JP2006299463A - Method for producing filament nonwoven fabric - Google Patents

Method for producing filament nonwoven fabric Download PDF

Info

Publication number
JP2006299463A
JP2006299463A JP2005123207A JP2005123207A JP2006299463A JP 2006299463 A JP2006299463 A JP 2006299463A JP 2005123207 A JP2005123207 A JP 2005123207A JP 2005123207 A JP2005123207 A JP 2005123207A JP 2006299463 A JP2006299463 A JP 2006299463A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
long
fibers
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005123207A
Other languages
Japanese (ja)
Inventor
Satoshi Maeda
諭志 前田
Hitoshi Ono
均 小野
Masayoshi Kikuchi
正芳 菊池
Nobuo Okawa
信夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Cordley Ltd
Original Assignee
Teijin Cordley Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Cordley Ltd filed Critical Teijin Cordley Ltd
Priority to JP2005123207A priority Critical patent/JP2006299463A/en
Publication of JP2006299463A publication Critical patent/JP2006299463A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing filament nonwoven fabric excellent in surface homogeneity, manifesting high quality crease in applying to an artificial grain leather. <P>SOLUTION: In the method for producing filament nonwoven fabric, filament has structure dividable into at least two kinds of fibers immediately after spinning and at least a kind of fiber has heat shrinking property. The filament nonwoven fabric is produced in the method comprising directly collecting the filaments immediately after spinning, on a net and building-up and then entangling with a swinging type needling machine which swings in traveling direction and then subjecting to a mechanical dividing process and a hot-water shrinking process. The filament nonwoven fabric is preferably produced by continuously subjecting the filaments to the spinning, building-up, entangling, dividing, and shrinking process without temporarily winding the filaments, and the preferable fineness of the filaments after dividing is 0.5-0.001 dtex, and the preferable polymer comprising the filaments is polyester and polyamide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、長繊維不織布の製造方法に関し、さらに詳しくは人工皮革等に最適な表面均一性に優れた長繊維不織布の製造方法に関する。   The present invention relates to a method for producing a long-fiber non-woven fabric, and more particularly to a method for producing a long-fiber non-woven fabric having excellent surface uniformity that is optimal for artificial leather and the like.

不織布は同じく繊維から構成された織編物とは異なり、縦横斜めの方向による強伸度や物性の違いが少なく、等方性に優れた材料であり、生産性も高いことから広く産業に用いられている。しかしたとえば人工皮革のような高強度、高品質の最終製品を得るためには不織布の高密度化が必要とされるが、繊維配列がランダムであるために機械的に均一に高密度化することは織編物と比較して困難である。   Unlike woven and knitted fabrics that are also composed of fibers, non-woven fabrics are widely used in industries because they are highly isotropic materials with little difference in strength and physical properties depending on the vertical and horizontal directions, and are highly productive. ing. However, in order to obtain a high-strength, high-quality final product such as artificial leather, it is necessary to increase the density of the nonwoven fabric. However, since the fiber arrangement is random, the density must be increased uniformly mechanically. Is difficult compared to woven and knitted fabrics.

そこで従来は繊維を短繊維とし予め捲縮を与えることによって交絡密度を高めたり、あるいは交絡後に水中にて繊維を収縮させ、不織布を高密度化する方法がとられていた。(例えば特許文献1)しかし短繊維不織布と異なり長繊維不織布の場合には、表面に存在する繊維が短い距離ではなく長い距離にわたって連続しているために、その一本の繊維に発生した乱れが表面全体や内部にまで悪影響を及ぼすという問題があった。   Therefore, conventionally, a method has been used in which the fibers are made into short fibers and crimped in advance to increase the entanglement density, or after the entanglement, the fibers are contracted in water to increase the density of the nonwoven fabric. (For example, Patent Document 1) However, in the case of a long-fiber non-woven fabric unlike a short-fiber non-woven fabric, because the fibers existing on the surface are continuous over a long distance instead of a short distance, the disturbance generated in the single fiber is There was a problem that the entire surface and the inside were adversely affected.

そして特に人工皮革のようにその表面に平滑な銀面を付与した場合には、繊維が表面に露出している製品のように内部の乱れをごまかすことができず、折り曲げた際のしわの品位が非常に低くなるという問題があった。
国際公開第99/23289号パンフレット
And especially when a smooth silver surface is given to the surface like artificial leather, the internal disturbance cannot be cheated like the product exposed on the surface, and the wrinkle quality when folded There was a problem that became very low.
WO99 / 23289 pamphlet

本発明は上記従来技術の有する問題点を背景になされたもので、その目的は表面均一性に優れ、特に銀付き調人工皮革に用いた場合の折れしわの品位の高い長繊維不織布を提供することにある。   The present invention has been made against the background of the above-mentioned problems of the prior art, and the object thereof is to provide a long-fiber non-woven fabric having excellent surface uniformity and particularly high quality of wrinkles when used for artificial leather with silver. There is.

本発明の製造方法は、長繊維不織布の製造方法であって、紡糸直後の長繊維が2種以上の繊維に分割可能な構造を有し、少なくとも1種の繊維が熱収縮性を有する繊維であり、該長繊維を紡糸した直後にネット上に捕集し積層した後に、進行方向に揺動する揺動型ニードル機で交絡し、次いで機械的分割、熱水収縮する工程を行うことを特徴とする。さらには、紡糸、積層、交絡、分割、収縮の各工程を一旦巻き取ることなく連続して順に行うことや、該長繊維の分割後の繊度が0.5〜0.001dtexであること、該長繊維を構成するポリマーがポリエステルとポリアミドであることなどが好ましい。   The production method of the present invention is a method for producing a long-fiber nonwoven fabric, wherein the long fiber immediately after spinning has a structure that can be divided into two or more types of fibers, and at least one type of fibers is a heat-shrinkable fiber. Yes, immediately after spinning the long fibers, collected on the net and laminated, then entangled with a swinging needle machine that swings in the direction of travel, then mechanically splitting and hot water shrinking And Furthermore, each step of spinning, laminating, entanglement, splitting, and shrinking is performed sequentially in sequence without being wound once, and the fineness after splitting of the long fibers is 0.5 to 0.001 dtex, The polymer constituting the long fiber is preferably polyester or polyamide.

本発明によれば、表面均一性に優れ、特に銀付き調人工皮革に用いた場合の折れしわの品位の高い長繊維不織布が得られる製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which is excellent in surface uniformity and can obtain the long fiber nonwoven fabric with the high quality of a crease | fold wrinkle at the time of using especially for a leather-like artificial leather is provided.

以下、本発明の実施形態について詳細に説明する。
本発明は長繊維不織布の製造方法であって、紡糸直後の長繊維が2種以上の繊維に分割可能な構造を有し、少なくとも1種の繊維が熱収縮性を有する繊維であることを必須とする。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is a method for producing a long-fiber nonwoven fabric, wherein the long fiber immediately after spinning has a structure that can be divided into two or more types of fibers, and at least one type of fibers is essential to be heat-shrinkable. And

本発明で用いられる長繊維としては、従来の人工皮革あるいは合成皮革として用いられている繊維であり、合成繊維が好ましい。ここで長繊維とは、短繊維のように数cmでカットされることなく、長い繊維状の形態を保っていることをいい、ポリマーを紡糸した後にカットを行わず、充分に連続した繊維であることをいう。   The long fibers used in the present invention are fibers used as conventional artificial leather or synthetic leather, and synthetic fibers are preferable. Here, the long fiber means that a long fiber-like form is maintained without being cut at several centimeters like a short fiber, and is a sufficiently continuous fiber that is not cut after the polymer is spun. Say something.

