金(上記熱処理後、高温保持がなされた超硬合金)についての摺動試験結果、即ち、耐摩耗性である。   The wear resistance is indicated by the amount of wear (mg) by the sliding test described above. The smaller the wear amount (mg), the better the wear resistance. Abrasion resistance after joining is a result of a sliding test on the cemented carbide after the heat treatment (a cemented carbide subjected to a heat treatment simulating a heat history during joining by brazing), that is, wear resistance. The wear resistance after holding at a high temperature is the result of a sliding test on the cemented carbide after holding the high temperature (the cemented carbide that has been held at a high temperature after the heat treatment), that is, the wear resistance.

割れの欄での接合後のものは、前述のロウ付けによる接合後のものについてのSEM 観察結果、即ち、クラック(割れ)の発生状況である。高温保持後のものは、前述のロウ付けにより得られた接合材を高温保持した後のものについてのSEM 観察結果、即ち、クラックの発生状況である。○はクラックのないもの、△は部材として問題のないレベルの小さなクラックの見られたもの(クラックは認められたものの、その程度は軽微で問題のないもの)、×はクラックが確認され部材として使用不可であるものを示すものである。   The thing after joining in the column of a crack is the SEM observation result about the thing after joining by the above-mentioned brazing, ie, the generation | occurrence | production condition of a crack (crack). The one after holding at high temperature is the result of SEM observation of the one after holding the bonding material obtained by brazing described above at high temperature, that is, the occurrence of cracks. ○ indicates that there is no crack, △ indicates that a small crack with a level that does not cause a problem as a member is observed (although cracks are observed, but the degree is minor and has no problem), × indicates that a crack has been confirmed as a member It indicates what is unusable.

表1からわかるように、WCの粒径が小さく、1.5〜4μmを満たしていない場合、ロウ付けによる接合後はクラック発生状況が△であるが、高温保持後はクラック発生状況が×であり、×水準のクラックが認められた(No.1:比較例)。なお、このクラックは、超硬合金および接合界面に認められた。   As can be seen from Table 1, when the particle size of WC is small and does not satisfy 1.5 to 4 μm, the crack occurrence state is Δ after joining by brazing, but the crack occurrence state is × after holding at high temperature. Yes, x level cracks were observed (No.1: comparative example). In addition, this crack was recognized by the cemented carbide alloy and the joining interface.

WCの粒径が大きく、1.5〜4μmを満たしていない場合、接合後および高温保持後のいずれのものも摩耗量が多く、耐摩耗性が低くて不充分である(No.5:比較例)。   When the particle size of WC is large and does not satisfy 1.5 to 4 μm, both after bonding and after holding at high temperature have a large amount of wear, and wear resistance is low and insufficient (No. 5: comparison) Example).

これに対し、WCの粒径が1.5〜4μmを満たす場合、接合後のものも高温保持後のものも、クラック発生状況が○であり、クラックが認められず、また、耐摩耗性に優れている(No.2〜4 :本発明例)。   On the other hand, when the particle size of WC satisfies 1.5 to 4 μm, the crack occurrence state is ◯ in both the bonded state and the one after holding at high temperature, no cracks are observed, and the wear resistance is improved. Excellent (No. 2 to 4: Example of the present invention).

結合材中のWの含有量(固溶量)が少なく、6〜25質量%を満たしていない場合、クラック発生状況については接合後のものも高温保持後のものも○であり、また、耐摩耗性に関しては接合後のものは良好であるものの、高温保持後のものは摩耗量が極めて多く、耐摩耗性が著しく低くて不充分である(No.6:比較例)。この高温保持後の耐摩耗性の著しい低下は、高温保持により結合材が再結晶してポアが集積しボイドが生成したためである。   When the content (solid solution amount) of W in the binder is small and does not satisfy 6 to 25% by mass, the crack occurrence is ○ after bonding and after holding at high temperature. As for the wear resistance, the one after bonding is good, but the one after holding at a high temperature has a very large amount of wear and the wear resistance is remarkably low (No. 6: comparative example). This remarkable decrease in wear resistance after holding at high temperature is due to the fact that the binder recrystallizes due to holding at high temperature, pores accumulate, and voids are generated.

