JP2006305094A - Health evaluation apparatus - Google Patents

Health evaluation apparatus Download PDF

Info

Publication number
JP2006305094A
JP2006305094A JP2005131955A JP2005131955A JP2006305094A JP 2006305094 A JP2006305094 A JP 2006305094A JP 2005131955 A JP2005131955 A JP 2005131955A JP 2005131955 A JP2005131955 A JP 2005131955A JP 2006305094 A JP2006305094 A JP 2006305094A
Authority
JP
Japan
Prior art keywords
physiological information
subject
oxygen
oxygen concentration
health
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005131955A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishida
博史 西田
Takemi Oketa
岳見 桶田
Keiko Yasui
圭子 安井
Takashi Niwa
孝 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005131955A priority Critical patent/JP2006305094A/en
Publication of JP2006305094A publication Critical patent/JP2006305094A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems such that an early prevention of a disease is difficult to achieve with conventional health check because a state just before getting sick or a state just before a disease starts to affect a person is difficult to detect objectively. <P>SOLUTION: A health evaluation apparatus is provided which comprises an oxygen supplying device 1 for supplying air having various oxygen concentrations to a subject 3 and a physiological information measuring device 5 for measuring various physiological information (an electroencephalogram, an electrocardiogram, blood flow or the like) with respect to each concentration. The apparatus determines whether the subject is in a healthy state or in an unhealthy state just before getting sick on the basis of differences of sensitivities to various oxygen concentrations. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、客観的生理情報から人の健康を判断する健康評価装置に関する。   The present invention relates to a health evaluation apparatus that determines human health from objective physiological information.

従来の健康評価(診断)の方法は、体温、血圧、心電など物理情報の測定、あるいは尿検査や血液検査など生化学情報の測定によってなされてきた(例えば、特許文献1参照)。図3は特許文献1に示される健康管理装置で、静的心拍数から動的心拍数までのあらゆる状況での心拍数データを測定する心拍数測定手段11、12、13と前記心拍数データに基く健康情報を出力する健康情報出力手段14を備え、健康情報出力手段14は前記心拍数データから健康状態を推論する健康状態推論手段15と、前記心拍数データ及び健康状態推論手段15の論理結果を出力する表示手段16とを有するものである。   Conventional health evaluation (diagnosis) methods have been performed by measuring physical information such as body temperature, blood pressure, and electrocardiogram, or measuring biochemical information such as urine and blood tests (see, for example, Patent Document 1). FIG. 3 shows a health management device disclosed in Patent Document 1, which includes heart rate measuring means 11, 12, 13 for measuring heart rate data in every situation from static heart rate to dynamic heart rate, and the heart rate data. Health information output means 14 for outputting health information based on the health information output means 14, the health information output means 14 for inferring a health condition from the heart rate data, and the logical result of the heart rate data and health condition inference means 15. Display means 16 for outputting.

また、糖尿病の検査などでは、ブドウ糖を投与し、その後の血糖値の変動によって糖尿病かどうか診断するブドウ糖負荷試験などもある。
特開平5−154116号公報
In addition, in the examination of diabetes and the like, there is a glucose tolerance test in which glucose is administered and a diagnosis of diabetes is made by a change in blood glucose level thereafter.
JP-A-5-154116

しかしながら、従来の健康評価方法は、被験者のそのままの状態(安静時や低ストレス時)を評価するだけのものが殆どであり、人の恒常性維持機能(正常であろうと調節する能力;ホメオスタシス)の発揮された状態で、潜在的な病気を見つけ出すのは困難と思われるのである。   However, most of the conventional health evaluation methods merely evaluate the subject's intact state (at rest or low stress), and maintain the human homeostasis (ability to adjust whether normal or not; homeostasis) It seems that it is difficult to find potential illnesses in the state of being demonstrated.

つまり、何らかの疾患があるとき、安静な状態や低ストレスな状態で、体温や血圧の測定や血液検査などを行っても、体内の恒常性維持機能がある程度発揮され、体温や血圧など正常時に近づくよう調節され、正常時と同じ値を示す場合が多いのである。その疾患の程度が低ければ、よりその傾向は高まるはずである。病気の一歩手前の状態、その疾患が顕在化する直前まで従来の方法で検知することは困難であった。言い換えると、従来の健康評価方法では、病気が病気であるとはっきりわかるまで検知することはできなかったという課題があった。   In other words, when there is any disease, even if body temperature and blood pressure measurements and blood tests are performed in a resting or low stress state, the body's homeostasis maintenance function is exhibited to some extent, and body temperature and blood pressure approach normal levels. In many cases, it is adjusted so that it shows the same value as normal. The tendency should increase if the degree of the disease is low. It was difficult to detect by a conventional method until a state just before the disease, just before the disease became apparent. In other words, the conventional health assessment method has a problem that it cannot be detected until it is clearly understood that the disease is ill.