長繊維を構成する2種以上の繊維としては、例えばナイロン−6、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−12などのポリアミド繊維、ポリエチレンテレフタレート、ポリトリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンナフタレート及びこれらを主成分とする共重合ポリエステル等のポリエステル繊維などが挙げられる。本願で用いられる長繊維はこれらの2種以上の繊維からなるものであり、かつ分割可能な例えば貼り合せ構造を有する繊維である。   Examples of the two or more types of fibers constituting the long fiber include polyamide fibers such as nylon-6, nylon-66, nylon-610, nylon-11, nylon-12, polyethylene terephthalate, polytriethylene terephthalate, polybutylene terephthalate, Examples thereof include polyester fibers such as polypropylene terephthalate, polyethylene naphthalate, and copolymerized polyesters containing these as main components. The long fiber used in the present application is composed of two or more kinds of these fibers, and is a fiber having a bonded structure that can be divided, for example.

そして少なくとも1種の繊維が熱収縮性を有することが必要である。このような熱収縮性を有する繊維を用いることによって不織布をより高密度化することができる。熱収縮性を有する繊維の具体例としては例えばポリエチレンテレフタレート、ポリトリエチレンテレフタレート、ポリブチレンテレフタレートまたはこれらを主成分とする共重合ポリエステルを含むことが好ましい。熱収縮性を付与するには紡糸時の延伸倍率や延伸温度を調節するなどの手法を採ることができ、特には紡糸直後のエジェクター延伸の温度、圧力を調整する手段をとることが好ましい。   And at least 1 type of fiber needs to have heat shrinkability. By using such heat-shrinkable fibers, the nonwoven fabric can be densified. Specific examples of the fiber having heat shrinkability preferably include, for example, polyethylene terephthalate, polytriethylene terephthalate, polybutylene terephthalate, or a copolyester containing these as a main component. In order to impart heat shrinkability, it is possible to take a technique such as adjusting the draw ratio and the drawing temperature during spinning, and it is particularly preferable to take means for adjusting the temperature and pressure of the ejector drawing immediately after spinning.

そしてこのような長繊維の中でも、特に長繊維を構成するポリマーがポリエステルと、ポリアミドであることが好ましい。また、長繊維が剥離分割型複合繊維で、該繊維分割後に極細繊維となることが好ましい。2種以上のポリマーで構成された剥離分割型複合繊維において分割後の各繊維の熱収縮率が異なる場合には、収縮時にその繊維間空隙を減少させることができさらに好ましい。   Among such long fibers, it is particularly preferable that the polymers constituting the long fibers are polyester and polyamide. Further, it is preferable that the long fiber is a peeled split type composite fiber and becomes an ultrafine fiber after the fiber splitting. In the case of a split split type composite fiber composed of two or more kinds of polymers, when the thermal shrinkage rate of each fiber after splitting is different, it is more preferable because the inter-fiber void can be reduced during shrinkage.

高品質な不織布とするためには分割後の繊維が極細繊維であることが好ましく、繊維の繊度は0.5〜0.001dtexであることが好ましく、さらには0.3〜0.08dtexであることが好ましい。繊度が大きすぎる場合には不織布やそれから得られる人工皮革等の風合いが硬くなり好ましくない。   In order to obtain a high-quality nonwoven fabric, it is preferable that the fiber after the division is an ultrafine fiber, and the fineness of the fiber is preferably 0.5 to 0.001 dtex, and more preferably 0.3 to 0.08 dtex. It is preferable. If the fineness is too large, the texture of the nonwoven fabric or artificial leather obtained from the nonwoven fabric becomes hard, which is not preferable.

またこれらの繊維は単独ではなく数種の繊維が混合したものでも構わない。また長繊維ばかりではなく、短繊維を一部に含むものであることも好ましい。短繊維を含有することによってさまざまな風合いをとることができる。   Further, these fibers may be mixed with several kinds of fibers instead of single. It is also preferable that not only long fibers but also short fibers are included in part. Various textures can be taken by containing short fibers.

本発明の製造方法は、そのようにしてポリマーを紡糸して得た長繊維を直接ネット上に捕集し積層するものである。紡糸した繊維は強度と繊度を適切にするために延伸を行うが、エジェクターによる延伸を行うことが好ましい。またネット上に短繊維を予め配置し、短繊維と長繊維からなる繊維集合体としても好ましい。短繊維と異なり長繊維不織布では捲縮、カットの工程が不要であるために連続した工程とすることが可能である。   In the production method of the present invention, the long fibers obtained by spinning the polymer in this manner are collected directly on the net and laminated. The spun fiber is stretched to make the strength and fineness appropriate, but it is preferable to stretch with an ejector. Moreover, it is also preferable as a fiber assembly composed of short fibers and long fibers by arranging short fibers in advance on the net. Unlike short fibers, long fiber nonwoven fabrics do not require crimping and cutting processes, and therefore can be a continuous process.

繊維集合体の目付けをコントロールするためにはネットは移動しながら捕集するが、目付けはこのネットスピードと紡出繊維量によって決定される。この工程での目付けとしては20〜60g/mの範囲であることが好ましい。多すぎると次の積層工程においてばらつきが発生し易くなり、少なすぎると軽すぎて風による影響を受けやすいばかりでなく、積層スピードを上昇させる必要が生じるので積層が乱れ繊維集合体が不均一になる傾向にある。次の積層工程では繊維集合体を均一にするために、クロスレイヤーを採用することが好ましい。 In order to control the weight of the fiber assembly, the net is collected while moving, but the weight is determined by the net speed and the amount of spun fibers. The basis weight in this step is preferably in the range of 20 to 60 g / m 2 . If the amount is too large, variations tend to occur in the next layering process.If the amount is too small, not only is it too light and it is easily affected by the wind, but it is also necessary to increase the layering speed. Tend to be. In the next lamination step, it is preferable to employ a cross layer in order to make the fiber assembly uniform.

通常、長繊維不織布の製造方法では、繊維の紡出スピードと後の工程のラインスピードを調整するために、繊維集合体の捕集工程や積層工程で一旦巻き取られるが、本願の製造方法では巻き取らずに連続して工程を通過することも好ましい態様である。この段階の繊維集合体は交絡もほとんど無く、途中の工程の風によってさえ不均一になることからもわかるように、非常にデリケートなものである。また短繊維が繊維の移動によってその不均一性が緩和されるのに対し、長繊維からなる不織布はその一本の繊維の乱れが不織布全体に影響を及ぼすという、短繊維不織布と長繊維不織布との違いも存在する。本発明の製造方法では、巻き取り、巻き出しの工程を無くす態様により、さらに長繊維不織布の品質を向上させることができる。   Usually, in the manufacturing method of the long-fiber nonwoven fabric, in order to adjust the spinning speed of the fiber and the line speed of the subsequent process, the fiber assembly is once wound up in the collecting process and the laminating process. It is also a preferable aspect to pass through the process continuously without winding. The fiber assembly at this stage has very little entanglement and is very delicate, as can be seen from the fact that it becomes non-uniform even by the wind in the process. In addition, while the non-uniformity of the short fiber is reduced by the movement of the fiber, the non-woven fabric composed of the long fiber has a short fiber non-woven fabric and a long fiber non-woven fabric in which the disturbance of the single fiber affects the entire non-woven fabric. There are also differences. In the production method of the present invention, the quality of the long-fiber nonwoven fabric can be further improved by eliminating the winding and unwinding steps.

