JP2006310429A - Thermal fuse-containing resistor - Google Patents

Thermal fuse-containing resistor Download PDF

Info

Publication number
JP2006310429A
JP2006310429A JP2005129115A JP2005129115A JP2006310429A JP 2006310429 A JP2006310429 A JP 2006310429A JP 2005129115 A JP2005129115 A JP 2005129115A JP 2005129115 A JP2005129115 A JP 2005129115A JP 2006310429 A JP2006310429 A JP 2006310429A
Authority
JP
Japan
Prior art keywords
fuse
resistor
temperature
thermal fuse
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005129115A
Other languages
Japanese (ja)
Inventor
Tomoharu Harada
智晴 原田
Takashi Okamoto
尚 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005129115A priority Critical patent/JP2006310429A/en
Publication of JP2006310429A publication Critical patent/JP2006310429A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the evaporation of easily gasifiable components of a seal 4 to lessen or reduce the white smoke production to substantially null even under a high applied load of a fuse resistor for operating a thermal fuse 3 with heat generated from an abnormally energized resistor 2, wherein series connection body A of the resistor 2 with the thermal fuse 3 is housed in a heat-resistive case 1 having an opening, lead conductors 21, 31 of the body A are led out of slits 12, 13 of the case 1, and the seal 4 is filled in the case 1 with mainly an inorganic powder and a heat-resistive effect resin used as a binder. <P>SOLUTION: A heat transfer plate 5 contacts with the resistance element fuse 2 and extends over the thermal fuse 3 and is buried in the seal 4. This suppresses both the duration time of evaporation of water content of the seal and the evaporation quantity per unit time, thereby effectively preventing the white smoke from production. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は温度ヒューズ内蔵型抵抗器に関するものである。   The present invention relates to a resistor with a built-in thermal fuse.

ヒューズ抵抗器は、抵抗素子が過電流により所定の許容温度にまで昇温すると通電を遮断して火災等の事故発生を未然に防止するのに使用され、そのヒューズ抵抗器として、図4の(イ)〜(ニ)に示すような温度ヒューズ内蔵型抵抗器(例えば、特許文献1参照)が汎用されている。
実開昭48−105038号 図4の(イ)は温度ヒューズ内蔵型抵抗器の縦断面図を、図4の(ロ)は図4の(イ)におけるロ−ロ断面図を、図4の(ハ)は図4の(イ)におけるハ−ハ断面図を、図4の(ニ)は同温度ヒューズ内蔵型抵抗器の正面図をそれぞれ示している。
The fuse resistor is used to prevent the occurrence of an accident such as a fire by interrupting energization when the resistance element is heated to a predetermined allowable temperature due to overcurrent. Thermal resistors with built-in thermal fuses as shown in (a) to (d) (for example, see Patent Document 1) are widely used.
FIG. 4 (a) is a longitudinal sectional view of a resistor with a built-in thermal fuse, FIG. 4 (b) is a cross sectional view of FIG. 4 (a), and FIG. (C) is a cross-sectional view of the ha-ha in FIG. 4 (a), and FIG. 4 (d) is a front view of the resistor with a built-in temperature fuse.

図4において、1’は開口を有するセラミックケースである。A’は巻線型抵抗素子2’と筒型温度ヒューズ3’との直列接続体であり、ケース1’内に収容し、抵抗素子2’のリード導体21’及び温度ヒューズ3’のリード導体31’をケース前方側壁のスリット12’及び13’から引出してある。
4’はケース1’内に充填した耐熱性封止材である。
In FIG. 4, 1 ′ is a ceramic case having an opening. A ′ is a series connection body of the wire-wound resistance element 2 ′ and the cylindrical thermal fuse 3 ′, which is accommodated in the case 1 ′, and the lead conductor 21 ′ of the resistance element 2 ′ and the lead conductor 31 of the thermal fuse 3 ′. 'Is pulled out from the slits 12' and 13 'on the front side wall of the case.
4 ′ is a heat-resistant sealing material filled in the case 1 ′.