なかには、ブドウ糖負荷試験のように、低ストレス時でない、負荷時の試験もあるが、糖尿病に限った評価方法であり、本試験を行うということはある程度糖尿病とわかった段階で行うものなので、潜在化している疾患を見つけ出すという意味合いは少ないのである。   Some tests, such as the glucose tolerance test, are not under low stress and are under stress, but this is an evaluation method limited to diabetes.Because this test is performed at a stage where diabetes is known to some extent, The implications of finding a disease that is becoming irrelevant are few.

上記従来の問題点に鑑み、本発明が解決しようとする課題は、日常生活の中での疾患の前兆を捉えられる健康評価装置を提供することにある。   In view of the above-described conventional problems, the problem to be solved by the present invention is to provide a health evaluation apparatus capable of capturing a precursor of a disease in daily life.

上記課題を解決するため、本発明の健康評価装置は、任意の酸素濃度の空気を被験者が吸引できるように供給する酸素供給装置と、被験者の生理情報を測定する生理情報測定装置を備え、前記酸素供給装置より種々の酸素濃度の空気を被験者に供給し、被験者が種々の酸素濃度の空気を吸引した時に、前記種々の酸素濃度毎の被験者の生理情報を生理情報測定装置により測定し、被験者の生理情報とその時の酸素濃度から被験者の健康状態を判断するものである。   In order to solve the above problems, a health evaluation apparatus of the present invention includes an oxygen supply device that supplies air having an arbitrary oxygen concentration so that the subject can inhale, and a physiological information measurement device that measures physiological information of the subject, When the subject is supplied with air with various oxygen concentrations from the oxygen supply device, and the subject sucks air with various oxygen concentrations, the physiological information of the subject for each of the various oxygen concentrations is measured by the physiological information measuring device. The health condition of the subject is judged from the physiological information of the subject and the oxygen concentration at that time.

これによって、通常とは異なる酸素濃度の空気を被験者は吸引しながら、その生理情報を測定するので、異なる酸素濃度という負荷に対する生体の反応が、微妙な非健康状態の場合に生理情報に現れ、程度の低い疾患でも見つけ出すことが可能となる。   As a result, the subject measures the physiological information while inhaling air with an oxygen concentration different from normal, so the response of the living body to the load of different oxygen concentration appears in the physiological information in a delicate non-health state, It becomes possible to find even a disease of a low degree.

本発明の健康評価装置は、通常とは違う酸素濃度の空気という比較的低い負荷で疾患の前兆を捉えることができ、日常生活の健康管理に有用である。   The health evaluation apparatus of the present invention can catch signs of disease with a relatively low load of air having an oxygen concentration different from normal, and is useful for health management in daily life.

第1の発明は、任意の酸素濃度の空気を被験者が吸引できるように供給する酸素供給装置と、被験者の生理情報を測定する生理情報測定装置を備え、前記酸素供給装置より種々の酸素濃度の空気を被験者に供給し、被験者が種々の酸素濃度の空気を吸引した時に、前記種々の酸素濃度毎の被験者の生理情報を生理情報測定装置により測定し、被験者の生理情報とその時の酸素濃度から被験者の健康状態を判断する健康評価装置としたものである。   A first invention includes an oxygen supply device that supplies air having an arbitrary oxygen concentration so that the subject can inhale, and a physiological information measurement device that measures physiological information of the subject. The oxygen supply device has various oxygen concentrations. When air is supplied to the subject and the subject inhales air of various oxygen concentrations, the physiological information of the subject for each of the various oxygen concentrations is measured by a physiological information measuring device, and the subject's physiological information and the oxygen concentration at that time are measured. This is a health evaluation device for judging the health condition of a subject.

通常、われわれは酸素濃度20.9%の空気を吸っているが、30%の中濃度酸素を吸うと様々な生理的効果が現れる(縄間他「酸素濃度30%の空気吸引による快適性の評価」日本建築学会講演会(2004)、pp897-898、など)ことがわかっている。発明者らの試験においても、酸素濃度50%をピークに、集中力や自律神経機能指標に効果を見出している。   Normally, we breathe air with an oxygen concentration of 20.9%, but when we breathe medium oxygen with 30%, various physiological effects appear (Nonoma et al. "Evaluation" Lecture of Architectural Institute of Japan (2004), pp897-898, etc.). In the inventors' tests, the oxygen concentration of 50% is the peak, and an effect is found on the concentration and the autonomic nervous function index.

