JP2006283900A - Toroidal continuously variable transmission and continuously variable transmisson - Google Patents

Toroidal continuously variable transmission and continuously variable transmisson Download PDF

Info

Publication number
JP2006283900A
JP2006283900A JP2005106097A JP2005106097A JP2006283900A JP 2006283900 A JP2006283900 A JP 2006283900A JP 2005106097 A JP2005106097 A JP 2005106097A JP 2005106097 A JP2005106097 A JP 2005106097A JP 2006283900 A JP2006283900 A JP 2006283900A
Authority
JP
Japan
Prior art keywords
disk
continuously variable
variable transmission
toroidal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106097A
Other languages
Japanese (ja)
Inventor
Toshiro Toyoda
俊郎 豊田
Original Assignee
Nsk Ltd
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd, 日本精工株式会社 filed Critical Nsk Ltd
Priority to JP2005106097A priority Critical patent/JP2006283900A/en
Publication of JP2006283900A publication Critical patent/JP2006283900A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect the rotational speed of an input side disk without the need for troublesome working, etc. <P>SOLUTION: The input side disk and a rotational shaft are coupled via a first carrier 20a forming a planetary gear transmission. A portion 43 to be detected for detecting the rotational speed is installed in the outer peripheral surface of a first connecting plate 34 forming the first carrier 20a. The portion 43 to be detected becomes a protrusion-recess part 42 in which recesses 40 and 40 and projections 41 and 41 are alternately formed in the circumferential direction. Such the protrusion-recess part 42 is not necessary to be directly formed to the input side disk having high hardness to be easily worked. The first carrier 20a rotates in synchronism with the input side disk to enable accurate detection of the rotational speed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係るトロイダル型無段変速機及び無段変速装置は、自動車用の自動変速装置として、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用する。   The toroidal type continuously variable transmission and continuously variable transmission according to the present invention are used as an automatic transmission for automobiles or as a transmission for adjusting the operating speed of various industrial machines such as pumps.
自動車用変速機を構成する変速機の一種としてトロイダル型無段変速機が知られ、一部で実施されている。又、トロイダル型無段変速機と歯車式の差動ユニットである遊星歯車式変速機とを組み合わせた無段変速装置も、特許文献1等に記載され、従来から各種知られている。図6〜7は、この特許文献1に記載された無段変速装置を示している。この無段変速装置は、トロイダル型無段変速機1と、第一〜第三各遊星歯車式変速機2〜4とを組み合わせて成り、互いに同心に、且つ、相対回転自在に支持された、入力軸5と、回転軸6と、伝達軸7と、出力軸8とを有する。   A toroidal continuously variable transmission is known as a type of transmission that constitutes a transmission for an automobile, and is partially implemented. Also, a continuously variable transmission that combines a toroidal-type continuously variable transmission and a planetary gear type transmission that is a gear-type differential unit is described in Patent Document 1 and the like, and various types have been conventionally known. 6 to 7 show the continuously variable transmission described in Patent Document 1. FIG. This continuously variable transmission is composed of a combination of a toroidal type continuously variable transmission 1 and first to third planetary gear type transmissions 2 to 4, and is supported concentrically and relatively rotatably. An input shaft 5, a rotation shaft 6, a transmission shaft 7, and an output shaft 8 are included.
このうちのトロイダル型無段変速機1は、それぞれが第一ディスクであり外側ディスクである、1対の入力側ディスク9a、9bと、第二ディスクであり内側ディスクである、一体型の出力側ディスク10と、複数のパワーローラ11、11とを備える。これら両入力側ディスク9a、9bは、それぞれが断面円弧形である軸方向片側面同士を互いに対向させた状態で、上記回転軸6のうちで軸方向に離隔した2個所位置に、互いに同心に、且つ、同期した回転を自在として支持している。又、上記出力側ディスク10は、上記回転軸6の中間部周囲で上記両入力側ディスク9a、9b同士の間位置に、断面円弧形である軸方向両側面をこれら両入力側ディスク9a、9bの軸方向片側面に対向させた状態で、これら両入力側ディスク9a、9bと同心に、且つ、これら両入力側ディスク9a、9bに対する相対回転を自在として支持している。更に、上記各パワーローラ11、11は、上記出力側ディスク10の軸方向両側面と上記両入力側ディスク9a、9bの軸方向片側面との間に、それぞれ複数個ずつ挟持して、これら両入力側ディスク9a、9bから上記出力側ディスク10への動力の伝達を自在としている。   Among these, the toroidal type continuously variable transmission 1 includes a pair of input side disks 9a and 9b, each of which is a first disk and an outer disk, and an integrated output side which is a second disk and an inner disk. A disk 10 and a plurality of power rollers 11 and 11 are provided. These two input-side disks 9a and 9b are concentric with each other at two axially spaced positions on the rotary shaft 6 with one axial side surface having an arcuate cross section facing each other. In addition, the synchronous rotation is supported freely. Further, the output side disk 10 is arranged between the input side disks 9a, 9b around the intermediate portion of the rotary shaft 6 at both sides in the axial direction having a circular arc cross section. In a state of being opposed to one axial side surface of 9b, it is supported concentrically with both the input side disks 9a and 9b and relatively rotatable with respect to both the input side disks 9a and 9b. Further, a plurality of each of the power rollers 11 and 11 is sandwiched between both axial side surfaces of the output side disk 10 and one axial side surface of the both input side disks 9a and 9b. Transmission of power from the input side disks 9a and 9b to the output side disk 10 is made free.
又、上記各パワーローラ11、11は、それぞれ特許請求の範囲に記載した支持部材であるトラニオン12、12の内側面に回転自在に支持されており、これら各トラニオン12、12の両端部に設けられた枢軸13、13は、支持板14a、14bに、揺動及び軸方向の変位自在に支持されている。更に、これら両支持板14a、14bは、ケーシング15内に固定された支持ポスト16a、16bに支持されている。又、これら各支持ポスト16a、16bに上記出力側ディスク10の軸方向両端部を、1対のスラストアンギュラ型の玉軸受17、17により回転自在に支持している。又、上記出力側ディスク10に中空回転軸18の基端部(図6の左端部)をスプライン係合させると共に、この中空回転軸18を、エンジンから遠い側(図6の右側)の入力側ディスク9bの内側に挿通して、上記出力側ディスク10の回転力を取り出し自在としている。更に、上記中空回転軸18の先端部(図6の右端部)で上記入力側ディスク9bの外側面から突出した部分に、前記第一遊星歯車式変速機2を構成する為の、第一太陽歯車19を固設している。   The power rollers 11 and 11 are rotatably supported on inner surfaces of trunnions 12 and 12 as support members described in the claims, and are provided at both ends of the trunnions 12 and 12, respectively. The pivots 13 and 13 are supported by the support plates 14a and 14b so as to be swingable and axially displaceable. Further, both the support plates 14 a and 14 b are supported by support posts 16 a and 16 b fixed in the casing 15. Further, both end portions in the axial direction of the output side disk 10 are rotatably supported by the support posts 16a and 16b by a pair of thrust angular ball bearings 17 and 17, respectively. Further, the output side disk 10 is spline-engaged with the base end portion (left end portion in FIG. 6) of the hollow rotary shaft 18, and the hollow rotary shaft 18 is connected to the input side on the side far from the engine (right side in FIG. 6). The rotational force of the output side disk 10 can be taken out by being inserted inside the disk 9b. Further, a first sun gear for constituting the first planetary gear type transmission 2 in a portion protruding from the outer surface of the input side disk 9b at the tip end portion (the right end portion in FIG. 6) of the hollow rotary shaft 18. A gear 19 is fixed.
