JP2006315879A - Dephosphorization purification apparatus of silicon and method therefor - Google Patents

Dephosphorization purification apparatus of silicon and method therefor Download PDF

Info

Publication number
JP2006315879A
JP2006315879A JP2005137638A JP2005137638A JP2006315879A JP 2006315879 A JP2006315879 A JP 2006315879A JP 2005137638 A JP2005137638 A JP 2005137638A JP 2005137638 A JP2005137638 A JP 2005137638A JP 2006315879 A JP2006315879 A JP 2006315879A
Authority
JP
Japan
Prior art keywords
silicon
crucible
stirring
molten
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005137638A
Other languages
Japanese (ja)
Other versions
JP5100978B2 (en
Inventor
Hitoshi Donomae
等 堂野前
Masaki Okajima
正樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005137638A priority Critical patent/JP5100978B2/en
Publication of JP2006315879A publication Critical patent/JP2006315879A/en
Application granted granted Critical
Publication of JP5100978B2 publication Critical patent/JP5100978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for dephosphorizing and purifying silicon realizing sufficient rate of removing impurities by promoting diffusion of impurity concentration in the silicon melt in the removal of impurities represented by phosphorus by virtue of the vacuum fusion method. <P>SOLUTION: This dephosphorization purification apparatus of silicon is equipped with a crucible 4 for accommodating silicon and a heating device for heating the crucible 4 both disposed in a vacuum container 2 provided with a vacuum pump 1, where an agitating device 6 is installed to agitate the silicon melt 3 in the crucible 4. The method for dephosphorizing and purifying silicon utilizes the apparatus. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、不純物濃度の高い安価な金属シリコン原料から、太陽電池等の製造に用いる高純度シリコンに精製するための精製装置及び精製方法に関する。   The present invention relates to a refining apparatus and a refining method for refining from an inexpensive metal silicon raw material having a high impurity concentration to high-purity silicon used for manufacturing solar cells and the like.

太陽電池製造用のシリコン原料は、これまで半導体製造プロセスで発生するスクラップシリコンが用いられてきた。しかしながら、近年の太陽電池需要の急速な伸びにより、スクラップの供給量が追いつかず、今後太陽電池用のシリコン原料の供給不足が懸念されている。半導体製造プロセスで使用されているシリコン原料はシーメンス法を用いて製造されているが、シーメンス法で製造したシリコン原料は高価であり、太陽電池製造プロセスに直接供給されるルートではコスト的に合わない。そこで、不純物濃度は高いが安価な金属シリコン原料から、真空溶解や凝固精製を用いて高純度シリコンを製造する冶金的プロセスの開発が進められてきた。   As silicon raw materials for manufacturing solar cells, scrap silicon generated in the semiconductor manufacturing process has been used so far. However, due to the rapid growth in demand for solar cells in recent years, the supply of scrap cannot catch up, and there is a concern that the supply of silicon raw materials for solar cells will be short in the future. The silicon raw material used in the semiconductor manufacturing process is manufactured using the Siemens method, but the silicon raw material manufactured by the Siemens method is expensive and does not match the cost of the route directly supplied to the solar cell manufacturing process. . Therefore, development of a metallurgical process for producing high-purity silicon from an inexpensive metal silicon raw material having a high impurity concentration by using vacuum melting or solidification purification has been advanced.

上記の冶金的プロセスは、不純物元素とシリコン(Si)との物理的な挙動の差を利用した幾つかの冶金的なサブプロセスを組み合わせて精製するプロセスである。リン(P)を代表とするSiよりも蒸気圧の高い不純物元素を除去するサブプロセスについては、真空溶解法の適用が検討されてきた。以下、真空溶解法によるリン除去(P除去)ないし脱リン(脱P)と言う表現を用いるが、P除去に伴ってP以外のSiよりも蒸気圧の高い不純物元素も除去される。   The above metallurgical process is a process in which several metallurgical sub-processes utilizing a difference in physical behavior between an impurity element and silicon (Si) are combined for purification. For a sub-process for removing an impurity element having a higher vapor pressure than Si represented by phosphorus (P), application of a vacuum melting method has been studied. Hereinafter, expressions such as phosphorus removal (P removal) or dephosphorization (deP) by a vacuum melting method are used, but an impurity element having a higher vapor pressure than Si other than P is also removed along with P removal.

真空溶解法に用いる装置の基本的な構成としては、真空ポンプを有した減圧可能な真空容器の中にるつぼおよびヒーター等の加熱装置が設置される。るつぼ中に数十ppm以上の高いPを含有する金属シリコン原料を充填し、減圧下ないし不活性ガス下で加熱溶解し、溶湯を減圧下かつ融点以上の温度で一定時間保持する。Siよりも蒸気圧の高いPが選択的に蒸発するので、Si中のP濃度は時間と共に低下する。   As a basic configuration of an apparatus used for the vacuum melting method, a heating apparatus such as a crucible and a heater is installed in a vacuum container having a vacuum pump capable of reducing pressure. A crucible is filled with a metal silicon raw material containing high P of several tens of ppm or more, and heated and melted under reduced pressure or under an inert gas, and the molten metal is kept under reduced pressure and at a temperature equal to or higher than the melting point for a certain time. Since P having a higher vapor pressure than Si evaporates selectively, the P concentration in Si decreases with time.

これまで、(特許文献1)、(非特許文献1)、(非特許文献2)、(非特許文献3)、(非特許文献4)等の真空溶解法によるシリコン精錬の従来技術がある。それら従来技術においては、減圧可能な容器中に設置されたるつぼ及び一般的な加熱装置の組合せであり、装置コスト的には安価な構成となっている。しかしながら、P除去速度が低い、即ち、生産性が低く実用上問題がある。また、前記文献の中には、シリコン中のP濃度を太陽電池用原料として要求される0.05ppm程度以下にできない場合も報告されており、品質上の問題もあった。   Up to now, there are conventional techniques for refining silicon by a vacuum melting method such as (Patent Document 1), (Non-Patent Document 1), (Non-Patent Document 2), (Non-Patent Document 3), and (Non-Patent Document 4). In these prior arts, it is a combination of a crucible installed in a depressurizable container and a general heating device, and the device cost is low. However, the P removal rate is low, that is, the productivity is low and there is a problem in practical use. In addition, in the above-mentioned document, it has been reported that the P concentration in silicon cannot be reduced to about 0.05 ppm or less, which is required as a raw material for solar cells, and there is a problem in quality.

一方、(非特許文献5)、(特許文献2)、(特許文献3)、(特許文献4)、(特許文献5)、(特許文献6)、(特許文献7)、(特許文献8)等の従来技術では、P除去速度が高く、生産コスト的には実用性を伴っている。しかしながら、これらの従来技術は電子ビーム溶解を前提としており、設備及び設備コストが莫大なものとなり、装置コスト的に実用上問題がある。特に、(特許文献2)、(特許文献7)に開示されているように、電子ビームを用いる方法では複数のるつぼを真空容器内にセットする必要があり、さらに大きな設備コストを要するという問題があった。
米国特許第4304763号明細書 特開平7−315827号公報 特開平7−309614号公報 特開平9−309716号公報 特開平10−167716号公報 特開平10−182130号公報 特開平11−209195号公報 特開2000−247623号公報 鈴木ら、日本金属学会誌、1990年2月、第54巻、第2号、p.161−167 Ikedaら、IISJ International、1992、Vol.32、No.5、p.635−642 湯下ら、日本金属学会誌、1997年10月、第61巻、第10号、p.1086−1093 森田、金属、アグネ技術センター、1999年、第69巻、第11号、p.949 太陽電池用原料技術組合、平成10年度エネルギー・産業技術総合開発機構、太陽電池シリコン原料製造技術の実用化解析に関する調査・研究、平成11年3月、p.81
On the other hand, (Non Patent Literature 5), (Patent Literature 2), (Patent Literature 3), (Patent Literature 4), (Patent Literature 5), (Patent Literature 6), (Patent Literature 7), (Patent Literature 8). In the conventional technology such as P, the P removal rate is high, and the production cost is practical. However, these prior arts are based on the premise of electron beam melting, and the equipment and equipment cost become enormous, and there is a practical problem in terms of equipment cost. In particular, as disclosed in (Patent Document 2) and (Patent Document 7), in the method using an electron beam, it is necessary to set a plurality of crucibles in a vacuum vessel, and there is a problem that a larger equipment cost is required. there were.
U.S. Pat. No. 4,304,763 Japanese Patent Application Laid-Open No. 7-315827 JP-A-7-309614 JP-A-9-309716 Japanese Patent Laid-Open No. 10-167716 JP-A-10-182130 Japanese Patent Laid-Open No. 11-209195 JP 2000-247623 A Suzuki et al., Journal of the Japan Institute of Metals, February 1990, Vol. 54, No. 2, p. 161-167 Ikeda et al., IISJ International, 1992, Vol. 32, no. 5, p. 635-642 Yushita et al., Journal of the Japan Institute of Metals, October 1997, Vol. 61, No. 10, p. 1086-1093 Morita, Metals, Agne Technical Center, 1999, Vol. 69, No. 11, p. 949 Photovoltaic Material Technology Association, 1998 Energy and Industrial Technology Development Organization, Survey and Research on Practical Use Analysis of Solar Cell Silicon Raw Material Manufacturing Technology, March 1999, p. 81