ただし、それらの効果は、誰にでも現れるものではなく、疲れを感じている者など、身体の調子が若干悪いと感じている者ほど顕著に現れる傾向があることを本発明者らは見出したのである。つまり、健常者は吸う空気の酸素濃度の変化に対し鈍感であるが、体調の不調な者は吸う空気の酸素濃度に対し敏感ということである。逆を言えば、健常者は酸素の濃度が多少変化しても、身体の恒常性維持機能が正常に働くので、生理情報に変化が現れない。体調不調者は、吸う空気の酸素濃度の変化が身体の恒常性維持機能に影響を与えやすいということである。   However, the present inventors have found that those effects do not appear to anyone but tend to appear more prominently as those who feel slightly sick, such as those who feel tired. It is. In other words, a healthy person is insensitive to changes in the oxygen concentration of the air to be sucked, but a person who is unwell is sensitive to the oxygen concentration of the air to be sucked. In other words, even if the healthy person changes the oxygen concentration somewhat, the body's homeostasis maintenance function works normally, so no change in physiological information appears. A person who is in a poor physical condition is that changes in the oxygen concentration of the inhaled air are likely to affect the homeostasis maintenance function.

一方、さらに吸う空気の高い酸素濃度は体にとって毒であることが知られている。酸素濃度が100%の純酸素空気を吸うと数時間で酸素中毒が起こり、呼吸困難、意識の混濁などの症状が見られるようになる。一般に70%の酸素濃度の空気は体に危険とされている。このような高濃度酸素の空気を吸うと、集中力や自律神経機能指標に現れていた諸効果はなくなり、逆に負の影響を及ぼすことを本発明者らは見出した。   On the other hand, it is known that the higher oxygen concentration of the sucked air is toxic to the body. Inhalation of pure oxygen air with an oxygen concentration of 100% causes oxygen poisoning within a few hours, leading to symptoms such as difficulty breathing and clouding of consciousness. In general, air with an oxygen concentration of 70% is considered dangerous to the body. The present inventors have found that if such high-concentration oxygen air is sucked, various effects appearing in the concentration and the autonomic nervous function index disappear, and conversely, negative effects are exerted.

この70%以上の高い酸素濃度の空気による影響も、健常者と体調不調者では若干異なる傾向にあることも本発明者らは見出した。今度は逆に、健常者ほど酸素濃度に対して敏感になり、体調不調者ほど鈍感になるという結果であった。つまり、健常者は毒である高濃度酸素に対し、生体防御機能がうまく働くが、体調不調者はうまく働かないということである。   The present inventors have also found that the influence of air having a high oxygen concentration of 70% or more tends to be slightly different between healthy and unwell individuals. On the contrary, the result was that healthy subjects were more sensitive to oxygen concentration, and those who were unwell were less sensitive. In other words, a healthy person works well against high concentrations of oxygen, which is a poison, but a person who is in poor health does not work well.

以上のように、吸う空気の酸素濃度によって健常者と体調不調者では生体の影響が異なるので、得られる生理情報が異なってくる。これを利用し本発明のように、酸素供給装置から通常とは異なる酸素濃度の空気を吸引し、そのときの脳波を測定することによって、健康状態と、明確な疾患になる手前の体調不良状態の差を明確にすることができるのである。   As described above, since the influence of a living body is different between a healthy person and a person with poor physical condition depending on the oxygen concentration of the air to be sucked, physiological information obtained is different. Utilizing this, as in the present invention, by sucking air with an oxygen concentration different from normal from the oxygen supply device and measuring the electroencephalogram at that time, the health state and the poor physical condition in front of becoming a clear disease The difference can be clarified.

第2の発明は、第1の発明の生理情報測定装置を脳波測定装置としたものである。脳は身体で最も酸素を消費する器官である。また一方で、自律機能を調節するための各種ホルモンを産出する器官でもある。つまり、吸う空気の酸素濃度に最も敏感な器官であり、身体の恒常性機能を司る中枢でもある。したがって、酸素濃度に対する変化に鋭敏で、それによる影響が直接現れることになるので、酸素濃度に対して影響があれば脳波の変化となって現れ易いのである。よって本発明のように、酸素供給装置から通常とは異なる酸素濃度の空気を吸引し、そのときの脳波を測定することによって、健康状態と、明確な疾患になる手前の体調不良状態の差を明確にすることができるのである。   In a second invention, the physiological information measuring apparatus of the first invention is an electroencephalogram measuring apparatus. The brain is the most oxygen consuming organ in the body. On the other hand, it is also an organ that produces various hormones for regulating autonomous functions. In other words, it is the organ most sensitive to the oxygen concentration of the air it inhales, and it is also the center that governs the homeostatic function of the body. Therefore, it is sensitive to changes in the oxygen concentration, and the effect thereof directly appears. Therefore, if there is an influence on the oxygen concentration, it tends to appear as a change in electroencephalogram. Therefore, as in the present invention, by sucking air with an oxygen concentration different from normal from the oxygen supply device and measuring the electroencephalogram at that time, the difference between the healthy state and the state of poor physical condition before becoming a clear disease can be obtained. It can be clarified.

第3の発明は、第1の発明の生理情報測定装置を心電測定装置としたものである。心臓の鼓動を解析すると、ストレス状態や自律神経機能の働きを知ることができる。例えば、拍と拍の間隔(RR間隔)の変動係数(CVRR)は、ストレス状態を表し、心拍の周波数成分のHFやLFから導き出される値などは自律神経機能を表しているとされている。   In a third aspect of the invention, the physiological information measuring apparatus of the first aspect is an electrocardiographic measuring apparatus. By analyzing the heartbeat, it is possible to know the stress state and the function of the autonomic nervous function. For example, a coefficient of variation (CVRR) of a beat-to-beat interval (RR interval) represents a stress state, and values derived from HF and LF of a heartbeat frequency component represent an autonomic nervous function.

これらの指標は吸う空気の酸素濃度に影響され、その影響の度合は被験者の健康状態によって違うことを本発明者らは見出した。よって、本発明のように、酸素供給装置から通常とは異なる酸素濃度の空気を吸引し、そのときの心電の諸指標を測定することによって、健康状態と、明確な疾患になる手前の体調不良状態の差を明確にすることができるのである。   The present inventors have found that these indices are influenced by the oxygen concentration of the air to be sucked, and the degree of the influence varies depending on the health condition of the subject. Therefore, as in the present invention, by sucking air with an oxygen concentration different from normal from the oxygen supply device and measuring various electrocardiographic indices at that time, the health condition and physical condition before becoming a clear disease are obtained. The difference between the defective states can be clarified.

第4の発明は、第1の発明の生理情報測定装置を血流測定装置としたものである。血流は自律神経機能に影響を受ける。例えば、血圧や血流量、加速度脈波などである。これらの指標は吸引する酸素濃度に影響され、その影響の度合は被験者の健康状態によって違うことを本発明者らは見出した。よって、本発明のように、酸素供給装置から通常とは異なる酸素濃度の空気を吸引し、そのときの血流の諸指標を測定することによって、健康状態と、明確な疾患になる手前の体調不良状態の差を明確にすることができるのである。   In a fourth invention, the physiological information measuring device of the first invention is a blood flow measuring device. Blood flow is affected by autonomic nervous function. For example, blood pressure, blood flow, acceleration pulse wave, and the like. The present inventors have found that these indices are influenced by the oxygen concentration to be sucked, and the degree of the influence varies depending on the health condition of the subject. Therefore, as in the present invention, by sucking air with an oxygen concentration different from normal from an oxygen supply device and measuring various blood flow indices at that time, the health condition and physical condition before becoming a clear disease are obtained. The difference between the defective states can be clarified.

第5の発明は、第1の発明の生理情報測定装置を体温測定装置としたものである。体温調節機能も生体の恒常性維持機能の1つであり、環境温度が変化しても体内の温度を一定に保つ機能は生体の最も重要な調節機能の1つである。この体温調節機能は吸引する空気の酸素濃度に影響され、その影響の度合は被験者の健康状態によって違うことを本発明者らは見出した。よって、本発明のように、酸素供給装置から通常とは異なる酸素濃度の空気を吸引し、そのときの体温の諸指標を測定することによって、健康状態と、明確な疾患になる手前の体調不良状態の差を明確にすることができるのである。   In a fifth aspect, the physiological information measuring apparatus according to the first aspect is a body temperature measuring apparatus. The body temperature regulation function is one of the homeostasis maintenance functions, and the function of keeping the body temperature constant even when the environmental temperature changes is one of the most important regulation functions of the body. The present inventors have found that this body temperature regulation function is affected by the oxygen concentration of the air to be sucked, and the degree of the influence varies depending on the health condition of the subject. Therefore, as in the present invention, by sucking air with an oxygen concentration different from normal from the oxygen supply device and measuring various body temperature indices at that time, the health condition and poor physical condition before becoming a clear disease The difference in state can be clarified.

以下本発明の実施の形態について図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態における健康評価装置のブロック構成図で、図2は、本発明の第1の実施の形態における健康評価装置で処理した生理情報のグラフである。
(Embodiment 1)
FIG. 1 is a block configuration diagram of the health evaluation apparatus according to the first embodiment of the present invention, and FIG. 2 is a graph of physiological information processed by the health evaluation apparatus according to the first embodiment of the present invention.

