JP2006313140A - Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method - Google Patents

Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method Download PDF

Info

Publication number
JP2006313140A
JP2006313140A JP2005163239A JP2005163239A JP2006313140A JP 2006313140 A JP2006313140 A JP 2006313140A JP 2005163239 A JP2005163239 A JP 2005163239A JP 2005163239 A JP2005163239 A JP 2005163239A JP 2006313140 A JP2006313140 A JP 2006313140A
Authority
JP
Japan
Prior art keywords
terahertz
terahertz wave
thz
frequency
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005163239A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Ken Sudo
建 須藤
Jiro Shibata
治郎 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005163239A priority Critical patent/JP2006313140A/en
Publication of JP2006313140A publication Critical patent/JP2006313140A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a terahertz wave generating apparatus and a spectroscopic measurement apparatus which are compact, highly efficient, wideband, high in resolution and excellent in temperature stability, and can simultaneously measure imaginary and real parts of a refractive index and also measure a polarization property. <P>SOLUTION: In the apparatus, a grating and a beam expander are disposed in a resonator of a laser light source for exciting a GaP crystal, thereby making a linewidth narrow without any damage, and an optical path for simultaneously measuring transmission and reflection of a measured sample is made up, and the GaP crystal is rotated in order to obtain the polarization property. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はコヒーレントテラヘルツ波発生装置に関わる。  The present invention relates to a coherent terahertz wave generator.

生体物質や癌細胞などを形成する大きな有機分子、あるいは一般の有機分子を識別するための周波数掃引単色テラヘルツ光源・分光計としてGaPなどの半導体やLiNbOなどの誘電体をテラヘルツ波発生用非線形光学結晶として用いたものが知られている。特に、GaPのフォノンポラリトンモードを二つの励起レーザ光すなわち、ポンプ光、信号光で励起する方式は、テラヘルツ波周波数を、0.3THzから7THzまでの極めて広範囲に周波数掃引することができるので生体物質等のテラヘルツスペクトル全体を知ることが出来、癌の検出などに有効であることが示されている。ポンプ光(あるいは信号光)としてオプティカルパラメトリックオシレータ(OPO)を用いた場合、OPOを励起するのにYAGレーザの3逓倍波(355nm)を使うと、OPO出力の線幅が極めて狭くなり、結果としてテラヘルツ波の線幅が1.5GHzまで狭くなる。テラヘルツ光源・分光計測装置としては1.5GHzの周波数純度を有するので高分解能テラヘルツ透過あるいは反射スペクトルを得ることができ、従来観測が不可能であった、有機分子中の構造欠陥の検出も可能であることが示されている。なお、単色テラヘルツ電磁波の透過スペクトルから物質の吸収係数が求められるが、これは複素誘電率あるいは複素屈折率の虚数部に対応している。Nonlinear optics for generating terahertz waves using semiconductors such as GaP and dielectrics such as LiNbO 3 as frequency-swept monochromatic terahertz light sources and spectrometers for identifying large organic molecules that form biological materials and cancer cells, or general organic molecules Those used as crystals are known. In particular, the method of exciting the phonon polariton mode of GaP with two excitation laser beams, that is, pump light and signal light, can sweep the frequency of terahertz waves in a very wide range from 0.3 THz to 7 THz, so that the biological material It is shown that the entire terahertz spectrum such as can be known, and is effective in detecting cancer. When an optical parametric oscillator (OPO) is used as pump light (or signal light), if the triple wave (355 nm) of a YAG laser is used to excite OPO, the line width of the OPO output becomes extremely narrow. The line width of the terahertz wave is reduced to 1.5 GHz. As a terahertz light source / spectrometer, it has a frequency purity of 1.5 GHz, so a high-resolution terahertz transmission or reflection spectrum can be obtained, and structural defects in organic molecules that could not be observed in the past can be detected. It is shown that there is. The absorption coefficient of the substance is obtained from the transmission spectrum of the monochromatic terahertz electromagnetic wave, and this corresponds to the imaginary part of the complex dielectric constant or the complex refractive index.

OPOを励起光源としてGaP結晶から周波数掃引テラヘルツ波を発生させる方式は広帯域(0.3THz−7THz),高分解能(線幅1.5GHz)であり、かつ高出力(100mW−800mW)であるから、生体分子の精細なテラヘルツスペクトルが得られる。しかし、OPOの励起源としてYAGレーザの3逓倍波を使っているため、効率が極めて低く、従ってYAGレーザを大出力にしなければならない。YAGレーザのパルスエネエルギー1000mJが必要とされるため、装置を卓上型以下の小型にすることは困難である。3逓倍器の温度依存性が大きいため、周囲の温度変化の影響によって特性が変化する。本発明の目的は述上の欠点を除き、小型高効率で温度安定性高く、広帯域(0.3THz−7THz)高分解能、高出力の周波数掃引テラヘルツ光源・分光計測装置及び方法を提供することである。また、従来は、単色テラヘルツ光源を使った場合は、屈折率あるいは誘電率の虚数部に対応する吸収係数のみ測定されていたので、物質の誘電分散の詳細な測定を行うことは困難であった。本発明では、誘電率あるいは屈折率の実数部も同時に測定する方法、更にはそれらのテラヘルツ電磁波偏光方向依存性をも測定できる方法を提供する。  The method of generating a frequency-swept terahertz wave from a GaP crystal using OPO as an excitation light source is wideband (0.3 THz-7 THz), high resolution (line width 1.5 GHz), and high output (100 mW-800 mW). A fine terahertz spectrum of biomolecules can be obtained. However, since the triple wave of the YAG laser is used as the pumping source for the OPO, the efficiency is extremely low, and therefore the YAG laser must have a high output. Since a YAG laser pulse energy of 1000 mJ is required, it is difficult to reduce the size of the apparatus to a desktop type or smaller. Since the temperature dependence of the tripler is large, the characteristics change due to the influence of ambient temperature changes. The object of the present invention is to provide a small-sized, high-efficiency, high-temperature-stable, broadband (0.3 THz-7 THz), high-resolution, high-output frequency-swept terahertz light source / spectroscopic measurement apparatus and method. is there. In the past, when a monochromatic terahertz light source was used, only the absorption coefficient corresponding to the imaginary part of the refractive index or dielectric constant was measured, so it was difficult to measure the dielectric dispersion of the substance in detail. . The present invention provides a method for simultaneously measuring the real part of the dielectric constant or refractive index, and further a method for measuring the terahertz electromagnetic wave polarization direction dependency.