そこで、本発明者らは、従来よりも簡便な手法として、不純物凝縮装置を用いたシリコン精製装置及び方法を特願2004−44255号として提案した。特願2004−44255号の発明は、真空ポンプを具備した減圧容器内に、シリコンを収容するるつぼと、該るつぼを加熱する加熱装置を少なくとも設置してなるシリコン精製装置であって、前記るつぼ内のシリコン溶湯表面又はるつぼ開口部の一方又は双方を見ることが可能な位置に不純物凝縮装置を配してなることを特徴とするシリコン精製装置を用いるものであり、簡便かつ安価な装置構成で十分なP除去速度を実現する低コストのシリコン精製装置及び精製方法を提供した。   Therefore, the present inventors have proposed, as Japanese Patent Application No. 2004-44255, a silicon purification apparatus and method using an impurity condensing apparatus as a simpler technique than before. The invention of Japanese Patent Application No. 2004-44255 is a silicon refining device in which a crucible containing silicon and a heating device for heating the crucible are installed in a decompression vessel equipped with a vacuum pump, and the inside of the crucible A silicon refining device is used, which is characterized in that an impurity condensing device is arranged at a position where one or both of the surface of the molten silicon or the crucible opening can be seen, and a simple and inexpensive device configuration is sufficient. The present invention provides a low-cost silicon purification apparatus and a purification method that achieve a high P removal rate.

ところが、発明の実施の過程で、真空溶解法によるP除去処理を妨げる以下のような新たな課題が明らかになった。   However, in the course of carrying out the invention, the following new problem that hinders the P removal treatment by the vacuum melting method has been clarified.

るつぼに保持したシリコン溶湯の形状がP除去処理速度に大きな影響を及ぼすことが明らかになった。(溶湯の深さ)/(溶湯表面の直径)を溶湯のアスペクト比と定義する。従来の試験では、アスペクト比の小さな、即ち、浅型のるつぼで処理しており、その場合P除去速度は溶湯表面積に比例した。溶湯表面積を大きくする、即ち、径の大きなるつぼを使用することで、生産性を大きく取ることが可能であった。ところが、現実の処理装置ではさらにシリコン処理量を増やし、生産性を上げる必要があるため、ある程度大きなアスペクト比を持った深いるつぼ形状を選択せざるを得ない。そこで、アスペクト比の大きなるつぼでの試験を実施した結果、アスペクト比が大きくなるにしたがって、シリコン溶湯中のPの拡散が律速になることが分かった。即ち、シリコン溶湯の深さに比例して処理時間が増加するならば、単位質量当りの処理にかかる生産性に変化は無いが、それ以上に処理時間が延び、生産性が大きく悪化したのである。   It became clear that the shape of the molten silicon held in the crucible has a great influence on the P removal rate. (Depth of molten metal) / (Diameter of molten metal surface) is defined as the aspect ratio of the molten metal. In a conventional test, treatment was performed with a small crucible with a small aspect ratio, in which case the P removal rate was proportional to the molten metal surface area. By increasing the surface area of the molten metal, that is, by using a crucible having a large diameter, it was possible to increase productivity. However, in an actual processing apparatus, since it is necessary to further increase the silicon processing amount and increase the productivity, it is necessary to select a deep crucible shape having a somewhat large aspect ratio. Therefore, as a result of conducting a test using a crucible having a large aspect ratio, it was found that the diffusion of P in the molten silicon becomes rate-limiting as the aspect ratio increases. That is, if the processing time increases in proportion to the depth of the molten silicon, the productivity for processing per unit mass is not changed, but the processing time is further increased, and the productivity is greatly deteriorated. .

そこで、本発明は、シリコン溶湯中のPの拡散を促進し、十分なP除去速度を具備したシリコンの脱P精製装置及びこれを用いたシリコンの脱P精製方法の提供を目的とする。   Accordingly, an object of the present invention is to provide a silicon de-P purification apparatus that promotes diffusion of P in a molten silicon and has a sufficient P removal rate, and a silicon de-P purification method using the same.

本発明は上記課題を解決するためになされたもので、
(1) 真空ポンプを具備した減圧容器内に、シリコンを収容するるつぼと、該るつぼを加熱する加熱装置を少なくとも設置してなるシリコンの脱P精製装置であって、該るつぼ内に収容されたシリコン溶湯の攪拌装置を配してなることを特徴とするシリコンの脱P精製装置、
(2) 前記攪拌装置が、前記シリコン溶湯内に設置された攪拌羽根と該攪拌羽根を回転させる回転装置からなる(1)記載のシリコンの脱P精製装置、
(3) 前記攪拌装置が、前記シリコン溶湯内に噴出口を配置した不活性ガス噴出管からなる(1)記載のシリコンの脱P精製装置、
(4) 前記攪拌装置が、前記加熱装置の外側に配置した電磁石による誘導攪拌装置からなる(1)記載のシリコンの脱P精製装置、
(5) 前記るつぼ内のシリコン溶湯表面又はるつぼ開口部の一方又は双方を見ることが可能な位置(見込める位置)に不純物凝縮装置を配してなる(1)記載のシリコンの脱P精製装置、
(6) 前記不純物凝縮装置が、冷却装置を有する(5)記載のシリコンの脱P精製装置、
(7) 前記不純物凝縮装置を昇降自在とする第1の昇降装置を有する(5)又は(6)に記載のシリコンの脱P精製装置、
(8) 前記減圧容器に、不純物凝縮装置を収容する準備室を配する(7)記載のシリコンの脱P精製装置、
(9) 前記るつぼを昇降自在とする第2の昇降装置を有する(5)記載のシリコンの脱P精製装置、
(10) (1)〜(9)のいずれか一つに記載のシリコンの脱P精製装置を用いたシリコン精製方法であって、減圧容器内を500Pa以下とし、るつぼ内のシリコンを融点以上に加熱しつつ、さらにシリコン溶湯を攪拌装置で攪拌しながら、シリコン溶湯中から蒸発するPを主体とする不純物を除去することを特徴とするシリコンの脱P精製方法、
である。
The present invention has been made to solve the above problems,
(1) A silicon de-P refining device comprising at least a crucible for storing silicon and a heating device for heating the crucible in a vacuum container equipped with a vacuum pump, which is housed in the crucible. A silicon de-P purifying apparatus characterized by comprising a stirring apparatus for molten silicon,
(2) The silicon de-P purification apparatus according to (1), wherein the stirring device includes a stirring blade installed in the silicon melt and a rotating device that rotates the stirring blade.
(3) The silicon de-P refining device according to (1), wherein the stirring device comprises an inert gas jet pipe in which a jet port is disposed in the molten silicon.
(4) The silicon de-P purification apparatus according to (1), wherein the stirring device is an induction stirring device using an electromagnet disposed outside the heating device,
(5) The silicon de-P purifying apparatus according to (1), wherein an impurity condensing device is disposed at a position where one or both of the surface of the molten silicon or the crucible opening in the crucible can be seen (a position that can be expected).
(6) The silicon de-P purification device according to (5), wherein the impurity condensing device has a cooling device,
(7) The silicon de-P purification apparatus according to (5) or (6), including a first lifting device that allows the impurity condensing device to be lifted and lowered.
(8) The silicon de-P purification apparatus according to (7), wherein a preparation chamber for storing an impurity condensing device is disposed in the decompression vessel,
(9) The silicon de-P purification apparatus according to (5), further including a second lifting device that allows the crucible to be lifted and lowered.
(10) A silicon purification method using the silicon de-P purification apparatus according to any one of (1) to (9), wherein the inside of the decompression vessel is set to 500 Pa or less, and the silicon in the crucible is set to a melting point or more. A silicon de-P purification method characterized by removing impurities mainly composed of P evaporating from the silicon melt while heating and stirring the silicon melt with a stirrer,
It is.

本発明により、シリコン溶湯中のPの拡散を促進し、大きなP除去速度が得られ、安価で高純度の太陽電池用シリコン原料を供給できる。   According to the present invention, diffusion of P in the molten silicon can be promoted, a large P removal rate can be obtained, and an inexpensive and high-purity silicon raw material for solar cells can be supplied.