一方、上記回転軸6の先端部(図6の右端部)で上記中空回転軸18から突出した部分と上記入力側ディスク9bとの間に、特許請求の範囲に記載したキャリアに相当する第一キャリア20を掛け渡す様に設けて、この入力側ディスク9bと上記回転軸6とが、互いに同期して回転する様にしている。そして、上記第一キャリア20の軸方向両側面の円周方向等間隔位置(一般的には3〜4個所位置)に、それぞれがダブルピニオン型である前記第一、第二遊星歯車式変速機2、3を構成する為の遊星歯車21〜23を、回転自在に支持している。更に、上記第一キャリア20の片半部(図6の右半部)周囲に第一リング歯車24を回転自在に支持すると共に、前記伝達軸7の基端部(図6の左端部)に、上記第二遊星歯車式変速機3を構成する為の第二太陽歯車25を固設している。   On the other hand, a first portion corresponding to the carrier described in the claims is provided between a portion protruding from the hollow rotary shaft 18 at the tip end portion (right end portion in FIG. 6) of the rotary shaft 6 and the input side disk 9b. The input disk 9b and the rotary shaft 6 are rotated in synchronism with each other by providing the carrier 20 therebetween. The first and second planetary gear type transmissions are respectively double pinion type at circumferentially equidistant positions (generally 3 to 4 positions) on both side surfaces in the axial direction of the first carrier 20. The planetary gears 21 to 23 for constituting 2, 3 are rotatably supported. Further, the first ring gear 24 is rotatably supported around one half (the right half in FIG. 6) of the first carrier 20, and at the base end (the left end in FIG. 6) of the transmission shaft 7. The second sun gear 25 for constituting the second planetary gear type transmission 3 is fixed.
又、前記第三遊星歯車式変速機4を構成する為の第二キャリア26を、前記出力軸8の基端部(図6の左端部)に結合固定している。そして、この第二キャリア26と上記第一リング歯車24とを、低速用クラッチ27を介して結合している。又、上記伝達軸7の先端寄り(図6の右端寄り)部分に固設した第三太陽歯車28の周囲に、第二リング歯車29を配置している。そして、この第二リング歯車29と前記ケーシング15等の固定の部分との間に、高速用クラッチ30を設けている。更に、この第二リング歯車29と上記第三太陽歯車28との間に配置した複数組の遊星歯車31、32を、上記第二キャリア26に回転自在に支持している。   A second carrier 26 for constituting the third planetary gear type transmission 4 is coupled and fixed to a base end portion (left end portion in FIG. 6) of the output shaft 8. The second carrier 26 and the first ring gear 24 are coupled via a low speed clutch 27. In addition, a second ring gear 29 is disposed around a third sun gear 28 fixed to a portion near the tip of the transmission shaft 7 (near the right end in FIG. 6). A high speed clutch 30 is provided between the second ring gear 29 and a fixed portion of the casing 15 or the like. Further, a plurality of planetary gears 31 and 32 disposed between the second ring gear 29 and the third sun gear 28 are rotatably supported on the second carrier 26.
上述の様に構成する無段変速装置の場合、入力軸5から回転軸6、1対の入力側ディスク9a、9b、各パワーローラ11、11を介して一体型の出力側ディスク10に伝わった動力は、前記中空回転軸18を通じて取り出される。そして、上記低速用クラッチ27を接続し、上記高速用クラッチ30の接続を断った低速モード時には、前記トロイダル型無段変速機1の変速比を変える事により、上記入力軸5の回転速度を一定にしたまま、前記出力軸8の回転速度を、停止状態を挟んで正転、逆転に変換自在となる。即ち、この状態では、上記トロイダル型無段変速機1の変速比を所定値(GNポイント)にする事で、上記出力軸8を停止させられる他、このトロイダル型無段変速機1の変速比を上記所定値から増速側又は減速側に変化させる事により上記出力軸8を、車両を後退又は前進させる方向に回転させられる。更に、上記低速用クラッチ27の接続を断ち、上記高速用クラッチ30を接続した高速モード時には、上記トロイダル型無段変速機1の変速比を増速側に変化させる事で、上記出力軸8を車両を前進させる方向に回転させられる。   In the case of the continuously variable transmission configured as described above, it is transmitted from the input shaft 5 to the integrated output side disk 10 via the rotating shaft 6, the pair of input side disks 9 a and 9 b, and the power rollers 11 and 11. Power is taken out through the hollow rotary shaft 18. In the low speed mode in which the low speed clutch 27 is connected and the high speed clutch 30 is disconnected, the rotational speed of the input shaft 5 is kept constant by changing the gear ratio of the toroidal continuously variable transmission 1. In this state, the rotational speed of the output shaft 8 can be freely converted into forward rotation and reverse rotation with the stop state interposed therebetween. That is, in this state, the output shaft 8 can be stopped by setting the gear ratio of the toroidal continuously variable transmission 1 to a predetermined value (GN point), and the gear ratio of the toroidal continuously variable transmission 1 can be stopped. Is changed from the predetermined value to the speed increasing side or the speed reducing side, the output shaft 8 is rotated in the direction of moving the vehicle backward or forward. Further, in the high speed mode in which the low speed clutch 27 is disconnected and the high speed clutch 30 is connected, the output shaft 8 is controlled by changing the gear ratio of the toroidal type continuously variable transmission 1 to the speed increasing side. The vehicle is rotated in the direction of moving forward.