これに対し、結合材中のWの含有量(固溶量)が6〜25質量%を満たす場合、高温保持後のものも耐摩耗性に優れている(No.7〜10:本発明例)。即ち、接合後のものも高温保持後のものも、クラック発生状況が○であり、クラックが認められず、また、耐摩耗性良好であり、耐摩耗性に優れている。   On the other hand, when the W content (solid solution amount) in the binder satisfies 6 to 25% by mass, the one after holding at high temperature is also excellent in wear resistance (No. 7 to 10: Example of the present invention). ). That is, both the bonded state and the high-temperature held state are ◯ for crack occurrence, no cracks are observed, good wear resistance, and excellent wear resistance.

結合材(Co及びNi)の総含有量(total 量)が25〜45質量%を満たしていない場合、接合後も高温保持後もクラック発生状況が×であり、×水準のクラックが認められた(No.11 :比較例)。なお、このクラックは、超硬合金および接合界面に認められた。   When the total content (total amount) of the binder (Co and Ni) does not satisfy 25 to 45% by mass, the crack generation state is x after bonding and after holding at high temperature, and x level cracks were observed. (No. 11: comparative example). In addition, this crack was recognized by the cemented carbide alloy and the joining interface.

これに対し、結合材(Co及びNi)の総含有量が25〜45質量%を満たす場合、接合後も高温保持後もクラック発生状況が○であり、クラックが認められない(No.12 〜15:本発明例)。   On the other hand, when the total content of the binder (Co and Ni) satisfies 25 to 45% by mass, the crack generation state is ◯ after bonding and after holding at high temperature, and no crack is observed (No. 12 to 15: Example of the present invention).

No.16 〜18のものは、Co量/Ni量の比を変化させた場合の試験結果である(本発明例)。No.19 〜22のものは、Cr3C2 量(vol%)を変化させた場合の試験結果である(本発明例)。Cr3C2 量が15vol %を超えると接合後も高温保持後も接合材の接合部で割れが生じ易くなることがあるが、No.19 〜22のものはいずれもCr3C2 量が15vol %以下であり、接合後も高温保持後もクラック発生状況が○であり、クラックが認められない。 Nos. 16 to 18 are test results when the ratio of Co amount / Ni amount is changed (example of the present invention). No.19 is to 22 ones, a test result in the case of changing Cr 3 C 2 amount (vol%) (present invention examples). If the amount of Cr 3 C 2 exceeds 15 vol%, cracks may easily occur at the joint of the joining material after joining and after holding at high temperature, but all of No. 19 to 22 have Cr 3 C 2 content. It is 15 vol% or less, and the crack occurrence is good after joining and holding at high temperature, and no crack is observed.

なお、前述の混合物の圧粉体への成形に際し、HIP (熱間等方圧プレス)を行えば、焼結体の密度が向上し、耐摩耗特性が向上する。   In addition, when forming the above-mentioned mixture into a green compact, if HIP (hot isostatic pressing) is performed, the density of the sintered body is improved and the wear resistance is improved.

Figure 2006336048
Figure 2006336048

本発明に係る超硬合金は、母材(基材)に対して溶接やロウ付けにより接合された後、この接合材が高温に保持された場合でも、この高温保持後のクラックの発生および耐摩耗性の劣化が起こり難いので、接合材が高温環境下で使用される場合や時効処理される場合のように高温保持される場合に好適に用いることができて有用である。
The cemented carbide according to the present invention is bonded to a base material (base material) by welding or brazing, and even when this joining material is kept at a high temperature, generation of cracks and resistance to the high temperature are maintained. Since the wear resistance hardly occurs, it can be suitably used when the bonding material is held at a high temperature such as when used in a high temperature environment or when an aging treatment is performed.

Claims (3)

Coおよび/またはNiを結合材とし、この結合材中にWCが分散された超硬合金であって、前記WCの粒径が1.5〜4μm、前記Coおよび/またはNiの総含有量が25〜45質量%であると共に、前記結合材中にWを6〜25質量%含有することを特徴とする超硬合金。   A cemented carbide in which Co and / or Ni is used as a binder, and WC is dispersed in the binder, and the particle size of the WC is 1.5 to 4 μm, and the total content of Co and / or Ni is A cemented carbide characterized by being 25 to 45 mass% and containing 6 to 25 mass% of W in the binder. 前記WCの15体積%以下を、Ti,Ta,Nb,V,Crから選択される少なくとも1種の元素の炭化物、窒化物および炭・窒化物の1種以上からなる粒径0.3〜3μmの微粉末で置換した請求項1記載の超硬合金。   15% by volume or less of the WC has a particle size of 0.3 to 3 μm composed of at least one of carbide, nitride, and carbon / nitride of at least one element selected from Ti, Ta, Nb, V, and Cr. The cemented carbide according to claim 1, wherein the cemented carbide is replaced with a fine powder. 摺動部材の基材の表面に接合されて用いられる請求項1または2記載の超硬合金。
The cemented carbide according to claim 1 or 2, wherein the cemented carbide is used by being bonded to the surface of the base material of the sliding member.
JP2005159845A 2005-05-31 2005-05-31 Cemented carbide Expired - Fee Related JP4680684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159845A JP4680684B2 (en) 2005-05-31 2005-05-31 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159845A JP4680684B2 (en) 2005-05-31 2005-05-31 Cemented carbide