本発明は、減圧容器中にセットしたるつぼと一般的な加熱装置から成る簡便な装置によるシリコンの脱リン精製装置及び精製方法である。但し、脱リン(脱P)と言う名称でリン(P)の除去を目的とした装置及び方法と言う表現を用いるが、P以外に、例えば、アルミニウム(Al)、ヒ素(As)、アンチモン(Sb)、リチウム(Li)、マグネシウム(Mg)、亜鉛(Zn)、ナトリウム(Na)、カルシウム(Ca)、ニッケル(Ni)、ゲルマニウム(Ge)、銅(Cu)、スズ(Sn)、銀(Ag)、インジウム(In)、マンガン(Mn)、鉛(Pb)、およびタリウム(Tl)等のシリコン(Si)より蒸気圧の高い元素の除去についても、本発明は適用可能である。   The present invention is a silicon dephosphorization purification apparatus and purification method using a simple apparatus comprising a crucible set in a vacuum container and a general heating apparatus. However, although the expression dephosphorization (dephosphorization) is used as an apparatus and method for the purpose of removing phosphorus (P), other than P, for example, aluminum (Al), arsenic (As), antimony ( Sb), lithium (Li), magnesium (Mg), zinc (Zn), sodium (Na), calcium (Ca), nickel (Ni), germanium (Ge), copper (Cu), tin (Sn), silver ( The present invention is also applicable to the removal of elements having a higher vapor pressure than silicon (Si) such as Ag), indium (In), manganese (Mn), lead (Pb), and thallium (Tl).

第1の発明について、精製装置の構成を図1により説明する。まず、真空ポンプ1を備えた減圧可能な容器2に、シリコン溶湯3を保持するためのるつぼ4と、シリコンを溶解し液相状態に保持するための加熱装置5がセットされている。るつぼ4の上部には、溶湯攪拌装置6が配置されている。   With respect to the first invention, the configuration of the purification apparatus will be described with reference to FIG. First, a crucible 4 for holding a silicon melt 3 and a heating device 5 for dissolving silicon and holding it in a liquid phase are set in a depressurizable container 2 equipped with a vacuum pump 1. At the upper part of the crucible 4, a molten metal stirring device 6 is arranged.

真空ポンプ1は500Pa以下に減圧できれば良く、油回転ポンプのみでも十分であるが、容器2の大きさに応じてメカニカルブースターポンプを装備しても良く、油拡散ポンプやターボ分子ポンプを装備すれば、真空掃引時間の短縮やP除去時間をさらに短縮することも可能である。   The vacuum pump 1 only needs to be able to depressurize to 500 Pa or less, and an oil rotary pump alone is sufficient. However, a mechanical booster pump may be provided according to the size of the container 2, and an oil diffusion pump or a turbo molecular pump may be provided. It is also possible to shorten the vacuum sweep time and further shorten the P removal time.

るつぼ4は、シリコンとの反応気体が発生しない高密度黒鉛製が最適である。石英製のるつぼは、高真空下でシリコンと反応して酸化シリコン(SiO)気体を発生するので、高真空を維持できない、あるいは、湧きあがる気体によりシリコン溶湯が突沸するといった問題があり、シリコン精製における真空溶解には適さない。   The crucible 4 is optimally made of high-density graphite that does not generate a reaction gas with silicon. Quartz crucibles react with silicon under high vacuum to generate silicon oxide (SiO) gas, so there is a problem that high vacuum cannot be maintained, or there is a problem that the molten silicon bumps into boil, and silicon purification It is not suitable for vacuum melting.

加熱装置5は、シリコンの融点以上に加熱できればどのようなものでも適用できるが、黒鉛製等の発熱体に電圧を印加し、ジュール発熱でるつぼ4とシリコン溶湯3を加熱するヒーター加熱方式が最も簡便である。黒鉛るつぼ4の外側に誘導コイルを配置し、誘導電流による黒鉛製るつぼの加熱によってシリコン溶湯3を加熱する誘導加熱方式も低コストの加熱方式である。どちらの加熱装置も、一般に広く利用されている金属溶解のための簡便な加熱方式である。   Any heating device 5 can be applied as long as it can be heated to the melting point of silicon or more. However, a heater heating method in which a voltage is applied to a heating element such as graphite and the crucible 4 and the molten silicon 3 are heated by Joule heating is the most. Convenient. An induction heating method in which an induction coil is disposed outside the graphite crucible 4 and the silicon melt 3 is heated by heating the graphite crucible by an induced current is also a low-cost heating method. Both heating apparatuses are simple heating methods for melting metals that are widely used in general.

本発明のポイントである溶湯攪拌装置6について詳細に説明する。図1の溶湯攪拌装置6は、攪拌羽根7、回転軸8、真空シール9、回転用モーター(回転装置)10、および昇降装置11から構成されている。溶湯内に攪拌羽根7を挿入し、回転用モーター10により回転軸8を通じて攪拌羽根7を回転させ、溶湯を攪拌する。攪拌羽根7の大きさについては、溶湯全体を十分に攪拌するために、るつぼ4の直径の0.3倍以上が好ましく、るつぼ内側との機械的なクリアランスを確保するために、0.95倍以下の径が好ましい。即ち、0.3〜0.95倍の範囲が好ましい。また、回転数は10rpm以上が好ましいが、大き過ぎるとシリコン溶湯が飛散する不具合があり120rpmまでの範囲が好ましい。即ち、10〜120rpmの範囲が好ましい。攪拌羽根及び回転軸の材質は、耐熱性に優れ、シリコンとの反応による劣化の少ない石英、アルミナおよびマグネシア等のセラミックス、あるいは黒鉛が望ましいが、黒鉛が最も優れている。但し、それらの材料を真空シール9と接する部分に用いると、加工精度や耐磨耗性に劣るため、リークの原因になり得る。そのため、回転軸8は分割式とし、上部はステンレス等の金属材料により構成することが望ましい。昇降装置11を具備することによって、るつぼに挿入される原料の状態やるつぼの位置に応じて、攪拌羽根7の挿入位置を調整可能である。また、攪拌羽根を回転させると同時に周期的に上下動させることによって、より大きな攪拌効果を得ることが可能である。上下動の周期は5〜30回転当り1回、ストロークはるつぼ底からメルト液面までの範囲でなるべく大きく取ることが好ましい。真空シール9は、回転軸が繰り返し回転及び上下動しても、容器2を真空状態に保持できる仕様(例えば、磁気シール)であることが望ましい。   The molten metal stirring device 6 which is the point of the present invention will be described in detail. The molten metal stirring device 6 in FIG. 1 includes a stirring blade 7, a rotating shaft 8, a vacuum seal 9, a rotating motor (rotating device) 10, and a lifting device 11. The stirring blade 7 is inserted into the molten metal, and the stirring blade 7 is rotated through the rotating shaft 8 by the rotation motor 10 to stir the molten metal. The size of the stirring blade 7 is preferably not less than 0.3 times the diameter of the crucible 4 in order to sufficiently stir the entire molten metal, and 0.95 times to ensure mechanical clearance with the crucible inside. The following diameters are preferred. That is, a range of 0.3 to 0.95 times is preferable. Further, the rotational speed is preferably 10 rpm or more, but if it is too large, there is a problem that the molten silicon is scattered, and the range up to 120 rpm is preferable. That is, a range of 10 to 120 rpm is preferable. The material of the stirring blade and the rotating shaft is preferably ceramics such as quartz, alumina and magnesia, or graphite, which is excellent in heat resistance and less deteriorated by reaction with silicon, but graphite is the most excellent. However, if these materials are used in a portion in contact with the vacuum seal 9, the processing accuracy and wear resistance are inferior, which may cause leakage. For this reason, it is desirable that the rotary shaft 8 is divided and the upper part is made of a metal material such as stainless steel. By providing the lifting device 11, the insertion position of the stirring blade 7 can be adjusted according to the state of the raw material inserted into the crucible and the position of the crucible. Moreover, it is possible to obtain a larger stirring effect by rotating the stirring blade and periodically moving it up and down at the same time. It is preferable that the vertical movement period is once per 5 to 30 revolutions and the stroke is as large as possible in the range from the bottom of the crucible to the melt surface. It is desirable that the vacuum seal 9 has a specification (for example, a magnetic seal) that can hold the container 2 in a vacuum state even when the rotation shaft repeatedly rotates and moves up and down.

図2は、溶湯攪拌装置6がガス導入機構によって構成されている場合である。溶湯攪拌装置6は、ガス導入用パイプ(不活性ガス噴出管)12、真空シール9、および昇降装置11から構成されている。溶湯内にガス導入用パイプ12を挿入し、溶湯内にガスを送り込んで溶湯を攪拌する。ガス導入用パイプ12の材質は、耐熱性に優れ、シリコンとの反応による劣化の少ない石英、アルミナおよびマグネシア等のセラミックス、あるいは黒鉛が望ましいが、黒鉛が最も優れている。但し、それらの材料を真空シール9と接する部分に用いると、加工精度や耐磨耗性に劣るため、リークの原因になり得る。そのため、ガス導入用パイプ12は分割式とし、上部はステンレス等の金属材料により構成することが望ましい。パイプ先端のガス噴出穴(噴出口)は単に1つ穴でも発明の効果が発現されるが、メルト中に設置できる範囲で複数個の穴を設置することで攪拌効果が大きくなる。穴径は噴出速度を大きくするためにできる限り小さな径が好ましいが、小さ過ぎると目詰まりを起こしてしまうため、0.5mm以上3mm以下の径が好ましい。また、先端部から水平方向に複数本のパイプを分岐させ、溶湯中心部だけでなく周囲部分にもガス噴出孔を設置することで攪拌の効果は大きくなる。前記複数本の分岐バイプにも複数個の噴出孔を設けることで攪拌効果はさらに大きくなるが、この場合にはパイプを回転させることで攪拌効果はより大きくなる。パイプを回転させることは、複数本のパイプを導入することも攪拌効果を大きくする上で効果的である。   FIG. 2 shows a case where the molten metal stirring device 6 is constituted by a gas introduction mechanism. The molten metal stirring device 6 includes a gas introduction pipe (inert gas ejection pipe) 12, a vacuum seal 9, and a lifting device 11. The gas introduction pipe 12 is inserted into the molten metal, and the gas is fed into the molten metal to stir the molten metal. The material of the gas introduction pipe 12 is preferably ceramics such as quartz, alumina, and magnesia, or graphite, which is excellent in heat resistance and less deteriorated by reaction with silicon, but graphite is most excellent. However, if these materials are used in a portion in contact with the vacuum seal 9, the processing accuracy and wear resistance are inferior, which may cause leakage. Therefore, it is desirable that the gas introduction pipe 12 is of a split type and the upper part is made of a metal material such as stainless steel. The effect of the invention is manifested even if only one gas ejection hole (ejection outlet) is provided at the tip of the pipe, but the stirring effect is increased by installing a plurality of holes within a range that can be installed in the melt. The hole diameter is preferably as small as possible in order to increase the ejection speed, but if it is too small, clogging occurs, so a diameter of 0.5 mm or more and 3 mm or less is preferable. Moreover, the effect of agitation is increased by branching a plurality of pipes horizontally from the tip and installing gas ejection holes not only in the melt center but also in the surrounding area. The stirring effect is further increased by providing a plurality of ejection holes in the plurality of branching vipes. In this case, the stirring effect is further increased by rotating the pipe. Rotating the pipe is effective in increasing the stirring effect by introducing a plurality of pipes.

昇降装置11を具備することによって、るつぼに挿入される原料の状態やるつぼの位置に応じて、ガス導入用パイプ12の挿入位置を調整可能である。真空シール9は、ガス導入用パイプ12が繰り返し上下動しても、容器2を真空状態に保持できる仕様(例えば、磁気シール)であることが望ましい。ガスの導入量は穴の径や個数に依存するが、ガス導入量が大き過ぎると容器内の真空度が下がり、P除去速度が低下する。真空容器や真空ポンプの排気能力にも依存するため、真空度が500Pa以下の圧力を維持できる量以下のガス導入量が好ましく、さらに好ましくは10Pa以下の圧力を維持できる量以下のガス導入量が好ましい。   By providing the lifting / lowering device 11, the insertion position of the gas introduction pipe 12 can be adjusted according to the state of the raw material inserted into the crucible and the position of the crucible. The vacuum seal 9 desirably has a specification (for example, a magnetic seal) that can hold the container 2 in a vacuum state even when the gas introduction pipe 12 repeatedly moves up and down. The amount of gas introduced depends on the diameter and number of holes. However, if the amount of gas introduced is too large, the degree of vacuum in the container decreases and the P removal rate decreases. Since it also depends on the exhaust capacity of the vacuum vessel or vacuum pump, the amount of gas introduced is preferably an amount that can maintain a pressure of 500 Pa or less, more preferably an amount of gas that is less than an amount capable of maintaining a pressure of 10 Pa or less. preferable.

図3は、溶湯攪拌装置6が加熱装置5の外側に配置した電磁石による電磁誘導攪拌装置によって構成されている場合である。電磁誘導攪拌装置は、攪拌力の及ぶ距離が比較的長いので、熱の影響が少ない真空容器2の外側に配置される。通常の熱対流と異なる流動を励起することで、Si中のPの拡散速度が大きく向上する。電磁コイル13のスロット数(磁極数、一般的には12程度)、ポール数(電磁界の周期が1周当りn周期の場合に2×n、一般的には2ないし4)は、一般的な仕様で良い。周波数は0.1〜10Hz程度が好ましい。周波数が小さいほど電磁界の誘起される距離が大きくなるので、装置の大型化に対し周波数は小さい方が好ましい。シリコンに与えられる攪拌力は10N/m程度になる。 FIG. 3 shows a case where the molten metal stirring device 6 is constituted by an electromagnetic induction stirring device using an electromagnet disposed outside the heating device 5. The electromagnetic induction stirrer is disposed outside the vacuum vessel 2 that is less affected by heat because the distance over which the stirring force reaches is relatively long. Exciting a flow different from normal thermal convection greatly increases the diffusion rate of P in Si. The number of slots of the electromagnetic coil 13 (number of magnetic poles, generally about 12) and the number of poles (2 × n when the period of the electromagnetic field is n cycles per round, generally 2 to 4) are general. The specifications are fine. The frequency is preferably about 0.1 to 10 Hz. The smaller the frequency, the greater the distance at which the electromagnetic field is induced. Therefore, it is preferable that the frequency be small as the apparatus becomes larger. The stirring force applied to silicon is about 10 N / m 3 .

第5の発明は、第1の発明で記載したシリコンの脱P精製装置に不純物凝縮装置を付加した脱P精製装置である。図4によって詳細に説明する。図4に記載した符号14が不純物凝縮装置の不純物凝縮部である。不純物凝縮部14は、るつぼ4の上部の溶湯表面及びるつぼ開口部を見ることが可能な位置(見込む位置)に配置されており、溶湯表面から蒸発したPは、SiおよびSiOと共に不純物凝縮部14の表面にトラップされ、不純物凝縮部14の表面にPが高濃度に濃縮されたSi−SiOの膜が付着する。図4の不純物凝縮部14は、鉄、ステンレス、および銅等の金属、黒鉛、アルミナ、あるいはそれらの複数の素材を組み合わせた円筒である。   The fifth invention is a de-P purifying apparatus in which an impurity condensing device is added to the silicon de-P purifying apparatus described in the first invention. This will be described in detail with reference to FIG. The code | symbol 14 described in FIG. 4 is the impurity condensing part of an impurity condensing apparatus. The impurity condensing part 14 is disposed at a position where the molten metal surface and the crucible opening in the upper part of the crucible 4 can be seen (a position to be seen), and P evaporated from the molten metal surface together with Si and SiO is the impurity condensing part 14. The Si—SiO film in which P is concentrated at a high concentration adheres to the surface of the impurity condensing part 14. The impurity condensing part 14 in FIG. 4 is a cylinder formed by combining metals such as iron, stainless steel, and copper, graphite, alumina, or a plurality of these materials.

第6の発明は、不純物凝縮部14に水等の冷媒15を導入して冷却する冷却装置を付加したものである。冷媒15を図中の矢印の向きに流すことにより不純物凝縮部14の表面を冷却する。表面を冷却することによって、P除去効果はさらに増大する。   6th invention adds the cooling device which introduce | transduces and cools the refrigerant | coolants 15, such as water, to the impurity condensation part 14. FIG. The surface of the impurity condensing part 14 is cooled by flowing the refrigerant 15 in the direction of the arrow in the figure. By cooling the surface, the P removal effect is further increased.

第7の発明は、図4のように、不純物凝縮装置に昇降装置(第1の昇降装置)20を付加したシリコン精製装置である。このような構成にすると、不純物凝縮部14と溶湯表面の距離、あるいは、不純物凝縮部14とるつぼ開口部の距離を最適に保つことが可能となる。   7th invention is the silicon | silicone refinement | purification apparatus which added the raising / lowering apparatus (1st raising / lowering apparatus) 20 to the impurity condensing apparatus like FIG. With this configuration, it is possible to keep the distance between the impurity condensing part 14 and the molten metal surface, or the distance between the impurity condensing part 14 and the crucible opening.