図1において、酸素供給装置1は内部に酸素イオン伝導性を有する素子(図示せず)があって、その素子に電流を流すと取り込んだ空気中の酸素が濃縮される構成となっており、前記電流の大きさによって発生する酸素量も変えられる構成であり、前記濃縮とは反対側の空気を用いれば逆に空気の酸素濃度を減ずることもできる機能を持つものである。   In FIG. 1, the oxygen supply device 1 has an element (not shown) having oxygen ion conductivity inside, and oxygen in the air taken in is concentrated when a current is passed through the element. The amount of oxygen generated can be changed depending on the magnitude of the current, and if air on the side opposite to the concentration is used, the oxygen concentration of the air can be reduced.

また酸素供給装置1内部には送風手段(図示せず)があり、酸素が濃縮された空気は流量計4を通り、被験者3の口元近傍、つまり被験者3が吸引できるように供給される構成である。また、酸素濃度計2は流量計4を通じて、供給される空気の酸素濃度を測定し、使用者が任意の酸素濃度を発生させるためにある。   Further, there is a blower means (not shown) inside the oxygen supply device 1, and the oxygen-concentrated air passes through the flow meter 4 and is supplied in the vicinity of the mouth of the subject 3, that is, the subject 3 can be sucked. is there. The oxygen concentration meter 2 measures the oxygen concentration of the supplied air through the flow meter 4 so that the user can generate an arbitrary oxygen concentration.

なお、酸素供給装置1は、任意の酸素濃度を発生させる機能があれば良く、酸素ボンベとポンプ、あるいは酸素透過膜とポンプなどで構成しても良い。ただし、酸素ボンベでは低濃度酸素を発生させることはできないので、窒素ボンベを併用することが望ましい。   The oxygen supply device 1 only needs to have a function of generating an arbitrary oxygen concentration, and may be constituted by an oxygen cylinder and a pump, or an oxygen permeable membrane and a pump. However, since an oxygen cylinder cannot generate low-concentration oxygen, it is desirable to use a nitrogen cylinder together.

被験者3には生理情報測定装置5が繋がれており、被験者3の生理情報(脳波、心電、血流、血圧、体温など)を測定し、その生理情報であるデータはパソコン(パーソナルコンピューター)6に取り込まれ処理される。パソコン6は、前記データを処理する生理情報処理手段6aと処理データを表示する表示手段6bと前記データを格納しているものである。   A physiological information measuring device 5 is connected to the subject 3, and the physiological information (electroencephalogram, electrocardiogram, blood flow, blood pressure, body temperature, etc.) of the subject 3 is measured, and the data that is the physiological information is a personal computer (personal computer). 6 and processed. The personal computer 6 stores physiological data processing means 6a for processing the data, display means 6b for displaying processed data, and the data.

以上のように構成された健康評価装置について、以下その動作、作用などを説明する。まず、使用者は酸素供給装置1の酸素濃縮をオフとし、通常の酸素濃度(20.9%)の空気を被験者に供給する。酸素濃度計2の値が20.9%であることを確認し、流量形4により流量を3〜5(L/min)に合わせ、被験者3の口元近傍へ空気を吐出させる。   About the health evaluation apparatus comprised as mentioned above, the operation | movement, an effect | action, etc. are demonstrated below. First, the user turns off the oxygen concentration in the oxygen supply apparatus 1 and supplies air with a normal oxygen concentration (20.9%) to the subject. After confirming that the value of the oxygen concentration meter 2 is 20.9%, the flow rate is adjusted to 3 to 5 (L / min) by the flow rate type 4, and air is discharged near the mouth of the subject 3.

このときの被験者3の生理情報を生理情報測定装置5によって約3分間測定する。この生理情報測定装置5は、脳波計であると有用な情報が得られやすい。なぜなら、脳は酸素に対して鋭敏な器官であるからである。脳波を測定する場合、例えばα波の平均周波数や出現頻度などが有効である。また脳波計でなく、脳内の血流を測定できるfMRIなど脳内マッピングのできる測定装置であっても良い。   The physiological information of the subject 3 at this time is measured by the physiological information measuring device 5 for about 3 minutes. When the physiological information measuring device 5 is an electroencephalograph, useful information is easily obtained. This is because the brain is an organ sensitive to oxygen. When measuring an electroencephalogram, for example, the average frequency and appearance frequency of α waves are effective. Further, instead of an electroencephalograph, a measuring device capable of mapping in the brain such as fMRI capable of measuring blood flow in the brain may be used.

生理情報測定装置5は、心電測定装置であっても良い。心電からは自律神経機能の影響を受けやすい情報が得られるからである。あるいは、血流や加速度脈波、血圧、体温など自律神経機能を表す指標なら有効であり、それらを複合的に測定する方がさらに望ましい。このようにして得られた生理情報はパソコン6に記録される。   The physiological information measuring device 5 may be an electrocardiogram measuring device. This is because information that is easily affected by autonomic nervous function can be obtained from the electrocardiogram. Or it is effective if it is an index representing an autonomic nerve function such as blood flow, acceleration pulse wave, blood pressure, and body temperature, and it is more desirable to measure them in combination. The physiological information thus obtained is recorded in the personal computer 6.

次に使用者は、酸素供給装置1の酸素濃縮を動作させ、例えば酸素濃度30%の空気を被験者3に供給する。以下上記したと同じ要領で、生理情報測定装置5によって脳波を約3分間測定し、その情報をパソコン6に記録する。   Next, the user operates the oxygen concentration of the oxygen supply device 1 to supply, for example, air having an oxygen concentration of 30% to the subject 3. Thereafter, the electroencephalogram is measured for about 3 minutes by the physiological information measuring device 5 in the same manner as described above, and the information is recorded in the personal computer 6.

次に使用者は、酸素供給装置1の酸素濃縮の出力を上げ、例えば酸素濃度50%の空気を被験者3に供給する。以下上記したと同じ要領で、生理情報測定装置5によって脳波を約3分間測定し、その情報をパソコン6に記録する。   Next, the user increases the oxygen concentration output of the oxygen supply device 1 and supplies air having an oxygen concentration of 50% to the subject 3, for example. Thereafter, the electroencephalogram is measured for about 3 minutes by the physiological information measuring device 5 in the same manner as described above, and the information is recorded in the personal computer 6.

次に使用者は、酸素供給装置1の酸素濃縮の出力を上げ、例えば酸素濃度70%の空気を被験者3に供給する。以下上記したと同じ要領で、生理情報測定装置5によって脳波を約3分間測定し、その情報をパソコン6に記録する。   Next, the user raises the oxygen concentration output of the oxygen supply device 1 and supplies air having an oxygen concentration of 70% to the subject 3, for example. Thereafter, the electroencephalogram is measured for about 3 minutes by the physiological information measuring device 5 in the same manner as described above, and the information is recorded in the personal computer 6.

次に使用者は、酸素供給装置1の酸素濃縮の出力を上げ、例えば酸素濃度90%の空気を被験者3に供給する。以下上記したと同じ要領で、生理情報測定装置5によって脳波を約3分間測定し、その情報をパソコン6に記録する。   Next, the user increases the oxygen concentration output of the oxygen supply device 1 and supplies air having an oxygen concentration of 90% to the subject 3, for example. Thereafter, the electroencephalogram is measured for about 3 minutes by the physiological information measuring device 5 in the same manner as described above, and the information is recorded in the personal computer 6.

次に使用者は、酸素供給装置1の酸素濃縮の向きを逆転し低酸素濃度側の空気を供給するよう動作させ、例えば酸素濃度10%の空気を被験者3に供給する。以下上記したと同じ要領で、生理情報測定装置5によって脳波を約3分間測定し、その情報をパソコン6に記録する。   Next, the user reverses the direction of oxygen concentration of the oxygen supply device 1 and operates to supply air on the low oxygen concentration side, and supplies the subject 3 with air having an oxygen concentration of 10%, for example. Thereafter, the electroencephalogram is measured for about 3 minutes by the physiological information measuring device 5 in the same manner as described above, and the information is recorded in the personal computer 6.

このようにして得られた生理情報は、例えばパソコン6を使って縦軸に生理情報指標値、横軸に空気中の酸素濃度を示すグラフにして表示手段6bに表すと図2のようなグラフA、Bの傾向を示すことができる。被験者が健康な状態であれば、グラフAのような傾向を示すことが多い。すなわち、酸素濃度が30〜50%の場合、酸素濃度20.9%の通常時とあまり変わらないが、濃度が高くなると徐々に生理指標が悪い方向へ低下する傾向がある。一方、被験者が若干体調不良を訴えている場合は、図2のグラフBのような傾向を示すことが多い。すなわち、酸素濃度が30〜50%の場合に生理指標は良化する方向へ上昇し、さらに濃度が上昇してもグラフAに比べ、低下の傾向が鈍いのである。   The physiological information obtained in this way is displayed on the display means 6b using a personal computer 6, for example, as a graph showing physiological information index values on the vertical axis and oxygen concentration in the air on the horizontal axis, as shown in FIG. The tendency of A and B can be shown. If the subject is in a healthy state, the tendency as shown in graph A is often exhibited. That is, when the oxygen concentration is 30 to 50%, it is not much different from the normal time when the oxygen concentration is 20.9%, but as the concentration increases, the physiological index tends to gradually decrease in a bad direction. On the other hand, when the subject complains of a slight physical condition, the tendency as shown in the graph B of FIG. 2 is often exhibited. That is, when the oxygen concentration is 30 to 50%, the physiological index rises in the direction of improvement, and even if the concentration further rises, the tendency to decrease is slower than in graph A.

すなわち、被験者を本発明のような方法で評価し、グラフAのようなパターンであれば、ほぼ健康とみなすことができ、グラフBのようなパターンを示すと健康から非健康の状態にあると判断できるので、被験者3に生活の改善を促すなり、さらなる精密な検査を勧めることができるのである。   That is, the subject is evaluated by the method of the present invention, and if it is a pattern like the graph A, it can be regarded as almost healthy, and if a pattern like the graph B is shown, it is from a health state to a non-health state. Since the judgment can be made, the subject 3 can be encouraged to improve their lives, and further precise examination can be recommended.

また、被験者ごとに日頃から本発明の方法で測定しておくとなお良い。なぜなら、図2に示すグラフA、Bのようなパターンは個人差があり、一度の測定では正確な判断が難しいからである。従って、日常生活を通じて被験者は、生理情報のデータを生理情報処理手段6aに蓄積するとともに、前記データを処理して被験者の特有のグラフA及びグラフBを確立することで、次からはこれらのグラフとの比較で健康状態を適切に判断することが可能になる。   In addition, it is better to measure for each subject on a daily basis by the method of the present invention. This is because patterns such as graphs A and B shown in FIG. 2 have individual differences, and it is difficult to make an accurate determination with a single measurement. Accordingly, the subject accumulates physiological information data in the physiological information processing means 6a through daily life, and processes the data to establish a graph A and a graph B specific to the subject. It becomes possible to judge the health condition appropriately by comparing with.

以上のように本発明は酸素供給装置1より様々な酸素濃度の空気を被験者3に供給し、その濃度毎の各種生理情報(脳波・心電・血流量など)を生理情報測定装置5によって測定し、この測定した前記生理情報を生理情報処理手段6aにより処理するとともに、その処理した結果を表示手段6bに表示し健康状態と疾患の手前の体調不良状態等の非健康状態を、酸素濃度に対する感受性の違いから評価する方法であり、そして本実施の形態は前記健康評価方法を実施する健康評価装置を提供し、疾患の前兆を捉えて日常生活の健康管理に役立てることが可能になる。   As described above, the present invention supplies air with various oxygen concentrations from the oxygen supply device 1 to the subject 3 and measures various physiological information (eg, electroencephalogram, electrocardiogram, blood flow) for each concentration by the physiological information measuring device 5. The measured physiological information is processed by the physiological information processing means 6a, and the result of the processing is displayed on the display means 6b so that the non-health condition such as the health condition and the poor physical condition before the disease can be expressed with respect to the oxygen concentration. This embodiment is a method for evaluating from the difference in sensitivity, and the present embodiment provides a health evaluation apparatus that performs the health evaluation method, and can be used for health management in daily life by capturing signs of disease.

なお、上記実施の形態では生理情報のデータを生理情報処理手段で処理して健康状態のグラフAと非健康状態のグラフBの両方を表示手段に表しているが、これらの一方のグラフを基準にし、これと測定した生理情報を処理して得られたグラフとの比較で類似傾向、または類似しない傾向より、健康状態及び非健康状態を判断するようにしてもよいものである。また、上記実施の形態では生理情報のデータとして脳波を使用したが、これに限定されるものではなく、心電、血流、血圧、体温などでもよい。   In the above embodiment, the physiological information data is processed by the physiological information processing means and both the health state graph A and the non-health state graph B are displayed on the display means. The health condition and the non-health condition may be determined based on a tendency similar to or not similar to the graph obtained by processing the measured physiological information. In the above embodiment, an electroencephalogram is used as physiological information data. However, the present invention is not limited to this, and electrocardiogram, blood flow, blood pressure, body temperature, and the like may be used.

以上のように、本発明に係わる健康評価装置は、人の健康診断、体調チェック、健康管理に用いることができるので、人命を預かる職業の安全管理にも役立つ可能性がある。   As described above, since the health evaluation apparatus according to the present invention can be used for human health diagnosis, physical condition check, and health management, there is a possibility that it may be useful for safety management of occupations that save lives.