この温度ヒューズ内蔵型抵抗器に過電流が流れると、抵抗素子が発熱し、その発生熱が抵抗素子からケース外に向け放出され、熱抵抗と熱容量とで定まる時定数で昇温されていく。
この間、温度ヒューズには、抵抗素子と温度ヒューズ間の接続導体や抵抗素子と温度ヒューズとの間の封止材部分を経て抵抗素子の発生熱の一部が伝播されて温度ヒューズも昇温されていく。
この温度ヒューズのヒューズエレメントの温度が融点に達すると温度ヒューズの溶断が開始され、溶断が完結されると通電が遮断される。
溶断開始から溶断完結までの間、抵抗素子の発熱が続いて昇温が継続されるが、溶断完結による通電遮断で抵抗素子の発熱が停止され、それまで熱容量に応じチャージされた熱量が放熱されて全体が所定の時定数で常温に向け冷却されていく。
図2の点線はこの昇温・降温経過を示している。
図2の点線(イ)は抵抗素子の昇温・降温経過を、図2の点線(ロ)は温度ヒューズの昇温・降温経過をそれぞれ示し、時間tは温度ヒューズの動作開始時点、温度Tsは温度ヒューズの動作開始温度、tは温度ヒューズの動作完結時点であり、温度ヒューズの動作完結時点tまではそれぞれ所定の時定数で昇温し、時点t以降は、それぞれ所定の時定数で降温している。
点線(ハ)に示すように、封止材も時点tまでは昇温し、時点t以降は降温していく。
その封止材の昇温・降温の温度は場所により異なるが、温度ヒューズとは異なり抵抗素子からの金属導体を経ての熱伝播がないから、温度ヒューズの最高温度である動作完結温度TRよりも低い温度にとどめられる。
When an overcurrent flows through the temperature fuse built-in resistor, the resistor element generates heat, and the generated heat is released from the resistor element to the outside of the case, and the temperature is increased with a time constant determined by the thermal resistance and the heat capacity.
During this time, part of the heat generated by the resistance element is propagated to the thermal fuse via the connecting conductor between the resistance element and the thermal fuse and the sealing material portion between the resistance element and the thermal fuse, and the temperature fuse is also heated. To go.
When the temperature of the fuse element of the thermal fuse reaches the melting point, the melting of the thermal fuse is started, and when the melting is completed, the energization is cut off.
From the start of fusing to the completion of fusing, the resistance element continues to generate heat and the temperature continues to rise.However, when the fusing is completed, the resistance element stops generating heat and the amount of heat that has been charged according to the heat capacity is released. The whole is cooled to room temperature with a predetermined time constant.
The dotted line in FIG. 2 shows the temperature increase / decrease process.
The dotted line (A) in FIG. 2 shows the temperature rise / fall process of the resistance element, the dotted line (B) in FIG. 2 shows the temperature rise / fall process of the thermal fuse, and the time t 0 is the start time of the temperature fuse operation, the temperature Ts is the operation start temperature of the thermal fuse, t 1 is the time when the operation of the temperature fuse is completed, the temperature is increased with a predetermined time constant until the operation completion time t 1 of the temperature fuse, and each time after the time t 1 is predetermined The temperature falls with a time constant.
As shown in dotted line (c), sealing material heated even to time t 1, time t 1 and later gradually lowering the temperature.
Temperature of heating-cooling of the sealing material is different depending on the location, because there is no heat propagation through the metal conductors from different resistive element and a temperature fuse, than the operating completion temperature T R is the maximum temperature of the temperature fuse Can be kept at a low temperature.

温度ヒューズ内蔵型抵抗器では、温度ヒューズに動作温度(0.1A以下の電流で1分間に1℃上昇するオイル中で通電が遮断されるときのオイル温度)がほぼ135℃の筒型温度ヒューズを使用し、封止材に石英粉末を主成分としシリコーン樹脂をバインダーとしたものを使用しており、石英粉末は炭化されず、バインダーには耐熱性材料を選択しているから、封止材の炭化面での耐熱性の問題はない。   In the thermal fuse built-in type resistor, a cylindrical temperature fuse whose operating temperature (oil temperature when current is cut off in oil that rises by 1 ° C per minute at a current of 0.1 A or less) is approximately 135 ° C. The sealant is made of quartz powder as the main component and silicone resin as the binder, and the quartz powder is not carbonized and a heat-resistant material is selected for the binder. There is no problem of heat resistance on the carbonized surface.

しかしながら、温度ヒューズの動作完結時、封止材が100℃以上に加熱されるから、この加熱により封止材中の水分等の易気化性物質が蒸発され、周囲温度の如何によっては、その蒸発気体が凝結されて霧粒となり、火災の白煙と錯覚される畏れがある。
特に、前記バインダーとしてのシリコーン樹脂では、未架橋の反応性シリコーンエマルジョンを無機質粉末に混合分散させ、反応性シリコーンのシラノール基間を脱水縮合させて生成されているから、水分を相当に含んでおり、前記白煙の発生が顕著である。
However, since the sealing material is heated to 100 ° C. or higher when the operation of the thermal fuse is completed, easily vaporizable substances such as moisture in the sealing material are evaporated by this heating, and depending on the ambient temperature, the evaporation material The gas condenses and becomes mist, and there is a fear of being illusioned with the white smoke of a fire.
In particular, the silicone resin as the binder is produced by mixing and dispersing an uncrosslinked reactive silicone emulsion in an inorganic powder and dehydrating and condensing the silanol groups of the reactive silicone. The generation of the white smoke is remarkable.

本発明の目的は、抵抗素子と温度ヒューズとの直列接続体を開口部を有する耐熱ケース内に収容し、該直列接続体のリード導体をケースのスリットから引出し、無機質粉末を主成分とし耐熱性効果樹脂をバインダーとする封止材をケース内に充填してなり、抵抗素子の異常通電発熱で温度ヒューズを動作させるようにしたヒューズ抵抗器において、高負荷印加のもとでも、封止材からの易気化成分の蒸発を抑制して白煙の発生を軽減乃至は実質的に零にすることにある。   An object of the present invention is to accommodate a series connection body of a resistance element and a thermal fuse in a heat-resistant case having an opening, pull out a lead conductor of the series connection body from a slit of the case, and heat resistance is mainly composed of inorganic powder. In a fuse resistor that is filled with a sealing material with an effect resin as a binder and operates the thermal fuse with abnormal energization heat generation of the resistance element, even under high load application, from the sealing material It is intended to reduce or substantially reduce the generation of white smoke by suppressing evaporation of easily vaporized components.

請求項1に係る温度ヒューズ内蔵型抵抗器は、抵抗素子と温度ヒューズとの直列接続体を開口部を有する耐熱ケース内に収容し、該直列接続体のリード導体をケースのスリットから引出し、無機質粉末を主成分とし耐熱性効果樹脂をバインダーとする封止材をケース内に充填してなり、抵抗素子の異常通電発熱で温度ヒューズを動作させるようにしたヒューズ抵抗器において、抵抗素子に接し温度ヒューズ上に延在する熱伝達板を封止材内に埋設したことを特徴とする。   A resistor having a built-in temperature fuse according to claim 1 accommodates a series connection body of a resistance element and a temperature fuse in a heat-resistant case having an opening, and draws out a lead conductor of the series connection body from a slit of the case. In a fuse resistor in which a case is filled with a sealing material containing powder as a main component and a heat-resistant resin as a binder, and the temperature fuse is operated by the abnormal conduction heat of the resistance element, the temperature is in contact with the resistance element. A heat transfer plate extending on the fuse is embedded in the sealing material.

請求項2に係る温度ヒューズ内蔵型抵抗器は、請求項2の温度ヒューズ内蔵型抵抗器において、封止材のバインダーがシリコーン樹脂であることを特徴とする。   The resistor with a built-in thermal fuse according to claim 2 is the resistor with a built-in thermal fuse according to claim 2, wherein the binder of the sealing material is a silicone resin.

請求項3に係る温度ヒューズ内蔵型抵抗器は、請求項1〜2の温度ヒューズ内蔵型抵抗器において、熱伝達板がセラミックス板であることを特徴とする。   A resistor with a built-in thermal fuse according to a third aspect of the present invention is the resistor with a built-in thermal fuse according to the first or second aspect, wherein the heat transfer plate is a ceramic plate.

請求項4に係る温度ヒューズ内蔵型抵抗器は、請求項1〜3の何れかの温度ヒューズ内蔵型抵抗器において、温度ヒューズが動作温度110℃〜160℃の筒型温度ヒューズであることを特徴とする。   A resistor with a built-in temperature fuse according to claim 4 is the resistor with a built-in temperature fuse according to any one of claims 1 to 3, wherein the temperature fuse is a cylindrical temperature fuse having an operating temperature of 110 ° C to 160 ° C. And

請求項5に係る温度ヒューズ内蔵型抵抗器は、請求項1〜4の何れかの温度ヒューズ内蔵型抵抗器において、ケースが底壁と四方側壁とからなるセラミックス製であり、温度ヒューズのリード導体引出用スリット及び抵抗素子のリード導体引出用スリットを前方側壁に有することを特徴とする。   A temperature fuse built-in resistor according to claim 5 is the temperature fuse built-in resistor according to any one of claims 1 to 4, wherein the case is made of ceramics having a bottom wall and a four-side wall, and the lead conductor of the temperature fuse It has a slit for drawing out and a lead conductor drawing-out slit of a resistance element on the front side wall.

請求項6に係る温度ヒューズ内蔵型抵抗器は、請求項1〜5の何れかの温度ヒューズ内蔵型抵抗器において、ケース開口における充填封止材表面に遮蔽板を埋着したことを特徴とする。   A resistor with a built-in thermal fuse according to claim 6 is characterized in that in the resistor with a built-in thermal fuse according to any one of claims 1 to 5, a shielding plate is embedded on the surface of the filling sealing material in the case opening. .

ヒューズ抵抗器に高負荷が印加されて封止材が加熱されても、封止材にはその加熱で炭化されない耐熱性が付与されているから耐熱性の問題はないが、封止材中の易気化性成分、例えば水分が蒸発されると、周囲温度の如何によっては、水蒸気が凝結されて霧粒化され火災の白煙と錯覚される畏れがある。
しかしながら、熱伝達板のために抵抗素子の発生熱が温度ヒューズに迅速に伝達されて温度ヒューズの溶断動作が速く行われ、それだけ封止材の加熱時間が短くされると共に温度ヒューズに伝達されて温度ヒューズのリード導体を経て外部に放出される熱量の増大分だけ封止材側に伝達される熱量が減じられて封止材の上昇温度がそれだけ低く抑えられるる。この結果、封止材の加熱時間と加熱温度が共に減じられる。
従って、封止材からの水分の蒸発継続時間及び単位時間当たりの蒸発量を共に抑制でき、白煙の発生を効果的に防止できる。
Even if a high load is applied to the fuse resistor and the encapsulant is heated, the encapsulant has heat resistance that is not carbonized by the heating, but there is no problem with heat resistance. When readily vaporizable components such as water are evaporated, depending on the ambient temperature, water vapor may condense and atomize, resulting in the illusion of white smoke from fire.
However, due to the heat transfer plate, the heat generated by the resistance element is quickly transmitted to the thermal fuse, so that the thermal fuse is blown quickly, and the heating time of the sealing material is shortened and the thermal fuse is transmitted to the thermal fuse to increase the temperature. The amount of heat transmitted to the sealing material side is reduced by the amount of heat released to the outside through the lead conductor of the fuse, so that the temperature rise of the sealing material can be kept low. As a result, both the heating time and the heating temperature of the sealing material are reduced.
Therefore, both the evaporation duration time of moisture from the sealing material and the evaporation amount per unit time can be suppressed, and the generation of white smoke can be effectively prevented.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る温度ヒューズ内蔵型抵抗器の実施例の縦断面図、図1の(ロ)は図1の(イ)におけるロ−ロ断面図、図1の(ハ)は図1の(イ)におけるハ−ハ断面図、図1の(ニ)は同実施例の正面図である。
図1において、1は耐熱性例えばセラミックス製の上側開放ケースであり、低壁と四方側壁とを有し、前方側壁にはリード導体挿通用スリット12,13を設けてある。
2は抵抗素子であり、セラミックス等の耐熱コアの両端にリード導体付きキャツプ電極を装着し、コア上に抵抗線を巻き付け、その両端のそれぞれを各キャツプ電極に溶接等により接続してある。
3は温度ヒューズ、例えば筒型温度ヒューズであり、可溶合金片からなるヒューズエレメントの両端にリード導体を溶着し、ヒューズエレメントにフラックスを塗布し、フラックス塗布ヒューズエレメント上に耐熱性筒、例えばセラミックス筒を挿通し、その両端と各リード導体との間を耐熱性封止材、例えば無機質フイラー入りエポキシ樹脂で封止してある。
この筒型温度ヒューズには、動作温度(0.1A以下の電流で1分間に1℃上昇するオイル中で通電が遮断されるときのオイル温度)110℃〜160℃のものが使用される。
これら抵抗素子2と温度ヒューズ3とは一方のリード導体21,31の間隔を所定の間隔とするように他方のリード導体211,311において直列に接続してある。この接続は溶接により行うことができ、温度ヒューズのヒューズエレメントの熱的損傷を防止するために、温度ヒューズ3の他方のリード導体311の長さを充分に長くし、しかも短時間溶接、例えばスポット抵抗溶接、レーザ溶接等を使用している。かしめ接続や捩じり接続を使用することもできる。
この抵抗素子・温度ヒューズ接続体Aをケース1内に収容し、抵抗素子2のリード導体21及び温度ヒューズ3のリード導体31をスリット12及び13から引出してある。
4はケース1内に充填した封止材であり、無機質粉末に硬化性樹脂のバインダーを配合してある。無機質粉末には粉末状の石英、アルミナ、雲母、ジルコニア、二酸化チタン等を使用でき、バインダーにはシリコーン樹脂を使用できる。無機質粉末量は80重量%以上とされ、シリコーン樹脂量は1〜4重量%とされる。
この封止材4をケース1内に充填するには、無機質粉末とシリコーンエマルジョンと触媒(錫、亜鉛、鉄、鉛等の塩類及び有機アミン酸)とを混合し、これをケース内に注入し、常温若しくは加熱下でシリコーンエマルジョンを硬化させていく。この硬化は、シラノール基の脱水縮合反応による架橋に基づくものであり、水の発生がある。
図1において、5は充填封止材4内に埋着した熱伝達板であり、抵抗素子2に接触させ温度ヒューズ3上にまで延在させてあり、外郭をケース内郭に等しいか、やや小さい寸法としてある。熱伝達板5を温度ヒューズ3にも接触させることが好ましい。
熱伝達板5の材質には、封止材4よりも熱伝導性の高いものが使用され、例えばセラミックス板、アルミ板、銅板を使用することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a longitudinal cross-sectional view of an embodiment of a resistor with a built-in thermal fuse according to the present invention, FIG. 1B is a cross-sectional view of FIG. 1A, and FIG. ) Is a cross-sectional view of FIG. 1 (a), and FIG. 1 (d) is a front view of the same embodiment.
In FIG. 1, reference numeral 1 denotes an upper open case made of heat-resistant material such as ceramics, which has a low wall and four side walls, and lead conductor insertion slits 12 and 13 are provided on the front side wall.
Reference numeral 2 denotes a resistance element. Cap electrodes with lead conductors are attached to both ends of a heat-resistant core such as ceramics, resistance wires are wound on the core, and both ends thereof are connected to each cap electrode by welding or the like.
Reference numeral 3 denotes a thermal fuse, for example, a cylindrical thermal fuse, in which a lead conductor is welded to both ends of a fuse element made of a fusible alloy piece, a flux is applied to the fuse element, and a heat-resistant cylinder, for example, ceramics is applied on the flux-applied fuse element. The tube is inserted, and the space between both ends and each lead conductor is sealed with a heat-resistant sealing material, for example, an epoxy resin containing an inorganic filler.
As this cylindrical thermal fuse, one having an operating temperature (oil temperature when energization is interrupted in oil that rises 1 ° C. per minute at a current of 0.1 A or less) 110 ° C. to 160 ° C. is used.
The resistance element 2 and the thermal fuse 3 are connected in series at the other lead conductors 211 and 311 so that the distance between the one lead conductors 21 and 31 is a predetermined distance. This connection can be made by welding, and in order to prevent thermal damage to the fuse element of the thermal fuse, the other lead conductor 311 of the thermal fuse 3 is made sufficiently long and short-time welding, for example, spot welding. Resistance welding, laser welding, etc. are used. A caulking connection or a torsional connection can also be used.
The resistance element / thermal fuse connection body A is accommodated in the case 1, and the lead conductor 21 of the resistance element 2 and the lead conductor 31 of the thermal fuse 3 are drawn out from the slits 12 and 13.
Reference numeral 4 denotes a sealing material filled in the case 1, in which a curable resin binder is blended with the inorganic powder. As the inorganic powder, powdered quartz, alumina, mica, zirconia, titanium dioxide or the like can be used, and a silicone resin can be used as the binder. The amount of inorganic powder is 80% by weight or more, and the amount of silicone resin is 1 to 4% by weight.
In order to fill the case 1 with the sealing material 4, an inorganic powder, a silicone emulsion and a catalyst (salts such as tin, zinc, iron, lead and organic amine acid) are mixed and injected into the case. The silicone emulsion is cured at room temperature or under heating. This curing is based on cross-linking by dehydration condensation reaction of silanol groups, and water is generated.
In FIG. 1, reference numeral 5 denotes a heat transfer plate embedded in the filling sealing material 4, which is in contact with the resistance element 2 and extends onto the thermal fuse 3, and the outer shell is equal to the inner shell of the case. There are small dimensions. It is preferable to bring the heat transfer plate 5 into contact with the thermal fuse 3 as well.
As the material of the heat transfer plate 5, a material having higher thermal conductivity than the sealing material 4 is used. For example, a ceramic plate, an aluminum plate, or a copper plate can be used.