Publications (2)

Publication Number Publication Date
JP2006336048A true JP2006336048A (en) 2006-12-14
JP4680684B2 JP4680684B2 (en) 2011-05-11

Family

ID=37556862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159845A Expired - Fee Related JP4680684B2 (en) 2005-05-31 2005-05-31 Cemented carbide

Country Status (1)

Country Link
JP (1) JP4680684B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501149A (en) * 2009-08-04 2013-01-10 アロメット コーポレイション Consolidated high toughness coated hard particles in high toughness matrix materials.
JP2013508546A (en) * 2009-11-13 2013-03-07 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide and method for producing the same
DE102009042325B4 (en) 2008-09-24 2024-05-02 Ngk Insulators, Ltd. Casting mold for producing a honeycomb structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063349A (en) * 1983-09-19 1985-04-11 Toyota Motor Corp Moving valve member for internal-combustion engine
JPS61221352A (en) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd Sintered hard alloy for warm and hot forging tool
JP2001049378A (en) * 1999-06-03 2001-02-20 Ngk Spark Plug Co Ltd Wear resistant cemented carbide sintered compact and its manufacture
JP2002173758A (en) * 2000-12-04 2002-06-21 Fujimi Inc Powder for flame spraying and parts with flame sprayed coating by using the powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063349A (en) * 1983-09-19 1985-04-11 Toyota Motor Corp Moving valve member for internal-combustion engine
JPS61221352A (en) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd Sintered hard alloy for warm and hot forging tool
JP2001049378A (en) * 1999-06-03 2001-02-20 Ngk Spark Plug Co Ltd Wear resistant cemented carbide sintered compact and its manufacture
JP2002173758A (en) * 2000-12-04 2002-06-21 Fujimi Inc Powder for flame spraying and parts with flame sprayed coating by using the powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042325B4 (en) 2008-09-24 2024-05-02 Ngk Insulators, Ltd. Casting mold for producing a honeycomb structure
JP2013501149A (en) * 2009-08-04 2013-01-10 アロメット コーポレイション Consolidated high toughness coated hard particles in high toughness matrix materials.
JP2013508546A (en) * 2009-11-13 2013-03-07 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide and method for producing the same

Also Published As

Publication number Publication date
JP4680684B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
Hsieh et al. Diamond tool bits with iron alloys as the binding matrices
US11634796B2 (en) Polycrystalline cubic boron nitride composite material
DK2591874T3 (en) Stir friction welding tool made of cemented tungsten carbide with nickel and with an Al2O3 surface coating
CN108472738B (en) Polycrystalline diamond sintered body tool having excellent interface bonding strength and method for manufacturing same
JP2011116597A (en) Sintered compact and rotating tool
JP2012130948A (en) Rotating tool
JP6048522B2 (en) Sintered body and cutting tool
JP6740862B2 (en) Tools for hard materials and friction stir welding
JP4680684B2 (en) Cemented carbide
JP5152667B2 (en) Cubic boron nitride sintered tool
JP6048521B2 (en) Sintered body and cutting tool
KR102109227B1 (en) Low binder, wear resistant hard metal
JP4538794B2 (en) Cemented carbide roll for rolling
JP2019090098A (en) Sintered body and tool for friction stir welding
JP2011062742A (en) Rotary tool
JP6178689B2 (en) Tungsten heat resistant alloy, friction stir welding tool, and manufacturing method
JP4018308B2 (en) Composite material for sliding member and sliding member
JP2019183201A (en) Sintered body and rotation tool
JP2009091609A (en) Sintered composite sliding part and production method therefor
JP2015107525A (en) Rotary tool
JP2013014002A (en) Cubic boron nitride sintered body tool
JP6193651B2 (en) Resistance welding electrode
JP7429432B2 (en) Pressure sintered body and its manufacturing method
JP2015098055A (en) Rotary tool
JP2021529720A (en) PCBN Sintered Compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees