JP2006320069A - Control device for secondary battery - Google Patents

Control device for secondary battery Download PDF

Info

Publication number
JP2006320069A
JP2006320069A JP2005138419A JP2005138419A JP2006320069A JP 2006320069 A JP2006320069 A JP 2006320069A JP 2005138419 A JP2005138419 A JP 2005138419A JP 2005138419 A JP2005138419 A JP 2005138419A JP 2006320069 A JP2006320069 A JP 2006320069A
Authority
JP
Japan
Prior art keywords
secondary battery
state
input
control
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005138419A
Other languages
Japanese (ja)
Other versions
JP4207925B2 (en
Inventor
Kosuke Suzui
康介 鈴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005138419A priority Critical patent/JP4207925B2/en
Publication of JP2006320069A publication Critical patent/JP2006320069A/en
Application granted granted Critical
Publication of JP4207925B2 publication Critical patent/JP4207925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/46Control modes by self learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately set amounts of electric energy that can be inputted and outputted to prevent use of a secondary battery under extreme conditions when the accuracy of estimation of a quantity of battery state in a control device for secondary batteries so designed as to estimate a quantity of battery state by parameter identification (learning control) based on a sensor detection value. <P>SOLUTION: A parameter identification unit 110 carries out parameter identification based on a sensor detection value. A quantity of state estimation unit 120 computes quantities of state of a secondary battery using a control parameter Cpr from the parameter identification unit 110. The quantities of state include at least set values Pin, Pout indicating amounts of electric energy that can be inputted and outputted. In initial learning state established before the degree of control parameter identification reaches a predetermined value or higher after a learning reset instruction is inputted, determined by a degree of identification determination unit 130, a path P1 is selected. Therefore, a quantity of state correction unit 140 corrects the set values Pin, Pout so as to limit and reduce the amounts of electric energy that can be inputted and outputted, set by the quantity of state estimation unit 120. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、二次電池の制御装置に関し、より特定的には二次電池の入出力電力制限制御に関する。   The present invention relates to a control device for a secondary battery, and more particularly to input / output power limit control for a secondary battery.

近年、燃費や環境への配慮からハイブリッド自動車や電気自動車など電気モータを利用した車両の開発が活発に行なわれている。これらの車両では、電気モータの駆動電力を蓄える二次電池の充放電制御が重要となる。一般的に、計測可能な二次電池データは、電池の端子電圧、電流、温度等に限られるため、これらの検出値を用いて充電率(SOC:State of Charge)、入力可能電力値Pinおよび出力可能電力値Pout等の状態量を推定する技術が重要となる。   In recent years, development of vehicles using electric motors such as hybrid cars and electric cars has been actively conducted in consideration of fuel consumption and the environment. In these vehicles, charge / discharge control of the secondary battery that stores the drive power of the electric motor is important. In general, measurable secondary battery data is limited to the terminal voltage, current, temperature, etc. of the battery, so using these detected values, the state of charge (SOC), the input power value Pin and A technique for estimating a state quantity such as the output possible power value Pout is important.

たとえば、特開平6−59003号公報(特許文献1)には、電気自動車の運転中における電池残存容量を的確に検知可能な電池残存容量計の構成が開示されている。特許文献1では、高負荷状態時におけるV(電圧)−I(電流)特性から電池の残存容量推定を行なうとともに、電気量積算方式で算出されたSOCと上記残存容量とから劣化度を算出する。そして、この劣化度に基づいて電気量積算方式での満充電時容量を補正してSOCを算出することにより、電気量積算方式による誤差の発生を防止して電池残存容量の測定精度を向上させることができる。   For example, Japanese Laid-Open Patent Publication No. 6-59003 (Patent Document 1) discloses a configuration of a battery remaining capacity meter that can accurately detect a remaining battery capacity during operation of an electric vehicle. In Patent Document 1, the remaining capacity of the battery is estimated from the V (voltage) -I (current) characteristics in a high load state, and the degree of deterioration is calculated from the SOC calculated by the electric quantity integration method and the remaining capacity. . Then, based on this degree of deterioration, the SOC is calculated by correcting the full charge capacity in the electric quantity integrating method, thereby preventing the occurrence of an error due to the electric quantity integrating method and improving the measurement accuracy of the battery remaining capacity. be able to.

また、センサで直接計測可能な電池の端子電圧、電流、温度などを用いて、適用ディジタルフィルタ理論を適用して、SOCおよび入出力可能電力値Pin,Poutを推定する手法についても提案されている(たとえば非特許文献1)。
特開平6−59003号公報 湯本大次郎他、「適用ディジタルフィルタ理論を用いた電池内部状態量の推定手法」、社団法人自動車技術会 学術講演会前刷集、2003年5月、No.30−03(20035031)、p.5−10
A method for estimating the SOC and input / output possible power values Pin and Pout by applying the applied digital filter theory using the battery terminal voltage, current, temperature, etc. that can be directly measured by the sensor is also proposed. (For example, Non-Patent Document 1).
JP-A-6-59003 Daijiro Yumoto et al., “Method for Estimating Battery Internal State Quantity Using Applicable Digital Filter Theory”, Automobile Society of Japan Academic Lecture Preprint, May 2003, No. 30-03 (200335031), p. 5-10

上記のような二次電池を搭載したシステムでは、メンテナンスや交換等により、二次電池に関する状態量推定が初期化されるタイミングが不可避に発生する。そして、一旦状態量推定が初期化されると、その直後には推定精度が低下することが懸念される。したがって、推定精度の劣化に起因して二次電池の入出力電力が過大となることにより、二次電池にダメージを与える使用状態となり電池寿命に悪影響を与えるおそれがある。   In a system equipped with a secondary battery as described above, the timing at which state quantity estimation relating to the secondary battery is initialized inevitably occurs due to maintenance, replacement, or the like. Then, once the state quantity estimation is initialized, there is a concern that the estimation accuracy decreases immediately after that. Therefore, when the input / output power of the secondary battery becomes excessive due to the deterioration of the estimation accuracy, the secondary battery may be used in a usage state, which may adversely affect the battery life.