次いで本発明の製造方法では、積層された繊維集合体を進行方向に揺動する揺動型ニードル機で交絡することを必須とする。ここで揺動型ニードル機とは、ニードル針の進入位置と抜針位置が一致するようにニードル針が進行方向に移動するものである。   Next, in the production method of the present invention, it is essential to interlace the laminated fiber assembly with a swinging needle machine that swings in the traveling direction. Here, the oscillating needle machine is one in which the needle needle moves in the advancing direction so that the needle needle entry position and the needle withdrawal position coincide.

紡糸後、ネット上に捕集された繊維集合体の積層体は、目付けが小さく微小な力、例えば工程内の風やニードルロッカに入る際の表裏の剪断力などで各層の繊維集合体の重ね合わせ位置がずれやすいが、本発明では揺動型ニードル機を用いることによりそのずれを減少させることができた。ことにニードル針の進入と抜針を行う運動1ストローク当たりの繊維集合体の進行方向へのマシン速度が大きい場合に本発明の効果は顕著である。従来の短繊維からなる不織布の場合には、繊維長が短いためにニードル針1ストローク当たりの繊維集合体の進行距離の影響は問題とならなかったが、本発明の長繊維不織布では、長髪を櫛で流したようにマシン方向に繊維が揃えられ配向される点が大きく改良されるため、特に人工皮革とした場合に縦方向の内折り曲げ、外折り曲げでの大きなしわの発生を防止することが可能となった。さらに交絡後の繊維集合体の縦方向の強伸度と、横方向の強伸度の値を同等にすることができる。   After spinning, the laminate of fiber aggregates collected on the net is a stack of fiber aggregates in each layer with a small basis weight and minute force, such as wind in the process or shearing force when entering the needle rocker. Although the alignment position tends to shift, in the present invention, the shift can be reduced by using a swing type needle machine. In particular, the effect of the present invention is remarkable when the machine speed in the traveling direction of the fiber assembly per one stroke of the movement of entering and withdrawing the needle is high. In the case of a conventional nonwoven fabric composed of short fibers, the effect of the travel distance of the fiber assembly per one needle needle stroke was not a problem because the fiber length was short. Since the fibers are aligned and oriented in the machine direction as if they were washed with a comb, it is possible to prevent the generation of large wrinkles in the inner and outer folds, especially in the case of artificial leather. It has become possible. Furthermore, the longitudinal elongation value and the transverse elongation value of the fiber assembly after entanglement can be made equal.

本発明では次いで機械的分割を行う。この機械的分割処理は、一連の連続したラインの中に設置された機械的分割機によって行うことが好ましく、交絡された繊維集合体を構成する繊維を分割させるものである。ここで機械的分割とは、振動、叩く、剪断などの機械的な力を不織布にかけることにより長繊維を分割する手法である。ここでも巻き取ることなく一連の工程として処理することが好ましいが、そのためには、有機溶剤、あるいは有機化合物による分割促進を行わないことが好ましい。このような分割促進工程を省くことによって防爆装置、溶剤回収装置などの設備が不要になる。張り合わせ繊維の種類、製法により分割のしやすさに差が生じるが、基本的には叩くことを基本として振動、剪断を組み合わせた分割機を採用することが品質的にも好ましい。   In the present invention, mechanical division is then performed. This mechanical division treatment is preferably performed by a mechanical divider installed in a series of continuous lines, and the fibers constituting the entangled fiber assembly are divided. Here, the mechanical division is a technique for dividing long fibers by applying mechanical force such as vibration, hitting and shearing to the nonwoven fabric. In this case as well, it is preferable to treat as a series of steps without winding, but for that purpose, it is preferable not to promote the division by an organic solvent or an organic compound. By omitting such a division promoting process, facilities such as an explosion-proof device and a solvent recovery device are not required. Although there is a difference in the easiness of division depending on the type and production method of the bonded fibers, it is basically preferable in terms of quality to adopt a divider that combines vibration and shear on the basis of tapping.

繊維が分割された繊維集合体はその後連続して熱水収縮する工程を通過する。不織布の場合、織編物等と異なり外力による変形が大きいため、ここでも巻き取ることなく連続して熱水収縮工程に投入することが必要である。特に本願発明では熱収縮する繊維を用いており、長繊維のわずかな乱れもその収縮工程にて強調されるが、本願発明の製造方法ではその乱れを極めて小さくすることができる。   The fiber assembly into which the fibers are divided passes through a process of continuously performing hot water shrinkage. In the case of a nonwoven fabric, unlike a knitted or knitted fabric and the like, deformation due to external force is large, so it is necessary to continuously put it into the hot water shrinking process without winding up. In particular, the present invention uses heat-shrinkable fibers, and slight disturbance of long fibers is emphasized in the shrinking process, but the disturbance can be extremely reduced in the manufacturing method of the present invention.

好ましい態様として、長繊維不織布を水中にて浸漬遊泳させる場合には、浸漬時に水の浮力を利用して不織布を遊泳させることによって不織布の収縮を全方向にわたって均一に行わせることができる。熱水収縮工程の水の温度は50〜95℃の範囲であることが、不織布を高密度化処理するには好ましく、特に65〜75℃の範囲であることが好ましい。温度が低すぎる場合には収縮が発現しにくく、高温の場合には水が大量に蒸発するためエネルギーロスが大きくなる傾向にある。また処理時間としては30〜60秒程度であることが適当である。   As a preferred embodiment, when the long-fiber nonwoven fabric is immersed and swimming in water, the nonwoven fabric can be uniformly contracted in all directions by swimming the nonwoven fabric using the buoyancy of water during immersion. The temperature of water in the hot water shrinking step is preferably in the range of 50 to 95 ° C for densifying the nonwoven fabric, and particularly preferably in the range of 65 to 75 ° C. When the temperature is too low, shrinkage hardly occurs, and when the temperature is high, a large amount of water evaporates, which tends to increase energy loss. The processing time is suitably about 30 to 60 seconds.