第8の発明を図4(a)及び図4(b)によって説明するが、本発明は、連続操業において欠かせない装置構成である。不純物凝縮部14には、Pが高濃度に濃縮されたSi−SiOの膜が付着するが、一定以上の膜厚になると剥離して処理シリコン中に落下しP濃度が再上昇するため、定期的に清掃する必要がある。図4の装置では、減圧可能な容器は処理室16と予備排気室17(準備室)から成っており、処理室16と予備排気室17はゲートバルブ18によって仕切ることができる。処理室16と予備排気室17はそれぞれに真空ポンプ1,1’を装備しており、処理室16の真空を破ることなく、予備排気室17を大気圧から減圧、減圧から大気圧に自由に行き来することができる。不純物凝縮部14は、ゲートバルブ18の位置を跨いで、処理室16と予備排気室17の間を自由に移動する昇降装置20を具備している。ゲートバルブ18が開閉するため、溶湯攪拌用攪拌羽根7も昇降機構11によって処理室16と予備排気室17の間を移動可能とする機構になっている。また、予備排気室17は、不純物凝縮部14を清掃したり、溶湯攪拌装置6の部品交換をしたりするための扉19を装備している。尚、図4(a)は、不純物除去中の装置の状態であり、溶湯攪拌用攪拌羽根7及び不純物凝縮部14が処理室16にある。図4(b)は、不純物凝縮部14を清掃している場合の装置状態であり、溶湯攪拌用攪拌羽根7及び不純物凝縮部14が予備排気室17にある。   The eighth invention will be described with reference to FIGS. 4 (a) and 4 (b). The present invention is an apparatus configuration indispensable in continuous operation. Although the Si-SiO film in which P is concentrated at a high concentration adheres to the impurity condensing part 14, it peels off when the film thickness exceeds a certain level, falls into the treated silicon, and the P concentration rises again. Need to be cleaned. In the apparatus of FIG. 4, the depressurizable container includes a processing chamber 16 and a preliminary exhaust chamber 17 (preparation chamber). The processing chamber 16 and the preliminary exhaust chamber 17 can be partitioned by a gate valve 18. The processing chamber 16 and the preliminary exhaust chamber 17 are each equipped with a vacuum pump 1, 1 ′, and the preliminary exhaust chamber 17 can be freely reduced from atmospheric pressure to reduced pressure to atmospheric pressure without breaking the vacuum of the processing chamber 16. I can go back and forth. The impurity condensing unit 14 includes an elevating device 20 that freely moves between the processing chamber 16 and the preliminary exhaust chamber 17 across the position of the gate valve 18. Since the gate valve 18 is opened and closed, the molten metal stirring blade 7 is also configured to be movable between the processing chamber 16 and the preliminary exhaust chamber 17 by the lifting mechanism 11. In addition, the preliminary exhaust chamber 17 is equipped with a door 19 for cleaning the impurity condensing unit 14 and replacing parts of the molten metal stirring device 6. 4A shows the state of the apparatus during impurity removal, and the molten metal stirring blade 7 and the impurity condensing unit 14 are in the processing chamber 16. FIG. FIG. 4B shows a state of the apparatus when the impurity condensing unit 14 is cleaned, and the melt stirring blade 7 and the impurity condensing unit 14 are in the preliminary exhaust chamber 17.

第9の発明は、るつぼ4に昇降装置(第2の昇降装置)を付加したシリコン精製装置である。第7の発明と同様、不純物凝縮部14と溶湯表面の距離、あるいは不純物凝縮部14とるつぼ開口部の距離を最適に保つことが可能となる。   The ninth invention is a silicon refining device in which an elevating device (second elevating device) is added to the crucible 4. As in the seventh invention, the distance between the impurity condensing part 14 and the molten metal surface, or the distance between the impurity condensing part 14 and the crucible opening can be kept optimal.

第10の発明は、前記第1〜9の発明の装置を用いて、容器内を500Pa以下に減圧し、シリコンを融点以上に加熱して溶解保持するシリコン精製方法である。本方法により、PのSi溶湯中の拡散律速、ないしSi溶湯中の拡散律速とPの気相拡散律速の双方を解消し、シリコン中から高い除去速度での不純物元素の除去が可能である。500Paより高い圧力下では、不純物除去速度が低く、実用上の問題がある。また、好ましくは10Pa以下に減圧することで高い不純物除去速度が得られる。   A tenth aspect of the present invention is a silicon purification method in which the inside of the container is depressurized to 500 Pa or less and the silicon is heated to the melting point or higher and dissolved and held using the apparatus of the first to ninth aspects. By this method, it is possible to eliminate the diffusion rate limiting in the molten Si of P, or both the diffusion rate limiting rate in the molten Si and the vapor phase diffusion rate limiting of P, and to remove the impurity element from the silicon at a high removal rate. Under a pressure higher than 500 Pa, the impurity removal rate is low, which causes a practical problem. Further, a high impurity removal rate can be obtained by reducing the pressure preferably to 10 Pa or less.

さて、本発明が不純物除去速度を向上させている原理について、Pの除去を例に取り説明する。ここでPをSiより蒸気圧の高い元素の代表として記載するのであり、下記に記載する基本原理は、Siより蒸気圧の高い全ての元素、例えば、Al、As、Sb、Li、Mg、Zn、Na、Ca、Ni、Ge、Cu、Sn、Ag、In、Mn、Pb、およびTl等のSiより蒸気圧の高い元素の除去について適用可能である。   Now, the principle by which the present invention improves the impurity removal rate will be described by taking P removal as an example. Here, P is described as a representative element having a higher vapor pressure than Si, and the basic principle described below is based on all elements having a higher vapor pressure than Si, for example, Al, As, Sb, Li, Mg, Zn. , Na, Ca, Ni, Ge, Cu, Sn, Ag, In, Mn, Pb, and Tl can be applied to remove elements having a higher vapor pressure than Si.

PをSi液相中から除去するプロセスは、(a)Si液相中でのPの拡散、(b)Si液相表面から気相へのPの蒸発、(c)気相中でのPの拡散、の3つの素過程からなっている。即ち、PはSi液相中を拡散し、気液界面に到達した後、気液界面で蒸発する。Pの移動を最も律速している(a)〜(c)のいずれかの素過程がトータルのP除去速度を決めている。   The process of removing P from the Si liquid phase includes (a) diffusion of P in the Si liquid phase, (b) evaporation of P from the Si liquid phase surface to the gas phase, and (c) P in the gas phase. It consists of three elementary processes: diffusion. That is, P diffuses in the Si liquid phase, reaches the gas-liquid interface, and evaporates at the gas-liquid interface. Any one of the elementary processes (a) to (c) that controls the movement of P most determines the total P removal speed.

まず、本発明の溶湯攪拌装置がP除去速度を向上させている原理を述べる。シリコン溶湯の深さが浅い場合には、液相中のPの拡散は十分に速く、シリコン溶湯の深さ方向でPの濃度差は殆どつかないので、(a)の液相中拡散は律速過程ではない。ところが、シリコン溶湯の深さが深くなると、液相中のPの移動速度が(浅いときと)変わらなくても、シリコン溶湯の深さ方向でPの濃度差がついてしまい、(b)の反応過程の駆動力を減らし、したがってP除去速度が低下する。具体的には、シリコン溶湯の深さがおよそ100mmまでの範囲では、シリコン溶湯深さに比例してP除去処理時間が増え、P除去速度はシリコン溶湯深さに依らない。ところが、シリコン溶湯の深さが100mmを超えると、シリコン溶湯深さに比例したP除去処理時間よりも明らかに長い時間P除去処理を行う必要が生じた。さらに、シリコン溶湯の深さがおよそ500mmを超える範囲では、P除去処理の時間はシリコン溶湯の深さのおよそ2乗に比例するようになり、P除去速度はシリコン溶湯深さにおよそ反比例したのである。本発明の溶湯攪拌装置を用いれば、液相中のPの移動速度そのものが大きくなるので、シリコン溶湯の深さが深くなってもシリコン溶湯の深さ方向でPの濃度差が小さくなり、(a)の液相中拡散が律速する度合いを弱めることができる。   First, the principle that the molten metal stirring device of the present invention improves the P removal rate will be described. When the depth of the molten silicon is shallow, the diffusion of P in the liquid phase is sufficiently fast, and there is almost no difference in the concentration of P in the depth direction of the molten silicon. Therefore, the diffusion in the liquid phase of (a) is rate limiting. It is not a process. However, when the depth of the molten silicon increases, even if the moving speed of P in the liquid phase does not change (when it is shallow), there is a difference in the concentration of P in the depth direction of the molten silicon, and the reaction (b) The driving force of the process is reduced, and therefore the P removal rate is reduced. Specifically, when the depth of the molten silicon is up to about 100 mm, the P removal processing time increases in proportion to the depth of the molten silicon, and the P removal rate does not depend on the depth of the molten silicon. However, when the depth of the molten silicon exceeds 100 mm, it becomes necessary to perform the P removal treatment for a time that is clearly longer than the P removal treatment time proportional to the depth of the molten silicon. Further, in the range where the depth of the molten silicon exceeds about 500 mm, the P removal processing time is proportional to the square of the depth of the molten silicon, and the P removal rate is approximately inversely proportional to the depth of the molten silicon. is there. If the molten metal stirring apparatus of the present invention is used, the moving speed of P in the liquid phase itself increases, so that even if the depth of the molten silicon increases, the concentration difference of P in the depth direction of the molten silicon decreases. The degree of rate limiting of diffusion in the liquid phase of a) can be weakened.

次に、本発明の不純物凝縮装置がP除去速度を向上させている原理を述べる。溶湯表面から離脱したP分子は、真空ポンプまで排気されるか、減圧容器内のあらゆる表面に到達し付着する。しかしながら、Pは蒸気圧が高いことからも分るように、付着係数が低く、再蒸発の確率が高い。特に、減圧容器内は輻射や伝熱により高温になっており、再蒸発の確率はさらに高い。したがって、Pは速やかに系外に排気されず、速やかに気相中のP濃度が低減できないのである。前記の電子ビーム溶解法を用いない従来技術においては、気相中に離脱したPを単に真空ポンプに排気するだけでは気相中のP濃度が低下する速度が遅く、P蒸発の駆動力が小さいため、P除去速度が小さいのである。即ち、従来技術では、前記(c)のPの気相中拡散が律速過程となっていた。   Next, the principle that the impurity condensing apparatus of the present invention improves the P removal rate will be described. The P molecules detached from the surface of the molten metal are exhausted to the vacuum pump, or reach and adhere to any surface in the decompression vessel. However, as can be seen from the high vapor pressure of P, the adhesion coefficient is low and the probability of re-evaporation is high. In particular, the inside of the decompression vessel is at a high temperature due to radiation and heat transfer, and the probability of reevaporation is even higher. Therefore, P is not quickly exhausted out of the system, and the P concentration in the gas phase cannot be quickly reduced. In the prior art that does not use the electron beam melting method, the P concentration in the gas phase is decreased at a low rate and the driving force for P evaporation is small by simply evacuating the P released in the gas phase to a vacuum pump. Therefore, the P removal rate is small. That is, in the prior art, the diffusion of P in the gas phase in (c) has been a rate-determining process.

さて、Pと比較してSiの蒸気圧は低いが、Si中のPは元々数十ppmの濃度であるため、蒸発量としてはSiの方が大きい。したがって、本発明の不純物凝縮装置の表面には、常にSi又はSiOの一方又は双方が飛来する。表面の温度はSi及びSiOの融点以下のため、Si又はSiOの一方又は双方は固化・蒸着される。但し、SiOは、Si液相中もしくは気相中の一方もしくは双方に残存するO(酸素)、又はリークによるOの一方又は双方と、Si蒸気が反応して生成したものである。もし、不純物凝縮装置の表面にPだけが飛来したなら、Pは再蒸発する確率が高い。しかし、Pがまさに今飛来した表面でSi又はSiOの一方又は双方が固化しているなら、PはSi及びSiOと親和性が高いため、Pはそれらの固体中に固溶固化、即ち、トラップされる。即ち、気相から速やかに除去されるのである。即ち、本発明の不純物凝縮装置は、Pの気相中の拡散速度を飛躍的に増大させ、気相拡散の過程の律速の度合いを弱めるのである。 Now, although the vapor pressure of Si is lower than that of P, since P in Si originally has a concentration of several tens of ppm, Si has a larger evaporation amount. Therefore, one or both of Si and SiO always fly on the surface of the impurity condensing apparatus of the present invention. Since the surface temperature is lower than the melting point of Si and SiO, one or both of Si and SiO are solidified and evaporated. However, SiO is generated by reacting Si vapor with one or both of O 2 (oxygen) remaining in one or both of the Si liquid phase and the gas phase, or O 2 due to leakage. If only P comes to the surface of the impurity condensing device, P has a high probability of re-evaporation. However, if one or both of Si and SiO is solidified on the surface where P has just arrived, since P has a high affinity with Si and SiO, P is solid-solidified in those solids, ie traps. Is done. That is, it is quickly removed from the gas phase. That is, the impurity condensing apparatus of the present invention dramatically increases the diffusion rate of P in the gas phase, and weakens the rate limiting rate in the gas phase diffusion process.

(実施例1)
使用した装置の概要を示す。基本構造は図1に準じている。真空容器は水冷ジャケット構造で、油回転ポンプおよびメカニカルブースターポンプの2段の真空ポンプを備えている。真空容器内には、外径1000mm内径900mm深さ(内寸)700mmの高純度黒鉛製のるつぼ、るつぼの側面と底面を覆う位置に高純度黒鉛製ヒーター、それらの外側にカーボン製断熱材が設置されている。黒鉛製のヒーターは最大で300kWの電力を投入できる。
(Example 1)
An overview of the equipment used is shown. The basic structure conforms to FIG. The vacuum vessel has a water-cooled jacket structure and is equipped with a two-stage vacuum pump of an oil rotary pump and a mechanical booster pump. Inside the vacuum vessel is a high-purity graphite crucible with an outer diameter of 1000 mm, an inner diameter of 900 mm, and a depth (inner dimension) of 700 mm, a high-purity graphite heater at a position covering the side and bottom of the crucible, and a carbon insulation on the outside. is set up. A graphite heater can supply a maximum of 300 kW of power.

シリコン溶湯攪拌装置は、基本的に高密度黒鉛製の600mmφ2枚羽根形状の攪拌羽根であり、長さ1500mm径50mmの高密度黒鉛製回転軸に取り付け、さらに前記の回転軸をステンレス製の回転軸に連結している。真空容器の導入穴に真空シール機構を取り付け、前記ステンレス製の回転軸の部分で大気をシールしている。ステンレス軸は、さらに、回転モーター及び昇降機構に連結されており、真空シール機構は、ステンレス軸の回転と昇降においても容器内を真空に保てる仕様になっている。回転数は最大60rpm、昇降のストロークは1000mmとした。   The molten silicon stirring device is basically a 600 mmφ two-blade shaped stirring blade made of high-density graphite, and is attached to a high-density graphite rotating shaft having a length of 1500 mm and a diameter of 50 mm. Further, the rotating shaft is made of a stainless steel rotating shaft. It is linked to. A vacuum seal mechanism is attached to the introduction hole of the vacuum vessel, and the atmosphere is sealed by the stainless steel rotating shaft. The stainless steel shaft is further connected to a rotary motor and a lifting mechanism, and the vacuum seal mechanism is designed to keep the inside of the container in a vacuum even when the stainless steel shaft is rotated and lifted. The number of rotations was 60 rpm at the maximum, and the lifting stroke was 1000 mm.

P除去処理は、冷間でシリコン原料をるつぼに充填した後に、真空掃引する。5.0Pa以下の真空度になった後、ヒーターに通電して溶解を開始した。全てのシリコン原料が完全に溶解終了した後、真空中で加熱保持した。充填するシリコン原料は、初期P濃度が30ppmのものを用いた。処理後のシリコンのP濃度はICP発光分析法を用いて測定し、時間及びシリコン量を考慮してP除去速度を評価した。   In the P removal process, the silicon raw material is filled in the crucible in the cold, and then vacuum sweep is performed. After reaching a vacuum level of 5.0 Pa or less, the heater was energized to start melting. After all the silicon raw materials were completely dissolved, they were heated and held in a vacuum. As the silicon raw material to be filled, one having an initial P concentration of 30 ppm was used. The P concentration of silicon after the treatment was measured using ICP emission analysis, and the P removal rate was evaluated in consideration of time and the amount of silicon.

実施例、比較例共に、150、300、600、900kgのシリコン原料を処理し、P除去速度のシリコン溶湯深さ依存性を試験した。処理時間は、溶湯質量に比例させており、150、300、600、900kgのシリコン原料に対し、溶解完了確認後にそれぞれ2、4、8、12時間の処理を施した。実施例では、溶解前には攪拌羽根をるつぼの上方に退避させておき、溶解後に攪拌羽根を溶湯内に挿入し、30rpmで回転させた。比較例では、攪拌羽根による攪拌を実施しなかった。   In all of the examples and comparative examples, 150, 300, 600, and 900 kg of silicon raw material were treated, and the dependency of the P removal rate on the depth of the molten silicon was tested. The treatment time was proportional to the mass of the molten metal, and 150, 300, 600, and 900 kg of silicon raw material were treated for 2, 4, 8, and 12 hours, respectively, after confirming the completion of melting. In the examples, the stirring blade was retracted above the crucible before melting, and after melting, the stirring blade was inserted into the molten metal and rotated at 30 rpm. In the comparative example, stirring with a stirring blade was not performed.

表1に比較例、表2に本実施例の結果を記載した。攪拌を実施しなかった場合には、P除去速度はシリコン量にほぼ反比例して小さくなった。攪拌を実施した場合には、P除去速度はシリコン量を多くするに従い若干小さくなったが、同じシリコン量で比較例と比べると、処理速度は1.15〜4.5倍大きく、攪拌の効果は非常に高い。   Table 1 lists the comparative examples, and Table 2 lists the results of this example. In the case where stirring was not performed, the P removal rate decreased almost in inverse proportion to the amount of silicon. When stirring was performed, the P removal rate slightly decreased as the amount of silicon was increased, but the processing rate was 1.15 to 4.5 times larger than that of the comparative example with the same amount of silicon. Is very expensive.