一方で、ハイブリッド自動車等の車両では、車両に搭載できる電池量が限られるため、二次電池の限界性能を引出すことが要求される。このため、二次電池の入出力電力制限についてシビアな設定を余儀なくされる傾向にある。したがって、上記のような電池状態量の推定精度劣化時に、二次電池にダメージを与える使用状態となってしまう危険性が存在する。   On the other hand, in a vehicle such as a hybrid vehicle, since the amount of battery that can be mounted on the vehicle is limited, it is required to draw out the limit performance of the secondary battery. For this reason, there is a tendency to severely set the input / output power limit of the secondary battery. Therefore, there is a risk that the battery may be in a use state that damages the secondary battery when the estimated accuracy of the battery state quantity is deteriorated.

この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、センサ検出値に基づくパラメータ同定(学習制御)によって電池状態量推定を行なう二次電池の制御装置において、電池状態量の推定精度劣化時に入出力可能電力量を適切に設定して、二次電池の過酷な状態での使用を防止することである。   The present invention has been made to solve such problems, and an object of the present invention is to control a secondary battery that estimates a battery state quantity by parameter identification (learning control) based on sensor detection values. In the apparatus, the input / output possible electric energy is appropriately set when the estimated accuracy of the battery state quantity is deteriorated to prevent the secondary battery from being used in a severe state.

本発明による二次電池の制御装置は、状態量推定手段と、判定手段と、状態量修正手段とを備える。状態量推定手段は、二次電池に設けられたセンサからの検出値に基づく二次電池の制御パラメータ同定によって、二次電池の入出力可能電力量を設定する。判定手段は、制御パラメータの同定度を判定する。状態量修正手段は、判定手段による判定結果に応じて、入出力可能電力量を状態量推定部による設定値よりも小さく制限する。   The control apparatus for a secondary battery according to the present invention includes state quantity estimation means, determination means, and state quantity correction means. The state quantity estimating means sets the input / output possible electric energy of the secondary battery by identifying the control parameter of the secondary battery based on the detection value from the sensor provided in the secondary battery. The determination means determines the degree of control parameter identification. The state quantity correction means limits the input / output possible power amount to be smaller than the set value by the state quantity estimation unit according to the determination result by the determination means.

上記二次電池の制御装置によれば、制御パラメータの同定精度の低下時に、入出力可能電力量を通常よりも小さい値に制限することができる。これにより、電池状態量の推定精度劣化が懸念される期間に、二次電池を過酷な条件で動作させる危険性を低くして電池寿命の低下を防止することができる。   According to the control apparatus for a secondary battery, it is possible to limit the amount of power that can be input / output to a value smaller than usual when the identification accuracy of the control parameter is lowered. Thereby, it is possible to reduce the risk of operating the secondary battery under harsh conditions during the period when there is a concern about the deterioration of the estimation accuracy of the battery state quantity, thereby preventing the battery life from decreasing.

好ましくは、本発明による二次電池の制御装置では、状態量修正手段は、制御パラメータの学習リセット指示の発生から、判定手段によって制御パラメータの同定度が所定以上に達したと判定されるまでの間、入出力可能電力量を状態量推定部による設定値よりも制限する。   Preferably, in the control apparatus for a secondary battery according to the present invention, the state quantity correction means is from the generation of the control parameter learning reset instruction until the determination means determines that the degree of control parameter identification has reached a predetermined level or more. In the meantime, the amount of power that can be input and output is limited to a value set by the state quantity estimation unit.

上記二次電池の制御装置によれば、制御パラメータの同定精度の低下が最も懸念される学習リセット直後の初期学習状態時において、入出力可能電力量を通常よりも小さく制限することができる。これにより、二次電池を過酷な条件で動作させる危険性が低くなり電池寿命の低下を防止することができる。   According to the control apparatus for a secondary battery, the input / output possible electric energy can be limited to be smaller than usual in the initial learning state immediately after the learning reset in which the deterioration of the control parameter identification accuracy is most concerned. Thereby, the danger of operating a secondary battery on severe conditions becomes low, and the fall of a battery life can be prevented.

さらに好ましくは、本発明による二次電池の制御装置は、制限解除制御手段をさらに備える。制限解除手段は、制御パラメータ学習のリセット指示後、判定手段によって制御パラメータの同定度が所定以上に達したと判定されたときに、状態量修正手段による入出力可能電力量の制限を時間経過または二次電池の入出力電流積算量の増加に応じて徐々に解除する。   More preferably, the secondary battery control device according to the present invention further includes a restriction release control means. The restriction release means, after the control parameter learning reset instruction, when the determination means determines that the degree of control parameter identification has reached a predetermined level or more, the state quantity correction means limits the input / output possible power amount over time or Release gradually as the input / output current integration amount of the secondary battery increases.

上記二次電池の制御装置によれば、記入出力可能電力量の制限解除時に二次電池の使用状態が急激に変化することを防止して、二次電池を安定的に使用できる。   According to the secondary battery control device, it is possible to stably use the secondary battery by preventing the use state of the secondary battery from changing abruptly when the restriction on the input output possible electric energy is released.

あるいはさらに好ましくは、二次電池は、車両駆動力を発生する電動機を備える車両に搭載されて、電動機の電源として用いられる。   Alternatively, more preferably, the secondary battery is mounted on a vehicle including an electric motor that generates vehicle driving force and used as a power source for the electric motor.

上記二次電池の制御装置によれば、ハイブリッド自動車や電気自動車等の車両に車両駆動力発生のエネルギー源として搭載される二次電池について、通常状態時の入出力可能電力量を、限界性能を引出すようにシビアに設定する一方で、制御パラメータの同定精度の低下が懸念される状態では、入出力可能電力量を通常よりも小さい値に制限して二次電池を過酷な条件で動作することを防止できる。このため、車両に搭載できる電池量が限られる状況下で、二次電池を効率的かつ安全に使用できる。   According to the secondary battery control device, the secondary battery mounted as an energy source for generating a vehicle driving force in a vehicle such as a hybrid vehicle or an electric vehicle has a limit performance and an amount of electric power that can be input / output in a normal state. In situations where there is a concern that the identification accuracy of control parameters may be lowered while being severely set to be pulled out, the secondary battery should be operated under harsh conditions by limiting the amount of input / output power to a value smaller than normal. Can be prevented. For this reason, a secondary battery can be used efficiently and safely under the situation where the amount of battery that can be mounted on a vehicle is limited.

本発明の二次電池の制御装置によれば、電池状態量の推定精度劣化時に入出力可能電力量を適切に設定することにより、二次電池の過酷な状態での使用を防止できる。   According to the control apparatus for a secondary battery of the present invention, it is possible to prevent the secondary battery from being used in a severe state by appropriately setting the input / output possible electric energy when the estimated accuracy of the battery state quantity is deteriorated.

以下において、本発明の実施の形態について図面を参照しながら詳細に説明する。なお以下では図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated in principle.

図1は、本発明の実施の形態に従う二次電池の制御装置が適用される電源システム5の構成を示す概略ブロック図である。   FIG. 1 is a schematic block diagram showing a configuration of a power supply system 5 to which a secondary battery control device according to an embodiment of the present invention is applied.

図1を参照して、電源システム5は、二次電池10と、負荷20と、リレー22,24と、制御回路25と、バッテリECU50とを備える。バッテリECU50は、本発明の実施の形態に従う二次電池の制御装置に対応する。   Referring to FIG. 1, power supply system 5 includes a secondary battery 10, a load 20, relays 22 and 24, a control circuit 25, and a battery ECU 50. Battery ECU 50 corresponds to a control device for a secondary battery according to the embodiment of the present invention.

二次電池10は、代表的には充電可能に構成された複数のセルから構成される。本発明の実施の形態において二次電池10の形式は特に限定されず、鉛蓄電池、ニッケル水素二次電池、リチウムイオン電池等の種々の二次電池を適用することができる。   The secondary battery 10 is typically composed of a plurality of cells configured to be rechargeable. In the embodiment of the present invention, the type of the secondary battery 10 is not particularly limited, and various secondary batteries such as a lead storage battery, a nickel hydride secondary battery, and a lithium ion battery can be applied.

負荷20は、DC/DCコンバータ30と、インバータ40と、モータジェネレータ45とを含む。   Load 20 includes a DC / DC converter 30, an inverter 40, and a motor generator 45.

DC/DCコンバータ30は、二次電池10の出力電圧レベルを変換して、インバータ40に入力する。インバータ40は、DC/DCコンバータ30が出力した直流電圧を交流電圧に変換してモータジェネレータ45へ供給する。モータジェネレータ45の出力は図示しない変速機を介して駆動輪DWHへ伝達可能である。また、ハイブリッド自動車では、ガソリン等の燃料燃焼によって駆動力を発生するエンジン(図示せず)を搭載して、このエンジンの出力も変速機(図示せず)を介して駆動輪DWHに伝達可能な構成とすることができる。   The DC / DC converter 30 converts the output voltage level of the secondary battery 10 and inputs it to the inverter 40. Inverter 40 converts the DC voltage output from DC / DC converter 30 into an AC voltage and supplies the AC voltage to motor generator 45. The output of the motor generator 45 can be transmitted to the drive wheels DWH via a transmission (not shown). In addition, the hybrid vehicle is equipped with an engine (not shown) that generates driving force by combustion of fuel such as gasoline, and the output of this engine can also be transmitted to the drive wheels DWH via a transmission (not shown). It can be configured.

車両の回生制動動作時には、駆動輪DWHの回転方向とは反対方向のトルクをモータジェネレータ45が発生することによって、モータジェネレータ45が回生発電を行なう。モータジェネレータ45による回生発電電力は、インバータ40およびDC/DCコンバータ30によって、二次電池10充電用の直流電圧に変換される。なお、車両の回生制動とは、運転者によるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの走行時にアクセルペダルをオフすることで回生発電させながら制動減速(または加速の中止)させることを含むものとする。   During regenerative braking operation of the vehicle, the motor generator 45 generates torque in the direction opposite to the rotation direction of the drive wheels DWH, so that the motor generator 45 performs regenerative power generation. Regenerative power generated by the motor generator 45 is converted into a DC voltage for charging the secondary battery 10 by the inverter 40 and the DC / DC converter 30. Regenerative braking of the vehicle means braking with regenerative power generation when the driver performs a foot brake operation, or braking deceleration (or regenerative power generation by turning off the accelerator pedal while driving without operating the foot brake) (or Stop acceleration).

リレー22,24は、二次電池10および負荷20の間に接続されて、両者の間の電力供給を制御する。リレー22,24のオン・オフは、制御回路25からのリレー制御信号SRに応答して制御される。リレー22,24のオン時には二次電池10および負荷20の間の電力経路が形成される一方で、リレー22,24のオフ時には二次電池10および負荷20の間の電力計供給経路が遮断される。リレー22,24としては、代表的には電磁リレーを適用可能である。   The relays 22 and 24 are connected between the secondary battery 10 and the load 20 to control power supply between them. ON / OFF of the relays 22 and 24 is controlled in response to a relay control signal SR from the control circuit 25. A power path between the secondary battery 10 and the load 20 is formed when the relays 22 and 24 are turned on, while a power meter supply path between the secondary battery 10 and the load 20 is cut off when the relays 22 and 24 are turned off. The As the relays 22 and 24, electromagnetic relays are typically applicable.

二次電池10には、温度センサ15、電圧センサ16および電流センサ18が設けられる。   The secondary battery 10 is provided with a temperature sensor 15, a voltage sensor 16, and a current sensor 18.

温度センサ15は、二次電池10の所定の位置に取付けられて、測定したバッテリ温度BTに応じた電圧をバッテリECU50へ送出する。電圧センサ16は、二次電池10の端子間電圧および/または二次電池10を構成する各セルの出力電圧を出力可能なように接続されて、測定したバッテリ電圧BVに応じた電圧をバッテリECU50へ送出する。電流センサ18は、二次電池10の電流入出力経路に配置されて、二次電池10の入出力電流Biに応じた電圧をバッテリECU50へ送出する。これによりバッテリECU50は、バッテリ温度BT、バッテリ電圧BVおよびバッテリ電流Biをセンサ検出値として受けることができる。   The temperature sensor 15 is attached to a predetermined position of the secondary battery 10 and sends a voltage corresponding to the measured battery temperature BT to the battery ECU 50. The voltage sensor 16 is connected so as to be able to output the voltage between the terminals of the secondary battery 10 and / or the output voltage of each cell constituting the secondary battery 10, and the battery ECU 50 outputs a voltage corresponding to the measured battery voltage BV. To send. The current sensor 18 is arranged in the current input / output path of the secondary battery 10 and sends a voltage corresponding to the input / output current Bi of the secondary battery 10 to the battery ECU 50. Thereby, the battery ECU 50 can receive the battery temperature BT, the battery voltage BV, and the battery current Bi as sensor detection values.

バッテリECU50は、上記センサ検出値に基づく制御パラメータ学習によって二次電池10の内部状態推定を行ない、電池状態量であるSOC、入出力可能な電力量の設定値である入力可能電力値Pinおよび出力可能電力値Poutを算出する。バッテリECU50によって推定されたこれらの電池状態量は制御回路25へ送出される。   The battery ECU 50 estimates the internal state of the secondary battery 10 by learning the control parameter based on the sensor detection value, and the SOC that is the battery state amount, the input possible power value Pin that is the set value of the input / output power amount, and the output The possible power value Pout is calculated. These battery state quantities estimated by the battery ECU 50 are sent to the control circuit 25.

制御回路25は、電源システム5が搭載されたハイブリッド自動車への操作指令が達成されるように、バッテリECU50によって推定された二次電池10の状態量(SOC,Pin,Pout)を考慮した上で、負荷20に適宜配設されたのセンサからの出力に応じて負荷20を構成するDC/DCコンバータ30およびインバータ40の制御指示を生成する。これにより、二次電池10と負荷20との間では、入力可能電力値Pinおよび出力可能電力値Poutに従った範囲内で電力授受が行なわれる。   The control circuit 25 considers the state quantities (SOC, Pin, Pout) of the secondary battery 10 estimated by the battery ECU 50 so that an operation command to the hybrid vehicle on which the power supply system 5 is mounted is achieved. Control instructions for the DC / DC converter 30 and the inverter 40 constituting the load 20 are generated in accordance with the output from the sensor appropriately disposed on the load 20. As a result, power is transferred between the secondary battery 10 and the load 20 within a range according to the input possible power value Pin and the output possible power value Pout.

図2は、図1に示したバッテリECU50による二次電池の内部状態推定を説明する機能ブロック図である。   FIG. 2 is a functional block diagram for explaining internal state estimation of the secondary battery by the battery ECU 50 shown in FIG.

図2を参照して、二次電池内部状態推定システム100は、パラメータ同定部110と、状態量推定部120と、同定度判定部130、状態量修正部140と、制限切換部150とを備える。二次電池内部状態推定システム100による制御動作は、バッテリECU50が所定プログラムに従った制御演算処理を実行することにより実現される。   Referring to FIG. 2, secondary battery internal state estimation system 100 includes a parameter identification unit 110, a state quantity estimation unit 120, an identification degree determination unit 130, a state quantity correction unit 140, and a limit switching unit 150. . The control operation by the secondary battery internal state estimation system 100 is realized by the battery ECU 50 executing a control calculation process according to a predetermined program.

パラメータ同定部110は、センサ15,16,18によるセンサ検出値であるバッテリ電流Bi,バッテリ温度BT,バッテリ電圧BVを受けて、二次電池10の制御パラメータCprを同定する。   The parameter identification unit 110 receives the battery current Bi, the battery temperature BT, and the battery voltage BV that are sensor detection values by the sensors 15, 16, and 18 and identifies the control parameter Cpr of the secondary battery 10.

制御パラメータCprは、たとえば図3に示した二次電池10の等価回路における、開路電圧V0、内部抵抗R1,R2、分極電圧を発生する内部容量C1等の物理的回路定数に対応する。あるいは、これらのセンサ検出値の時間経過に伴う変化を反映した、バッテリ電流に対するSOCや出力電圧の変化量といったマクロ的なパラメータ(ΔBV/ΔBi、ΔSOC/ΔBi)等を制御パラメータCprとすることもできる。これらの制御パラメータCprは、温度変化等の使用状態変化に応じて時々刻々変化するため、二次電池内部状態推定システム100には、パラメータ同定による学習制御が必要となる。   The control parameter Cpr corresponds to physical circuit constants such as the open circuit voltage V0, the internal resistances R1 and R2, and the internal capacitance C1 that generates the polarization voltage in the equivalent circuit of the secondary battery 10 shown in FIG. 3, for example. Alternatively, a macro parameter (ΔBV / ΔBi, ΔSOC / ΔBi) such as a change amount of the SOC with respect to the battery current or an output voltage reflecting a change with time of these sensor detection values may be used as the control parameter Cpr. it can. Since these control parameters Cpr change from moment to moment according to changes in use state such as temperature changes, the secondary battery internal state estimation system 100 requires learning control by parameter identification.

制御パラメータ同定は、適応ディジタルフィルタ、カルマンフィルタ等の周知の任意の手法に基づいて実行可能である。また、どのような変数を制御パラメータとするかについても特に限定されることはない。   The control parameter identification can be performed based on any known method such as an adaptive digital filter or a Kalman filter. Also, there is no particular limitation on what variable is used as the control parameter.

パラメータ同定部110は、センサ15,16,18からのセンサ出力値の入力に応じて、学習リセット指示の入力時には、制御パラメータ同定を一旦リセットして、これらの制御パラメータを初期値に設定する。なお、学習リセット指示は、代表的には、メンテナンス等による二次電池10の交換や取外し時や、バッテリECU50の電源断等によるバッテリECU50の動作初期化時等に発生される。   In response to input of sensor output values from the sensors 15, 16, and 18, the parameter identification unit 110 temporarily resets the control parameter identification and sets these control parameters to initial values when a learning reset instruction is input. The learning reset instruction is typically generated when the secondary battery 10 is replaced or removed for maintenance or when the operation of the battery ECU 50 is initialized due to power interruption of the battery ECU 50 or the like.

状態量推定部120は、パラメータ同定部110によって学習された制御パラメータCprを用いて、二次電池10の状態量を推定する。状態量推定部120によって推定される二次電池10の状態量としては、上述のように、SOC、入力可能電力値Pinおよび出力可能電力値Poutが少なくとも含まれる。   The state quantity estimation unit 120 estimates the state quantity of the secondary battery 10 using the control parameter Cpr learned by the parameter identification unit 110. As described above, the state quantity of the secondary battery 10 estimated by the state quantity estimation unit 120 includes at least the SOC, the input possible power value Pin, and the output possible power value Pout.

なお、上記のように、ハイブリッド自動車等の車両では、車両に搭載できる電池量が限られるため、二次電池の限界性能を引出すことが要求される。このため、状態量推定部120による入出力可能電力値Pin,Poutの設定については、二次電池10の限界性能を引出すように行なわれる。   As described above, in a vehicle such as a hybrid vehicle, since the amount of battery that can be mounted on the vehicle is limited, it is required to draw out the limit performance of the secondary battery. For this reason, the setting of the input / output possible power values Pin and Pout by the state quantity estimation unit 120 is performed so as to draw out the limit performance of the secondary battery 10.

同定度判定部130は、パラメータ同定部110によって同定された制御パラメータCprを逐次監視し、制御パラメータ同定の完了度を判定する。特に、同定度判定部130は、学習リセット指示入力後に、制御パラメータの同定度が所定以上に達して、学習リセットにより制御パラメータの同定精度が低下した初期学習状態を脱したどうかについて判定する。この判定は、たとえば、(i)学習リセット指示入力からの経過時間が所定値を超えたか、あるいは(ii)学習リセット指示入力後に二次電池10への入出力電流積算量(|Bi|の積算値)が所定値を超えたかどうかによって行なわれる。あるいは、(iii)単位時間当たりまたは単位入出力電流積算量当たりの制御パラメータCprの変化量が、所定量または所定割合以下に収束しているかどうかによっても上記判定を行なうこともできる。また、上記(i)〜(iii)の判定条件を適宜組み合わせて、同定度判定部130による判定を行なってもよい。すなわち、同定度判定部130で評価される同定度は、上記(i)〜(iii)を定量的に示すデータ(経過時間、入出力電流積算量、制御パラメータ変化量等)によって示される。   The identification degree determination unit 130 sequentially monitors the control parameter Cpr identified by the parameter identification unit 110 and determines the degree of completion of control parameter identification. In particular, the identification degree determination unit 130 determines whether or not the identification degree of the control parameter has reached a predetermined level or more after the learning reset instruction is input and the initial learning state in which the identification accuracy of the control parameter has decreased due to the learning reset has been removed. This determination is made, for example, by (i) the elapsed time from the learning reset instruction input exceeding a predetermined value, or (ii) the integrated input / output current amount (| Bi |) to the secondary battery 10 after the learning reset instruction is input. Value) exceeds a predetermined value. Alternatively, (iii) the above determination can also be made based on whether or not the change amount of the control parameter Cpr per unit time or per unit input / output current integrated amount converges to a predetermined amount or a predetermined ratio or less. Further, the determination by the identification degree determination unit 130 may be performed by appropriately combining the determination conditions (i) to (iii). That is, the degree of identification evaluated by the degree-of-identification determination unit 130 is indicated by data (elapsed time, input / output current integrated amount, control parameter change amount, etc.) quantitatively indicating the above (i) to (iii).

制限切換部150は、同定度判定部130の判定結果に従って、状態量推定部120によって推定された状態量を制御回路25へ出力する経路P1およびP2の一方を選択する。経路P1は、制御パラメータの初期学習状態時に選択される。経路P1の選択時には、状態量推定部120によって推定された状態量は、状態量修正部140によって修正された後に制御回路25へ送出される。   Restriction switching unit 150 selects one of paths P1 and P2 for outputting the state quantity estimated by state quantity estimation unit 120 to control circuit 25 according to the determination result of identification degree determination unit 130. The path P1 is selected in the initial learning state of the control parameter. When the route P1 is selected, the state quantity estimated by the state quantity estimation unit 120 is corrected by the state quantity correction unit 140 and then sent to the control circuit 25.

状態量修正部140は、状態量推定部120で推定した状態量のうち、少なくとも入出力可能電力量(Pin,Pout)を制限するような修正を加える。   The state quantity correction unit 140 adds a correction that limits at least the input / output power amount (Pin, Pout) among the state quantities estimated by the state quantity estimation unit 120.

状態量修正部140における入出力可能電力量制限は、たとえば下記(1)式に示されるように、状態量推定部120によって推定された入出力可能電力値Pin♯,Pout♯を所定の制限係数k(0<k<1.0)に従った割合で小さくすることによって行なわれる。   For example, as shown in the following equation (1), the input / output possible power values Pin # and Pout # estimated by the state quantity estimation unit 120 are set as predetermined limit coefficients. This is performed by decreasing the ratio according to k (0 <k <1.0).

Pin=Pin♯・(1−k),Pout=Pout♯・(1−k)…(1)
あるいは、状態量修正部140は、所定の制限量ΔPin,ΔPoutを用いて、下記(2)式に従って、入出力可能電力量を制限することとしてもよい。
Pin = Pin # · (1-k), Pout = Pout # · (1-k) (1)
Alternatively, the state quantity correction unit 140 may limit the input / output possible power amount according to the following equation (2) using the predetermined limit amounts ΔPin and ΔPout.

Pin=Pin♯−ΔPin,Pout=Pout♯−ΔPout…(2)
また、状態量修正部140において、制御パラメータが初期学習状態用の固定的な制限値(所定値)を記憶しておき、状態量推定部120によって算出された入出力可能電力に代えて、固定された制限値を制御回路25へ出力する構成とすることも可能である。
Pin = Pin # −ΔPin, Pout = Pout # −ΔPout (2)
Further, in the state quantity correction unit 140, the control parameter stores a fixed limit value (predetermined value) for the initial learning state, and is fixed instead of the input / output possible power calculated by the state quantity estimation unit 120. It is also possible to output the limited value to the control circuit 25.

一方、経路P2は、制御パラメータが初期学習状態を脱した場合(すなわち通常学習状態時)時に選択される。経路P2の選択時には、状態量修正部140を介することなく状態量推定部120によって推定された状態量が制御回路25へ出力される。   On the other hand, the path P2 is selected when the control parameter leaves the initial learning state (that is, in the normal learning state). When the route P2 is selected, the state quantity estimated by the state quantity estimation unit 120 without being passed through the state quantity correction unit 140 is output to the control circuit 25.

図4は、本発明の実施の形態に従う二次電池の制御装置による制御パラメータを含む学習制御を説明するフローチャートである。   FIG. 4 is a flowchart illustrating learning control including control parameters by the secondary battery control device according to the embodiment of the present invention.

図4のフローチャートは、図2に示した二次電池内部状態推定システム100による制御動作に対応している。   The flowchart of FIG. 4 corresponds to the control operation by the secondary battery internal state estimation system 100 shown in FIG.

図4を参照して、バッテリECU50は、ステップS100では、学習リセット指示が有るかどうかを判定する。そして、学習リセット指示が有る場合(ステップS100におけるYES判定時)には、ステップS110により、制御パラメータCprが初期学習状態であることを示す初期同定中フラグをオンする。なお、学習リセット指示が一旦発生された後は、ステップS100はNO判定となり、ステップS110はスキップされる。   Referring to FIG. 4, battery ECU 50 determines in step S100 whether there is a learning reset instruction. When there is a learning reset instruction (when YES is determined in step S100), an initial identifying flag indicating that the control parameter Cpr is in the initial learning state is turned on in step S110. After the learning reset instruction is generated once, step S100 is NO and step S110 is skipped.

バッテリECU50は、ステップS120では、初期同定中フラグがオンであるかどうかを判定する。そして、初期同定中フラグがオンであり(ステップS120のYES判定時)、制御パラメータCprが初期学習状態である場合には、ステップS130により、入出力電力量制限を実施するように、入出力可能電力値Pin,Poutを修正する。これは、図2における経路P1選択時の動作に対応し、ステップS130での処理は、図2での状態量修正部140の動作に対応する。   In step S120, battery ECU 50 determines whether or not the initial identification flag is on. When the initial identification flag is on (when YES is determined in step S120) and the control parameter Cpr is in the initial learning state, input / output is possible so that the input / output power amount is limited in step S130. The power values Pin and Pout are corrected. This corresponds to the operation when the route P1 is selected in FIG. 2, and the processing in step S130 corresponds to the operation of the state quantity correction unit 140 in FIG.

一方、初期同定中フラグがオフである場合、すなわちステップS120がNO判定である場合は、図2における経路P1選択時の動作に対応し、ステップS130はスキップされて入出力可能電力量の制限(入出力可能電力値Pin、Poutの修正)は実施されない。   On the other hand, when the initial identification flag is off, that is, when the determination at step S120 is NO, the operation at the time of selecting the route P1 in FIG. The correction of the input / output possible power values Pin and Pout) is not performed.

図2のパラメータ同定部110による制御パラメータ同定は、ステップS140に逐次実行される。   The control parameter identification by the parameter identification unit 110 in FIG. 2 is sequentially executed in step S140.

さらに、初期同定中フラグがオンの状態から、ステップS140による今回の同定処理により、同定度判定部130が初期学習状態を脱したと判定すると、バッテリECU50は、ステップS150をYES判定とする。この場合には、バッテリECU50は、ステップS160により、入出力可能電力量の制限を解除する。すなわち、ステップS160による処理は、図2の制限切換部が経路P1から経路P2へ選択を切換える動作に対応する。   Further, when the identification degree determination unit 130 determines that the initial learning state has left the initial learning state by the current identification processing in step S140 from the state where the initial identification flag is on, the battery ECU 50 determines YES in step S150. In this case, battery ECU 50 releases the restriction on the input / output possible electric energy in step S160. That is, the process in step S160 corresponds to an operation in which the limit switching unit in FIG. 2 switches the selection from the path P1 to the path P2.

また、バッテリECU50は、ステップS160により、初期同定中フラグをオンからオフへ切換える。これにより、以降での制御パラメータCprの通常学習状態時には、ステップS120,S160はスキップされて、入出力可能電力量の制限は実行されない。すなわち、図2の状態量推定部120によって制御パラメータCprを用いて推定された入出力可能電力値Pin,Poutが採用される。   Further, in step S160, battery ECU 50 switches the initial identification flag from on to off. As a result, in the subsequent normal learning state of the control parameter Cpr, steps S120 and S160 are skipped, and the input / output possible power amount is not limited. That is, the input / output possible power values Pin and Pout estimated by the state quantity estimation unit 120 of FIG. 2 using the control parameter Cpr are employed.

一方、初期同定中フラグがオンであり、かつ、今回のステップS140による同定処理後にも初期学習状態を脱していない場合には、ステップS160がスキップされることによい、ステップS130による入出力可能電力量の制限が有効とされる。   On the other hand, if the initial identification flag is on and the initial learning state has not been left even after the current identification processing in step S140, step S160 can be skipped. A quantity limit is valid.

このような構成とすることにより、学習リセット直後の初期学習状態時に代表される、制御パラメータの同定精度の低下時に、入出力可能電力量を通常よりも小さい値に制限することができる。これにより、電池状態量の推定精度劣化が懸念される期間に、二次電池を過酷な条件で動作させる危険性が低くなり電池寿命の低下を防止することができる。   With such a configuration, it is possible to limit the amount of power that can be input / output to a value smaller than usual when the control parameter identification accuracy is reduced, which is represented in the initial learning state immediately after the learning reset. As a result, the risk of operating the secondary battery under harsh conditions is reduced during the period when there is a concern about the deterioration of the estimation accuracy of the battery state quantity, and the battery life can be prevented from decreasing.

なお、図4のステップS160における、入出力電力(Pin,Pout)の制限解除については、図5に示すような方式で行なうこともできる。   Note that the restriction cancellation of the input / output power (Pin, Pout) in step S160 of FIG. 4 can also be performed by the method shown in FIG.

図5を参照して、初期同定フラグのオン中(初期学習状態時)には、ステップS140(すなわち図2の状態量修正部140)によって、入出力可能電力値Pin,Poutは、所定の制限状態とされている。   Referring to FIG. 5, when the initial identification flag is on (in the initial learning state), input / output possible power values Pin and Pout are set to predetermined limits by step S140 (that is, state quantity correction unit 140 in FIG. 2). It is in a state.

そして、初期同定フラグがオンからオフに変化したときに、入出力可能電力量の制限を即座に解除して「制限無」の状態とするのではなく、初期同定フラグのオフ遷移時からの時間経過あるいは入出力電流の積算量の増加に応じて、制限状態を徐々に解除する。なお、実線で示すように、経過時間あるいは電流積算値の増加に応じて連続的に制限を徐々に解除してもよく、また、点線で示されるように段階的に制限を解除してもよい。なお、このような制限状態の調整は、たとえば式(1)中における制限係数kや、式(2)中における制限量ΔPin,ΔPoutを徐々に変化させることと等価である。すなわち、制限無の状態とは、式(1)におけるk=0あるいは、式(2)におけるΔPin=ΔPout=0の状態に対応する。   Then, when the initial identification flag changes from on to off, the time from the initial transition of the initial identification flag to the off state is not used instead of immediately releasing the restriction on the input / output power amount and setting it to the “unlimited” state. The restriction state is gradually released as time passes or the integrated amount of input / output current increases. As indicated by the solid line, the restriction may be gradually released continuously as the elapsed time or the current integrated value increases, or the restriction may be released stepwise as indicated by the dotted line. . Such adjustment of the limit state is equivalent to, for example, gradually changing the limit coefficient k in equation (1) and the limit amounts ΔPin and ΔPout in equation (2). That is, the unrestricted state corresponds to the state of k = 0 in the equation (1) or ΔPin = ΔPout = 0 in the equation (2).