不織布の収縮率は、15〜60%であることが好ましい。さらに好ましくは30〜45%である。収縮率が少なすぎる場合は不織布が低密度となり、高品質の人工皮革等をえることができない。また収縮率が高すぎる場合には曲げ等に対する繊維の自由度が失われ、例えば人工皮革とした場合に硬すぎるものとなる。また、不織布が等方性を得るためには縦方向と横方向の収縮率の差は80%以内であることが好ましい。これらの収縮率は、不織布中の収縮繊維の収縮率、構成比率や、交絡度、また収縮工程での温度条件、張力などによって調節することができる。収縮後の不織布の見掛け密度としては0.2〜0.5g/cmであることが好ましく、さらには0.22〜0.45g/cmであることが好ましい。 The shrinkage rate of the nonwoven fabric is preferably 15 to 60%. More preferably, it is 30 to 45%. If the shrinkage rate is too low, the nonwoven fabric has a low density, and high-quality artificial leather or the like cannot be obtained. Further, when the shrinkage rate is too high, the degree of freedom of the fiber with respect to bending or the like is lost, and for example, it becomes too hard when an artificial leather is used. In order for the nonwoven fabric to obtain isotropic properties, the difference in shrinkage between the longitudinal direction and the transverse direction is preferably within 80%. These shrinkage ratios can be adjusted by the shrinkage ratio, composition ratio, entanglement degree, temperature conditions in the shrinking process, tension, and the like of the shrinkable fibers in the nonwoven fabric. The apparent density of the nonwoven fabric after shrinkage is preferably 0.2 to 0.5 g / cm 3 , more preferably 0.22 to 0.45 g / cm 3 .

水中に浸漬遊泳させる場合には、長繊維不織布をその状態のまま水透過性の支持体上に捕獲することが好ましい。収縮の完了した不織布は水中で浮力が働いているが、そのまま支持体により水中から引き出すことにより縦横方向、特に製造工程のマシン方向である縦方向の荷重をほぼゼロにすることができるのである。水透過性の支持体としては、過剰な水を下に透過させ不織布を支持し移動させることができるものであれば良く、例えばネットコンベア等の網状の金属又は合成樹脂などでできたベルト等が好適に用いられる。さらに支持体上では不織布を冷却することが好ましい。たとえば30度以下の低温の水を吹きかけることによって速やかに冷却することができる。このようにすることにより不織布の支持体上での伸縮を抑え、支持体上での新たな応力の発生を抑えることができる。また不織布温度が低下するために後の工程での応力の影響を最小限度に抑えることができる。   When swimming underwater, it is preferable to capture the non-woven fabric on a water-permeable support as it is. The non-woven fabric that has been shrunk has buoyancy in the water, but the load in the vertical and horizontal directions, particularly in the machine direction of the manufacturing process, can be reduced to almost zero by pulling it out from the water as it is. As the water-permeable support, any material can be used as long as it can permeate excess water and support and move the nonwoven fabric. For example, a belt made of a net-like metal such as a net conveyor or a synthetic resin can be used. Preferably used. Furthermore, it is preferable to cool the nonwoven fabric on the support. For example, it can be quickly cooled by spraying low temperature water of 30 degrees or less. By doing in this way, the expansion-contraction on the support body of a nonwoven fabric can be suppressed, and generation | occurrence | production of the new stress on a support body can be suppressed. Moreover, since the nonwoven fabric temperature falls, the influence of the stress in a subsequent process can be suppressed to the minimum.

さらには、熱水収縮工程後に、水分除去を連続して行う製造方法であることが好ましい。そのため不織布を捕獲する支持体は水透過性であることが好ましい。このように不織布内の水分を除去することによって不織布重量を低くして工程での張力は軽減することができる。水分除去の方法としては、マングルで絞る方法も使用できるが、脱水効率を高め、不織布の柔らかい風合いを保つためには減圧脱水であることが好ましい。このとき支持体に通気性の高い物を用いることにより不織布の厚さ方向の空気流量を増加させ、より脱水を進めることができる。脱水後の不織布は軽量となるので容易に次の工程に少ない張力で移動させることができる。完全に水分除去するためには脱水後に加熱乾燥を行うことが好ましい。   Furthermore, it is preferable to be a production method in which water removal is continuously performed after the hot water shrinking step. Therefore, the support for capturing the nonwoven fabric is preferably water permeable. Thus, by removing moisture in the nonwoven fabric, the weight of the nonwoven fabric can be reduced and the tension in the process can be reduced. As a method of removing moisture, a method of squeezing with mangle can be used, but in order to increase the dewatering efficiency and maintain the soft texture of the nonwoven fabric, it is preferable to perform dewatering under reduced pressure. At this time, by using a highly breathable material for the support, the air flow rate in the thickness direction of the nonwoven fabric can be increased and the dehydration can be further promoted. Since the non-woven fabric after dehydration becomes light, it can be easily moved to the next process with less tension. In order to completely remove moisture, it is preferable to perform heat drying after dehydration.

ちなみに水中の不織布は、そのまま水中から引き出した場合、水を含むために不織布繊維重量の5〜8倍もの重量となっている。特にその水の水温が高温である場合には、不織布と水の集合体の温度がなかなか低下しないために、ほんのわずかの張力によっても不織布が伸びる現象が発生し、得られる不織布は方向によって強伸度などの物性が大きく異なったものとなる。例えば幅1.4m、300g/mの繊維目付けの不織布の場合、水から1mの高さまで引き出した時に不織布最上部にかかる荷重は、300g/m×1.4m×1m×6=2520gにも達し、これは不織布1mあたり1.8kg重もの荷重に相当する。 By the way, when the nonwoven fabric in water is pulled out from the water as it is, it contains 5 to 8 times the weight of the nonwoven fabric fiber because it contains water. In particular, when the temperature of the water is high, the temperature of the non-woven fabric and the water aggregate does not decrease easily, and a phenomenon occurs in which the non-woven fabric stretches even with a slight tension. The physical properties such as degree are greatly different. For example, in the case of a non-woven fabric with a fiber weight of 1.4 m and a weight of 300 g / m 2 , the load applied to the top of the non-woven fabric when it is pulled out from water to a height of 1 m is 300 g / m 2 × 1.4 m × 1 m × 6 = 2520 g. This corresponds to a load of 1.8 kg weight per 1 m of nonwoven fabric.

このような製造方法によって得られた長繊維不織布は交絡工程での針穴のずれが発生しないために驚くほど均一性が向上し、そのために風合いの優れたものとなる。また、縦横方向への異方性がなく等方性に優れた高品質の不織布となり、製造時のマシン方向である縦方向の繊維配向や縦の繊維密度斑の増長を防止することができ、特に人工皮革等に好適に用いることができる。   The long-fiber non-woven fabric obtained by such a manufacturing method is surprisingly improved in uniformity because the needle hole is not displaced in the entanglement process, and therefore has an excellent texture. In addition, it becomes a high-quality nonwoven fabric with no anisotropy in the vertical and horizontal directions and excellent in isotropy, and can prevent the increase in longitudinal fiber orientation and longitudinal fiber density unevenness, which is the machine direction during production, In particular, it can be suitably used for artificial leather and the like.

不織布を人工皮革に加工するには従来公知の方法を用いれば良く、例えば有機溶剤に溶解されたポリウレタンなどの高分子弾性体溶液、あるいは水に分散されたポリウレタンなどの高分子弾性体水分散液などを不織布に含浸し、湿式あるいは乾式に凝固しまたはせずに乾燥し、繊維と高分子弾性体からなる人工皮革用基材と成すことができる。この基材は乾燥後表面を起毛し、染色によりスウェード調人工皮革に、あるいは表面に高分子弾性体の着色膜等を形成し銀付調人工皮革とすることができる。   A conventionally known method may be used to process the nonwoven fabric into artificial leather. For example, a polymer elastic body solution such as polyurethane dissolved in an organic solvent, or a polymer elastic body water dispersion such as polyurethane dispersed in water. Etc. can be impregnated into a non-woven fabric and dried with or without coagulation in a wet or dry manner to form a base material for artificial leather comprising fibers and a polymer elastic body. The base material can be brushed after drying and formed into a suede-like artificial leather by dyeing, or a colored film or the like of a polymer elastic body can be formed on the surface to give a silver-like artificial leather.