この温度ヒューズ内蔵型抵抗器を製作するには、ケース1内に抵抗素子・温度ヒューズ直列接続体Aを収容し、リード導体21,31をケース前方側壁のスリット12,13の底に当てて抵抗素子2及び温度ヒューズ3の位置を決め、抵抗素子2の頂上レベルまで封止材4を注入し、次で熱伝達板5をケース1内に嵌め、更に封止材4を注入し、ケース内の全封止材の硬化をまって製作を終了する。   In order to fabricate this temperature fuse built-in type resistor, the resistor 1 and the temperature fuse serially connected body A are accommodated in the case 1, and the lead conductors 21 and 31 are applied to the bottoms of the slits 12 and 13 on the front side wall of the case. The position of the element 2 and the thermal fuse 3 is determined, the sealing material 4 is injected up to the top level of the resistance element 2, and then the heat transfer plate 5 is fitted into the case 1, and further the sealing material 4 is injected, After all the encapsulant is cured, the production is finished.

温度ヒューズ内蔵型抵抗器に高負荷が印加されると、抵抗素子が発熱し、抵抗素子、温度ヒューズ及び封止材が昇温されていき、温度ヒューズが動作開始温度Tsに達すると、ヒューズエレメント合金が溶融され、この溶融合金が表面張力によるリード導体端部への濡れ拡がりにより時間Δt後に球状化分断されて温度ヒューズの遮断動作が完結され、この動作完結による通電遮断で抵抗素子、温度ヒューズ及び封止材が共に降温変化に転じられる。
図2において、点線(イ)は従来の温度ヒューズ内蔵型抵抗器、すなわち熱伝達板非埋設の温度ヒューズ内蔵型抵抗器の抵抗素子の昇温・降温状態を、点線(ロ)は同温度ヒューズ内蔵型抵抗器の温度ヒューズの昇温・降温状態を、点線(ハ)は同温度ヒューズ内蔵型抵抗器の封止材の昇温・降温状態をそれぞれ示し、時点tは温度ヒューズの動作開始時点、温度Tsは温度ヒューズの動作開始温度、tは時点tに対しΔt後の温度ヒューズの動作完結時点である。
図2において、実線(イ’)は本発明に係る温度ヒューズ内蔵型抵抗器、すなわち熱伝達板埋設の温度ヒューズ内蔵型抵抗器の抵抗素子の昇温・降温状態を、実線(ロ’)は同じく温度ヒューズ内蔵型抵抗器の温度ヒューズの昇温・降温状態を、実線(ハ’)は同じく温度ヒューズ内蔵型抵抗器の封止材の昇温・降温状態をそれぞれ示し、時点t’は温度ヒューズの動作開始時点、t’は温度ヒューズの動作完結時点である。
When a high load is applied to the resistor with a built-in thermal fuse, the resistive element generates heat, and the resistive element, the thermal fuse and the sealing material are heated up. When the thermal fuse reaches the operation start temperature Ts, the fuse element The alloy is melted, and the molten alloy is divided into spheroids after time Δt due to wetting and spreading to the end portion of the lead conductor due to surface tension, and the operation for shutting off the thermal fuse is completed. In addition, both the sealing material and the temperature change are changed.
In FIG. 2, the dotted line (A) indicates the temperature rising / falling state of the resistance element of the conventional temperature fuse built-in resistor, that is, the resistor with a built-in temperature fuse not embedded in the heat transfer plate, and the dotted line (B) indicates the same temperature fuse. The temperature rise / fall state of the built-in resistor thermal fuse, the dotted line (C) shows the temperature rise / fall state of the encapsulant of the temperature fuse built-in resistor, and the time t 0 starts the operation of the temperature fuse The time Ts is the operation start temperature of the temperature fuse, and t 1 is the operation completion time of the temperature fuse after Δt with respect to the time t 0 .
In FIG. 2, the solid line (A ′) indicates the temperature rise / decrease state of the resistance element of the temperature fuse built-in resistor according to the present invention, that is, the temperature fuse built-in resistor embedded in the heat transfer plate, and the solid line (B ′) indicates the temperature rise / fall state. also the Atsushi Nobori, cooling conditions of a temperature fuse temperature fuse embedded resistor, a solid line (c ') is also shown a heating-cooling state of the sealing material temperature fuse embedded resistor, respectively, the time t 0' is The time when the operation of the thermal fuse is started, t 1 ′ is the time when the operation of the thermal fuse is completed.

本発明に係る温度ヒューズ内蔵型抵抗器においては、抵抗素子から温度ヒューズに至る熱伝達板を封止材中に埋設してあるから、抵抗素子から温度ヒューズへの熱伝播が効率よく行われ、従来の温度ヒューズ内蔵型抵抗器よりも温度ヒューズが迅速に昇温されるから、図2の実線(ロ’)の時点t’で示すように、温度ヒューズが動作開始温度Tsに達する時点が従来の温度ヒューズ内蔵型抵抗器での前記時点tよりも早くなり、これに追従して図2の実線(ロ’)のt’で示すように、温度ヒューズが動作完結温度に達する時点が従来の温度ヒューズ内蔵型抵抗器での前記時点tよりも早くなり、従って、図2の実線(ロ’)と点線(ロ)との比較から明らかなように温度ヒューズの動作が完結するまでの封止材の加熱時間が従来の温度ヒューズ内蔵型抵抗器よりも短縮される。
また、本発明に係る温度ヒューズ内蔵型抵抗器においては、抵抗素子発生熱のうち、抵抗素子から温度ヒューズに伝播される熱量が熱伝達板のために増し、温度ヒューズから温度ヒューズのリード導体を経て外部に放出される熱量が増える(+ΔQ)から、抵抗素子から封止材に伝播される熱量がその分(+ΔQ)だけ減り、図2の点線(ハ)と実線(ハ’)との対比から明らかなように、それだけ封止材の加熱温度が低くなる。
従って、抵抗素子の発熱により封止材が加熱される時間、加熱温度が共に減じられるから、水分の蒸発をよく防止でき、白煙発生を充分に軽減できる。
In the temperature fuse built-in resistor according to the present invention, since the heat transfer plate from the resistance element to the temperature fuse is embedded in the sealing material, heat propagation from the resistance element to the temperature fuse is efficiently performed, Since the temperature fuse is heated more quickly than the conventional resistor with a built-in temperature fuse, the time when the temperature fuse reaches the operation start temperature Ts as shown by the time t 0 ′ of the solid line (b ′) in FIG. faster than the time t 0 of the conventional thermal fuse embedded resistor, and following this, as shown by the solid line in FIG. 2 (b ') t 1' and when the temperature fuse reaches the operation completing temperature There faster than the time t 1 of the conventional thermal fuse embedded resistor, therefore, the operation of the thermal fuse is completed as apparent from the comparison of the solid line in FIG. 2 (b ') and a dotted line (b) Until the heating time of the sealing material It is shorter than time fuse embedded resistor.
In the temperature fuse built-in resistor according to the present invention, the amount of heat propagated from the resistance element to the temperature fuse among the heat generated by the resistance element increases due to the heat transfer plate, and the lead conductor of the temperature fuse is transferred from the temperature fuse. Since the amount of heat released to the outside increases (+ ΔQ), the amount of heat transmitted from the resistance element to the sealing material is reduced by that amount (+ ΔQ), and the dotted line (c) and solid line (c ′) in FIG. 2 are compared. As is clear from the above, the heating temperature of the sealing material is lowered accordingly.
Therefore, since the time for heating the sealing material and the heating temperature are both reduced by the heat generation of the resistance element, the evaporation of moisture can be well prevented and the generation of white smoke can be sufficiently reduced.

図3の(イ)は本発明に係る温度ヒューズ内蔵型抵抗器の別実施例の縦断面図を、図3の(ロ)は図3の(イ)におけるロ−ロ断面図を、図3の(ハ)は図3の(イ)におけるハ−ハ断面図を、図3の(ニ)は同実施例の正面図をそれぞれ示し、図1に示した実施例において、充填封止材4の表面に、水蒸気等の蒸発を遮断するための気密遮蔽板6を埋着してある。
この気密遮蔽板6の材質を封止材4よりも良熱伝導性とすれば、その良放熱性により封止材の温度上昇を抑制でき、水等の蒸発をより一層効果的に防止できるので、この気密遮蔽板には、例えば、セラミックス板、アルミ板、銅板を使用することが好ましい。
なお、図3において、図1と同一の符号は同一の構成要素を示している。
3A is a longitudinal sectional view of another embodiment of the resistor with a built-in thermal fuse according to the present invention, FIG. 3B is a cross sectional view of FIG. (C) in FIG. 3 is a cross-sectional view taken along the line ha, FIG. 3 (d) is a front view of the same embodiment, and in the embodiment shown in FIG. An airtight shielding plate 6 for blocking evaporation of water vapor or the like is embedded on the surface of the material.
If the material of the hermetic shielding plate 6 is made to have better thermal conductivity than the sealing material 4, it is possible to suppress the temperature rise of the sealing material due to its good heat dissipation and to more effectively prevent evaporation of water and the like. For the hermetic shielding plate, for example, a ceramic plate, an aluminum plate, or a copper plate is preferably used.
In FIG. 3, the same reference numerals as those in FIG. 1 denote the same components.

開口ケースには、長さ25mm、巾14mm、高さ9.0mmのセラミックス製を、抵抗素子には外径4.6mmφの10Ω巻線型抵抗を、温度ヒューズには動作温度135℃,外径2.5mmφの筒型温度ヒューズをそれぞれ使用した。温度ヒューズのリード導体径は0.6mmφ、抵抗素子のリード導体径は0.8mmφ、両者のリード導体間隔は5.5mmとした。
封止材には石英粉末96.0重量%、シリコーン樹脂4.0重量%を使用し、熱伝達板には長さ18.5mm,巾10.2mm,厚み0.8mmの96%アルミナセラミックス板を使用した。
この温度ヒューズ内蔵型抵抗器の定格は1.6Wである。
室温25℃のもとで負荷250Wを印加したところ(試料数20箇)、線香の立上り煙よりも弱い煙の発生が6.0〜7.0秒間観られただけであった。
これに対し遮蔽板を省略したものでは、タバコの煙よりも多い煙の発生が13.9秒〜14.6秒間も続き、火災と錯覚される蓋然性が大であった。
The open case is made of ceramic with a length of 25 mm, width of 14 mm, and height of 9.0 mm, the resistance element is a 10 Ω winding type resistor with an outer diameter of 4.6 mmφ, the thermal fuse has an operating temperature of 135 ° C., and the outer diameter is 2 A cylindrical thermal fuse of 0.5 mmφ was used. The lead conductor diameter of the thermal fuse was 0.6 mmφ, the lead conductor diameter of the resistance element was 0.8 mmφ, and the distance between the lead conductors was 5.5 mm.
96% alumina ceramic plate with a length of 18.5mm, a width of 10.2mm, and a thickness of 0.8mm is used for the heat transfer plate. It was used.
This thermal fuse built-in resistor has a rating of 1.6 W.
When a load of 250 W was applied at room temperature of 25 ° C. (number of samples: 20), generation of smoke weaker than the rising smoke of incense was only observed for 6.0 to 7.0 seconds.
On the other hand, in the case of omitting the shielding plate, generation of smoke more than cigarette smoke continued for 13.9 seconds to 14.6 seconds, and there was a high probability that it would be an illusion of fire.

本発明に係る温度ヒューズ内蔵型抵抗器の一実施例を示す図面である。1 is a view showing an embodiment of a temperature fuse built-in resistor according to the present invention. 本発明に係る温度ヒューズ内蔵型抵抗器と従来の温度ヒューズ内蔵型抵抗器との過負荷時での抵抗素子、温度ヒューズ及び封止材の温度変化を示す図面である。6 is a diagram showing temperature changes of a resistance element, a thermal fuse, and a sealing material when an overload is applied between the resistor with a built-in temperature fuse according to the present invention and a conventional resistor with a built-in temperature fuse. 本発明に係る温度ヒューズ内蔵型抵抗器の別実施例を示す図面である。It is drawing which shows another Example of the resistor with a built-in temperature fuse which concerns on this invention. 従来の温度ヒューズ内蔵型抵抗器を示す図面である。1 is a diagram illustrating a conventional resistor with a built-in thermal fuse.

符号の説明Explanation of symbols

1 ケース
12 スリット
13 スリット
2 抵抗素子
21 抵抗素子のリード導体
3 温度ヒューズ
31 温度ヒューズのリード導体
4 封止材
5 熱伝達板
6 遮蔽板
DESCRIPTION OF SYMBOLS 1 Case 12 Slit 13 Slit 2 Resistive element 21 Resistive element lead conductor 3 Thermal fuse 31 Thermal fuse lead conductor 4 Sealing material 5 Heat transfer plate 6 Shielding plate

Claims (6)

抵抗素子と温度ヒューズとの直列接続体を開口部を有する耐熱ケース内に収容し、該直列接続体のリード導体をケースのスリットから引出し、無機質粉末を主成分とし耐熱性効果樹脂をバインダーとする封止材をケース内に充填してなり、抵抗素子の異常通電発熱で温度ヒューズを動作させるようにしたヒューズ抵抗器において、抵抗素子に接し温度ヒューズ上に延在する熱伝達板を封止材内に埋設したことを特徴とする温度ヒューズ内蔵型抵抗器。 A series connection body of a resistance element and a thermal fuse is accommodated in a heat-resistant case having an opening, a lead conductor of the series connection body is drawn out from a slit of the case, and inorganic powder is a main component and a heat-resistant resin is used as a binder. In a fuse resistor in which a sealing material is filled in a case and a thermal fuse is operated by abnormally energizing heat generation of the resistive element, a heat transfer plate that contacts the resistive element and extends on the thermal fuse is sealed Thermal fuse built-in resistor characterized by being embedded inside. 封止材のバインダーがシリコーン樹脂であることを特徴とする請求項1記載の温度ヒューズ内蔵型抵抗器。 2. The thermal fuse built-in resistor according to claim 1, wherein the binder of the sealing material is a silicone resin. 熱伝達板がセラミックス板であることを特徴とする請求項1〜2記載の温度ヒューズ内蔵型抵抗器。 3. The temperature fuse built-in resistor according to claim 1, wherein the heat transfer plate is a ceramic plate. 温度ヒューズが動作温度110℃〜160℃の筒型温度ヒューズであることを特徴とする請求項1〜3何れか記載の温度ヒューズ内蔵型抵抗器。 The temperature fuse built-in resistor according to any one of claims 1 to 3, wherein the temperature fuse is a cylindrical temperature fuse having an operating temperature of 110 ° C to 160 ° C. ケースが底壁と四方側壁とからなるセラミックス製であり、温度ヒューズのリード導体引出用スリット及び抵抗素子のリード導体引出用スリットを前方側壁に有することを特徴とする請求項1〜4何れか記載の温度ヒューズ内蔵型抵抗器。 5. The case according to claim 1, wherein the case is made of ceramics having a bottom wall and a four-side wall, and has a lead conductor lead slit for the thermal fuse and a lead conductor lead slit for the resistance element on the front side wall. Temperature fuse built-in resistor. ケース開口における充填封止材表面に遮蔽板を埋着したことを特徴とする請求項1〜5何れか記載の温度ヒューズ内蔵型抵抗器。 6. The thermal fuse built-in resistor according to claim 1, wherein a shielding plate is embedded on the surface of the filling sealing material in the case opening.
JP2005129115A 2005-04-27 2005-04-27 Thermal fuse-containing resistor Withdrawn JP2006310429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129115A JP2006310429A (en) 2005-04-27 2005-04-27 Thermal fuse-containing resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129115A JP2006310429A (en) 2005-04-27 2005-04-27 Thermal fuse-containing resistor

Publications (1)

Publication Number Publication Date
JP2006310429A true JP2006310429A (en) 2006-11-09

Family

ID=37477004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129115A Withdrawn JP2006310429A (en) 2005-04-27 2005-04-27 Thermal fuse-containing resistor

Country Status (1)

Country Link
JP (1) JP2006310429A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123277A2 (en) * 2009-04-21 2010-10-28 Smart Electronics Inc. Thermal fuse resistor, manufacturing method thereof, and installation method thereof
WO2010123276A3 (en) * 2009-04-21 2011-02-03 Smart Electronics Inc. Thermal fuse resistor
WO2011094182A2 (en) * 2010-01-29 2011-08-04 Flextronics Ap, Llc Resistor with thermal element
KR101154944B1 (en) 2011-11-17 2012-06-13 아벨정밀(주) Thermal switch by sensing current
CN104303254A (en) * 2012-03-12 2015-01-21 通用电气能源能量变换技术有限公司 Fuse
WO2021143506A1 (en) * 2020-01-15 2021-07-22 比亚迪股份有限公司 Multifunctional fuse

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132743U (en) * 1974-09-03 1976-03-10
JPS62178506U (en) * 1986-04-30 1987-11-12
JPS6353904A (en) * 1986-08-23 1988-03-08 名商株式会社 Power type resistor
JPS645845Y2 (en) * 1982-04-30 1989-02-14
JPH0621207U (en) * 1992-08-12 1994-03-18 メイショウ株式会社 Power type resistor
JPH11330665A (en) * 1998-05-15 1999-11-30 Rohm Co Ltd Structure for mounting temperature fuse onto circuit board
JP2001216883A (en) * 2000-01-31 2001-08-10 Sony Corp Protective element and battery pack
JP2005093193A (en) * 2003-09-17 2005-04-07 Anzen Dengu Kk Resistor equipped with smokeless temperature fuse

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132743U (en) * 1974-09-03 1976-03-10
JPS645845Y2 (en) * 1982-04-30 1989-02-14
JPS62178506U (en) * 1986-04-30 1987-11-12
JPS6353904A (en) * 1986-08-23 1988-03-08 名商株式会社 Power type resistor
JPH0621207U (en) * 1992-08-12 1994-03-18 メイショウ株式会社 Power type resistor
JPH11330665A (en) * 1998-05-15 1999-11-30 Rohm Co Ltd Structure for mounting temperature fuse onto circuit board
JP2001216883A (en) * 2000-01-31 2001-08-10 Sony Corp Protective element and battery pack
JP2005093193A (en) * 2003-09-17 2005-04-07 Anzen Dengu Kk Resistor equipped with smokeless temperature fuse

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014524B1 (en) * 2009-04-21 2012-08-29 スマート エレクトロニクス インク Thermal fuse resistor
US8400252B2 (en) 2009-04-21 2013-03-19 Smart Electronics Inc. Thermal fuse resistor
WO2010123276A3 (en) * 2009-04-21 2011-02-03 Smart Electronics Inc. Thermal fuse resistor
KR101038237B1 (en) * 2009-04-21 2011-05-31 스마트전자 주식회사 Thermal Fuse Resistor
CN102414771A (en) * 2009-04-21 2012-04-11 斯玛特电子公司 Thermal fuse resistor
KR101060013B1 (en) * 2009-04-21 2011-08-26 스마트전자 주식회사 Fuse Resistor, Manufacturing Method and Installation Method
TWI419192B (en) * 2009-04-21 2013-12-11 Smart Electronics Inc Thermal fuse resistor
WO2010123277A2 (en) * 2009-04-21 2010-10-28 Smart Electronics Inc. Thermal fuse resistor, manufacturing method thereof, and installation method thereof
DE112010001694B4 (en) * 2009-04-21 2013-08-01 Smart Electronics, Inc. fusible resistor
US8400253B2 (en) 2009-04-21 2013-03-19 Smart Electronics Inc. Thermal fuse resistor, manufacturing method thereof, and installation method thereof
CN102414770A (en) * 2009-04-21 2012-04-11 斯玛特电子公司 Thermal fuse resistor, manufacturing method thereof, and installation method thereof
JP2012524968A (en) * 2009-04-21 2012-10-18 スマート エレクトロニクス インク Thermal fuse resistor
TWI383418B (en) * 2009-04-21 2013-01-21 Smart Electronics Inc Thermal fuse resistor
WO2010123277A3 (en) * 2009-04-21 2011-01-27 Smart Electronics Inc. Thermal fuse resistor, manufacturing method thereof, and installation method thereof
WO2011094182A3 (en) * 2010-01-29 2011-11-24 Flextronics Ap, Llc Resistor with thermal element
WO2011094182A2 (en) * 2010-01-29 2011-08-04 Flextronics Ap, Llc Resistor with thermal element
KR101154944B1 (en) 2011-11-17 2012-06-13 아벨정밀(주) Thermal switch by sensing current
CN104303254A (en) * 2012-03-12 2015-01-21 通用电气能源能量变换技术有限公司 Fuse
US11798768B2 (en) 2020-01-15 2023-10-24 Byd Company Limited Fusing device
WO2021143506A1 (en) * 2020-01-15 2021-07-22 比亚迪股份有限公司 Multifunctional fuse

Similar Documents

Publication Publication Date Title
JP2006310429A (en) Thermal fuse-containing resistor
JPS6235215B2 (en)
JP4527594B2 (en) Thermal fuse built-in resistor
JP6177945B2 (en) Fuse resistor and manufacturing method thereof
KR100560058B1 (en) Protector
JP2008097943A (en) Temperature fuse built-in resistor
US10685804B2 (en) Manufacturing method for foam fuse filler and cartridge fuse
US3227844A (en) Fuse with hydrated arc extinguishing material
JP2009087813A (en) Fuse resistor
JPS63500754A (en) electric fuse ring
US2239390A (en) Fuse
JP2009032567A (en) Fuse
US2286518A (en) Fusible protective device
TW200425200A (en) Fuse apparatus and method of manufacturing the same
JP2010061894A (en) Resistor with temperature fuse
CN204792274U (en) Resistance element
JPS6030020A (en) Temperature fuse
JP4663610B2 (en) Connection structure of thermal fuse and resistor and resistor with thermal fuse
JP2004213928A (en) Alloy for thermal fuse
JP2005346983A (en) Electrodeless discharge lamp and its manufacturing method
JP2007220645A (en) Surface mounting type current fuse and its manufacturing method
RU2115972C1 (en) Thermal switch
JPS6156931B2 (en)
RU2246186C1 (en) Electric heating element (alternatives)
JP2004319239A (en) Cement resistor with built-in temperature fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101018