周波数可変のテレヘルツ波を発生させるにはGaP結晶のフォノンポラリトンを励起するが、励起用のポンプ光源、信号光源として、2台のCr添加フォーステライトレーザ(Cr:Forsterite)を使う。Cr:ForsteriteレーザはYAGレーザの基本波(1064nm)で励起されるため15%という極めて効率の高い発振が得られる。発振波長は1200nmから1300nmの間で可変であるからOPOと同様に0.3THzから7THzの間の周波数を掃引することができる。  In order to generate a variable frequency telehertz wave, the phonon polariton of the GaP crystal is excited, and two Cr-added forsterite lasers (Cr: Forsterite) are used as a pump light source and a signal light source for excitation. Since the Cr: Forsterite laser is excited by the fundamental wave (1064 nm) of the YAG laser, an extremely efficient oscillation of 15% can be obtained. Since the oscillation wavelength is variable between 1200 nm and 1300 nm, the frequency between 0.3 THz and 7 THz can be swept in the same manner as OPO.

しかし、Cr:Forsteriteは発振可能波長帯が広いため、線幅も広く、0.1nm以上である。テラヘルツ波出力の線幅が30GHz以上となり、高分解能を得ることは不可能である。その理由はCr:Forsteriteレーザ内の波長選択にはガラスプリズムが用いられているため波長分散が小さいからである。ガラスプリズムの代わりにグレーティングを波長選択器に使えば、波長分散はプリズムの100倍も得られ、従ってそれだけ狭い線幅を得ることが可能となるが、グレーティングの材料として金属膜や、有機化合物のホログラフィックグレーティングが使われるが、発振出力が高いため、材料が蒸発劣化しやすく安定な動作ができない。そこで、グレーティングに入射するビームの口径を拡大する手段をCr:Forsteriteレーザの光路内に挿入し、グレーティング表面で適切なビームパワ密度まで低下させる。このような手段の挿入損は充分に小さければ発振閾値の実際的増加は避けることができるのでYAGレーザのパワを増大させる必要はないのである。  However, since Cr: Forsterite has a wide oscillating wavelength band, the line width is wide and is 0.1 nm or more. The line width of the terahertz wave output is 30 GHz or more, and it is impossible to obtain high resolution. This is because the wavelength dispersion is small because a glass prism is used for wavelength selection in the Cr: Forsterite laser. If a grating is used as a wavelength selector instead of a glass prism, the wavelength dispersion can be 100 times that of the prism, and thus a narrow line width can be obtained. However, as a material for the grating, a metal film or an organic compound is used. Holographic gratings are used, but because the oscillation output is high, the material is liable to evaporate and cannot operate stably. Therefore, means for enlarging the aperture of the beam incident on the grating is inserted into the optical path of the Cr: Forsterite laser, and the beam surface is reduced to an appropriate beam power density. If the insertion loss of such means is small enough, a practical increase in the oscillation threshold can be avoided, so there is no need to increase the power of the YAG laser.

図1を使って説明する。Cr:Forsteriteレーザ1、2はテラヘルツ波発生のためのポンプ光、信号光を発生するレーザであり、YAGレーザ3の基本波波長1064nmによって励起され、波長1200nmから1300nmにおいて発振する。1,2のどちらかが波長可変であればよいのであるが、2が波長可変である場合について述べる。Cr:Forsteriteレーザ1の波長を例えば1200nmに固定する。0.1THzから7THzのテラヘルツ波を発生させるにはCr:Forsteriteレーザ2の波長を1204nmから1235nmの範囲で変化させる。つぎに、Cr:Forsteriteレーザ1,2の出力は偏光ビームスプリッタ4によって平行に近いビームに合成され所定の交差角θin ext ,及び入射角αextでGaP単結晶5の入射面6に入射する。出力面7からテラヘルツ波周波数に依存する所定の角度でテラヘルツ波出力が取り出され、非放物面鏡8,9、DTGS(deuterium triglycine sulfide)やSiボロメータなどの検知器10を使って検出される。なお、分光のS/Nを高めるため、テラヘルツ波をサンプルに入射する前に、ウェッジ型のビームスプリッタによって分割し、別の検知器で検知する参照光路が設けられているが図面では省略されている。This will be described with reference to FIG. The Cr: Forsterite lasers 1 and 2 are lasers that generate pump light and signal light for generating terahertz waves, and are excited by the fundamental wave wavelength 1064 nm of the YAG laser 3 and oscillate at wavelengths from 1200 nm to 1300 nm. Either one of 1 and 2 may be variable in wavelength, but a case where 2 is variable in wavelength will be described. The wavelength of the Cr: Forsterite laser 1 is fixed at 1200 nm, for example. In order to generate a terahertz wave of 0.1 THz to 7 THz, the wavelength of the Cr: Forsterite laser 2 is changed in the range of 1204 nm to 1235 nm. Next, the outputs of the Cr: Forsterite lasers 1 and 2 are combined into a nearly parallel beam by the polarization beam splitter 4 and incident on the incident surface 6 of the GaP single crystal 5 at a predetermined crossing angle θ in ext and incident angle α ext. . A terahertz wave output is extracted from the output surface 7 at a predetermined angle depending on the terahertz wave frequency, and is detected by using a non-parabolic mirror 8, 9, a detector 10 such as a DTGS (deuterium triglycine sulfide) or a Si bolometer. . In order to increase the spectral S / N ratio, a terahertz wave is divided by a wedge-type beam splitter before being incident on the sample, and a reference optical path for detection by another detector is provided. Yes.

図2に示すようにCr:Forsteriteレーザ2の共振器を構成する波長選択用のグレーティング11は選択する波長にあわせてグレーティング回転機構により回転させる。グレーティングピッチは1200line/mmあるいは600line/mmである。12は発振光の平行ビーム径を拡大するためのビームエキスパンダーである。13はCr:Forsterite結晶、14はレーザ出力ミラ、15はYAGレーザからの入射ビーム、16はレーザ出力ビームである。  As shown in FIG. 2, the wavelength selecting grating 11 constituting the resonator of the Cr: Forsterite laser 2 is rotated by a grating rotating mechanism in accordance with the selected wavelength. The grating pitch is 1200 line / mm or 600 line / mm. Reference numeral 12 denotes a beam expander for enlarging the parallel beam diameter of the oscillation light. 13 is a Cr: Forsterite crystal, 14 is a laser output mirror, 15 is an incident beam from a YAG laser, and 16 is a laser output beam.

ビームエキスパンダー12は図3(a)に示すように、焦点fの凹レンズ17と焦点fの凸レンズ18によって構成され、グレーティングに入射する平行ビームの径を広げる。ビーム径拡大率はf/fで与えられる。ビーム径を広げることによってエッジの影響が減るのでこれによっても発振光の線幅は狭くなり、0.003nm以下の線幅を得ることができる。As shown in FIG. 3A, the beam expander 12 includes a concave lens 17 having a focal point f 1 and a convex lens 18 having a focal point f 2 , and widens the diameter of a parallel beam incident on the grating. The beam diameter enlargement ratio is given by f 2 / f 1 . Since the influence of the edge is reduced by widening the beam diameter, the line width of the oscillation light is also narrowed by this, and a line width of 0.003 nm or less can be obtained.

Cr:Forsteriteレーザ1は、狭い線幅を得るために、2と同様にグレーティングとビームエキスパンダーを備えているか、あるいは、数個のプリズムとエタロン板を共振器内に備えている。エタロン板のフィルター効果によりグレーティングを使ったのとほぼ同じ分解能が得られる。なお、エタロンを使うと、発振周波数はエタロンの固有周波数である離散値に限定される。従って波長を連続的に変えることが出来ないのでこの方法はCr:Forsteriteレーザ2に使うことはできない。グレーティングは有機ポリマーを材料としてホログラフィー技術で作成することができる。表面は金などの膜をコーティングし反射率を高める。ビーム径拡大率はグレーティングが損傷を受けない限度のパルスビームエネルギー密度となるように設計される。例としてパルス幅が20nmの場合、損傷を受けないためにはパルスビームエネルギー密度を3mJ/mm以下に保つことが望ましい。一方、分光計測に必要な100mWのテラヘルツパルスを得るにはCr:Forsteriteレーザ1,2ともに出力6mJ,ビーム径約1mm x 1mm程度のビームが必要である。従って、損傷を受けないためにはビーム面積の拡大率は2倍以上でなければならず、f/fは1.4以上となる。ビーム径拡大用エキスパンダーのレンズは1200nm−1300nm領域で無反射コーティングされており、挿入損失はほとんど問題にならない。Cr:Forsterite 1、2の出力の線幅が0.003nmにおいて、テラヘルツ波出力の線幅は0.6GHz以下となる。In order to obtain a narrow line width, the Cr: Forsterite laser 1 includes a grating and a beam expander, as in 2, or includes several prisms and an etalon plate in the resonator. With the filter effect of the etalon plate, almost the same resolution can be obtained as when using a grating. If an etalon is used, the oscillation frequency is limited to a discrete value that is the natural frequency of the etalon. Therefore, this method cannot be used for the Cr: Forsterite laser 2 because the wavelength cannot be changed continuously. The grating can be prepared by holographic technology using an organic polymer as a material. The surface is coated with a film such as gold to increase the reflectivity. The beam diameter expansion rate is designed so that the pulse beam energy density is such that the grating is not damaged. For example, when the pulse width is 20 nm, it is desirable to keep the pulse beam energy density at 3 mJ / mm 2 or less so as not to be damaged. On the other hand, in order to obtain a 100 mW terahertz pulse necessary for spectroscopic measurement, both the Cr: Forsterite lasers 1 and 2 require a beam having an output of 6 mJ and a beam diameter of about 1 mm × 1 mm. Therefore, in order not to be damaged, the expansion ratio of the beam area must be twice or more, and f 2 / f 1 is 1.4 or more. The expander lens for expanding the beam diameter is anti-reflective coated in the 1200 nm to 1300 nm region, and insertion loss hardly poses a problem. When the line width of the Cr: Forsterite 1 and 2 outputs is 0.003 nm, the line width of the terahertz wave output is 0.6 GHz or less.

GaP結晶は結晶長、幅、高さは一例として10mm,10mm,3mmあるいは10mm,5mm,5mmであり、入射面は<110>軸方向を向いている。結晶長は長さとともに出力が増大するが、テラヘルツ波の吸収のためある程度以上に長くすると出力が飽和または減少する。したがって結晶長は5mmから20mmの範囲であるが、7mmから13mmの範囲にあることが最も望ましい。テラヘルツ波の吸収は自由キャリアによって生じるのでキャリア密度は1012cm−3以下が必要である。For example, the GaP crystal has a crystal length, width, and height of 10 mm, 10 mm, 3 mm, or 10 mm, 5 mm, 5 mm, and the incident surface faces the <110> axis direction. The output increases as the crystal length increases, but if the length is increased to a certain extent due to absorption of terahertz waves, the output is saturated or decreased. Accordingly, the crystal length is in the range of 5 mm to 20 mm, but is most preferably in the range of 7 mm to 13 mm. Since terahertz wave absorption is caused by free carriers, the carrier density needs to be 10 12 cm −3 or less.

以上の説明はCr:Forsteriteレーザによる励起方式について説明したが、OPO励起方式についても同様な方法を付加することができる。すなわち、OPOの励起光源としてYAGレーザの3逓倍波ではなく、2逓倍波(532nm)を使うことにより効率を高める。OPOの線幅は2逓倍にすることにより広くなるはずであるが、グレーティングを挿入した効果により狭まり、テラヘルツ波出力の線幅は1GHz以下となる。  In the above description, the excitation method using the Cr: Forsterite laser has been described, but a similar method can be added to the OPO excitation method. That is, the efficiency is increased by using a double wave (532 nm) instead of the triple wave of the YAG laser as an excitation light source for OPO. The line width of the OPO should be widened by doubling, but is narrowed by the effect of inserting the grating, and the line width of the terahertz wave output is 1 GHz or less.

レーザ発振の安定を保持するためには、共振器内の光学部品は、設置されている環境に変化があっても、それぞれの幾何学的位置関係も精度よく固定されていなければならない。図3(b)では少なくとも、共振器内の反射鏡Mとグレーティング10が図示してない制御手段で安定したレーザ発振状態を保つように全方位にわたって正確な位置制御がなされているものである。もちろん、共振器を構成する構造物の材料は、温度変化や重力などの外力で変形しがたいセラミック材や金属が選定されている。  In order to maintain the stability of the laser oscillation, even if the optical components in the resonator are changed in the environment in which they are installed, their geometrical positional relationship must be fixed with high accuracy. In FIG. 3 (b), at least the reflecting mirror M and the grating 10 in the resonator are accurately controlled in all directions so as to maintain a stable laser oscillation state by a control means not shown. Of course, a ceramic material or metal that is difficult to be deformed by an external force such as temperature change or gravity is selected as the material of the structure constituting the resonator.

グレーティングの回折角の制御は、例えば、テラヘルツ波の周波数10THzを100MHzの分解能で制御するとなると5桁を制御範囲に入れる必要があるので、可動部分の位置再現性を保証するためにも、ばね軸受けや圧電アクチュエータを適用したほうが良い。また、共振器内Cの温度は、図示していない保温材で囲んだ環境やPID制御器などで構成される温度制御手段で、+−0.02℃以内に制御されていることが望ましい。すくなくとも+−0.5℃以内に制御されていなければグレーティングによる高い分解能効果を発揮できないこととなる。グレーティングを用いないでプリズムを用いる場合も同様である。  For controlling the diffraction angle of the grating, for example, if a terahertz wave frequency of 10 THz is controlled with a resolution of 100 MHz, it is necessary to put 5 digits in the control range. Or a piezoelectric actuator. Further, it is desirable that the temperature in the resonator C is controlled within +/− 0.02 ° C. by temperature control means including an environment surrounded by a heat insulating material (not shown) and a PID controller. If it is not controlled within at least + -0.5 ° C., the high resolution effect by the grating cannot be exhibited. The same applies when a prism is used without using a grating.

ポンプ及び信号光レーザ部分及びテラヘルツ波発生部及び参照光路は実施例1とおなじであるが、図4に示すように、出力テラヘルツ波19はサンプル20を透過する透過光路とサンプルの表面で反射したテラヘルツ波を検出する反射光路に導かれそれぞれの検知器10,10’で検知される。図中21,22は反射光路を形成する平面ミラ及び非放物面ミラである。二つの検知器によって透過スペクトルと反射スペクトルが同時に測定され、屈折率の実数部と虚数部を両方とも求めることが出来る。簡単のため、垂直入射の場合で説明すると、反射率Rは複素屈折率n=n−ikを用いて次のように表される。The pump, the signal light laser part, the terahertz wave generator, and the reference optical path are the same as those in the first embodiment. However, as shown in FIG. 4, the output terahertz wave 19 is reflected by the transmitted optical path that passes through the sample 20 and the surface of the sample. The light is guided to the reflected light path for detecting the terahertz wave and detected by the detectors 10 and 10 '. In the figure, reference numerals 21 and 22 denote a planar mirror and a non-parabolic mirror that form a reflection optical path. The transmission spectrum and the reflection spectrum are simultaneously measured by two detectors, and both the real part and the imaginary part of the refractive index can be obtained. For simplicity, in the case of normal incidence, the reflectance R is expressed as follows using the complex refractive index n * = n−ik.

Figure 2006313140
Figure 2006313140

屈折率の虚数部kは吸収係数αと次のような直接的関係があるので、透過率Tから直ちに求まる。dはサンプルの厚みである。Tは標準用のポリエチレンペレットの透過率である。なお、標準用ペレットは多重反射を避けるためウェッジ型に成型されている。代表的な測定サンプルは粉末状の物質をポリエチレン粉末に混合拡散させたものであり、表面反射率は標準ペレットとほぼ同じである。Since the imaginary part k of the refractive index has the following direct relationship with the absorption coefficient α, it is obtained immediately from the transmittance T. d is the thickness of the sample. T 0 is the transmittance of standard polyethylene pellets. Note that the standard pellets are molded in a wedge shape to avoid multiple reflections. A typical measurement sample is obtained by mixing and diffusing a powdery substance in polyethylene powder, and the surface reflectance is almost the same as that of a standard pellet.

Figure 2006313140
Figure 2006313140

数3Number 3

T=Texp(−αd)T = T 0 exp (−αd)

一方、反射率は実数部と虚数部の両方に依存するが実数部の変化の効果の方が大きい。近似的に反射率の変化は屈折率実数部の変化を表す。虚数部kの効果を無視できないときは、上式で求められたkを使って、反射率の測定値と合うように屈折率を逐次近似的に求めればよく、結局、透過率と反射率の測定から物質の複素屈折率の周波数依存性がわかる。これらの計算はコンピュータに内蔵したプログラムで自動的に行われる。こうして、例えば、水溶液の複素屈折率の周波数依存性から、生体成分や溶液中の水分子の拡散、振動など、分子の挙動についての情報を得ることが出来る。  On the other hand, the reflectivity depends on both the real part and the imaginary part, but the effect of the change in the real part is greater. The change in reflectance approximately represents the change in the real part of the refractive index. When the effect of the imaginary part k cannot be ignored, the refractive index can be obtained approximately and sequentially so as to match the measured value of reflectance using k obtained by the above equation. The measurement shows the frequency dependence of the complex refractive index of the substance. These calculations are automatically performed by a program built in the computer. Thus, for example, information on molecular behavior such as diffusion and vibration of biological molecules and water molecules in the solution can be obtained from the frequency dependence of the complex refractive index of the aqueous solution.

生体分子の結晶異方性や溶液中でのせん光性によって、テラヘルツ透過率や反射率の偏波方向依存性を生じる。したがって、テラヘルツ透過率あるいは反射率の偏波方向依存性を求めることによって物質状態についての知見を得ることが出来る。クライオスタット中にサンプルがあるときはサンプルを回転して測定することは機構が複雑で望ましくない。サンプルはエタロン効果による透過率変動を避けるため、ウェッジ型に形成されているので、ビーム方向が変化することも誤差を生じる。そこで図5のようにテラヘルツ波発生用GaP結晶を結晶長方向の周りに90度回転させる。テラヘルツ波の偏波方向は、回転後もほぼ<1−10>方向なので、結晶回転にともなって偏波方向eTHzが90度回転することとなる。なお、図中、e,eはCr:Forsteriteレーザ1,2の偏波方向を表す。 テラヘルツ波の偏波方向ごとにそれぞれスペクトルをとり、両者の比を取れば、物質の偏波依存性の周波数特性がわかる。なお、GaP結晶をテラヘルツ波パルスの発生繰返し周期である10Hzの1.25倍すなわち12.5Hzで回転すれば交互に結晶を0度及び90度の位置に保持することができるのでほぼ同時に偏光方向のスペクトルを得ることが出来る。Depending on the crystal anisotropy of biomolecules and the flashiness in solution, the terahertz transmittance and reflectivity depend on the polarization direction. Therefore, knowledge about the material state can be obtained by obtaining the polarization direction dependency of the terahertz transmittance or reflectance. When there is a sample in the cryostat, rotating and measuring the sample is complicated and undesirable. Since the sample is formed in a wedge shape in order to avoid transmittance fluctuation due to the etalon effect, an error also occurs when the beam direction changes. Therefore, as shown in FIG. 5, the terahertz wave generating GaP crystal is rotated 90 degrees around the crystal length direction. Since the polarization direction of the terahertz wave is substantially <1-10> direction after the rotation, the polarization direction e THz is rotated by 90 degrees with the crystal rotation. In the figure, e 1 and e 2 represent the polarization directions of the Cr: Forsterite lasers 1 and 2. If the spectrum is taken for each polarization direction of the terahertz wave and the ratio between the two is taken, the frequency dependence of the polarization dependence of the material can be found. In addition, if the GaP crystal is rotated at 1.25 times 10 Hz which is the generation repetition period of the terahertz wave pulse, that is, 12.5 Hz, the crystal can be held alternately at the positions of 0 degree and 90 degrees, so the polarization direction is almost the same. Can be obtained.

図6は被測定物Pは癌細胞Kが正常細胞Nと異なった形の水分分布で隣接している場合において被測定物に照射するテラヘルツ波の位置を図示していない照射位置可変手段を用いて変え、その前後の偏光特性の変化を計測する例である。Aは偏光版、Bはシリコンボロメータなどの検知器、19TはKに照射後位置を変化させたテラヘルツ波である。Aとしてはメタルメッシュ偏光板あるいは図では示してないが斜入射の反射板などが使われる。  FIG. 6 shows that the object P to be measured uses irradiation position variable means that does not show the position of the terahertz wave that irradiates the object to be measured when the cancer cell K is adjacent to the normal cell N with a different moisture distribution. This is an example of measuring changes in polarization characteristics before and after the change. A is a polarizing plate, B is a detector such as a silicon bolometer, and 19T is a terahertz wave obtained by changing the position of K after irradiation. As A, a metal mesh polarizing plate or an obliquely incident reflecting plate (not shown) is used.

実施例1−3ではテラヘルツ波検知器としてDTGSまたはSiボロメータを使うが、本実施例では図6に示すような水晶あるいはシリコンなどのメカニカルフィルタ23(電気機械振動子)を検知素子として使う。機械振動子の少なくとも一部には粉末カーボン24が塗布されており、テラヘルツ波25を吸収すると温度が上がり、熱ひずみを生じる結果、共振周波数が変化する。26は測定端子である。周波数変化あるいは位相変化を検出するか、またはそれによるフィルタの電圧透過度変化などのフィルタ特性の変化を検出することによりテラヘルツ波強度を計測する。テラヘルツ波のパルス幅は10nsであるから変化はこれに追従せず、ゆっくりと変動するが、パルス繰り返し周波数10Hzに追従するのでテラヘルツ波の検出が可能である。 Siボロメータと違って、室温で動作するので小型である。また、DTGSのように初期ポーリングの変化による感度劣化を生じることも無い。 更に、DTGSは周波数0.6THz以下になると急速に感度が低下し、0.1THzではほとんど感度がないが、本振動子は感度の低下が無いのである。  In Embodiment 1-3, a DTGS or Si bolometer is used as a terahertz wave detector. In this embodiment, a mechanical filter 23 (electromechanical vibrator) such as crystal or silicon as shown in FIG. 6 is used as a detection element. At least a part of the mechanical vibrator is coated with powdered carbon 24. When the terahertz wave 25 is absorbed, the temperature rises and heat distortion occurs, resulting in a change in the resonance frequency. Reference numeral 26 denotes a measurement terminal. The terahertz wave intensity is measured by detecting a change in frequency or phase, or detecting a change in filter characteristics such as a change in the voltage transmittance of the filter. Since the pulse width of the terahertz wave is 10 ns, the change does not follow this and fluctuates slowly. However, since the terahertz wave follows the pulse repetition frequency of 10 Hz, the terahertz wave can be detected. Unlike the Si bolometer, it operates at room temperature and is small. In addition, unlike DTGS, sensitivity deterioration due to a change in initial polling does not occur. Further, the sensitivity of DTGS rapidly decreases when the frequency is 0.6 THz or less, and there is almost no sensitivity at 0.1 THz, but this vibrator has no decrease in sensitivity.

なお、シリコンプロセス技術によってシリコンメカニカルフィルタの1次元アレーや2次元マトリックスを形成し、テラヘルツ波イメージング装置を構成することもできる。  A terahertz wave imaging apparatus can also be configured by forming a one-dimensional array or two-dimensional matrix of silicon mechanical filters by silicon process technology.

発明の効果The invention's effect

本発明によれば、線幅が極めて狭く、屈折率の実数部と虚数部が同時に測定でき、偏光特性も測定できる、0.1THzから7THzの範囲内の周波数掃引テラヘルツ波発生光源及び分光計測装置が得られる。  According to the present invention, a frequency-swept terahertz wave generating light source and a spectroscopic measurement device in the range of 0.1 THz to 7 THz, in which the line width is extremely narrow, the real part and the imaginary part of the refractive index can be measured simultaneously, and the polarization characteristics can also be measured. Is obtained.

実施例1におけるテラヘルツ波発生装置の構成を示す図である。  It is a figure which shows the structure of the terahertz wave generator in Example 1. FIG. 実施例1における励起レーザの構成を示す図である。  FIG. 2 is a diagram illustrating a configuration of an excitation laser in Example 1. (a)は実施例1における励起レーザ共振器内の構成を示す図である。(b)は実施例1における励起レーザ共振器内のグレーティングと反射鏡の制御構成を示す図である。  (A) is a figure which shows the structure in the excitation laser resonator in Example 1. FIG. (B) is a figure which shows the control structure of the grating and reflecting mirror in the excitation laser resonator in Example 1. FIG. 実施例2におけるテラヘルツ波透過及び反射スペクトルを測定するための構を示す図である。  It is a figure which shows the structure for measuring the terahertz wave transmission and reflection spectrum in Example 2. FIG. 実施例3におけるGaP結晶の配置を示す図である。  6 is a diagram showing the arrangement of GaP crystals in Example 3. FIG. 実施例4における偏光特性変化測定系の構成を示す図である。  10 is a diagram illustrating a configuration of a polarization characteristic change measurement system in Example 4. FIG. 実施例5におけるテラヘルツ波検知器  Terahertz wave detector in embodiment 5

符号の説明Explanation of symbols

1…第1のCr:Forsteriteレーザ
2…第2のCr:Forsteriteレーザ
3…YAGレーザ
4…偏光ビームスプリッター
5…GaP結晶
6…GaPの入射面
7…GaPのテラヘルツ波出力面
9…非放物面鏡
10…非放物面鏡
11…グレーティング
12…ビームエキスパンダー
13…Cr:Forsterite結晶
14…出力ミラー
15…入射YAGレーザ光
16…Cr:Forsteriteレーザ出力光
17…凹レンズ
18…凸レンズ
19…出力テラヘルツ波ビーム
20…測定サンプル
21…平面ミラー
22…非放物面鏡
23…メカニカルフィルタ
24…塗布カーボン
25…テラヘルツ波
26…測定端子
A…偏光版
B…テラヘルツ波検知器
C…共振器内
M…反射鏡
P…被測定物
K…癌細胞
N…正常細胞
19T…テラヘルツ波
DESCRIPTION OF SYMBOLS 1 ... 1st Cr: Forsterite laser 2 ... 2nd Cr: Forsterite laser 3 ... YAG laser 4 ... Polarizing beam splitter 5 ... GaP crystal 6 ... GaP incident surface 7 ... GaP terahertz wave output surface 9 ... Non-parabolic Surface mirror 10 ... Non-parabolic mirror 11 ... Grating 12 ... Beam expander 13 ... Cr: Forsterite crystal 14 ... Output mirror 15 ... Incident YAG laser light 16 ... Cr: Forsterite laser output light 17 ... Concave lens 18 ... Convex lens 19 ... Output terahertz Wave beam 20 ... Measurement sample 21 ... Plane mirror 22 ... Non-parabolic mirror 23 ... Mechanical filter 24 ... Coated carbon 25 ... Terahertz wave 26 ... Measurement terminal A ... Polarized plate B ... Terahertz wave detector C ... Intracavity M ... Reflector P ... DUT K ... Cancer cell N ... Normal cell 19T ... Terahe Tsu wave

Claims (7)

GaP結晶に励起用レーザ光を入射し、周波数0.1THzから7THzの範囲内のテラヘルツ電磁波を発生するテラヘルツ波発生装置あるいはテラヘルツ波分光計測装置において、すくなくとも一つの励起用レーザの共振器内に周波数選択用のグレーティングと前記グレーティングに入射する発振光のビーム径を拡大するビームエキスパンダーが配置されることにより、線幅の狭いテラヘルツ電磁波が発生することを特徴とする周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  In a terahertz wave generator or a terahertz wave spectrometer that emits a pump laser beam into a GaP crystal and generates a terahertz electromagnetic wave in a frequency range of 0.1 THz to 7 THz, the frequency is in the resonator of at least one pump laser. A frequency-swept terahertz wave generating apparatus and method characterized by generating a terahertz electromagnetic wave having a narrow line width by arranging a selection grating and a beam expander that expands the beam diameter of oscillation light incident on the grating, or Spectroscopic measurement apparatus and method. 前記励起用レーザの共振器を構成するグレーティングと反射鏡の位置がずれないように、共振器内を+−0.5℃以内に温度制御する手段を備え、且つ、グレーティングと反射鏡それぞれの位置をレーザ発振条件からそれない様に位置制御する手段を備えていることを特徴とする請求項1に記載の周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  Means for controlling the temperature in the resonator within + -0.5 ° C. so that the positions of the grating and the reflector constituting the resonator of the excitation laser do not deviate, and the position of each of the grating and the reflector 2. The frequency swept terahertz wave generating apparatus and method or spectroscopic measuring apparatus and method according to claim 1, further comprising means for controlling the position of the laser so as not to deviate from the laser oscillation condition. 前記励起用レーザの少なくとも一つがCr:forsteriteレーザであることを特徴とする請求項1乃至2に記載の周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  3. The frequency swept terahertz wave generating apparatus and method or the spectroscopic measuring apparatus and method according to claim 1, wherein at least one of the excitation lasers is a Cr: forsterite laser. GaP結晶に励起用レーザ光を入射し、周波数0.1THzから7THzの範囲内の単色テラヘルツ電磁波を発生するテラヘルツ波分光計測装置において、測定サンプルのテラヘルツ周波数領域における透過率及び反射率をそれぞれ測定する手段、測定された透過率と反射率から複素屈折率の実数部と虚数部を求める手段を備え、前記実数部、虚数部のそれぞれのスペクトルを得ることを特徴とする周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  In a terahertz wave spectroscopic measurement apparatus that emits a monochromatic terahertz electromagnetic wave within a frequency range of 0.1 THz to 7 THz by entering excitation laser light into a GaP crystal, the transmittance and reflectance of the measurement sample in the terahertz frequency region are measured. Means for obtaining a real part and an imaginary part of the complex refractive index from the measured transmittance and reflectance, and obtaining a spectrum of each of the real part and the imaginary part, and a frequency swept terahertz wave generator, Method or spectroscopic measurement apparatus and method. GaP結晶に励起用レーザ光を入射し、周波数0.1THzから7THzの範囲内の単色テラヘルツ電磁波を発生するテラヘルツ波分光計測装置において、前記GaP結晶を入射面に垂直な軸の周りに90度異なる配置においてそれぞれテラヘルツ透過あるいは反射スペクトルを得る手段を有することを特徴とする周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  In a terahertz wave spectroscopic measurement apparatus that emits a monochromatic terahertz electromagnetic wave within a frequency range of 0.1 THz to 7 THz by making excitation laser light incident on a GaP crystal, the GaP crystal differs by 90 degrees around an axis perpendicular to the incident surface. A frequency-swept terahertz wave generating apparatus and method or a spectroscopic measurement apparatus and method characterized by having means for obtaining a terahertz transmission or reflection spectrum in each arrangement. GaP結晶に励起用レーザ光を入射し、周波数0.1THzから7THzの範囲内の単色テラヘルツ電磁波を発生するテラヘルツ波分光計測装置において、被測定物に電磁場変化あるいは温度変化、応力変化、位置変化などを与えて屈折率の変化をもたらす手段と、被測定物を透過あるいは反射してくるテラヘルツ電磁波を偏光版または反射板に照射させる手段と、前記屈折率変化の前後の偏光特性を計測する手段を有することを特徴とする周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  In a terahertz wave spectrometer that emits monochromatic terahertz electromagnetic waves in a frequency range of 0.1 THz to 7 THz by entering excitation laser light into a GaP crystal, the electromagnetic field change, temperature change, stress change, position change, etc. on the object to be measured Means for causing a change in refractive index by applying a terahertz electromagnetic wave that is transmitted or reflected by the object to be measured, and means for measuring polarization characteristics before and after the change in refractive index. A frequency-swept terahertz wave generation apparatus and method or a spectroscopic measurement apparatus and method characterized by comprising: GaP結晶に励起用レーザ光を入射し、周波数0.1THzから7THzの範囲内の単色テラヘルツ電磁波を発生するテラヘルツ波分光計測装置において、テラヘルツ波検知器が熱ひずみによってフィルタ特性が変化するメカニカルフィルタであることを特徴とする周波数掃引テラヘルツ波発生装置及び方法あるいは分光計測装置及び方法。  In a terahertz wave spectrometer that emits monochromatic terahertz electromagnetic waves in a frequency range of 0.1 THz to 7 THz by entering excitation laser light into a GaP crystal, the terahertz wave detector is a mechanical filter whose filter characteristics change due to thermal strain. A frequency-swept terahertz wave generation apparatus and method or a spectroscopic measurement apparatus and method, characterized by:
JP2005163239A 2005-05-07 2005-05-07 Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method Pending JP2006313140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163239A JP2006313140A (en) 2005-05-07 2005-05-07 Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163239A JP2006313140A (en) 2005-05-07 2005-05-07 Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method

Publications (1)

Publication Number Publication Date
JP2006313140A true JP2006313140A (en) 2006-11-16

Family

ID=37534682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163239A Pending JP2006313140A (en) 2005-05-07 2005-05-07 Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method

Country Status (1)

Country Link
JP (1) JP2006313140A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941152B1 (en) 2007-11-26 2010-02-10 한국전자통신연구원 Frequency Tunable Terahertz Optical Source
JP2010096729A (en) * 2008-10-20 2010-04-30 Ricoh Co Ltd Spectral apparatus
US7782909B2 (en) 2007-11-26 2010-08-24 Electronics And Telecommunications Research Institute Frequency-tunable terahertz light source device
KR101296748B1 (en) 2012-03-26 2013-08-20 한국전기연구원 Spectroscopy and imaging system of high-speed and high-resolution using electromagnetic wave based on optics
CN105158836A (en) * 2015-10-08 2015-12-16 中国科学院重庆绿色智能技术研究院 Terahertz polarizing plate based on dual-layer metal wire gating structure
CN105974597A (en) * 2016-07-05 2016-09-28 成都福兰特电子技术股份有限公司 Terahertz laser variable beam expanding ratio shaping apparatus
JP2017515091A (en) * 2013-12-17 2017-06-08 ピコメトリクス、エルエルシー System for transmitting and receiving electromagnetic radiation
CN107727234A (en) * 2017-09-27 2018-02-23 上海理工大学 The instable devices and methods therefor of quick detection backward wave tube Terahertz output frequency

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269643A (en) * 1991-02-26 1992-09-25 Hitachi Ltd Ellipsometry and time-resolved ellipsometer
JPH0514116A (en) * 1991-06-28 1993-01-22 Japan Radio Co Ltd Mechanical filter and manufacture thereof
JPH10112570A (en) * 1996-10-04 1998-04-28 Komatsu Ltd Excimer laser oscillating in narrow band
JPH1187829A (en) * 1997-07-18 1999-03-30 Cymer Inc Wavelength standard for excimer laser
JP2001356048A (en) * 1991-05-10 2001-12-26 Mitsui Mining & Smelting Co Ltd Optical sensor apparatus
JP2002098634A (en) * 2000-03-27 2002-04-05 Tochigi Nikon Corp Electrical characteristic evaluation apparatus and method for semiconductor
JP2003083888A (en) * 2001-09-10 2003-03-19 Communication Research Laboratory Time-resolved spectrometer for terahertz electromagnetic wave
JP2004020352A (en) * 2002-06-14 2004-01-22 Tochigi Nikon Corp Method and apparatus for measuring terahertz pulse light
JP2004125712A (en) * 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Spectrometric apparatus
JP2004140265A (en) * 2002-10-18 2004-05-13 Gigaphoton Inc Narrow-band laser apparatus
JP2004318028A (en) * 2003-04-10 2004-11-11 Semiconductor Res Found Apparatus for generating terahertz wave

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269643A (en) * 1991-02-26 1992-09-25 Hitachi Ltd Ellipsometry and time-resolved ellipsometer
JP2001356048A (en) * 1991-05-10 2001-12-26 Mitsui Mining & Smelting Co Ltd Optical sensor apparatus
JPH0514116A (en) * 1991-06-28 1993-01-22 Japan Radio Co Ltd Mechanical filter and manufacture thereof
JPH10112570A (en) * 1996-10-04 1998-04-28 Komatsu Ltd Excimer laser oscillating in narrow band
JPH1187829A (en) * 1997-07-18 1999-03-30 Cymer Inc Wavelength standard for excimer laser
JP2002098634A (en) * 2000-03-27 2002-04-05 Tochigi Nikon Corp Electrical characteristic evaluation apparatus and method for semiconductor
JP2003083888A (en) * 2001-09-10 2003-03-19 Communication Research Laboratory Time-resolved spectrometer for terahertz electromagnetic wave
JP2004020352A (en) * 2002-06-14 2004-01-22 Tochigi Nikon Corp Method and apparatus for measuring terahertz pulse light
JP2004125712A (en) * 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Spectrometric apparatus
JP2004140265A (en) * 2002-10-18 2004-05-13 Gigaphoton Inc Narrow-band laser apparatus
JP2004318028A (en) * 2003-04-10 2004-11-11 Semiconductor Res Found Apparatus for generating terahertz wave

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941152B1 (en) 2007-11-26 2010-02-10 한국전자통신연구원 Frequency Tunable Terahertz Optical Source
US7782909B2 (en) 2007-11-26 2010-08-24 Electronics And Telecommunications Research Institute Frequency-tunable terahertz light source device
JP2010096729A (en) * 2008-10-20 2010-04-30 Ricoh Co Ltd Spectral apparatus
KR101296748B1 (en) 2012-03-26 2013-08-20 한국전기연구원 Spectroscopy and imaging system of high-speed and high-resolution using electromagnetic wave based on optics
JP2017515091A (en) * 2013-12-17 2017-06-08 ピコメトリクス、エルエルシー System for transmitting and receiving electromagnetic radiation
CN105158836A (en) * 2015-10-08 2015-12-16 中国科学院重庆绿色智能技术研究院 Terahertz polarizing plate based on dual-layer metal wire gating structure
CN105974597A (en) * 2016-07-05 2016-09-28 成都福兰特电子技术股份有限公司 Terahertz laser variable beam expanding ratio shaping apparatus
CN107727234A (en) * 2017-09-27 2018-02-23 上海理工大学 The instable devices and methods therefor of quick detection backward wave tube Terahertz output frequency
CN107727234B (en) * 2017-09-27 2020-03-10 上海理工大学 Device and method for rapidly detecting terahertz output frequency instability of backward wave tube

Similar Documents

Publication Publication Date Title
JP2006313140A (en) Terahertz wave generating apparatus and method or spectroscopic measurement apparatus and method
JP4749156B2 (en) Electromagnetic wave generator
TWI665840B (en) Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
EP2319141B1 (en) Optical arrangement and method
JP2000514248A (en) Laser device
US20150205079A1 (en) Terahertz band wavelength plate and terahertz wave measurement device
JP5669217B2 (en) Grating-based optical parametric oscillator for generating a desired optical signal and method for dynamically tuning the oscillator
Alligood DePrince et al. Extending high-finesse cavity techniques to the far-infrared
JP2006091802A (en) Device and method for terahertz electromagnetic wave generation
Feng et al. Direct Emission of Focused Terahertz Vortex Beams Using Indium‐Tin‐Oxide‐Based Fresnel Zone Plates
JP2016218373A (en) Multiwavelength oscillation type optical parametric oscillation device and multiwavelength oscillation type optical parametric oscillation method
JP5200848B2 (en) Spectrometer
Mazur et al. Increase of an output optical signal of an acousto-optic monochromator upon frequency modulation of a control signal
US6804044B2 (en) Narrow bandwidth, pico-second, beta barium borate-master oscillator power amplifier system and method of operation of same
JP2000321134A (en) Tera hertz spectrophotometer
JP4209765B2 (en) Terahertz wave imaging device
Godard et al. Optical parametric sources for gas sensing applications
Foltynowicz et al. Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter
Yang et al. THz wave parametric oscillator with a surface-emitted ring-cavity configuration
Todorov et al. High resolution laser spectroscopy of spatially restricted hot alkali atomic and dimer vapor
US20200030849A1 (en) Acousto-optic coupling techniques and related systems and methods
US20090219956A1 (en) Device for Generating Narrowband Optical Radiation
JP2008058918A (en) Terahertz electromagnetic wave generation method and spectroscopy/imaging measuring device
JPH06241908A (en) Wavelength measuring method and apparatus and laser device
Walsh Intracavity terahertz optical parametric oscillators

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080610

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026