このようにして得られた人工皮革は等方性に優れた非常に品質の高いものであり、特に銀付調の人工皮革とした場合には、横方向はもちろん縦方向の内折り曲げ、外折り曲げの両方に対しても大きな皺が発生せず、表面で細かく分散した微細な皺のみが発生し、折り曲げを解除した場合にもその皺跡が残らない高品質のものが得られる。得られた人工皮革は、スポーツシューズ、婦人・紳士靴などの靴用途、競技用の各種ボール用途、家具、車両、内装材、インテリア材などの産業資材用途、手帳・ノート等の装丁用途、衣料用途などに好ましく用いることができる。   The artificial leather obtained in this way is of excellent quality with excellent isotropic properties, and in particular, when it is made of artificial leather with a silver tone, it is bent inward and outward in the vertical direction as well as in the horizontal direction. In both cases, no large wrinkles are generated, only fine wrinkles finely dispersed on the surface are generated, and even when the bending is released, a high quality product that does not leave the wrinkles is obtained. The obtained artificial leather is used for sports shoes, shoes for women's and men's shoes, various ball applications for competition, industrial materials such as furniture, vehicles, interior materials, interior materials, bookbinding for notebooks and notebooks, clothing, etc. It can be preferably used for applications.

以下、実施例により、本発明を更に具体的に説明する。
なお、実施例における各項目は次の方法で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples.
In addition, each item in an Example was measured with the following method.

(1)収縮率
収縮前の面積をSとする。収縮後の面積をSとする。収縮率は次の計算で求める。
収縮率(%)=(S−S)×100/S
(1) the area before shrinkage shrinkage and S 1. Area after shrinkage is referred to as S 2. The shrinkage rate is obtained by the following calculation.
Shrinkage rate (%) = (S 1 −S 2 ) × 100 / S 1

(2)柔軟度
繊維配向や密度斑の度合いを、縦方向、横方向の柔軟度により評価した。
柔軟度試験片25mm×90mmを準備し、長手方向の下部の20mmを保持具で垂直方向に保持し、保持具より20mmの高さの位置にあるUゲージの測定部に試験片のもう一方の片端の先端から20mmの位置の中央部があたるように、試験片を曲げながら保持具をスライドさせて固定し、固定してから5分後の応力を記録計より読み取り、幅1cm当たりの応力に換算して柔軟度とした。単位はg/cmで表す。
(2) Flexibility The degree of fiber orientation and density unevenness was evaluated by the flexibility in the vertical and horizontal directions.
A test piece of 25 mm × 90 mm in flexibility is prepared, and the lower 20 mm in the longitudinal direction is vertically held by a holder, and the other part of the test piece is placed on the measuring part of the U gauge at a height of 20 mm from the holder. Slide the holder while bending the test piece so that the center part at a position of 20 mm from the tip of one end is fixed, and read the stress after 5 minutes from the recorder to fix the stress per 1 cm width. It was converted into flexibility. The unit is expressed in g / cm.

[実施例1]
(長繊維不織布の作成)
120℃で乾燥したナイロン−6(m−クレゾール中の極限粘度1.1)をエクストルーダーに供給し溶融した。別途160℃で乾燥したポリエチレンテレフタレート(o−クロロフェノール中の極限粘度0.64)を、前述とは別個のエクストルーダーにて溶融した。
[Example 1]
(Creation of long fiber nonwoven fabric)
Nylon-6 (intrinsic viscosity 1.1 in m-cresol) dried at 120 ° C. was fed to an extruder and melted. Separately dried at 160 ° C., polyethylene terephthalate (an intrinsic viscosity of 0.64 in o-chlorophenol) was melted with an extruder separate from the foregoing.

引き続き、ナイロン−6混合体溶融流は導管ポリマー温度250℃で、ポリエチレンテレフタレート溶融流は300℃で、275℃に保温されたスピンブロックへ導入し、中空形成吐出孔を格子状配列で有する矩形の紡糸口金を用いて両重合体溶融流を合流させ複合し2g/分・孔の量で吐出し、空気圧力0.35MPa(吐出量と複合繊維繊度から換算した紡速で約4860m/分)にて高速牽引した(エジェクター延伸)。   Subsequently, the nylon-6 mixture melt flow was introduced into a spin block maintained at 275 ° C. at a conduit polymer temperature of 250 ° C., the polyethylene terephthalate melt flow at 300 ° C., and a rectangular shape having hollow forming discharge holes in a lattice arrangement. The two polymer melt flows are combined using a spinneret, combined and discharged at a rate of 2 g / min. / Hole, and an air pressure of 0.35 MPa (spinning speed converted from the discharge rate and composite fiber fineness is about 4860 m / min). Towed at high speed (ejector stretching).

牽引された複合繊維は、−30kVで高電圧印加処理し、空気流とともに分散板に衝突させ開繊し、16分割の多層貼合せ型断面をもつ剥離分割型複合繊維(親糸繊度4.4dtex)からなるウェブとしてネットコンベア上に幅1mで補集しウェブとした。引き続き、捕集したウェブは100℃に加熱された上下一対のエンボスカレンダーロールに通し熱接着を行った熱接着ウェブとした。   The pulled composite fiber is subjected to a high voltage application treatment at −30 kV, collided with a dispersion plate together with an air flow and opened, and a split split type composite fiber having a 16-split multi-layer laminating section (parent yarn fineness 4.4 dtex). ) Was collected on a net conveyor with a width of 1 m to obtain a web. Subsequently, the collected web was passed through a pair of upper and lower embossed calender rolls heated to 100 ° C. to obtain a heat bonded web.

その後巻き取ることなく捕集した熱接着ウェブをクロスレーヤーで170cmの巾となるように重ね合わせた後、1バーブの針を装着した揺動型ニードル機にて、ピッチ3mm、ストローク数1200回/分、ペネレイト数1200本/cmの条件にて、針の進入時と抜針時の不織布上における針の相対位置がずれないように揺動させ交絡処理を行った。次いで打撃式揉み機にて剥離分割処理を行い目付210g/m、幅170cmの収縮前極細繊維集合体を得た。 After that, the heat-bonded web collected without winding was superposed with a cross layer so as to have a width of 170 cm, and then a rocking needle machine equipped with a 1 barb needle was used with a pitch of 3 mm and a stroke number of 1200 times / The entanglement process was performed by swinging the needle so that the relative position of the needle on the nonwoven fabric was not shifted when the needle entered and withdrawn the needle under the condition of 1200 penetrate / cm 2 . Next, separation treatment was performed with a striking type grinder to obtain a pre-shrinking ultrafine fiber aggregate having a basis weight of 210 g / m 2 and a width of 170 cm.