(実施例2)
本実施例では、実施例1に記載した装置と同一の装置を用い、同一の条件でシリコンを処理した。相違点は、実施例1で用いた黒鉛製の攪拌羽根と回転軸、ステンレス製回転軸、及びモーターを取り外し、黒鉛製の外径30mm内径20mm長さ1500mmのパイプをステンレスのパイプに繋いだガス配管に付け替えた。シリコン溶湯には、黒鉛パイプが挿入できるようになっており、ステンレスパイプが真空容器の真空シール部分を通過する構造である。ステンレスパイプはArガスボンベに接続され、シリコン溶湯にArガスを導入できるようにした。実施例1と同様に、溶解前にはパイプをるつぼの上方に退避させておき、溶解後にパイプを溶湯内に挿入し、溶湯内にArを導入した。導入したAr量は1.0mL/min、真空度は10Paで処理した。
(Example 2)
In this example, the same apparatus as that described in Example 1 was used, and silicon was processed under the same conditions. The difference is that the graphite agitation blade and rotating shaft, stainless steel rotating shaft, and motor used in Example 1 were removed, and a graphite pipe having an outer diameter of 30 mm, an inner diameter of 20 mm, and a length of 1500 mm was connected to the stainless steel pipe. Replaced with piping. A graphite pipe can be inserted into the silicon melt, and the stainless steel pipe passes through the vacuum seal portion of the vacuum vessel. The stainless steel pipe was connected to an Ar gas cylinder so that Ar gas could be introduced into the molten silicon. As in Example 1, the pipe was withdrawn above the crucible before melting, the pipe was inserted into the molten metal after melting, and Ar was introduced into the molten metal. The amount of Ar introduced was 1.0 mL / min, and the degree of vacuum was 10 Pa.

表3に本実施例の結果を記載した。本実施例でも実施例1と同様、シリコン量を多くするに従いP除去速度は若干小さくなったが、同じシリコン量で比較例と比べると、処理速度は1.02〜4.0倍大きく、攪拌の効果は顕著であった。   Table 3 lists the results of this example. In this example, as in Example 1, the P removal rate was slightly reduced as the amount of silicon was increased. However, the processing rate was 1.02 to 4.0 times larger than that of the comparative example with the same amount of silicon, and the stirring rate was increased. The effect of was remarkable.

(実施例3)
本実施例でも、実施例1に記載した装置と同一の装置を用い、同一の条件でシリコンを処理した。相違点は、実施例1で用いた黒鉛製の攪拌羽根と回転軸、ステンレス製回転軸、及びモーターを取り外し、真空容器の外側に誘導攪拌のための電磁コイルを取り付けた。電磁コイル全体のおおよその形状は、外径3300mm内径2500mm高さ1000mmのドーナツ形状である。スロットは12で磁極の鉄芯の形状は長さ300mmで200mm×500mmの矩形断面とし、各磁極のコイルは300ターンとした。周波数は2Hz、ポール数は4で設計した。
(Example 3)
Also in this example, the same apparatus as that described in Example 1 was used, and silicon was processed under the same conditions. The difference was that the graphite stirring blade and rotating shaft, stainless steel rotating shaft and motor used in Example 1 were removed, and an electromagnetic coil for induction stirring was attached to the outside of the vacuum vessel. The approximate shape of the entire electromagnetic coil is a donut shape having an outer diameter of 3300 mm, an inner diameter of 2500 mm, and a height of 1000 mm. The slot was 12, the iron core of the magnetic pole had a length of 300 mm, a rectangular cross section of 200 mm × 500 mm, and the coil of each magnetic pole had 300 turns. The frequency was designed at 2 Hz and the number of poles was 4.

表4に本実施例の結果を記載した。本実施例でも実施例1と同様、シリコン量を多くするに従いP除去速度は若干小さくなったが、同じシリコン量で比較例と比べると、処理速度は1.06〜4.2倍大きく、攪拌の効果は顕著であった。   Table 4 lists the results of this example. In this example, as in Example 1, the P removal rate slightly decreased as the amount of silicon was increased. However, the processing rate was 1.06 to 4.2 times larger than that of the comparative example with the same amount of silicon, and the stirring rate was increased. The effect of was remarkable.

(実施例4)
本実施例では、図4の仕様に類似した装置により900kgのシリコンを精製した(表5)。不純物凝縮装置を用いなかった場合、不純物凝縮装置を用いたがその清掃を実施しなかった場合、不純物凝縮装置を用いたが2時間おきに不純物凝縮部を清掃した場合の3ケースで比較した。不純物凝縮装置を用いなかった場合には、実施例1とほぼ同じP除去速度であった。不純物凝縮装置を用いた場合は、不純物凝縮装置を用いなかった場合と比較して、3倍程度のP除去速度となった。不純物凝縮装置を清掃した場合は、不純物凝縮装置を用いなかった場合と比較して、5倍程度のP除去速度となった。
(Example 4)
In this example, 900 kg of silicon was purified by an apparatus similar to the specification of FIG. 4 (Table 5). When the impurity condensing apparatus was not used, the impurity condensing apparatus was used but the cleaning was not performed. When the impurity condensing apparatus was used, the impurity condensing part was cleaned every two hours, and the comparison was made in three cases. When the impurity condensing apparatus was not used, the P removal rate was almost the same as in Example 1. When the impurity condensing device was used, the P removal rate was about 3 times as high as when the impurity condensing device was not used. When the impurity condensing device was cleaned, the P removal rate was about 5 times higher than when the impurity condensing device was not used.

本件発明のシリコン精製装置の概念図(攪拌羽根攪拌)である。It is a conceptual diagram (stirring blade stirring) of the silicon purification apparatus of the present invention. 本件発明のシリコン精製装置の概念図(ガス攪拌)である。It is a conceptual diagram (gas stirring) of the silicon refinement | purification apparatus of this invention. 本件発明のシリコン精製装置の概念図(電磁攪拌)である。It is a conceptual diagram (electromagnetic stirring) of the silicon refinement | purification apparatus of this invention. 不純物凝縮装置を付加した装置の概念図であって、P除去処理時の装置状態である。It is a conceptual diagram of the apparatus which added the impurity condensing apparatus, Comprising: It is an apparatus state at the time of P removal process. 不純物凝縮装置を付加した装置の概念図であって、不純物凝縮装置を清掃する時の装置状態である。It is a conceptual diagram of the apparatus which added the impurity condensing apparatus, Comprising: It is an apparatus state when cleaning an impurity condensing apparatus.

符号の説明Explanation of symbols

1 真空ポンプ、
2 減圧可能な容器、
3 シリコン溶湯、
4 るつぼ、
5 加熱装置、
6 溶湯攪拌装置、
7 攪拌羽根、
8 回転軸、
9 真空シール、
10 モーター、
11 昇降装置、
12 ガス導入パイプ、
13 電磁コイル、
14 不純物凝縮部、
15 冷媒、
16 処理室、
17 予備室、
18 ゲートバルブ、
19 扉、
20 不純物凝縮部用の昇降装置。
1 vacuum pump,
2 Depressurizable container,
3 Silicon melt,
4 Crucible,
5 heating device,
6 Molten metal stirring device,
7 stirring blades,
8 rotation axis,
9 Vacuum seal,
10 motor,
11 Lifting device,
12 Gas introduction pipe,
13 Electromagnetic coil,
14 Impurity condensation section,
15 refrigerant,
16 treatment room,
17 Spare room,
18 Gate valve,
19 Door,
20 Lifting device for impurity condensing part.

Claims (10)