図5に示すように、初期学習状態の終了時に入出力可能電力量の制限を徐々に解除とする構成とすることにより、二次電池の使用状態が急激に変化することを防止できる。   As shown in FIG. 5, by using a configuration in which the restriction on the input / output possible electric energy is gradually released at the end of the initial learning state, it is possible to prevent the usage state of the secondary battery from changing abruptly.

なお、図5に示すような入出力可能電力量の制限解除制御を行なうためには、図4のフローチャートにおいて、ステップS150がYES判定となった場合には、その後の所定期間(すなわち、経過時間が所定以上または電流積算量が所定以上となるまでの期間)において、図5に従った入出力可能電力値Pin,Poutの制限を行なう制御構成とすることが必要である。なお、図2のブロック図では、経路P2に、図5に示すような入出力可能電力量の制限を行なうための制限解除部(図示せず)を挿入することにより、上記のような入出力可能電力量の制限解除制御が可能となる。   In order to perform the restriction release control of the input / output possible electric energy as shown in FIG. 5, when step S150 is determined as YES in the flowchart of FIG. 5 is a predetermined period or a period until the current integrated amount exceeds a predetermined value), it is necessary to adopt a control configuration that limits the input / output possible power values Pin and Pout according to FIG. In the block diagram of FIG. 2, the input / output as described above is inserted into the path P2 by inserting a restriction release unit (not shown) for limiting the amount of power that can be input / output as shown in FIG. The restriction release control of the possible electric energy becomes possible.

なお、本実施の形態では、二次電池に電流センサ、電圧センサおよび温度センサからのセンサ出力により制御パラメータ同定および電池状態推定を行なう構成を例示したが、他センサからの出力をさらに用いる構成としてもよい。   In the present embodiment, the configuration in which the control parameters are identified and the battery state is estimated based on the sensor outputs from the current sensor, the voltage sensor, and the temperature sensor is illustrated for the secondary battery. However, the configuration further uses outputs from other sensors. Also good.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に従う二次電池の制御装置が適用される電源システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the power supply system with which the control apparatus of the secondary battery according to embodiment of this invention is applied. 図1に示したバッテリECUによる二次電池の内部状態推定を説明する機能ブロック図である。FIG. 2 is a functional block diagram for explaining internal state estimation of a secondary battery by the battery ECU shown in FIG. 1. 二次電池の等価回路の一例を示す回路図である。It is a circuit diagram which shows an example of the equivalent circuit of a secondary battery. 本発明の実施の形態に従う二次電池の制御装置における制御パラメータ学習制御を説明するフローチャートである。It is a flowchart explaining the control parameter learning control in the control apparatus of the secondary battery according to the embodiment of the present invention. 入出力電力制限解除時の制御動作のバリエーションを説明する図である。It is a figure explaining the variation of control operation at the time of cancellation of input-output electric power restriction.

符号の説明Explanation of symbols

5 電源システム、10 二次電池、15 温度センサ、16 電圧センサ、18 電流センサ、20 負荷、22,24 リレー、25 制御回路、30 DC/DCコンバータ、40 インバータ、45 モータジェネレータ、50 バッテリECU、110 パラメータ同定部、120 状態量推定部、130 同定度判定部、140 状態量修正部、150 制限切換部、Bi バッテリ電流(入出力電流)、BT バッテリ温度、BV バッテリ電圧、C1 内部容量(二次電池)、Cpr 制御パラメータ、DWH 駆動輪、k 入出力可能電力制限係数、P1,P2 経路、Pin 入力可能電力、Pout 出力可能電力、R1,R2 内部抵抗(二次電池)、SR リレー制御信号、V0 開路電圧(二次電池)、ΔPin,ΔPout 入出力可能電力制限量。   5 Power system, 10 Secondary battery, 15 Temperature sensor, 16 Voltage sensor, 18 Current sensor, 20 Load, 22, 24 Relay, 25 Control circuit, 30 DC / DC converter, 40 Inverter, 45 Motor generator, 50 Battery ECU, 110 parameter identification unit, 120 state quantity estimation unit, 130 identification degree determination unit, 140 state quantity correction unit, 150 limit switching unit, Bi battery current (input / output current), BT battery temperature, BV battery voltage, C1 internal capacity (two Secondary battery), Cpr control parameter, DWH drive wheel, k I / O power limit factor, P1, P2 path, Pin input power, Pout output power, R1, R2 internal resistance (secondary battery), SR relay control signal , V0 open circuit voltage (secondary battery), ΔPin, ΔPout Noh power limit amount.

Claims (4)

二次電池に設けられたセンサからの検出値に基づく前記二次電池の制御パラメータ同定によって、前記二次電池の入出力可能電力量を設定する状態量推定手段と、
前記制御パラメータの同定度を判定する判定手段と、
前記判定手段による判定結果に応じて、前記入出力可能電力量を前記状態量推定部による設定値よりも小さく制限する状態量修正手段とを備える、二次電池の制御装置。
A state quantity estimating means for setting an input / output possible electric energy of the secondary battery by identifying a control parameter of the secondary battery based on a detection value from a sensor provided in the secondary battery;
Determining means for determining the degree of identification of the control parameter;
A control apparatus for a secondary battery, comprising: a state quantity correction unit that limits the input / output possible power amount to be smaller than a set value by the state quantity estimation unit according to a determination result by the determination unit.
前記状態量修正手段は、前記制御パラメータの学習リセット指示の発生から、前記判定手段によって前記制御パラメータの同定度が所定以上に達したと判定されるまでの間、前記入出力可能電力量を前記状態量推定部による設定値よりも制限する、請求項1記載の二次電池の制御装置。   The state quantity correction means sets the input / output possible electric energy from the generation of the learning reset instruction of the control parameter until the determination means determines that the identification degree of the control parameter has reached a predetermined level or more. The control device for a secondary battery according to claim 1, wherein the control is limited more than a set value by the state quantity estimation unit. 前記制御パラメータ学習のリセット指示後、前記判定手段によって前記制御パラメータの同定度が所定以上に達したと判定されたときに、前記状態量修正手段による前記入出力可能電力量の制限を時間経過または前記二次電池の入出力電流積算量の増加に応じて徐々に解除する制限解除制御手段をさらに備える、請求項2記載の二次電池の制御装置。   After the instruction to reset the control parameter learning, when the determination unit determines that the identification degree of the control parameter has reached a predetermined level or more, the state quantity correction unit limits the input / output possible power amount over time. The secondary battery control device according to claim 2, further comprising restriction release control means for gradually releasing the input / output current integrated amount of the secondary battery according to an increase. 前記二次電池は、車両駆動力を発生する電動機を備える車両に搭載されて、前記電動機の電源として用いられる、請求項1から3のいずれか1項に記載の二次電池の制御装置。   4. The secondary battery control device according to claim 1, wherein the secondary battery is mounted on a vehicle including an electric motor that generates a vehicle driving force and is used as a power source of the electric motor. 5.
JP2005138419A 2005-05-11 2005-05-11 Secondary battery control device Active JP4207925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138419A JP4207925B2 (en) 2005-05-11 2005-05-11 Secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138419A JP4207925B2 (en) 2005-05-11 2005-05-11 Secondary battery control device

Publications (2)

Publication Number Publication Date
JP2006320069A true JP2006320069A (en) 2006-11-24
JP4207925B2 JP4207925B2 (en) 2009-01-14

Family

ID=37540218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138419A Active JP4207925B2 (en) 2005-05-11 2005-05-11 Secondary battery control device

Country Status (1)

Country Link
JP (1) JP4207925B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312391A (en) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd Battery control unit
WO2009022241A1 (en) * 2007-08-10 2009-02-19 Sony Ericsson Mobile Communications Ab Battery short circuit monitoring
WO2009054318A1 (en) * 2007-10-22 2009-04-30 Toyota Jidosha Kabushiki Kaisha Battery control device and control method
WO2011135690A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Control device for electricity storage device and vehicle for mounting same
WO2012176275A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車株式会社 Device for charging storage device and vehicle mounting same
JP2015012676A (en) * 2013-06-28 2015-01-19 株式会社日立製作所 Automatic train operation device
WO2018147046A1 (en) * 2017-02-10 2018-08-16 本田技研工業株式会社 Storage battery management system, mobile body, storage battery, and storage battery management method
US10381931B2 (en) 2017-12-08 2019-08-13 Toyota Jidosha Kabushiki Kaisha Control system of boost converter and control method thereof
JP2020202731A (en) * 2019-06-13 2020-12-17 本田技研工業株式会社 Control apparatus, control method, and program

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312391A (en) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd Battery control unit
WO2009022241A1 (en) * 2007-08-10 2009-02-19 Sony Ericsson Mobile Communications Ab Battery short circuit monitoring
US8120325B2 (en) 2007-08-10 2012-02-21 Sony Ericsson Mobile Communications Ab Battery short circuit monitoring
WO2009054318A1 (en) * 2007-10-22 2009-04-30 Toyota Jidosha Kabushiki Kaisha Battery control device and control method
WO2011135690A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Control device for electricity storage device and vehicle for mounting same
US9007028B2 (en) 2010-04-28 2015-04-14 Toyota Jidosha Kabushiki Kaisha Control device for electric power storage device and vehicle equipped with the same
JP5459394B2 (en) * 2010-04-28 2014-04-02 トヨタ自動車株式会社 Storage device control device and vehicle equipped with the same
JP5664780B2 (en) * 2011-06-21 2015-02-04 トヨタ自動車株式会社 Charging device for power storage device and vehicle equipped with the same
WO2012176275A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車株式会社 Device for charging storage device and vehicle mounting same
JP2015012676A (en) * 2013-06-28 2015-01-19 株式会社日立製作所 Automatic train operation device
WO2018147046A1 (en) * 2017-02-10 2018-08-16 本田技研工業株式会社 Storage battery management system, mobile body, storage battery, and storage battery management method
CN110235335A (en) * 2017-02-10 2019-09-13 本田技研工业株式会社 Battery management system, moving body, battery and accumulator cell management method
JPWO2018147046A1 (en) * 2017-02-10 2019-11-07 本田技研工業株式会社 Storage battery management system, mobile body, storage battery, and storage battery management method
US11108092B2 (en) 2017-02-10 2021-08-31 Honda Motor Co., Ltd. Storage battery management system, moving body, storage battery, and storage battery management method
CN110235335B (en) * 2017-02-10 2023-06-16 本田技研工业株式会社 Battery management system, mobile body, and battery management method
US10381931B2 (en) 2017-12-08 2019-08-13 Toyota Jidosha Kabushiki Kaisha Control system of boost converter and control method thereof
JP2020202731A (en) * 2019-06-13 2020-12-17 本田技研工業株式会社 Control apparatus, control method, and program
JP7271328B2 (en) 2019-06-13 2023-05-11 本田技研工業株式会社 Control device, control method, and program

Also Published As

Publication number Publication date
JP4207925B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4207925B2 (en) Secondary battery control device
JP4075762B2 (en) Apparatus and method for calculating remaining capacity in secondary battery
JP4494453B2 (en) Secondary battery control device and control method
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP4722976B2 (en) Storage capacity controller
JP4039355B2 (en) Secondary battery control device and control method
JP4978662B2 (en) CHARGE STATE ESTIMATION DEVICE AND CHARGE STATE ESTIMATION METHOD
JP4967362B2 (en) Secondary battery remaining capacity estimation device
JP4649101B2 (en) Secondary battery status detection device and status detection method
JP5009721B2 (en) Secondary battery charge state estimation device and program
JP6822300B2 (en) Charge rate estimation method and in-vehicle battery system
JP2012029455A (en) Device and method of controlling vehicle
JP2007292666A (en) Device for estimating charged state of secondary battery
JP6812898B2 (en) Vehicle charging system
JP6834757B2 (en) Battery system
JP2000069606A (en) Battery control unit
JP2018202989A (en) Automatic driving control device and automatic driving control method
JP2019149921A (en) Vehicle control device
JP4866156B2 (en) Secondary battery charge state estimation device, charge state estimation method, and program
JP5803518B2 (en) Vehicle and vehicle control method
JP5090865B2 (en) Electromotive force calculation device and charging state estimation device
US10024925B2 (en) Control system for battery
JP4548343B2 (en) Battery control device, electric vehicle, and charging / discharging power determination method
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP2001147260A (en) Remaining capacity detecting device for accumulator battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R151 Written notification of patent or utility model registration

Ref document number: 4207925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5