次いでこの繊維集合体を70℃の熱水中に60秒間、浸漬遊泳させて収縮させ、幅190cmのネットコンベア上に捕集して熱水から引き出した。この時の収縮はタテ方向が収縮前の長さ100に対し79、ヨコ方向が収縮前の長さ100に対し76であり、面積収縮率は40%であった。また、この時点での含水率は460%であった。   Next, this fiber assembly was immersed in hot water at 70 ° C. for 60 seconds to be shrunk, collected on a net conveyor having a width of 190 cm, and pulled out from the hot water. The shrinkage at this time was 79 in the vertical direction with respect to the length 100 before shrinkage, 76 in the horizontal direction with respect to the length 100 before shrinkage, and the area shrinkage rate was 40%. In addition, the water content at this time was 460%.

次いで、ネットコンベア上で13℃の冷水を噴きかけ冷却し、その後ネットコンベアの裏面側に位置するスリット式減圧脱水機で水分を除去し、含水率120%として熱風乾燥機で乾燥し長繊維不織布を得た。得られた長繊維不織布は、目付け350g/m、厚さ1.0mm、見掛け密度0.35g/cm、幅129cmであり、縦横斜め方向の異方性のない等方性に優れた高密度の充実感のある不織布であった。 Next, 13 ° C cold water is sprayed on the net conveyor to cool it, and then moisture is removed by a slit-type vacuum dehydrator located on the back side of the net conveyor, followed by drying with a hot air dryer at a moisture content of 120%. Got. The obtained long-fiber nonwoven fabric has a basis weight of 350 g / m 2 , a thickness of 1.0 mm, an apparent density of 0.35 g / cm 3 , and a width of 129 cm. It was a non-woven fabric with a sense of density.

断面を電子顕微鏡で観察したところ、縦方向、横方向から観察した不織布断面はほぼ同じであり、繊維の切断面と繊維側面とがランダムに存在するものであった。また、縦方向の強伸度は破断強度185N/cm、破断伸度95%、横方向の強伸度は破断強度177N/cm、破断伸度107%と均一なものであった。また紡糸から一連の連続したラインで製造したため、従来の分断されたラインで製造する方法と比べて、短時間で生産できるだけでなく、品質的にも長繊維が一部引っ張られることによる繊維の乱れがなく、風合いの優れた長繊維不織布であった。   When the cross section was observed with an electron microscope, the cross section of the nonwoven fabric observed from the vertical direction and the horizontal direction was almost the same, and the cut surface and the side surface of the fiber existed randomly. The longitudinal strength was uniform with a breaking strength of 185 N / cm and a breaking elongation of 95%, and the transverse strength was uniform with a breaking strength of 177 N / cm and a breaking elongation of 107%. In addition, since it is manufactured in a series of continuous lines from spinning, it can be produced in a shorter time compared to the conventional method of manufacturing with a divided line, and the quality of the fibers is also disturbed due to partial pulling of the long fibers. No long fiber nonwoven fabric with excellent texture.

(人工皮革用基体の作成)
得られた長繊維不織布は巻き取ることなく連続して、感熱凝固型水系ポリウレタンの9%分散液(感熱凝固温度60℃)を含浸させ、表面の余分な分散液を掻き落として、感熱凝固ボックスにて凝固を行った。感熱凝固ボックスは繊維集合体の布道が無い最下部に水槽を有し、その水槽中に深さ200mmの位置にある2本のパイプから0.29MPa(3kgf/cm)の加圧スチームを供給していた。各パイプには孔が存在しており、その各孔より熱水中に水面に対して平行にスチームが供給され、感熱凝固ボックス中は、この下部に設置された水槽中の沸騰水によって上部の雰囲気温度を92℃、相対湿度を99%にコントロールしていた。また、感熱凝固ボックスの出口は97℃の熱水でシールされており、このシール部分の熱水槽には含浸不織布が通過するように布道が設定されていた。分散液を含浸した長繊維不織布は、雰囲気温度を92℃、相対湿度を99%の凝固ボックスに1分間曝してポリウレタンの凝固を行い、次いでその出口をシールしている97℃の熱水槽の中を1分通過させた。感熱ボックス中で凝固しているために熱水槽中にはポリウレタンの溶け出しは見られなかった。また基材上に色ムラは無く、斑点上の欠点も見られなかった。その後、冷却してからマングルロールで絞り、110℃の熱風乾燥機で乾燥させて厚さ1.0mm、見掛け密度0.45g/cmの人工皮革基体を得た。得られた人工皮革基体の繊維:ポリウレタンの比率は重量で100:30であり、かつ電子顕微鏡により断面を観察したところポリウレタンは繊維複合体の厚さ方向に均一に分布されたものであった。
(Creation of base material for artificial leather)
The obtained long fiber non-woven fabric was continuously impregnated with a 9% dispersion of a heat-sensitive coagulation-type aqueous polyurethane (heat-sensitive coagulation temperature 60 ° C), and the excess dispersion on the surface was scraped off to form a heat-sensitive coagulation box. Coagulation was carried out. The heat-sensitive coagulation box has a water tank at the bottom where there is no fiber assembly passage, and 0.29 MPa (3 kgf / cm 2 ) of pressurized steam is supplied from two pipes at a depth of 200 mm in the water tank. Was. There is a hole in each pipe, and steam is supplied in parallel to the water surface from each hole in the hot water, and in the heat-sensitive coagulation box, the upper part is heated by boiling water in the water tank installed at the bottom. The atmospheric temperature was controlled to 92 ° C. and the relative humidity was controlled to 99%. Further, the outlet of the heat-sensitive coagulation box was sealed with hot water at 97 ° C., and the cloth path was set so that the impregnated non-woven fabric passed through the hot water tank of this sealed portion. The long-fiber nonwoven fabric impregnated with the dispersion is solidified in a 97 ° C hot water bath that seals its outlet by exposing it to a coagulation box with an atmospheric temperature of 92 ° C and a relative humidity of 99% for 1 minute. For 1 minute. Due to the solidification in the heat sensitive box, no dissolution of polyurethane was observed in the hot water tank. Further, there was no color unevenness on the substrate, and no defects on the spots were observed. Then, after cooling, it was squeezed with a mangle roll and dried with a hot air dryer at 110 ° C. to obtain an artificial leather substrate having a thickness of 1.0 mm and an apparent density of 0.45 g / cm 3 . The fiber / polyurethane ratio of the obtained artificial leather base was 100: 30 by weight, and the cross section was observed with an electron microscope. The polyurethane was uniformly distributed in the thickness direction of the fiber composite.

(人工皮革の作成)
一方、離型紙(リンテック社製R53)上に、ポリウレタンの33%水分散液100部に増粘剤、および着色剤5部を攪拌しながら添加し粘度を8000mPa・sに調整した調合液を目付け90g/mでコートし、温度70℃で2分間、110℃で2分間乾燥した。さらにその表面に、水分散型ポリウレタン系接着剤(45%濃度)100部に、着色剤(ブラック)5部、および増粘剤を混合して粘度を5000mPa・sに調整した調合液を目付け150g/mでコートした。次いで、温度90℃で2分乾燥後、先に得られた人工皮革基体を重ね合わせ、温度110℃の加熱シリンダー表面上で0.6mmの間隙のロールに通過させ圧着した。その後、温度60℃の雰囲気下で2日間放置した後、離型紙を剥ぎ取り人工皮革を得た。
(Making artificial leather)
On the other hand, on a release paper (R53 manufactured by Lintec Corporation), a thickening agent and 5 parts of a coloring agent are added to 100 parts of a 33% aqueous dispersion of polyurethane while stirring, and the mixture is adjusted to a viscosity of 8000 mPa · s. The film was coated at 90 g / m 2 and dried at a temperature of 70 ° C. for 2 minutes and at 110 ° C. for 2 minutes. Furthermore, 150 g of a prepared liquid prepared by mixing 100 parts of a water-dispersible polyurethane adhesive (45% concentration), 5 parts of a colorant (black), and a thickener on the surface to adjust the viscosity to 5000 mPa · s. / M 2 . Subsequently, after drying for 2 minutes at a temperature of 90 ° C., the artificial leather substrate obtained above was superposed and passed through a roll with a gap of 0.6 mm on the surface of a heated cylinder at a temperature of 110 ° C. and pressure bonded. Then, after leaving it for 2 days in the atmosphere of 60 degreeC temperature, the release paper was peeled off and the artificial leather was obtained.

得られた人工皮革は、縦方向の柔軟度0.87g/cm、横方向の柔軟度0.81g/cmであり、縦方向の強伸度は破断強度192N/cm、破断伸度90%、横方向の強伸度は破断強度183N/cm、破断伸度104%と均一なものであった。縦、横方向共に、表面を内に曲げても大きな折れシワが発生しないものであった。   The obtained artificial leather has a longitudinal flexibility of 0.87 g / cm and a transverse flexibility of 0.81 g / cm. The longitudinal strength is 192 N / cm breaking strength, 90% breaking elongation, The transverse strength was uniform with a breaking strength of 183 N / cm and a breaking elongation of 104%. In both the vertical and horizontal directions, even when the surface was bent inward, no large wrinkles were generated.

この人工皮革を用いてサッカーシューズ、およびサッカーボールを作成した。サッカーシューズは着用した場合につま先部分に大きなシワが発生することなく小さなシワとなり天然皮革のシワに酷似していた。また、サッカーボールは空気を抜き、半球状に折りたたみ、1ケ月後空気を入れて球状に戻したがシワ跡が残っていなかった。   Soccer shoes and soccer balls were created using this artificial leather. The soccer shoes, when worn, became small wrinkles without generating large wrinkles on the toes, and were very similar to natural leather wrinkles. The soccer ball was deflated and folded into a hemisphere, and after one month, the air was put back into a sphere but no wrinkle marks remained.

[比較例1]
(長繊維不織布の作成)
交絡処理時に、揺動型ニードル機を用いる代わりに従来型の同じ位置でニードル針が往復運動を行うニードル機にて、ピッチ3mm、ストローク数1200回/分、ペネレイト数1200本/cmの条件にて、交絡処理を行う以外は、実施例1同様の条件にて、長繊維不織布を作成した。得られた長繊維不織布は、目付け350g/m、厚さ1.0mm、見掛け密度0.35g/cm、幅129cmであり、高密度の充実感のある不織布であった。
[Comparative Example 1]
(Creation of long fiber nonwoven fabric)
At the time of entanglement processing, a needle machine in which the needle needle reciprocates at the same position as the conventional type instead of using an oscillating needle machine, with a pitch of 3 mm, a stroke number of 1200 times / minute, and a penetrate number of 1200 pieces / cm 2 The long fiber nonwoven fabric was created under the same conditions as in Example 1 except that the entanglement process was performed. The obtained long fiber nonwoven fabric was a nonwoven fabric with a basis weight of 350 g / m 2 , a thickness of 1.0 mm, an apparent density of 0.35 g / cm 3 , and a width of 129 cm, and a high density and fullness.

しかし断面を電子顕微鏡で観察したところ、縦方向から観察した不織布断面は繊維の切断面の存在が圧倒的に多く、繊維側面の数はまばらであった。一方、横方向から観察した不織布断面は、逆に繊維の切断面の数はまばらであり、繊維側面の数が圧倒的に多かった。また、縦方向の強伸度は破断強度212N/cm、破断伸度76%、であるにもかかわらず横方向の強伸度は破断強度154N/cm、破断伸度129%と不均一なものであった。   However, when the cross section was observed with an electron microscope, the cross section of the non-woven fabric observed from the longitudinal direction had an overwhelmingly large number of fiber cut surfaces, and the number of fiber side surfaces was sparse. On the other hand, in the nonwoven fabric cross section observed from the lateral direction, on the contrary, the number of cut surfaces of fibers was sparse, and the number of fiber side surfaces was overwhelmingly large. In addition, although the tensile strength in the longitudinal direction is rupture strength 212 N / cm and the rupture elongation is 76%, the tensile strength in the transverse direction is not uniform such as rupture strength 154 N / cm and rupture elongation 129%. Met.

(人工皮革用基体の作成)
得られた長繊維不織布を用い、その他は実施例1と同様にして、人工皮革用の基体を作成し、厚さ1.0mm、見掛け密度0.45g/cmの人工皮革基体を得た。得られた人工皮革基体の繊維:ポリウレタンの比率は重量で100:30であった。
(Creation of base material for artificial leather)
A substrate for artificial leather was prepared in the same manner as in Example 1 except that the obtained long fiber nonwoven fabric was used, and an artificial leather substrate having a thickness of 1.0 mm and an apparent density of 0.45 g / cm 3 was obtained. The fiber / polyurethane ratio of the resulting artificial leather substrate was 100: 30 by weight.

(人工皮革の作成)
得られた人工皮革用基体を用い、その他は実施例1と同様にして銀付き人工皮革を得た。
得られた人工皮革は、縦方向の柔軟度1.21g/cm、横方向の柔軟度0.76g/cmであり、縦方向の強伸度は破断強度219N/cm、破断伸度74%、横方向の強伸度は破断強度161N/cm、破断伸度127%であった。
(Making artificial leather)
Using the obtained artificial leather substrate, silver-added artificial leather was obtained in the same manner as in Example 1.
The obtained artificial leather has a longitudinal flexibility of 1.21 g / cm and a lateral flexibility of 0.76 g / cm. The longitudinal strength is 219 N / cm breaking strength, 74% breaking elongation, The transverse strength was found to be a breaking strength of 161 N / cm and a breaking elongation of 127%.

断面を電子顕微鏡で観察したところ、縦方向から観察した不織布断面は繊維の切断面の存在が圧倒的に多く、繊維側面の数はまばらであった。また、表面を内にして横方向に曲げても大きな折れしわは発生しなかったが、同じく表面を内にして縦方向に曲げた場合大きな折れしわが発生するものであった。   When the cross section was observed with an electron microscope, the cross section of the nonwoven fabric observed from the longitudinal direction was overwhelmingly present with the cut surfaces of the fibers, and the number of fiber side surfaces was sparse. Further, no large creases were generated even when bent in the lateral direction with the surface inward, but large creases were also generated when bent in the vertical direction with the surface inward.

この人工皮革を用いてサッカーシューズ、およびサッカーボールを作成した。サッカーシューズは着用した場合につま先部分に大きなシワが発生し、小さなシワが少なく天然皮革との違いが明白なものであった。また、サッカーボールは空気を抜き、半球状に折りたたみ、1ケ月後空気を入れて球状に戻したがシワ跡が残り、商品価値の低いものであった。   Soccer shoes and soccer balls were created using this artificial leather. When soccer shoes were worn, large wrinkles were generated on the toes, there were few small wrinkles, and the difference from natural leather was obvious. Also, the soccer ball was deflated and folded into a hemisphere, and after one month it was aired and returned to a sphere, but wrinkle marks remained and the product value was low.

Claims (5)

長繊維不織布の製造方法であって、紡糸直後の長繊維が2種以上の繊維に分割可能な構造を有し、少なくとも1種の繊維が熱収縮性を有する繊維であり、該長繊維を紡糸した直後にネット上に捕集し積層した後に、進行方向に揺動する揺動型ニードル機で交絡し、次いで機械的分割、熱水収縮する工程を行うことを特徴とする長繊維不織布の製造方法。   A method for producing a long-fiber non-woven fabric, wherein a long fiber immediately after spinning has a structure that can be divided into two or more types of fibers, and at least one type of fiber has heat shrinkability, and the long fibers are spun Immediately after collecting and laminating on a net, production of a long-fiber nonwoven fabric characterized in that it is entangled with a swing type needle machine that swings in the direction of travel, then mechanically divided and subjected to hot water shrinkage Method. 紡糸、積層、交絡、分割、収縮の各工程を一旦巻き取ることなく連続して順に行う請求項1記載の長繊維不織布の製造方法。   The method for producing a long-fiber non-woven fabric according to claim 1, wherein the steps of spinning, laminating, entanglement, division, and shrinking are successively performed in order without winding. 該長繊維の分割後の繊度が0.5〜0.001dtexである請求項1または2記載の長繊維不織布の製造方法。   The method for producing a long-fiber nonwoven fabric according to claim 1 or 2, wherein the fineness of the long fibers after division is 0.5 to 0.001 dtex. 該長繊維を構成するポリマーが、ポリエステルとポリアミドである請求項1〜3のいずれか1項記載の長繊維不織布の製造方法。   The method for producing a long-fiber nonwoven fabric according to any one of claims 1 to 3, wherein the polymers constituting the long fibers are polyester and polyamide. 収縮する工程後の不織布の密度が0.2〜0.5g/cmである請求項1〜4のいずれか1項記載の長繊維不織布の製造方法。 The density of the nonwoven fabric after the process to shrink | contract is 0.2-0.5 g / cm < 3 >, The manufacturing method of the long fiber nonwoven fabric of any one of Claims 1-4.
JP2005123207A 2005-04-21 2005-04-21 Method for producing filament nonwoven fabric Pending JP2006299463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123207A JP2006299463A (en) 2005-04-21 2005-04-21 Method for producing filament nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123207A JP2006299463A (en) 2005-04-21 2005-04-21 Method for producing filament nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2006299463A true JP2006299463A (en) 2006-11-02

Family

ID=37468095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123207A Pending JP2006299463A (en) 2005-04-21 2005-04-21 Method for producing filament nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2006299463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098364A1 (en) * 2009-02-27 2010-09-02 株式会社クラレ Artificial leather, entangled web of long fibers, and processes for producing these
KR101418303B1 (en) 2012-10-17 2014-07-10 (주)씨와이씨 Preparation of filament nonwoven fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164453A (en) * 1999-10-29 2001-06-19 Textil Mas Fab Dr Ernst Fehrer Ag Needle-punching apparatus for fiber web
JP2002069821A (en) * 2000-08-28 2002-03-08 Teijin Ltd Method for producing filament nonwoven fabric for artificial leather
JP2003003360A (en) * 2001-04-19 2003-01-08 Textil Mas Fab Dr Ernst Fehrer Ag Needle punching apparatus for fiber web
JP2003041475A (en) * 2001-06-12 2003-02-13 Textil Mas Fab Dr Ernst Fehrer Ag Needle-punching apparatus for fiber web

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164453A (en) * 1999-10-29 2001-06-19 Textil Mas Fab Dr Ernst Fehrer Ag Needle-punching apparatus for fiber web
JP2002069821A (en) * 2000-08-28 2002-03-08 Teijin Ltd Method for producing filament nonwoven fabric for artificial leather
JP2003003360A (en) * 2001-04-19 2003-01-08 Textil Mas Fab Dr Ernst Fehrer Ag Needle punching apparatus for fiber web
JP2003041475A (en) * 2001-06-12 2003-02-13 Textil Mas Fab Dr Ernst Fehrer Ag Needle-punching apparatus for fiber web

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098364A1 (en) * 2009-02-27 2010-09-02 株式会社クラレ Artificial leather, entangled web of long fibers, and processes for producing these
US10465337B2 (en) 2009-02-27 2019-11-05 Kuraray Co., Ltd. Artificial leather, entangled web of filaments, and process for producing these
KR101418303B1 (en) 2012-10-17 2014-07-10 (주)씨와이씨 Preparation of filament nonwoven fabric

Similar Documents

Publication Publication Date Title
TWI297049B (en) Artificial leather having ultramicro fiber in conjugate fiber of substrate
KR20010031584A (en) Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
CN105970664B (en) A kind of processing method of the superfine fiber chemical leather with higher sanitation performance quality
TWI633219B (en) Verfahren zur herstellung eines strukturierten mikrofilamentvliesstoffs
LU85374A1 (en) PROCESS FOR THE TREATMENT OF NON-WOVEN TABLECLOTHS AND PRODUCT OBTAINED
JP6745078B2 (en) Napped artificial leather
TWI422728B (en) Substrate for artificial leather and producing method thereof
TWI357943B (en) High resistant light tufting carrier and process f
JP2008297673A (en) Filament nonwoven fabric and method for producing base material for artificial leather
TWI641634B (en) Sheet material and manufacturing method thereof
TWI732890B (en) Fuzzy artificial leather and its manufacturing method
JP2006299463A (en) Method for producing filament nonwoven fabric
JP3727181B2 (en) Method for producing nonwoven fabric for artificial leather
JP2006176898A (en) Method for producing filament nonwoven fabric
JP4477511B2 (en) Method for producing artificial leather substrate
JP4549886B2 (en) Method for producing dense entangled nonwoven fabric
WO2020044911A1 (en) Artificial leather base material, method for production thereof, and napped artificial leather
JPS60139879A (en) Production of artificial leather sheet
JP5159139B2 (en) Method for producing long-fiber nonwoven fabric and method for producing base material for artificial leather
TW200831732A (en) Base fabric for embroidery and manufacturing method thereof
JP5095291B2 (en) Leather-like sheet and method for producing the same
JP4477472B2 (en) Nonwoven manufacturing method
JP2006193848A (en) Artificial leather and method for producing the same
JP5586516B2 (en) Leather-like substrate, method for producing the same, and string using the leather-like substrate
JP2005220446A (en) Uneven nonwoven fabric, uneven nonwoven fabric product and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Effective date: 20101112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Effective date: 20110315

Free format text: JAPANESE INTERMEDIATE CODE: A02