真空ポンプを具備した減圧容器内に、シリコンを収容するるつぼと、該るつぼを加熱する加熱装置を少なくとも設置してなるシリコンの脱リン精製装置であって、
該るつぼ内に収容されたシリコン溶湯の攪拌装置を配してなることを特徴とするシリコンの脱リン精製装置。
A dephosphorizing and purifying apparatus for silicon comprising at least a crucible containing silicon and a heating device for heating the crucible in a vacuum container equipped with a vacuum pump,
An apparatus for dephosphorizing and purifying silicon, comprising a stirring device for molten silicon contained in the crucible.
前記攪拌装置が、前記シリコン溶湯内に設置された攪拌羽根と該攪拌羽根を回転させる回転装置からなる請求項1記載のシリコンの脱リン精製装置。   The silicon dephosphorization and purification apparatus according to claim 1, wherein the stirring device comprises a stirring blade installed in the molten silicon and a rotating device for rotating the stirring blade. 前記攪拌装置が、前記シリコン溶湯内に噴出口を配置した不活性ガス噴出管からなる請求項1記載のシリコンの脱リン精製装置。   The silicon dephosphorizing and purifying apparatus according to claim 1, wherein the stirring device comprises an inert gas jet pipe having a jet port disposed in the molten silicon. 前記攪拌装置が、前記加熱装置の外側に配置した電磁石による誘導攪拌装置からなる請求項1記載のシリコンの脱リン精製装置。   The silicon dephosphorizing and purifying apparatus according to claim 1, wherein the stirring apparatus comprises an induction stirring apparatus using an electromagnet disposed outside the heating apparatus. 前記るつぼ内のシリコン溶湯表面又はるつぼ開口部の一方又は双方を見ることが可能な位置に不純物凝縮装置を配してなる請求項1記載のシリコンの脱リン精製装置。   2. The apparatus for dephosphorizing and purifying silicon according to claim 1, wherein an impurity condensing device is disposed at a position where one or both of the surface of the molten silicon or the crucible opening in the crucible can be seen. 前記不純物凝縮装置が、冷却装置を有する請求項5記載のシリコンの脱リン精製装置。   The silicon dephosphorization purification apparatus according to claim 5, wherein the impurity condensing apparatus includes a cooling device. 前記不純物凝縮装置を昇降自在とする第1の昇降装置を有する請求項5又は6に記載のシリコンの脱リン精製装置。   The silicon dephosphorization purification apparatus according to claim 5, further comprising a first lifting device that allows the impurity condensing device to freely move up and down. 前記減圧容器に、不純物凝縮装置を収容する準備室を配する請求項7記載のシリコンの脱リン精製装置。   The silicon dephosphorization purification apparatus according to claim 7, wherein a preparation chamber for storing an impurity condensing apparatus is disposed in the decompression vessel. 前記るつぼを昇降自在とする第2の昇降装置を有する請求項5記載のシリコンの脱リン精製装置。   The silicon dephosphorization purification apparatus according to claim 5, further comprising a second elevating device that allows the crucible to be moved up and down. 請求項1〜9のいずれか一項に記載のシリコンの脱リン精製装置を用いたシリコン精製方法であって、
減圧容器内を500Pa以下とし、るつぼ内のシリコンを融点以上に加熱しつつ、さらにシリコン溶湯を攪拌装置で攪拌しながら、シリコン溶湯中から蒸発するリンを主体とする不純物を除去することを特徴とするシリコンの脱リン精製方法。
A silicon purification method using the silicon dephosphorization purification apparatus according to any one of claims 1 to 9,
The inside of the decompression vessel is set to 500 Pa or less, and while the silicon in the crucible is heated to a melting point or higher, and the molten silicon is further stirred with a stirrer, impurities mainly composed of phosphorus evaporating from the molten silicon are removed. To dephosphorylate and purify silicon.
JP2005137638A 2005-05-10 2005-05-10 Apparatus and method for dephosphorizing and purifying silicon Expired - Fee Related JP5100978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137638A JP5100978B2 (en) 2005-05-10 2005-05-10 Apparatus and method for dephosphorizing and purifying silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137638A JP5100978B2 (en) 2005-05-10 2005-05-10 Apparatus and method for dephosphorizing and purifying silicon

Publications (2)

Publication Number Publication Date
JP2006315879A true JP2006315879A (en) 2006-11-24
JP5100978B2 JP5100978B2 (en) 2012-12-19

Family

ID=37536876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137638A Expired - Fee Related JP5100978B2 (en) 2005-05-10 2005-05-10 Apparatus and method for dephosphorizing and purifying silicon

Country Status (1)

Country Link
JP (1) JP5100978B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018958A (en) * 2007-07-11 2009-01-29 Sharp Corp Method for melting silicon and method for purifying silicon
JP2009292687A (en) * 2008-06-06 2009-12-17 Umk Technology Kk Refining method and refiner of silicon
JP2010235322A (en) * 2009-03-30 2010-10-21 Cosmo Oil Co Ltd Production method of polycrystalline silicon ingot
FR2950046A1 (en) * 2009-09-15 2011-03-18 Apollon Solar LOW PRESSURE FUSION DEVICE AND SILICON PURIFICATION AND METHOD OF MELTING / PURIFYING / SOLIDIFYING
WO2011111766A1 (en) * 2010-03-11 2011-09-15 三菱化学株式会社 Method and jig for producing silicon
WO2013108373A1 (en) * 2012-01-18 2013-07-25 新日鉄マテリアルズ株式会社 Silicon purification apparatus and silicon purification method
WO2013118249A1 (en) 2012-02-06 2013-08-15 新日鉄マテリアルズ株式会社 Metal or semiconductor melt refinement method, and vacuum refinement device
CN104220370A (en) * 2012-02-03 2014-12-17 菲罗索拉硅太阳能公司 Silicon refining equipment and method for refining silicon
CN111646478A (en) * 2020-07-14 2020-09-11 昆明理工大学 Micro-negative pressure external refining method for industrial silicon melt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632319A (en) * 1979-08-16 1981-04-01 Consortium Elektrochem Ind Method of refining silicon material
JPH0848514A (en) * 1994-08-04 1996-02-20 Sharp Corp Removal of phosphorus from silicon
JP2000247623A (en) * 1999-02-24 2000-09-12 Kawasaki Steel Corp Method for refining silicon and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632319A (en) * 1979-08-16 1981-04-01 Consortium Elektrochem Ind Method of refining silicon material
JPH0848514A (en) * 1994-08-04 1996-02-20 Sharp Corp Removal of phosphorus from silicon
JP2000247623A (en) * 1999-02-24 2000-09-12 Kawasaki Steel Corp Method for refining silicon and apparatus therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018958A (en) * 2007-07-11 2009-01-29 Sharp Corp Method for melting silicon and method for purifying silicon
JP2009292687A (en) * 2008-06-06 2009-12-17 Umk Technology Kk Refining method and refiner of silicon
JP2010235322A (en) * 2009-03-30 2010-10-21 Cosmo Oil Co Ltd Production method of polycrystalline silicon ingot
FR2950046A1 (en) * 2009-09-15 2011-03-18 Apollon Solar LOW PRESSURE FUSION DEVICE AND SILICON PURIFICATION AND METHOD OF MELTING / PURIFYING / SOLIDIFYING
WO2011033188A1 (en) * 2009-09-15 2011-03-24 Apollon Solar Low pressure device for melting and purifying silicon and melting/purifying/solidifying method
WO2011111766A1 (en) * 2010-03-11 2011-09-15 三菱化学株式会社 Method and jig for producing silicon
WO2013108373A1 (en) * 2012-01-18 2013-07-25 新日鉄マテリアルズ株式会社 Silicon purification apparatus and silicon purification method
CN104220370A (en) * 2012-02-03 2014-12-17 菲罗索拉硅太阳能公司 Silicon refining equipment and method for refining silicon
EP2810920A4 (en) * 2012-02-03 2015-11-25 Silicio Ferrosolar S L U Silicon refining equipment and method for refining silicon
CN104220370B (en) * 2012-02-03 2016-10-19 菲罗索拉硅太阳能公司 Silicon refining equipment and the method for refined silicon
US9937436B2 (en) 2012-02-03 2018-04-10 Silicio Ferrosolar S.L. Silicon refining equipment and method for refining silicon
WO2013118249A1 (en) 2012-02-06 2013-08-15 新日鉄マテリアルズ株式会社 Metal or semiconductor melt refinement method, and vacuum refinement device
CN111646478A (en) * 2020-07-14 2020-09-11 昆明理工大学 Micro-negative pressure external refining method for industrial silicon melt

Also Published As

Publication number Publication date
JP5100978B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5100978B2 (en) Apparatus and method for dephosphorizing and purifying silicon
US20080031799A1 (en) Method For Refining Silicon And Silicon Refined Thereby
JP3473369B2 (en) Silicon purification method
JP4433610B2 (en) Method and apparatus for purifying silicon
JP2007513048A (en) Method for removing impurities from metallurgical grade silicon to produce solar grade silicon
JP2012508154A (en) Method and apparatus for producing solar grade silicon by refining metallurgical grade silicon
JP5859577B2 (en) Silicon purification apparatus and silicon purification method
JP2015508743A (en) Method for purifying silicon
JP2007326749A (en) Silicon purification apparatus and silicon purification method
JP2006027940A (en) Method for refining metal
JP4775911B2 (en) Method for producing aluminum-lithium alloy target and aluminum-lithium alloy target
JP4672559B2 (en) Silicon purification apparatus and silicon purification method
JP2008303113A (en) Unidirectional coagulation method for silicon
JP4264166B2 (en) Method for purifying silicon
JPWO2008149985A1 (en) Solidification method of metallic silicon
JP4722403B2 (en) Silicon purification apparatus and silicon purification method
JPH0368937B2 (en)
WO2003078319A1 (en) Method of purifying silicon, silicon produced by the method and solar cell
JP5069859B2 (en) Silicon purification apparatus and purification method
JP2007314403A (en) Silicon purification method and apparatus
US4231755A (en) Process for purifying solid substances
JP5879369B2 (en) Silicon purification apparatus and silicon purification method
JP2003213345A (en) Method for refining metal
JP2001226721A (en) Refining method for aluminum and its application
CN109536744B (en) Method for purifying rare earth metal by liquation directional solidification coupling

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees