JP2006316617A - Seismic isolating foundation structure for lightweight construction - Google Patents

Seismic isolating foundation structure for lightweight construction Download PDF

Info

Publication number
JP2006316617A
JP2006316617A JP2006169338A JP2006169338A JP2006316617A JP 2006316617 A JP2006316617 A JP 2006316617A JP 2006169338 A JP2006169338 A JP 2006169338A JP 2006169338 A JP2006169338 A JP 2006169338A JP 2006316617 A JP2006316617 A JP 2006316617A
Authority
JP
Japan
Prior art keywords
base
building
bottom plate
isolator
structure support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006169338A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawachi
保弘 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARP KK
Original Assignee
ARP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARP KK filed Critical ARP KK
Priority to JP2006169338A priority Critical patent/JP2006316617A/en
Publication of JP2006316617A publication Critical patent/JP2006316617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic isolating lightweight construction capable of conforming to a building height limit prescribed in a conventional building code imposing a certain height limit from a ground surface for a lightweight construction intended to be built on a land subject to the height limit imposed by the building code when building a seismic isolating building adopting an isolator or a lead damper adopted together with the other isolator, thereby allowing to increase the ceiling height of a rooms the height of an underfloor space or heights of closets and shelves for increasing their storing capacities even though the height limit imposed by the conventional building code is strictly applicable. <P>SOLUTION: In a seismic isolating foundation structure for a lightweight construction having the isolator or the damper combined with the other isolator between a bottom slab supporting the structure (or beams supporting the structure) and a structural foundation slab built underneath them in the ground, the bottom slab which supports the structure is built with heavy concrete having a specific gravity of 2.6 to 4.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量建造物の免震構造に関し、特にアイソレータ単独を用いてなる又はアイソレータと鉛ダンパーを併用してなる免震構造において、改善された軽量建造物の免震基礎構造の提供に関する。   The present invention relates to a seismic isolation structure for a lightweight building, and more particularly, to an improved seismic isolation base structure for a lightweight building in an isolation system using an isolator alone or a combination of an isolator and a lead damper.

近年、地震による震害が大きくならないために、建造物に耐震対策がなされている。耐震対策の主なものとして、地震の際、地盤より受ける建造物の揺れを低減するために、建造物と地盤との間に免震層を設ける方法が挙げられる。前記免震層には、アイソレータ及びダンパーが設けられる。前記アイソレータは、建造物荷重の支持能力、水平変形能力、復元性能、耐久性を具備した積層ゴムで構成されるものであり、前記ダンパーは、免震層の最大変形を制御し、振動の早期収束のために用いられる弾塑性型の鉛や鋼材により構成されるものである。   In recent years, earthquake resistance measures have been taken on buildings in order to prevent earthquake damage. As a major measure of earthquake resistance, there is a method of providing a seismic isolation layer between the building and the ground in order to reduce the shaking of the building received from the ground during an earthquake. The seismic isolation layer is provided with an isolator and a damper. The isolator is composed of a laminated rubber having a building load support capacity, horizontal deformation capacity, restoration performance, and durability, and the damper controls the maximum deformation of the seismic isolation layer to prevent early vibration. It is composed of elasto-plastic type lead or steel used for convergence.

建物を免震にする免震基礎構造としては、上層基礎(構造物支持底板又は/及び構造物支持梁)と下層基礎(基礎構造板又は基礎構造梁)との間に、前述のように免震層(好ましくは積層ゴムとダンパーを併用)を設ける構造がある。
一般に建造物の地盤から受ける震動は、建造物の質量と剛性から決まる特定の周期をもって震動する。固有周期は、建造物の自由度と同じ数だけ存在し、最も長い固有周期は1次固有周期と呼ばれる。しかるに、建造物の固有周期と外力の周期が近似となると共振が起きることになる。非減衰ばね質量系において、水平方向の1次固有周期Tfは、建造物全体の質量と、免震部材の水平剛性により決まり、下記数式1で示される。
As described above, the seismic isolation base structure that isolates the building is exempted between the upper layer foundation (structure support bottom plate and / or structure support beam) and the lower layer foundation (base structure plate or foundation structure beam) as described above. There is a structure in which a seismic layer (preferably a combination of laminated rubber and a damper) is provided.
Generally, the vibration received from the ground of a building vibrates with a specific period determined by the mass and rigidity of the building. There are as many natural periods as the number of degrees of freedom of the building, and the longest natural period is called the primary natural period. However, resonance occurs when the natural period of the building and the period of the external force are approximate. In the non-damped spring mass system, the primary natural period Tf in the horizontal direction is determined by the mass of the entire building and the horizontal rigidity of the seismic isolation member, and is expressed by the following mathematical formula 1.

図3は過去の地震の周期と絶対加速度の関係を示すグラフ図(絶対加速度応答スペクトル(応答スペクトルともいう))図であり、ある固有周期(Tf)と減衰定数を持つ構造物がその地震動に対してどのような応答加速度になるかが予測できる。
図3から見て、免震層がもつ固有周期によりその建物の応答は、周期が2秒間以上になると過去の大地震においても相当に応答値が下がり4秒間の長さとなると、地震加速度が大幅に低下する。そこで、従来、免震装置によって固有周期を長くすることで建造物へ加わる加速度を低減している。
しかるに、住宅用建物などの軽量建造物は、一般に木造、軽量鉄骨等を用いたきわめて軽量の耐震建造物である。
したがって図2(b)に示すごとく、構造物支持底板又は構造物支持梁(コンクリート製の上部基礎コンクリート)1’の厚さh’を大きくして重量を稼がなければならない。しかしながら、そうすると、I)構造物支持底板は鉄筋コンクリート製でほぼ比重2.4でありその厚さh’を上方へ大きくすると、地域高度制限規定に抵触し、計画のような建物が建設不可能となるおそれが生じる。
また、図2(c)に示すごとく、地盤を一層掘り下げて基礎構造板2の地上からの深さを従来の深さd(図2(b))より一層深い深さd’として、構造物支持底板又は構造物支持梁1’の厚さh’を下方に大きくすると、
a)基礎構造板2面に溜まった水と生活排水を既存排水本管へ直接接続することが不可能となる。したがって既存本管へのポンプアップを余儀なくされる。
b)掘り下げによる掘削量とそれに伴う発生残土が多くなり、建設費が嵩む。という問題が生じる。
FIG. 3 is a graph showing the relationship between the period of past earthquakes and absolute acceleration (absolute acceleration response spectrum (also called response spectrum)), and a structure having a certain natural period (Tf) and attenuation constant is affected by the earthquake motion. The response acceleration can be predicted.
As can be seen from FIG. 3, the response of the building due to the natural period of the seismic isolation layer, when the period exceeds 2 seconds, the response value decreases considerably even in the past major earthquakes, and when the length is 4 seconds, the earthquake acceleration is greatly increased. To drop. Therefore, conventionally, the acceleration applied to the building is reduced by lengthening the natural period with the seismic isolation device.
However, a light building such as a residential building is generally an extremely light earthquake-resistant building using a wooden structure, a light steel frame, or the like.
Therefore, as shown in FIG. 2B, the thickness h ′ of the structure supporting bottom plate or the structure supporting beam (upper concrete concrete made of concrete) 1 ′ must be increased to gain weight. However, if I do so, I) the structure supporting bottom plate is made of reinforced concrete and has a specific gravity of 2.4. If its thickness h 'is increased upward, it will violate the local altitude restriction regulations and the building as planned cannot be constructed. May arise.
Further, as shown in FIG. 2 (c), the ground is further deepened so that the depth of the foundation structural plate 2 from the ground is set to a depth d 'deeper than the conventional depth d (FIG. 2 (b)). When the thickness h ′ of the support bottom plate or the structure support beam 1 ′ is increased downward,
a) It becomes impossible to directly connect the water collected on the two surfaces of the foundation structural plate and the domestic wastewater to the existing drainage main. Therefore, the pump up to the existing main is forced.
b) The amount of excavation due to drilling down and the resulting residual soil increase and construction costs increase. The problem arises.

本発明は前記問題の解決を目的とするものであって、下記構成の軽量建造物の免震基礎構造及び同免震基礎構造上に構築された免震軽量建造物である。
(1)構造物支持底板又は構造物支持梁と、その下方の地中に設けられた基礎構造板との間に、アイソレータが介設されてなる軽量建造物の免震基礎構造において、構造物支持底板を重量コンクリート製のもので構成してなることを特徴とする軽量建造物の免震基礎構造。
(2)構造物支持梁及び構造物支持底板と、その下方の地中に設けられた基礎構造板との間に、アイソレータが介設されてなる軽量建造物の免震基礎構造において、構造物支持梁及び構造物支持底板を重量コンクリート製のもので構成してなることを特徴とする軽量建造物の免震基礎構造。
(3)免震基礎構造が、構造物支持底板とその下方の地中に設けられた基礎構造板との間に、又は構造物支持梁及び構造物支持底板とその下方の地中に設けられた基礎構造板との間に、アイソレータ及びダンパーが介設されてなるものであることを特徴とする前記(1)又は(2)に記載の軽量建造物の免震基礎構造。
(4)重量コンクリートが、比重が2.6〜4.2であって、構造物支持底板の厚さが普通コンクリート製の場合の0.9〜0.6倍であることを特徴とする前記(1)〜(3)のいずれか1項に記載の軽量建造物の免震基礎構造。
(5)重量コンクリートが、水セメント比(W/C)が0.3〜1.0のセメントペースト100重量部に対して、酸化鉄系鉄鉱石細粒を含む細骨材100〜900重量部と酸化鉄系鉄鉱石粗粒を含む粗骨材800重量部以下とを加配・混合し、硬化してなる比重2.6〜4.2のものであることを特徴とする前記(1)〜(4)のいずれか1項に記載の軽量建造物の免震基礎構造。
(6)前記(1)〜(5)のいずれか1項に記載された免震基礎構造の上に軽量建造物が構築されてなることを特徴とする免震軽量建造物。
The present invention is intended to solve the above problems, and is a base-isolated base structure of a light-weight building having the following configuration and a base-isolated light-weight building constructed on the base-isolated base structure.
(1) In a base-isolated base structure of a lightweight building in which an isolator is interposed between a structure-supporting bottom plate or a structure-supporting beam and a foundation structure plate provided below the structure-supporting base plate. A base-isolated base structure for lightweight buildings, characterized in that the supporting bottom plate is made of heavy concrete.
(2) In a base-isolated base structure of a lightweight building in which an isolator is interposed between a structure support beam and a structure support bottom plate and a foundation structure plate provided below the structure support beam. A base-isolated base structure for a lightweight building, comprising a supporting beam and a structure supporting bottom plate made of heavy concrete.
(3) The seismic isolation base structure is provided between the structure support bottom plate and the foundation structure plate provided below the structure support beam, the structure support beam and the structure support bottom plate, and the ground below the structure support beam. The base isolation structure for a lightweight building according to (1) or (2) above, wherein an isolator and a damper are interposed between the base structure plate and the base structure plate.
(4) The heavy concrete has a specific gravity of 2.6 to 4.2, and the thickness of the structure supporting bottom plate is 0.9 to 0.6 times that of ordinary concrete. The base isolation structure for a lightweight building according to any one of (1) to (3).
(5) 100 to 900 parts by weight of fine aggregate containing iron oxide-based iron ore fine particles with respect to 100 parts by weight of cement paste having a water-cement ratio (W / C) of 0.3 to 1.0. And the specific gravity of 2.6 to 4.2, which is obtained by adding and mixing the coarse aggregate containing 800 parts by weight or less of the coarse aggregate containing iron oxide-based iron ore coarse particles, and hardening. (4) The base isolation structure of the lightweight building of any one of (4).
(6) A base-isolated light-weight building, wherein a light-weight building is constructed on the base-isolated base structure described in any one of (1) to (5) above.

上記のとおり、本発明の免震基礎構造によれば、簡単な構成により下記の優れた効果が発揮される。
(1)軽量建造物の高さが地面から一定距離に制限規定されている土地に軽量建造物を構築する際に、構造物支持底板の厚さを低減できるため、従来法では前記高さ制限をクリアできない場合でも、本発明の基礎構造によれば制限規定内でおさめることが可能となる。
(2)従来法では、高さ制限をクリアするため、地盤を掘り下げて基礎構造板を設けなければならなかったのを、その必要をなくすことができる。
(3)従来法の場合に比して、軽量建造物の高さを増大しても高さ制限に触れないため、例えば部屋の天井を高くでき又は床下を高くできあるいは押し入れや棚の高さを増大して収納容積を大きくすることが可能となる。
(4)従来法では、高さ制限をクリアできないためにアイソレータを使用できず免震構造にできない場合でも、アイソレータを使用できて免震軽量建造物を構築することが可能となる。
As described above, according to the base isolation structure of the present invention, the following excellent effects are exhibited with a simple configuration.
(1) When building a lightweight building on land where the height of the lightweight building is restricted to a certain distance from the ground, the thickness of the structure supporting bottom plate can be reduced. Even if it cannot be cleared, according to the basic structure of the present invention, it is possible to keep within the restriction rules.
(2) In the conventional method, in order to clear the height restriction, the necessity of digging the ground and providing the foundation structure plate can be eliminated.
(3) Compared to the conventional method, even if the height of the lightweight building is increased, the height restriction is not touched. For example, the ceiling of the room can be raised or the floor can be raised, or the height of the closet or the shelf. It is possible to increase the storage capacity by increasing.
(4) In the conventional method, even if the isolator cannot be used because the height restriction cannot be cleared and the seismic isolation structure cannot be obtained, the isolator can be used and a seismic isolation lightweight building can be constructed.

次ぎに、本願発明の実施の形態を、図面及び実施例に基づいて説明する。
図1は本発明の免震基礎構造と軽量建造物の説明図、図2は軽量建造物の免震基礎構造の要部説明図、図3は過去の地震の周期と絶対加速度の関係を示すグラフ図である。
図中、1、1’は構造物支持底板又は支持梁、2は基礎構造板又は基礎構造梁、3はアイソレーター、4は鉛ダンパー、5はぐり石であり、B、B’は軽量建造物、H、H’は軽量建造物の地上からの高さ、h、h’は構造物支持底板又は支持梁の厚さ、d、d’は基礎構造板又は基礎構造梁の深さである。
Next, an embodiment of the present invention will be described based on the drawings and examples.
FIG. 1 is an explanatory diagram of a base-isolated base structure and a lightweight building according to the present invention, FIG. 2 is an explanatory diagram of a main part of the base-isolated base structure of a lightweight building, and FIG. FIG.
In the figure, 1, 1 'is a structure supporting bottom plate or a supporting beam, 2 is a foundation structural plate or a foundation structural beam, 3 is an isolator, 4 is a lead damper, 5 is a gravel, B and B' are lightweight structures, H and H ′ are the height of the light building from the ground, h and h ′ are the thicknesses of the structure supporting bottom plate or the supporting beam, and d and d ′ are the depths of the foundation structural plate or the foundation structural beam.

本発明の軽量建造物の免震基礎構造は、図1に示すように、上部基礎である構造物支持底板1(さらに構造物支持梁を含んでもよい)とその下方の地中に設けられた下部基礎である基礎構造板又は基礎構造梁2との間に、アイソレータ3(又はアイソレータ3及び鉛ダンパー4)が介設されて構成されている。
また、本発明においては、従来例のごとく基礎構造板2が、前記構造物支持底板1の下方の地中にぐり石5を介して設けられている。
ここで、構造物支持底板1は、軽量建造物Bの構造物を直接支持する基礎のことである。
As shown in FIG. 1, the base-isolated base structure of the lightweight building according to the present invention is provided in a structure supporting bottom plate 1 (which may further include a structure supporting beam) which is an upper foundation and in the ground below it. An isolator 3 (or an isolator 3 and a lead damper 4) is interposed between the foundation structural plate or the foundation structural beam 2 as the lower foundation.
Moreover, in this invention, the foundation structure board 2 is provided in the ground below the said structure support bottom board 1 through the burdock 5 like the prior art example.
Here, the structure support bottom plate 1 is a foundation that directly supports the structure of the lightweight building B.

本発明では、特に上部基礎の構造物支持底板1(又は構造物支持梁と構造物支持底板)が重量コンクリート製のもので構成されている。
重量コンクリートは、例えば〈1〉水セメント比(W/C)が0.3〜1.0のセメントペースト100重量部に対して、〈2〉砂及び粒径5.0〜0.05mmの酸化鉄系鉄鉱石細粒で、かつ前記酸化鉄系鉄鉱石細粒の比重が2.9〜5.2であり、そして前記砂が0〜95重量%と酸化鉄系鉄鉱石細粒が100〜5重量%とからなる細骨材100〜900重量部と、〈3〉砂利が100〜0重量%と酸化鉄系鉄鉱石が0〜100重量%からなる粗骨材800重量部以下、及び〈4〉比重分離防止剤としての、例えば粒径30μmアンダーの分級されたフライアッシュ粉粒体、シリカヒューム又は高炉スラグ等3.0〜40.0重量部とを加配混合してなる混合物を板状に打設した後、養生硬化することによって製造される。該打設され、養生・硬化された重量コンクリート製構造物支持底板1は、その比重が2.6〜4.2のものが好ましく、同底板1を使用すれば、従来のコンクリート製構造物支持底板1’の場合の厚さの0.9〜0.6倍に低減することができる。
その結果、上記従来技術の問題点、すなわちI)基礎構造は鉄筋コンクリートにてほぼ比重2.4でありその厚さh’を上方へ大きくすると、地域高度制限規定に抵触し、計画のような建物が建設不可能となる懼れが生じること、II)構造物支持底板1の厚さhを下方に大きくすると、a)既存排水本管への接続不能となり、したがって既存本管へのポンプアップを余儀なくされること、b)掘り下げによる掘削量とそれに伴う発生残土が多くなり、建設費が嵩むこと等の問題点、を解消することができる。
In the present invention, the structure support bottom plate 1 (or the structure support beam and the structure support bottom plate) of the upper foundation is made of heavy concrete.
Heavy concrete is, for example, <1> sand and an oxidized particle size of 5.0 to 0.05 mm with respect to 100 parts by weight of cement paste having a water cement ratio (W / C) of 0.3 to 1.0. The iron-based iron ore fine particles have a specific gravity of 2.9 to 5.2, and the sand is 0 to 95% by weight, and the iron oxide-based iron ore fine particles are 100 to 100 to 900 parts by weight of fine aggregate composed of 5% by weight, <3> 800 parts by weight or less of coarse aggregate composed of 100 to 0% by weight of gravel and 0 to 100% by weight of iron oxide-based iron ore, and <4> As a specific gravity separation inhibitor, for example, a mixture obtained by adding and mixing 3.0 to 40.0 parts by weight of classified fly ash powder, silica fume, blast furnace slag, etc. with a particle size of 30 μm or less It is manufactured by curing after curing. The heavy concrete support base plate 1 that has been cast, cured, and hardened preferably has a specific gravity of 2.6 to 4.2. If the base plate 1 is used, a conventional concrete structure support base plate is used. The thickness can be reduced to 0.9 to 0.6 times the thickness of the bottom plate 1 ′.
As a result, the above-mentioned problems of the prior art, that is, I) the foundation structure is reinforced concrete with a specific gravity of 2.4 and its thickness h 'is increased upwards, it violates the regional altitude restriction regulations, and the building as planned II) If the thickness h of the structure support bottom plate 1 is increased downward, a) connection to the existing drainage main pipe becomes impossible, and therefore pumping up to the existing main pipe is not possible. B) It is possible to eliminate problems such as b) the amount of excavation due to digging down and the amount of generated residual soil associated therewith, resulting in increased construction costs.

本発明は、図1(a)(本発明例)及び(b)(従来技術)に示すごとく、構造物支持底板1が重量コンクリート製であるため、従来技術の普通コンクリート製の底板1’に比べて、その厚さhが従来技術の厚さh’に比してが10〜40%薄いものとすることができ、したがって軽量建造物の地上からの高さHを、従来技術の地上からの高さH’より低くすることができる。
その結果、以下のような効果が発揮される。
(1)軽量建造物の高さが地面から一定距離に制限規定されている土地に軽量建造物を構築する際に、構造物支持底板の厚さを低減できるため、従来法では前記高さ制限をクリアできない場合でも、本発明の免震基礎構造によれば制限規定内でおさめることが可能となる。
(2)従来法では、高さ制限をクリアするため、地盤を掘り下げて基礎構造板を設けなければならなかったのを、その必要をなくすことができる。
(3)従来法の場合に比して、軽量建造物の高さを増大しても高さ制限に触れないため、例えば部屋の天井を高くでき又は床下を高くでき、あるいは押し入れや棚の高さを増大して収納容積を大きくすることが可能となる。
(4)従来法では、高さ制限をクリアできないためにアイソレータを使用できず免震構造にできない場合でも、アイソレータを使用して免震軽量建造物を構築することが可能となる。
As shown in FIGS. 1 (a) (examples of the present invention) and (b) (prior art), the present invention has a structure supporting bottom plate 1 made of heavyweight concrete. In comparison, its thickness h can be 10-40% thinner than the prior art thickness h ′, so that the height H of the lightweight building from the ground is The height H ′ can be made lower.
As a result, the following effects are exhibited.
(1) When building a lightweight building on land where the height of the lightweight building is restricted to a certain distance from the ground, the thickness of the structure supporting bottom plate can be reduced. Even if it cannot be cleared, according to the seismic isolation foundation structure of the present invention, it is possible to keep within the restriction regulations.
(2) In the conventional method, in order to clear the height restriction, the necessity of digging the ground and providing the foundation structure plate can be eliminated.
(3) Compared to the conventional method, even if the height of the light building is increased, the height restriction is not touched. For example, the ceiling of the room can be raised or the floor can be raised, or the height of the closet or the shelf is increased. The storage capacity can be increased by increasing the length.
(4) In the conventional method, even if the isolator cannot be used because the height limit cannot be cleared and the seismic isolation structure cannot be obtained, it is possible to construct a seismic isolation lightweight building using the isolator.

次に本発明例と従来例による免震基礎構造の比較・検討をする。
(1)建築面積:7.28m×5.46m=39.45m2×2階
床面積:93.45m2×2
(2)家屋総重量(家屋重量+上部基礎):
〈1〉家屋重量=46t
〈2〉上部基礎(面積×厚さ×比重)
(A)49.40×0.29×2.4=34.4t
(B)49.40×0.18×3.9=34.7t
上記において、(A)は普通コンクリート製(比重2.4)、
(B)は重量コンクリート製(比重3.9)である。
上記より、A:普通コンクリート使用家屋総重量80.4t
(普通コンクリート製構造物支持底板=厚さ29cm×比重2.4)
B:重量コンクリート使用家屋総重量80.7t
(重量コンクリート製構造物支持底板=厚さ18cm×比重3.9)
Next, we will compare and examine the seismic isolation foundation structure of the present invention example and the conventional example.
(1) Building area: 7.28m x 5.46m = 39.45m 2 x 2nd floor Floor area: 93.45m 2 x 2
(2) Total house weight (house weight + upper foundation):
<1> House weight = 46t
<2> Upper foundation (area x thickness x specific gravity)
(A) 49.40 × 0.29 × 2.4 = 34.4t
(B) 49.40 × 0.18 × 3.9 = 34.7 t
In the above, (A) is made of ordinary concrete (specific gravity 2.4),
(B) is made of heavy concrete (specific gravity 3.9).
From the above, A: General concrete use house total weight 80.4t
(Normal concrete structure support bottom plate = thickness 29cm x specific gravity 2.4)
B: Total weight of house using heavy concrete 80.7t
(Heavy concrete structure support bottom plate = thickness 18 cm × specific gravity 3.9)

以上により、普通コンクリート製及び重量コンクリート製のいずれもが、固有周期2.0sec、を満足するが、重量コンクリート製の方がその厚さが薄く、これに対応する本発明に係る重量コンクリート製の構造物支持底板として、比重3.9の重量コンクリートを採用したところ、その厚さは18cmでよいことが解った。
本発明に係る重量コンクリート製の構造物支持底板はその厚さは18cmでよいことから地勢つまり環境に対応することができる。この場合の本発明に係る構造物支持底板の厚さは18/29≒0.62倍で、従来技術のものに対する厚さの低減率は約38%であった。
As described above, both of the plain concrete and the heavy concrete satisfy the natural period of 2.0 sec, but the thickness of the heavy concrete is thinner, and the weight of the heavy concrete according to the present invention corresponding to this is made. When heavy concrete having a specific gravity of 3.9 was adopted as the structure support bottom plate, it was found that the thickness could be 18 cm.
Since the thickness of the structure support bottom plate made of heavy concrete according to the present invention may be 18 cm, it can cope with the terrain, that is, the environment. In this case, the thickness of the structure supporting bottom plate according to the present invention was 18 / 29≈0.62 times, and the thickness reduction rate with respect to the prior art was about 38%.

本発明において、構造物支持底板1と基礎構造板2との間に介設されるアイソレータ3は、地盤から軽量建造物Bを絶縁する装置や機構である。アイソレータ3は、軽量建造物Bの全重量を支持できる強度や剛性を有し、かつ水平方向には、十分柔らかな特性を有しているものが好ましく、特に、薄いゴムシートと中間鋼板が交互に積層され、その上下にフランジを有する積層ゴムアイソレータが望ましい。
また、積層ゴムアイソレータは、荷重支持能力、大変形性能及び、地震終了時に原位置に復帰する復元力性能などが、備えられており、天然ゴム系積層ゴム、高減衰型積層ゴム、鉛プラグ入り積層ゴムなどが挙げられる。
天然ゴム系積層ゴムは、引張強さや伸び、耐クリープ性に優れ、温度変化による物性変化の少ない天然ゴムを使用した積層ゴムである。荷重変形特性は、軸力の変動や変位履歴による依存性が殆どなく、微少変形から大変形まで安定したバネ特性を有しているのが特徴である。
また、高減衰型積層ゴムは、ゴム材料に特殊配合のゴムを使用することで、ゴム材料の粘性を高くして、それ自身でエネルギー吸収も行う積層ゴムである。
積層ゴムの形状は、天然ゴム系積層ゴムと同じであるが、ダンパー機能一体型であるため、省スペース型である。
また、鉛プラグ入り積層ゴムは、天然ゴム系積層ゴム中央部に設けた円柱状の中空孔に鉛を圧入したものである。積層ゴムの剪断変形時には、内部の鉛プラグの塑性変形により、エネルギーを吸収するダンパー内蔵の積層ゴムである。
本発明の軽量建造物の免震基礎構造において、使用されるアイソレータ3は、これらのどの積層ゴムアイソレータを用いてもよく、軽量建造物の重量、及び形状、立地条件に合わせて、適宜選択したものを用いることが可能である。
In the present invention, the isolator 3 interposed between the structure support bottom plate 1 and the foundation structure plate 2 is a device or mechanism that insulates the lightweight building B from the ground. It is preferable that the isolator 3 has strength and rigidity capable of supporting the entire weight of the lightweight building B and has sufficiently soft characteristics in the horizontal direction, and in particular, thin rubber sheets and intermediate steel plates are alternately arranged. A laminated rubber isolator that is laminated to each other and has flanges on the upper and lower sides thereof is desirable.
Laminated rubber isolators are equipped with load bearing capacity, large deformation performance, and restoring force performance to return to the original position at the end of an earthquake. Natural rubber-based laminated rubber, high-attenuation laminated rubber, and lead plug included Examples include laminated rubber.
The natural rubber-based laminated rubber is a laminated rubber using natural rubber which is excellent in tensile strength, elongation and creep resistance and has little change in physical properties due to temperature change. The load deformation characteristics are hardly dependent on variations in axial force and displacement history, and are characterized by stable spring characteristics from minute deformation to large deformation.
The high-attenuation type laminated rubber is a laminated rubber that absorbs energy by itself by increasing the viscosity of the rubber material by using a specially blended rubber as the rubber material.
The shape of the laminated rubber is the same as that of the natural rubber-based laminated rubber, but is a space-saving type because it is a damper function integrated type.
Moreover, the laminated rubber with lead plug is obtained by press-fitting lead into a cylindrical hollow hole provided in the central part of the natural rubber laminated rubber. When the laminated rubber is subjected to shear deformation, it is a laminated rubber with a built-in damper that absorbs energy by plastic deformation of the internal lead plug.
Any of these laminated rubber isolators may be used as the isolator 3 used in the seismic isolation structure of the lightweight building of the present invention, which is appropriately selected according to the weight, shape, and location conditions of the lightweight building. Can be used.

そして、本発明において、構造物支持底板1と基礎構造板2との間に介設されるダンパー4は、振動時のエネルギー消費によって、免震構造に減衰性能を付与し、地震時に生じる上部構造(構造物支持底板1及び軽量建造物B)と地盤との過大な相対変位を抑制する効果を有する。
ダンパーには、一般に鋼材ダンパー、摩擦ダンパー、鉛ダンパーなどが挙げられるが、本発明においては、純度の高い鉛が、大変形域で優れた繰り返し塑性変形能力を有する鉛ダンパーを使用している。
鉛は塑性変形により生じた結晶格子の欠陥が、常温での再結晶により解消されるという性質を持ち、最も延性に富んだ特性を有している。
もちろん、鉛ダンパーに変わり鋼材ダンパーや摩擦ダンパーを使用することも可能であるが、本発明の軽量建造物の免震基礎構造では、減衰性能を得られる鉛ダンパー又は鉛ダンパーと鋼製ダンパーの併用体が好ましい。
And in this invention, the damper 4 interposed between the structure support baseplate 1 and the foundation structure board 2 gives damping | damping performance to a seismic isolation structure by the energy consumption at the time of vibration, and the upper structure produced at the time of an earthquake It has the effect of suppressing excessive relative displacement between the (structure support bottom plate 1 and the lightweight building B) and the ground.
The damper generally includes a steel damper, a friction damper, a lead damper, and the like, but in the present invention, a lead with high purity uses a lead damper having excellent repeated plastic deformation ability in a large deformation range.
Lead has the property that crystal lattice defects caused by plastic deformation are eliminated by recrystallization at room temperature, and has the most ductile properties.
Of course, it is possible to use steel dampers and friction dampers instead of lead dampers, but in the base isolation structure for lightweight buildings of the present invention, lead dampers that can provide damping performance or combined use of lead dampers and steel dampers The body is preferred.

本発明の免震基礎構造と軽量建造物の説明図Explanatory drawing of seismic isolation foundation and lightweight building of the present invention 軽量建造物の免震基礎構造の要部説明図Explanatory drawing of the main part of the seismic isolation foundation for lightweight buildings 過去の地震の周期と絶対加速度の関係を示すグラフ図Graph showing the relationship between past earthquake cycles and absolute acceleration

符号の説明Explanation of symbols

1、1’ 構造物支持底板又は支持梁
2 基礎構造板又は基礎構造梁
3 アイソレータ
4 鉛ダンパー
5 ぐり石
B、B’:軽量建造物
H、H’:軽量建造物の地上からの高さ
h、h’:構造物支持底板又は支持梁の厚さ
d、d’:基礎構造板又は基礎構造梁の深さ
1, 1 'Structure support bottom plate or support beam 2 Foundation structure plate or foundation structure beam 3 Isolator 4 Lead damper 5 Gebstone B, B': Lightweight building H, H ': Height of light weight building from the ground h , H ′: thickness d of structure supporting bottom plate or supporting beam d, d ′: depth of foundation structural plate or foundation structural beam

Claims (6)

構造物支持底板又は構造物支持梁と、その下方の地中に設けられた基礎構造板との間に、アイソレータが介設されてなる軽量建造物の免震基礎構造において、構造物支持底板を重量コンクリート製のもので構成してなることを特徴とする軽量建造物の免震基礎構造。   In a base-isolated base structure of a lightweight building in which an isolator is interposed between a structure support bottom plate or a structure support beam and a foundation structure plate below the structure support beam, the structure support bottom plate is Seismic isolation base structure for lightweight buildings, characterized in that it is made of heavy concrete. 構造物支持梁及び構造物支持底板と、その下方の地中に設けられた基礎構造板との間に、アイソレータが介設されてなる軽量建造物の免震基礎構造において、構造物支持梁及び構造物支持底板を重量コンクリート製のもので構成してなることを特徴とする軽量建造物の免震基礎構造。   In a seismically isolated base structure of a lightweight building in which an isolator is interposed between a structure support beam and a structure support bottom plate and a foundation structure plate provided below the structure support beam, the structure support beam and A base-isolated base structure for lightweight buildings, characterized in that the structure support bottom plate is made of heavy concrete. 免震基礎構造が、構造物支持底板とその下方の地中に設けられた基礎構造板との間に、又は構造物支持梁及び構造物支持底板とその下方の地中に設けられた基礎構造板との間に、アイソレータ及びダンパーが介設されてなるものであることを特徴とする請求項1又は2に記載の軽量建造物の免震基礎構造。   A base structure in which the base isolation structure is provided between the structure support bottom plate and the foundation structure plate below the structure support beam and the structure support beam and the structure support bottom plate and the structure below the ground. The base isolation structure for a lightweight building according to claim 1 or 2, wherein an isolator and a damper are interposed between the plate and the plate. 重量コンクリートが、比重が2.6〜4.2であって、構造物支持底板の厚さが普通コンクリート製の場合の0.9〜0.6倍であることを特徴とする請求項1〜3のいずれか1項に記載の軽量建造物の免震基礎構造。   The heavy concrete has a specific gravity of 2.6 to 4.2, and the thickness of the structure supporting bottom plate is 0.9 to 0.6 times that of ordinary concrete. 4. A base-isolated base structure for a lightweight building according to any one of 3 above. 重量コンクリートが、水セメント比(W/C)が0.3〜1.0のセメントペースト100重量部に対して、酸化鉄系鉄鉱石細粒を含む細骨材100〜900重量部と酸化鉄系鉄鉱石粗粒を含む粗骨材800重量部以下とを加配・混合し、硬化してなる比重2.6〜4.2のものであることを特徴とする請求項1〜4のいずれか1項に記載の軽量建造物の免震基礎構造。   Heavy concrete is 100-900 parts by weight of fine aggregate containing iron oxide-based iron ore fine particles and iron oxide with respect to 100 parts by weight of cement paste having a water-cement ratio (W / C) of 0.3-1.0. The specific gravity of 2.6 to 4.2 is obtained by adding, mixing, and curing coarse aggregate containing 800-wt% or less of coarse iron ore coarse particles. A base-isolated base structure for a lightweight building according to item 1. 前記請求項1〜5のいずれか1項に記載された免震基礎構造の上に軽量建造物が構築されてなることを特徴とする免震軽量建造物。
6. A base-isolated light-weight building, wherein a light-weight building is constructed on the base-isolated base structure described in any one of claims 1 to 5.
JP2006169338A 2006-06-19 2006-06-19 Seismic isolating foundation structure for lightweight construction Pending JP2006316617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169338A JP2006316617A (en) 2006-06-19 2006-06-19 Seismic isolating foundation structure for lightweight construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169338A JP2006316617A (en) 2006-06-19 2006-06-19 Seismic isolating foundation structure for lightweight construction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001383716A Division JP3856113B2 (en) 2001-12-17 2001-12-17 Base isolation structure for lightweight buildings

Publications (1)

Publication Number Publication Date
JP2006316617A true JP2006316617A (en) 2006-11-24

Family

ID=37537524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169338A Pending JP2006316617A (en) 2006-06-19 2006-06-19 Seismic isolating foundation structure for lightweight construction

Country Status (1)

Country Link
JP (1) JP2006316617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184254A (en) * 2007-01-29 2008-08-14 Ishikawajima Transport Machinery Co Ltd Crane seismic isolation device
CN103526781A (en) * 2013-10-12 2014-01-22 北京筑福国际工程技术有限责任公司 Integrated-tray, shock-insulation and reinforcing structure for historic building foundation and construction method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261579A (en) * 1985-05-13 1986-11-19 多田 英之 Seismic isolation device
JPH08283058A (en) * 1995-04-13 1996-10-29 Dowa Mining Co Ltd Heavyweight concrete
JPH10300880A (en) * 1997-04-23 1998-11-13 Tadao Sakurai Nuclear power station and radioactive waste treatment facility with radiation shielding outer periphery wall
JPH11293685A (en) * 1998-04-07 1999-10-26 Sumitomo Metal Ind Ltd Seismic isolation structure of structure
JPH11310928A (en) * 1998-04-30 1999-11-09 Hazama Gumi Ltd Vibration isolation reinforcing method for existing structure
JP2001040678A (en) * 1999-07-30 2001-02-13 Hazama Gumi Ltd Base isolation construction and equipment
JP3856113B2 (en) * 2001-12-17 2006-12-13 株式会社エー・アール・ピー Base isolation structure for lightweight buildings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261579A (en) * 1985-05-13 1986-11-19 多田 英之 Seismic isolation device
JPH08283058A (en) * 1995-04-13 1996-10-29 Dowa Mining Co Ltd Heavyweight concrete
JPH10300880A (en) * 1997-04-23 1998-11-13 Tadao Sakurai Nuclear power station and radioactive waste treatment facility with radiation shielding outer periphery wall
JPH11293685A (en) * 1998-04-07 1999-10-26 Sumitomo Metal Ind Ltd Seismic isolation structure of structure
JPH11310928A (en) * 1998-04-30 1999-11-09 Hazama Gumi Ltd Vibration isolation reinforcing method for existing structure
JP2001040678A (en) * 1999-07-30 2001-02-13 Hazama Gumi Ltd Base isolation construction and equipment
JP3856113B2 (en) * 2001-12-17 2006-12-13 株式会社エー・アール・ピー Base isolation structure for lightweight buildings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184254A (en) * 2007-01-29 2008-08-14 Ishikawajima Transport Machinery Co Ltd Crane seismic isolation device
CN103526781A (en) * 2013-10-12 2014-01-22 北京筑福国际工程技术有限责任公司 Integrated-tray, shock-insulation and reinforcing structure for historic building foundation and construction method thereof

Similar Documents

Publication Publication Date Title
Kurama Unbonded post-tensioned precast concrete walls with supplemental viscous damping
Di Sarno et al. Bracing systems for seismic retrofitting of steel frames
Kulkarni et al. Rigid body response of base‐isolated structures
JP5316850B2 (en) Seismic isolation structure
Alashker et al. Effects of building configuration on seismic performance of RC buildings by pushover analysis
Zhou et al. New seismic isolation system for irregular structure with the largest isolation building area in the world
JP5234432B2 (en) Vibration control structure
JP3856113B2 (en) Base isolation structure for lightweight buildings
JP2006316617A (en) Seismic isolating foundation structure for lightweight construction
Kanitkar et al. Seismic performance of conventional multi-storey buildings with open ground floors for vehicular parking
Youssef Viscous dampers at multiple levels for the historic preservation of Los Angeles City Hall
JP2002004628A (en) Damping skeleton structure and building
Idham Earthquake failures on buildings and the role of architect on building safety
JP2007138678A (en) Attenuation device
JP5192851B2 (en) Seismic reduction structure
JP4022313B2 (en) Seismic isolation / vibration isolation structure with suspension and sliding
Tsai et al. The study and proposed application of the multi-storey hybrid timber structural system on the design flexibility and hazard prevention
JP2003155838A (en) Building seismic isolation structure
Julie et al. Performance of base isolators and tuned mass dampers in vibration control of a multistoried building
Smirnov et al. Seismic isolation of buildings and historical monuments. Recent developments in Russia
Setiawan et al. Special moment resisting frame analysis to evaluate the building performance of medium rise building with shear wall
Sanada et al. Building Damage around Bam Seismological Observatory Following the Bam, Iran, Earthquake
Tanaka et al. Recent applications of structural control systems to high-rise buildings
Chintanapakdee et al. Performance of masonry-infilled RC buildings in the M6. 0 Mae Lao earthquake on May 5, 2014
JP7350502B2 (en) Detached houses and their construction methods

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20090513

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A02