本発明の実施の形態1における健康評価装置のブロック構成図The block block diagram of the health evaluation apparatus in Embodiment 1 of this invention 本発明の実施の形態1における健康評価装置で処理した生理情報のグラフGraph of physiological information processed by health evaluation apparatus in Embodiment 1 of the present invention 従来の技術における健康管理装置のブロック構成図Block diagram of a conventional health management device

符号の説明Explanation of symbols

1 酸素供給装置
3 被験者
5 生理情報測定装置
6 パソコン(生理情報処理手段6a、表示手段6b)
DESCRIPTION OF SYMBOLS 1 Oxygen supply apparatus 3 Test subject 5 Physiological information measuring apparatus 6 Personal computer (physiological information processing means 6a, display means 6b)

Claims (5)

任意の酸素濃度の空気を被験者が吸引できるように供給する酸素供給装置と、被験者の生理情報を測定する生理情報測定装置を備え、前記酸素供給装置より種々の酸素濃度の空気を被験者に供給し、被験者が種々の酸素濃度の空気を吸引した時に、前記種々の酸素濃度毎の被験者の生理情報を生理情報測定装置により測定し、被験者の生理情報とその時の酸素濃度から被験者の健康状態を判断する健康評価装置。 The apparatus includes an oxygen supply device that supplies air having an arbitrary oxygen concentration so that the subject can inhale, and a physiological information measurement device that measures physiological information of the subject. Air having various oxygen concentrations is supplied to the subject from the oxygen supply device. When the subject inhales air of various oxygen concentrations, the physiological information of the subject for each of the various oxygen concentrations is measured by the physiological information measuring device, and the health condition of the subject is judged from the physiological information of the subject and the oxygen concentration at that time Health evaluation device. 前記生理情報測定装置は、脳波測定装置である請求項1記載の健康評価装置。 The health evaluation apparatus according to claim 1, wherein the physiological information measurement apparatus is an electroencephalogram measurement apparatus. 前記生理情報測定装置は、心電測定装置である請求項1記載の健康評価装置。 The health evaluation apparatus according to claim 1, wherein the physiological information measurement apparatus is an electrocardiogram measurement apparatus. 前記生理情報測定装置は、血流測定装置である請求項1記載の健康評価装置。 The health evaluation apparatus according to claim 1, wherein the physiological information measuring apparatus is a blood flow measuring apparatus. 前記生理情報測定装置は、体温測定装置である請求項1記載の健康評価装置。 The health evaluation apparatus according to claim 1, wherein the physiological information measuring apparatus is a body temperature measuring apparatus.
JP2005131955A 2005-04-28 2005-04-28 Health evaluation apparatus Pending JP2006305094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131955A JP2006305094A (en) 2005-04-28 2005-04-28 Health evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131955A JP2006305094A (en) 2005-04-28 2005-04-28 Health evaluation apparatus

Publications (1)

Publication Number Publication Date
JP2006305094A true JP2006305094A (en) 2006-11-09

Family

ID=37472667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131955A Pending JP2006305094A (en) 2005-04-28 2005-04-28 Health evaluation apparatus

Country Status (1)

Country Link
JP (1) JP2006305094A (en)

Similar Documents

Publication Publication Date Title
US11963744B2 (en) Bio-information output device, bio-information output method and program
JP6799536B2 (en) Wearable pain monitor with accelerometer
US9842374B2 (en) Physiological indicator monitoring for identifying stress triggers and certain health problems
CN108778099B (en) Method and apparatus for determining a baseline of one or more physiological characteristics of a subject
US20070055114A1 (en) Measurement of responsiveness of a subject with lowered level of consciousness
US20130324812A1 (en) Cardiac pulse coefficient of variation and breathing monitoring system and method for extracting information from the cardiac pulse
Melzig et al. Interoceptive threat leads to defensive mobilization in highly anxiety sensitive persons
KR101308522B1 (en) System and method for real time blood pressure monitoring and biofeedback for patients using multiple bio signal
CN108283489A (en) Sleep-respiratory system and method
JP5352814B2 (en) Autonomic nerve component index estimating apparatus and autonomic nerve component index estimating method
WO2001064101A1 (en) Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system
JP2013233256A (en) Method and apparatus for evaluating psychological symptom and onset risk of psychiatric disorder using heart rate fluctuation index
JP2009136423A (en) Sleep apnea syndrome examination implement
JP2001258855A (en) Health judgment method and judgment device therefor
KR20200139049A (en) Portable sleep apnea computer assisted diagnosis sensor device and its control method
Thesen et al. Reliability analysis of event‐related brain potentials to olfactory stimuli
JP6589108B2 (en) Apnea and / or hypopnea diagnostic device
EP4033495A1 (en) Activity task evaluating system, and activity task evaluating method
CN111836581A (en) Techniques for quantifying respiration using a wearable device and related systems and methods
Arulvallal et al. Design and development of wearable device for continuous monitoring of sleep apnea disorder
CN108283490A (en) Sleep-respiratory system and method
WO2017038966A1 (en) Bio-information output device, bio-information output method and program
JP2018201725A (en) Biological information processing device
WO2021221139A1 (en) Sleep analysis device
JP2006305094A (en) Health evaluation apparatus