上述の様に、遊星歯車式変速機2、3、4と組み合わせて無段変速装置を構成する場合も含めて、トロイダル型無段変速機1を実施する場合に、所望の変速比を実現できているかを変速比制御の為の制御器にフィードバックする必要がある。この為に、例えばパワーローラ11、11の傾転角をポテンショメータにより検出し、この傾転角(に対応する変速比)に応じて変速比制御を行なう事が考えられる。但し、実際の車両に搭載されるトロイダル型無段変速機1で上記ポテンショメータを使用する事は、コストの増大を招くだけでなく、信頼性を確保しにくくなる可能性もあり、好ましくない。この為、上記変速比を、入力側ディスク9a、9bの回転速度と出力側ディスク10の回転速度との比から算出する事が行なわれている。   As described above, a desired gear ratio can be realized when the toroidal continuously variable transmission 1 is implemented, including the case where the continuously variable transmission is configured in combination with the planetary gear type transmissions 2, 3, and 4. It is necessary to feed back to the controller for gear ratio control. For this purpose, for example, it is conceivable to detect the tilt angle of the power rollers 11 and 11 with a potentiometer and perform gear ratio control according to the tilt angle (corresponding gear ratio). However, the use of the potentiometer in the toroidal type continuously variable transmission 1 mounted on an actual vehicle is not preferable because it not only increases the cost but also makes it difficult to ensure reliability. For this reason, the gear ratio is calculated from the ratio between the rotational speed of the input side disks 9a and 9b and the rotational speed of the output side disk 10.
例えば特許文献2には、入力側ディスクの回転速度を検出する為の構造として、この入力側ディスクの外周縁部に、回転速度検出の為の凹凸部を、この入力側ディスクと一体に形成する発明が記載されている。但し、この様な特許文献2に記載された構造の場合、硬度の高い入力側ディスクの外周縁部に凹凸部を形成する為、この凹凸部の加工が面倒になる可能性がある。尚、回転速度検出の為の凹凸部を円環状の部材(環状部材)の外周面に形成すると共に、この環状部材を上記入力側ディスクの外周面に締り嵌めで外嵌固定し、これら入力側ディスクと環状部材とを一体に結合する事も考えられる。この様に構成すれば、入力側ディスクの様な硬度の高い部材に凹凸部を形成する必要がなくなる為、この凹凸部の加工が容易になる。但し、この場合には、上記環状部材を上記入力側ディスクの外周面に圧入嵌合する際に、この入力側ディスクの内側面(パワーローラの周面と転がり接触してこのパワーローラと動力の伝達を行なうトラクション面)に擦り傷等の損傷を生じ易くなり、形状精度、寸法精度、表面粗さ等を高度に維持できなくなる可能性がある。又、この様な損傷を防止しつつ行なう上記圧入作業は、面倒で熟練を要する等、製造コストの増大に繋がる可能性がある。   For example, in Patent Document 2, as a structure for detecting the rotational speed of the input side disk, an uneven portion for detecting the rotational speed is formed integrally with the input side disk on the outer peripheral edge of the input side disk. The invention has been described. However, in the case of such a structure described in Patent Document 2, since the uneven portion is formed on the outer peripheral edge portion of the hard disk on the input side, the processing of the uneven portion may be troublesome. The concave and convex portions for detecting the rotational speed are formed on the outer peripheral surface of an annular member (annular member), and the annular member is externally fixed to the outer peripheral surface of the input side disk by an interference fit. It is also conceivable to join the disc and the annular member together. With this configuration, it is not necessary to form the uneven portion on a member having high hardness such as the input side disk, so that the uneven portion can be easily processed. However, in this case, when the annular member is press-fitted into the outer peripheral surface of the input-side disk, the inner surface of the input-side disk (in contact with the peripheral surface of the power roller in rolling contact) The transmission traction surface) is likely to be damaged, such as scratches, and the shape accuracy, dimensional accuracy, surface roughness, etc. may not be maintained at a high level. Further, the press-fitting work performed while preventing such damage may lead to an increase in manufacturing cost, such as being troublesome and requiring skill.
一方、特許文献3〜4には、ローディングカム式の押圧装置のカム板やカムローラを保持する保持器の外周面に、回転速度を検出する為の被検出部を設け、これらカム板や保持器の回転速度を、上記入力側ディスクの回転速度として検出する発明が記載されている。この様な発明の場合も、上記入力側ディスクに凹凸を形成する必要がない分、加工の容易化を図れる。但し、上述の様なローディングカム式の押圧装置の場合は、押圧力の変化(伝達動力の変化)に伴い、カムローラの噛み合い位置が変化し、この噛み合い位置の変化に基づき、上記カム板やカムローラが上記入力側ディスクに対し相対回転する。この為、この相対回転に基づき、上記入力側ディスクの実際の回転速度と、この入力側ディスクの回転速度として検出する、上記カム板や保持器の回転速度との間に、僅かとは言えずれを生じる。   On the other hand, Patent Documents 3 to 4 provide a detected portion for detecting the rotational speed on the outer peripheral surface of a cage for holding a cam plate and a cam roller of a loading cam type pressing device. Is described as a rotational speed of the input side disk. In the case of such an invention, since it is not necessary to form irregularities on the input side disk, the processing can be facilitated. However, in the case of the loading cam type pressing device as described above, the meshing position of the cam roller changes with a change in pressing force (change in transmission power), and the cam plate and cam roller are changed based on the change in the meshing position. Rotates relative to the input disk. For this reason, based on this relative rotation, the actual rotational speed of the input side disk and the rotational speed of the cam plate and the cage detected as the rotational speed of the input side disk are slightly different. Produce.
上記特許文献4には、この様なずれを演算器でキャンセルする事が記載されている。但し、上記カム板や保持器と上記入力側ディスクとが相対回転し始めた直後や、この相対回転が急激な場合に、上記入力側ディスクの実際の回転速度と、この入力側ディスクの回転速度として検出する上記カム板や保持器の回転速度とを、完全に一致させる事はできない。この為、例えばエンジンブレーキ等に基づき上記トロイダル型無段変速機を通過するトルクが反転したり、或いはこのトルクが急変動した場合等に、上記入力側ディスクの回転速度、延いてはこの回転速度に基づき算出される変速比が、実際の回転速度或いは変速比とずれる事が避けられない。そして、この様に変速比がずれた場合には、上記トロイダル型無段変速機の変速比制御を厳密に行なえなくなり、車両が過度に加減速する等、乗員に違和感を与える可能性がある。この様な不都合は、無段変速装置を上記トロイダル型無段変速機単体で構成する場合は勿論、トロイダル型無段変速機と差動ユニットである遊星歯車式変速機とを組み合わせて構成する場合にも生じる。   Patent Document 4 describes that such a deviation is canceled by an arithmetic unit. However, immediately after the cam plate or cage and the input disk start to rotate relative to each other, or when the relative rotation is abrupt, the actual rotation speed of the input disk and the rotation speed of the input disk The rotational speeds of the cam plate and the cage detected as can not be completely matched. For this reason, for example, when the torque passing through the toroidal-type continuously variable transmission is reversed or suddenly fluctuates based on the engine brake or the like, the rotational speed of the input-side disk, and thus this rotational speed. It is inevitable that the gear ratio calculated based on the above will deviate from the actual rotational speed or gear ratio. When the gear ratio is shifted in this way, the gear ratio control of the toroidal-type continuously variable transmission cannot be performed strictly, and the vehicle may be excessively accelerated or decelerated. Such inconvenience is not only when the continuously variable transmission is configured by the toroidal continuously variable transmission alone, but also when the toroidal continuously variable transmission is combined with a planetary gear transmission that is a differential unit. Also occurs.
しかも、前述の図6〜7に示した様な無段変速装置の場合は、入力軸5を一方向に回転させた状態のまま出力軸8を停止させる状態(ギヤードニュートラル状態)で、トロイダル型無段変速機1の変速比を所定値(GNポイント)に厳密に規制する必要がある。又、これと共に、低速モードから高速モード、或いは逆に高速モードから低速モードに、モード切り換えを行なう際にも、同じく変速比を所定値(モード切り換えポイント)に厳密に規制する必要がある。ところが、上述の様に実際の回転速度や変速比と、検出乃至算出される回転速度や変速比とがずれると、上記トロイダル型無段変速機1の変速比を厳密に規制できなくなる。そして、上記ずれが著しい場合には、ギャードニュートラル状態でエンジンが停止(エンスト)したり、モード切り換え時に切り換えショックが大きくなる等、好ましくない。   Moreover, in the case of the continuously variable transmission as shown in FIGS. 6 to 7, the output shaft 8 is stopped (geared neutral state) while the input shaft 5 is rotated in one direction. It is necessary to strictly regulate the gear ratio of the continuously variable transmission 1 to a predetermined value (GN point). At the same time, when the mode is switched from the low speed mode to the high speed mode, or conversely, from the high speed mode to the low speed mode, it is also necessary to strictly regulate the gear ratio to a predetermined value (mode switching point). However, if the actual rotational speed or gear ratio deviates from the detected or calculated rotational speed or gear ratio as described above, the gear ratio of the toroidal continuously variable transmission 1 cannot be strictly regulated. If the deviation is significant, the engine is stopped (engine stalled) in a geared neutral state, or the switching shock becomes large when the mode is switched.
特開2004−211744号公報JP 2004- 211744 A 特開2002−48205号公報JP 2002-48205 A 特開平11−63137号公報JP 11-63137 A 特開2000−55175号公報JP 2000-55175 A
本発明は、上述の様な事情に鑑みて、面倒な加工や組み付け作業等を必要とする事なく、第一ディスク(外側ディスク)の回転速度を正確に検出できる構造を実現すべく発明したものである。   The present invention has been invented to realize a structure capable of accurately detecting the rotational speed of the first disk (outer disk) without requiring troublesome processing or assembly work in view of the above-described circumstances. It is.
本発明のトロイダル型無段変速機及び無段変速装置のうち、請求項1に記載したトロイダル型無段変速装置は、従来から知られているトロイダル型無段変速機と同様に、第一、第二各ディスクと、複数の支持部材と、複数のパワーローラとを備える。
このうちの第一、第二各ディスクは、それぞれが断面円弧形である互いの内側面同士を対向させた状態で、互いに同心に、且つ互いに独立した回転自在に支持されている。
又、上記各支持部材は、上記第一、第二各ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられている。
又、上記各パワーローラは、上記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、上記第一、第二各ディスクの内側面に転がり接触させている。
特に、請求項1に記載した本発明のトロイダル型無段変速機に於いては、上記第一ディスクの回転を検出する為の被検出部を、この第一ディスク以外の部材で、この第一ディスクと同期して回転する部材に設置している。
Of the toroidal type continuously variable transmission and continuously variable transmission of the present invention, the toroidal type continuously variable transmission according to claim 1 is the same as the conventional toroidal type continuously variable transmission, Each disk includes a second disk, a plurality of support members, and a plurality of power rollers.
Of these, the first and second discs are supported concentrically and independently of each other, with their inner surfaces facing each other, each having an arcuate cross section.
Each of the support members is freely provided with a swing displacement about a pivot that is twisted with respect to the center axis of each of the first and second disks.
Each of the power rollers is rotatably supported by the support members, and the circumferential surfaces of the spherical convex surfaces are in rolling contact with the inner surfaces of the first and second disks.
In particular, in the toroidal-type continuously variable transmission according to the first aspect of the present invention, the detected portion for detecting the rotation of the first disk is a member other than the first disk, and the first disk It is installed on a member that rotates in synchronization with the disk.
又、本発明のトロイダル型無段変速機及び無段変速装置のうち、請求項2に記載したトロイダル型無段変速装置は、前述の図6〜7に示す様な従来から知られているトロイダル型無段変速機と同様に、回転軸と、それぞれが第一ディスクである1対の外側ディスクと、第二ディスクである内側ディスクと、複数の支持部材と、複数のパワーローラとを備える。
このうちの回転軸は、ケーシング内に回転自在に支持されている。
又、上記両外側ディスクは、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で、上記回転軸のうちで軸方向に離隔した2個所位置に、この回転軸と同期した回転を自在として支持されている。
又、上記内側ディスクは、上記回転軸の中間部周囲に、それぞれが断面円弧形である軸方向両側面を上記各外側ディスクの軸方向片側面に対向させた状態で、上記回転軸に対する相対回転を自在に支持されている。
又、上記各支持部材は、軸方向に関して上記内側ディスクの軸方向両側面と上記各外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、上記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられている。
更に、上記各パワーローラは、上記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、上記内側ディスクの軸方向両側面と各外側ディスクの軸方向片側面とに転がり接触させている。
特に、請求項2に記載した本発明のトロイダル型無段変速機に於いては、上記各外側ディスクの回転を検出する為の被検出部を、これら各外側ディスク以外の部材で、これら各外側ディスクと同期して回転する部材に設置している。
Of the toroidal continuously variable transmission and continuously variable transmission of the present invention, the toroidal continuously variable transmission according to claim 2 is a conventionally known toroidal as shown in FIGS. Similar to the type continuously variable transmission, the rotary shaft includes a pair of outer disks each serving as a first disk, an inner disk serving as a second disk, a plurality of support members, and a plurality of power rollers.
Among these, the rotating shaft is rotatably supported in the casing.
In addition, the both outer disks are arranged at two positions separated from each other in the axial direction among the rotating shafts in a state where the axial side surfaces of each of the outer circular disks face each other. Synchronized rotation is supported freely.
In addition, the inner disk has a relative to the rotating shaft in a state in which both axial side surfaces each having an arc cross section are opposed to one axial side surface of each outer disk around the intermediate portion of the rotating shaft. Rotation is supported freely.
The supporting members are pivoted in a twisted position with respect to the rotating shaft, each in a plurality of positions between both axial side surfaces of the inner disk and one axial side surface of the outer disk with respect to the axial direction. Oscillating displacement around the center is freely provided.
Further, each of the power rollers is rotatably supported by each of the supporting members, and each circumferential surface having a spherical convex surface is brought into rolling contact with both axial side surfaces of the inner disk and one axial side surface of each outer disk. I am letting.
In particular, in the toroidal-type continuously variable transmission according to the second aspect of the present invention, the detected portion for detecting the rotation of each of the outer disks is a member other than the outer disks, and the outer parts It is installed on a member that rotates in synchronization with the disk.
又、請求項6に記載した本発明の無段変速装置は、トロイダル型無段変速機と、複数の歯車を組み合わせて成る歯車式の差動ユニット(例えば遊星歯車式変速機)とを備える。 このうちの差動ユニットは、上記トロイダル型無段変速機を構成する第一ディスク(1対の外側ディスク)と共に入力軸により回転駆動される第一の入力部(例えばキャリア)と、同じく第二ディスク(内側ディスク)に接続される第二の入力部(例えば太陽歯車)とを有し、これら第一、第二の入力部同士の間の速度差に応じた回転を取り出して出力軸に伝達するものである。
特に、本発明の無段変速装置に於いては、上記トロイダル型無段変速機を、上述の様なトロイダル型無段変速機としている。
According to a sixth aspect of the present invention, the continuously variable transmission of the present invention includes a toroidal continuously variable transmission and a gear type differential unit (for example, a planetary gear type transmission) formed by combining a plurality of gears. The differential unit includes a first input unit (for example, a carrier) that is rotationally driven by an input shaft together with a first disk (a pair of outer disks) that constitutes the toroidal-type continuously variable transmission. It has a second input part (for example, a sun gear) connected to the disk (inner disk), extracts the rotation according to the speed difference between these first and second input parts, and transmits it to the output shaft To do.
In particular, in the continuously variable transmission of the present invention, the toroidal continuously variable transmission is a toroidal continuously variable transmission as described above.
上述の様に構成する本発明のトロイダル型無段変速機及び無段変速装置によれば、面倒な加工や組み付け作業等を必要とする事なく、第一ディスク(各外側ディスク)の回転速度を正確に検出できる。
即ち、この第一ディスク(これら各外側ディスク)の回転を検出する為の被検出部を、この第一ディスク(これら各外側ディスク)と同期して回転する部材に設置する為、例えばローディングカム式の押圧装置を構成するカム板やカムローラ保持器等の、上記第一ディスク(各外側ディスク)と相対回転する部材に被検出部を設けた場合と異なり、検出される回転速度が実際の回転速度とずれる事がない。この為、上記第一ディスク(各外側ディスク)の回転速度、延いては、この回転速度から算出する変速比を常に正確に求める事ができ、トロイダル型無段変速機の変速比制御を厳密に行なえる。しかも、上記被検出部を、上記第一ディスク以外の部材(上記各外側ディスク以外の部材)に設置する為、例えば上記第一ディスク(外側ディスク)の外周面に回転検出の為の凹凸部を直接形成する場合や、凹凸部等を設けた環状部材をこの第一ディスク(外側ディスク)の外周面に外嵌固定する場合の様な、面倒な加工や組み付け作業を必要とする事もない。
According to the toroidal-type continuously variable transmission and continuously variable transmission of the present invention configured as described above, the rotational speed of the first disk (each outer disk) can be increased without requiring troublesome processing or assembly work. It can be detected accurately.
That is, in order to install the detected portion for detecting the rotation of the first disk (each outer disk) on a member that rotates in synchronization with the first disk (each outer disk), for example, a loading cam type Unlike the case where the detected portion is provided on a member that rotates relative to the first disk (each outer disk) such as a cam plate or a cam roller holder constituting the pressing device, the detected rotational speed is the actual rotational speed. There is no deviation. For this reason, the rotational speed of the first disk (each outer disk) and hence the gear ratio calculated from this rotational speed can always be obtained accurately, and the gear ratio control of the toroidal continuously variable transmission can be strictly performed. Yes. Moreover, in order to install the detected portion on a member other than the first disk (member other than the outer disks), for example, an uneven portion for detecting rotation is provided on the outer peripheral surface of the first disk (outer disk). There is no need for troublesome processing and assembly work, such as when directly forming or when an annular member provided with an uneven portion is fitted and fixed to the outer peripheral surface of the first disk (outer disk).
請求項1、2に記載した本発明のトロイダル型無段変速機を実施する場合に好ましくは、請求項3に記載した様に、差動ユニットである遊星歯車式変速機を構成するキャリアを、第一ディスクと同期した回転を自在に設ける(より具体的には、第一ディスクである1 対の外側ディスクのうちの一方の外側ディスクと回転軸とを、差動ユニットである遊星歯車式変速機を構成するキャリアを介して結合する)。そして、このキャリア(の外周面でリング歯車と径方向に重畳しない部分)に被検出部を設置する。この場合に、この被検出部は、例えば凹部と凸部とを円周方向に亙って交互に設けた凹凸部とする事により、永久磁石のN極とS極とを円周方向に交互に配置する事により、或いは、スリット状の透孔を円周方向に関して等間隔で形成する事により、磁気特性を円周方向に亙って交互に且つ等間隔に変化させたエンコーダとする事ができる。又、例えば上記被検出部を凹凸部とする場合は、この凹凸部を上記キャリアの外周面に直接形成する他、円環状の部材(環状部材)の外周面に上記凹凸部を形成し、この様な環状部材を上記キャリアの外周面に締り嵌めや接着、溶接等により外嵌固定する事もできる。   When implementing the toroidal type continuously variable transmission of the present invention described in claims 1 and 2, preferably the carrier constituting the planetary gear type transmission which is a differential unit as described in claim 3, Rotation synchronized with the first disk is provided freely (more specifically, one outer disk of the pair of outer disks, which is the first disk, and the rotating shaft are connected to a planetary gear type transmission, which is a differential unit. Combined through the carrier constituting the machine). And a to-be-detected part is installed in this carrier (the part which does not overlap with a ring gear in a radial direction on the outer peripheral surface). In this case, for example, the detected part is an uneven part in which concave parts and convex parts are alternately provided in the circumferential direction, whereby the N pole and the S pole of the permanent magnet are alternately provided in the circumferential direction. Or by forming slit-shaped through-holes at equal intervals in the circumferential direction to make an encoder in which the magnetic characteristics are changed alternately and at equal intervals in the circumferential direction. it can. For example, when the detected portion is an uneven portion, the uneven portion is formed directly on the outer peripheral surface of the carrier, and the uneven portion is formed on the outer peripheral surface of an annular member (annular member). Such an annular member can also be externally fixed to the outer peripheral surface of the carrier by interference fitting, adhesion, welding, or the like.
この様に構成すれば、回転検出の為の凹凸部を上記第一ディスク(外側ディスク)に直接形成したり、この様な凹凸部を設けた環状部材をこの第一ディスクに外嵌固定する場合の様な、面倒な加工や組み付け作業を必要としない。即ち、上記第一ディスクと同期して回転する部材である上記キャリアは、この第一ディスクの様に各パワーローラと転がり接触して動力を伝達するものではない。この為、上記キャリアの硬度を上記第一ディスク程確保する必要はない。従って、上記キャリアの外周面に回転検出の為の凹凸部を形成する場合は、この凹凸部の形成を容易に行なえる。又、上記環状部材やエンコーダ等を上記キャリアの外周面に外嵌固定する場合は、これら環状部材等を上記第一ディスクに圧入嵌合する場合とは異なり、トラクション面の保護を講じる必要はない。この為、これら環状部材やエンコーダとキャリアとの組み付けも容易に行なえる。   If configured in this way, the uneven part for detecting rotation is directly formed on the first disk (outer disk), or the annular member provided with such an uneven part is externally fixed to the first disk. It does not require troublesome processing and assembly work. In other words, the carrier, which is a member that rotates in synchronization with the first disk, does not transmit power in rolling contact with each power roller, unlike the first disk. For this reason, it is not necessary to ensure the hardness of the carrier as much as the first disk. Therefore, when the uneven portion for detecting rotation is formed on the outer peripheral surface of the carrier, the uneven portion can be easily formed. In addition, when the annular member, the encoder, and the like are externally fitted and fixed to the outer peripheral surface of the carrier, it is not necessary to protect the traction surface, unlike when the annular member is press-fitted to the first disk. . For this reason, these annular members, encoders and carriers can be easily assembled.
尚、上記キャリアの外周面に直接凹凸部を設ける場合、この凹凸部を、回転検出の為の凹凸としてだけでなく、上記第一ディスクとキャリアとで回転力の伝達をする為の凹凸としても使用できる。即ち、上記第一ディスクの側面に、円周方向等間隔に離隔した状態で複数個(例えば4個)の係合凸部を設け、これら各係合凸部を上記キャリアに設けた凹凸部を構成する複数個(係合凸部の数倍で、例えば16個)の凹部の一部に凹凸係合させる。そして、この様な凹凸係合により、これら第一ディスクとキャリアとで回転力を伝達可能に結合すると共に、上記キャリアの凹凸部で回転検出を行なう。この様な場合には、上記第一ディスクとキャリアとの係合部と、この第一ディスクの回転を検出する為の被検出部とを別々に造る必要がなくなる為、更なる加工作業の簡略化、製造コストの低減を図れる。   In addition, when providing an uneven part directly on the outer peripheral surface of the carrier, the uneven part is not only used as an uneven part for detecting rotation, but also as an uneven part for transmitting rotational force between the first disk and the carrier. Can be used. That is, a plurality of (for example, four) engaging projections are provided on the side surface of the first disk at equal intervals in the circumferential direction, and the projections and depressions provided on the carrier are provided with these engaging projections. The concave and convex portions are engaged with a part of a plurality of constituent concave portions (several times the engaging convex portions, for example, 16). And by such uneven | corrugated engagement, while these 1st discs and a carrier are couple | bonded so that rotational force can be transmitted, rotation detection is performed by the uneven | corrugated | grooved part of the said carrier. In such a case, it is not necessary to separately form the engaging portion between the first disk and the carrier and the detected portion for detecting the rotation of the first disk, so that further processing work can be simplified. And manufacturing cost can be reduced.
又、前述の請求項1、2に記載した本発明のトロイダル型無段変速機を実施する場合に好ましくは、請求項4に記載した様に、圧油の送り込みに伴って第一ディスク(各外側ディスク)を第二ディスク(内側ディスク)に向けて押圧する、油圧式の押圧装置を備える。そして、この押圧装置を構成するシリンダを、上記第一ディスクと同期した回転を自在に設けると共に、このシリンダに被検出部を設置する。この場合に、この被検出部は、上述した請求項3に記載した構造と同様に、凹凸部等を採用できる。勿論、この様な凹凸部等を設けた環状部材を上記シリンダに外嵌固定する事もできる。   Further, when the toroidal continuously variable transmission according to the present invention described in claims 1 and 2 is implemented, preferably, as described in claim 4, the first disk (each A hydraulic pressing device that presses the outer disk toward the second disk (inner disk) is provided. Then, the cylinder constituting the pressing device is provided to freely rotate in synchronization with the first disk, and the detected portion is installed in the cylinder. In this case, the detected portion can employ a concavo-convex portion or the like, similarly to the structure described in claim 3 described above. Of course, an annular member provided with such an uneven portion or the like can be externally fixed to the cylinder.
この様に構成した場合も、上述の請求項3に記載した構造と同様に、面倒な加工や組み付け作業を必要とする事なく、第一ディスク(外側ディスク)の回転速度を正確に検出できる。しかも、上記押圧装置を構成する上記シリンダは、油圧室を構成する為に軸方向寸法が或る程度大きくなる。この為、この様に軸方向寸法が大きくなる分、上記被検出部の設置位置の自由度を高くできる。又、上記凹凸部等を設けた環状部材を上記シリンダの外周面に外嵌固定する場合には、この環状部材により上記押圧装置の油漏れを防止できる。即ち、上記押圧装置の油圧室の油圧が上昇した場合に、この油圧に基づき上記シリンダの開口縁が拡径する傾向となっても、上記シリンダに外嵌固定した上記環状部材がこの拡径を抑える。この為、この様な拡径に基づくシリンダの内周面とピストン(第一ディスクも含む)の外周面との摺接部での油漏れを防止でき、この油漏れに基づく上記押圧装置の押圧力の低下を防止できる。この結果、転がり接触部(トラクション部)で滑りが生じる事を防止できる他、上記押圧装置に圧油を導入する為のポンプの小型化を図れ、伝達効率の低下も防止できる。   Even in this configuration, the rotational speed of the first disk (outer disk) can be accurately detected without the need for troublesome processing and assembly work, as in the structure described in claim 3 above. Moreover, since the cylinder constituting the pressing device constitutes the hydraulic chamber, the axial dimension is increased to some extent. For this reason, the degree of freedom of the installation position of the detected portion can be increased by the increase in the axial dimension. Further, when the annular member provided with the uneven portion is externally fixed to the outer peripheral surface of the cylinder, the annular member can prevent oil leakage of the pressing device. That is, when the hydraulic pressure in the hydraulic chamber of the pressing device rises, even if the opening edge of the cylinder tends to expand on the basis of the hydraulic pressure, the annular member fitted and fixed to the cylinder increases the diameter. suppress. For this reason, it is possible to prevent oil leakage at the sliding contact portion between the inner peripheral surface of the cylinder based on such an enlarged diameter and the outer peripheral surface of the piston (including the first disk). The pressure drop can be prevented. As a result, it is possible to prevent slippage at the rolling contact portion (traction portion), to reduce the size of the pump for introducing the pressure oil into the pressing device, and to prevent a decrease in transmission efficiency.
又、前述の請求項1、2に記載した本発明のトロイダル型無段変速機を実施する場合に好ましくは、請求項5に記載した様に、第一ディスク(各外側ディスク)と同期して回転する部材を、エンジンからの動力をこの第一ディスクに入力する為の入力軸、又は、この入力軸に設けた駆動歯車により回転駆動される被駆動部材とする。そして、被検出部を、上記駆動歯車の凹凸、又は、上記被駆動部材に設けられてこの駆動歯車と噛合する被駆動歯車の凹凸とする。   Further, when the toroidal continuously variable transmission according to the present invention described in claims 1 and 2 is implemented, preferably, as described in claim 5, the first disk (each outer disk) is synchronized. The rotating member is an input shaft for inputting power from the engine to the first disk, or a driven member that is rotationally driven by a drive gear provided on the input shaft. The detected portion is the unevenness of the driving gear or the unevenness of the driven gear that is provided on the driven member and meshes with the driving gear.
この様に構成した場合も、前述の請求項3や請求項4に記載した構造と同様に、面倒な加工や組み付け作業を必要とする事なく、第一ディスク(外側ディスク)の回転速度を正確に検出できる。しかも、トロイダル型無段変速機は、制御弁や押圧装置等の圧油を必要とする部分に圧油を送り込む為の油圧ポンプを駆動する為に、この油圧ポンプの被駆動軸と入力軸とをそれぞれ歯車を介して接続する必要がある。そして、この様な被駆動軸又は入力軸に設けた歯車の凹凸を、回転検出の為の被検出部とした場合には、他の部分に外側ディスクの回転速度を検出する為の被検出部を設ける必要がなくなり、更なる加工作業の簡略化、製造コストの低減を図れる。   Even in such a configuration, the rotational speed of the first disk (outer disk) can be accurately adjusted without the need for troublesome processing and assembling work, similarly to the structure described in claims 3 and 4 described above. Can be detected. In addition, the toroidal continuously variable transmission has a driven shaft and an input shaft of the hydraulic pump for driving a hydraulic pump for feeding the pressure oil to a portion requiring pressure oil such as a control valve and a pressing device. Must be connected via gears. And when the unevenness of the gear provided on the driven shaft or the input shaft is used as a detected portion for detecting rotation, the detected portion for detecting the rotational speed of the outer disk in other portions. This eliminates the need to provide a work piece, further simplifies processing operations, and reduces manufacturing costs.
又、請求項6に記載した本発明の無段変速装置を実施する場合に好ましくは、請求項7に記載した様に、トロイダル型無段変速機と差動ユニットとをクラッチ装置を介して接続すると共に、このクラッチ装置の断接に基づき動力の伝達状態を切り換え自在とする。又、請求項8に記載した様に、トロイダル型無段変速機の変速比を調節して差動ユニットを構成する複数の歯車の相対的変位速度を変化させる事により、入力軸を一方向に回転させた状態のまま出力軸の回転状態を、停止状態を挟んで正転及び逆転に変換自在とする。
この様に構成する場合、トロイダル型無段変速機の変速比を厳密に制御する為に、上記外側ディスクの回転速度を正確に検出する必要性が高くなる。従って、上述の様な構造で本発明を実施する事の意味が大きくなる。
Preferably, when the continuously variable transmission of the present invention described in claim 6 is implemented, the toroidal continuously variable transmission and the differential unit are connected via a clutch device as described in claim 7. In addition, the transmission state of power can be switched based on the connection / disconnection of the clutch device. In addition, as described in claim 8, the input shaft is unidirectionally adjusted by adjusting the gear ratio of the toroidal type continuously variable transmission to change the relative displacement speeds of the plurality of gears constituting the differential unit. The rotation state of the output shaft can be converted into normal rotation and reverse rotation with the stopped state in the rotated state.
In such a configuration, in order to strictly control the gear ratio of the toroidal-type continuously variable transmission, it is necessary to accurately detect the rotational speed of the outer disk. Therefore, the significance of carrying out the present invention with the structure as described above becomes large.
図1は、請求項1、2、3、6、7、8に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、面倒な加工や組み付け作業等を必要とする事なく、それぞれが第一ディスクであり外側ディスクである、1対の入力側ディスク9a、9b(図6参照)の回転速度を正確に検出する点にある。これら各入力側ディスク9a、9bを組み込んだトロイダル型無段変速機1の構造、更にはこのトロイダル型無段変速機1を組み込んだ無段変速装置の構造は、例えば前述の図6〜7に記載された従来構造と同様であるから、図示並びに詳しい説明は省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。   FIG. 1 shows Embodiment 1 of the present invention corresponding to claims 1, 2, 3, 6, 7 and 8. The feature of this embodiment is that a pair of input side disks 9a and 9b (see FIG. 6), each of which is the first disk and the outer disk, are used without requiring troublesome processing and assembly work. The point is to accurately detect the rotation speed. The structure of the toroidal continuously variable transmission 1 incorporating these respective input side disks 9a and 9b, and the structure of the continuously variable transmission incorporating this toroidal continuously variable transmission 1 are shown in FIGS. Since it is the same as the conventional structure described, the illustration and detailed description will be omitted or simplified, and the following description will focus on the features of the present invention.
本実施例の場合も、上記図6〜7に示した従来構造と同様に、1対の入力側ディスク9a、9bのうちの一方(図6の右方)の入力側ディスク9bと回転軸6とを、差動ユニットである第一、第二遊星歯車式変速機2、3(図6参照)を構成する第一キャリア20aを介して結合している。即ち、図1に詳示する上記第一キャリア20aを、上記回転軸6の先端部(図6の右端部)と上記一方の入力側ディスク9bとの間に掛け渡す状態で設ける。この第一キャリア20aは、中間支持板33と第一、第二両連結板34、35とを備え、これら中間支持板33と第一、第二両連結板34、35とをそれぞれ連結部55、55により互いに連結した、一体構造としている。又、これら中間支持板33と第一、第二両連結板34、35との間に、それぞれ複数本ずつ(図示の例の場合は3本ずつ)の遊星軸36、37(図6参照)を、上記第一、第二両連結板34、35同士の間に複数本(図示の例の場合は3本)の遊星軸38(図6参照)を、それぞれ掛け渡している。又、これら各遊星軸36〜38の周囲には、各遊星歯車21、22、23(図6参照)を回転自在に支持している。   Also in the case of the present embodiment, as in the conventional structure shown in FIGS. 6 to 7, one of the pair of input side disks 9a and 9b (right side in FIG. 6) and the rotating shaft 6 Are coupled via a first carrier 20a constituting the first and second planetary gear type transmissions 2 and 3 (see FIG. 6) which are differential units. That is, the first carrier 20a shown in detail in FIG. 1 is provided in a state of being spanned between the tip end portion (right end portion in FIG. 6) of the rotating shaft 6 and the one input side disk 9b. The first carrier 20a includes an intermediate support plate 33 and first and second connection plates 34 and 35. The intermediate support plate 33 and the first and second connection plates 34 and 35 are connected to a connecting portion 55, respectively. , 55 connected to each other. Also, a plurality of planetary shafts 36 and 37 (see FIG. 6) are provided between the intermediate support plate 33 and the first and second connecting plates 34 and 35, respectively (three in the illustrated example). A plurality of (three in the illustrated example) planetary shafts 38 (see FIG. 6) are spanned between the first and second connecting plates 34, 35, respectively. Further, around the planetary shafts 36 to 38, planetary gears 21, 22, and 23 (see FIG. 6) are rotatably supported.
又、上記中間支持板39の中心に設けた円筒部56を、上記回転軸6の中間部先端寄り部分にスプライン係合自在としている。そして、これら円筒部56と回転軸6とをスプライン係合させた状態でこの円筒部56を、ローディングナット39(図6参照)により抑え付ける事で、上記第一キャリア20aを上記回転軸6に、回転力を伝達可能に(同期した回転を自在に)結合している。又、上記第一キャリア20aの外周面のうち、組み付け状態で第一リング歯車24(図6参照)と径方向に重畳しない部分、即ち、上記第一キャリア20aを構成する第一連結板34の外周面に、上記第一キャリア20aの回転を検出する為の被検出部43を設置している。   The cylindrical portion 56 provided at the center of the intermediate support plate 39 is spline-engageable with a portion near the tip of the intermediate portion of the rotating shaft 6. Then, the first carrier 20a is held on the rotary shaft 6 by holding the cylindrical portion 56 with a loading nut 39 (see FIG. 6) in a state where the cylindrical portion 56 and the rotary shaft 6 are in spline engagement. , It is coupled so that the rotational force can be transmitted (synchronized rotation can be freely performed). Further, a portion of the outer peripheral surface of the first carrier 20a that does not overlap in the radial direction with the first ring gear 24 (see FIG. 6) in the assembled state, that is, the first connecting plate 34 constituting the first carrier 20a. A detected portion 43 for detecting the rotation of the first carrier 20a is provided on the outer peripheral surface.
本実施例の場合、この被検出部43を、凹部40、40と凸部41、41とを円周方向に亙って交互に設けた凹凸部42としている。即ち、上記第一連結板34の外周面の円周方向等間隔複数個所(本例の場合16個所)に、この外周面から径方向に凹入する状態で凹部40、40(径方向に突出する状態で凸部41、41)を直接形成する事により、上記被検出部43となる上記凹凸部42を構成している。この様な凹凸部42には、上記第一キャリア20aを無段変速装置に組み付けた状態で、ケーシング15(図6参照)等の固定の部分に支持した1乃至複数の図示しない回転センサの検出部を近接対向させる。この様な回転センサとしては、磁気式、静電容量式、或いは渦電流式のもの等を採用できる。上記第一キャリア20aは、炭素鋼等、磁性及び導電性を有する金属製である為、この第一キャリア20aを構成する第一連結板34の外周面の磁気特性、静電容量特性等、各種特性は、上記凹凸部42の凹凸に基づき、円周方向に関して交互に且つ等間隔で変化する。従って、上記回転センサとして適切な構造のものを選択する事で、上記第一キャリア20a、延いては、この第一キャリア20aと同期して回転する上記各入力側ディスク9a、9bの回転速度を正確に求められる。   In the case of the present embodiment, the detected portion 43 is an uneven portion 42 in which the concave portions 40 and 40 and the convex portions 41 and 41 are alternately provided in the circumferential direction. That is, the concave portions 40 and 40 (projecting in the radial direction) are radially recessed from the outer peripheral surface at a plurality of circumferentially equidistant locations (16 locations in this example) on the outer peripheral surface of the first connecting plate 34. By forming the convex portions 41, 41) directly in this state, the concave and convex portion 42 that becomes the detected portion 43 is configured. In such a concavo-convex portion 42, detection of one or more rotation sensors (not shown) supported on a fixed portion such as the casing 15 (see FIG. 6) in a state where the first carrier 20a is assembled to the continuously variable transmission. Make the parts close to each other. As such a rotation sensor, a magnetic type, a capacitance type, an eddy current type, or the like can be adopted. Since the first carrier 20a is made of a metal having magnetism and conductivity, such as carbon steel, various magnetic properties, capacitance characteristics, and the like of the outer peripheral surface of the first connecting plate 34 constituting the first carrier 20a. The characteristics change alternately and at equal intervals in the circumferential direction based on the unevenness of the uneven portion 42. Accordingly, by selecting an appropriate structure as the rotation sensor, the rotation speed of the first carrier 20a, and hence the input side disks 9a and 9b rotating in synchronization with the first carrier 20a can be determined. Accurately required.
尚、本実施例の場合、上記凹凸部42を、回転検出の為の凹凸としてだけでなく、上記一方の入力側ディスク9bと第一キャリア20aとで回転力を伝達する為の凹凸としても使用する。この為に、上記一方の入力側ディスク9bの外側面(図6の右側面)に、それぞれが円周方向等間隔に離隔した状態で、複数個(例えば4個)の係合凸部44(図6参照)を設けている。そして、これら各係合凸部44を、上記第一キャリア20aの凹凸部42のうちでこれら各係合凸部44と整合する位置に設けた上記各凹部40、40に凹凸係合させる事で、上記一方の入力側ディスク9bと第一キャリア20aとを回転力を伝達可能に結合する。本実施例の場合、上記第一キャリア20aの凹凸部42の凹凸により、上述の様に回転検出を行なう。この為、上記一方の入力側ディスク9bの外側面に設ける上記各係合凸部44の数は、上記第一キャリア20aと上記一方の入力側ディスク9bとで動力伝達を十分に行なえ、且つ、上記各係合凸部44と上記凹凸部42とが係合した状態でも回転検出を必要な精度で行なえる数とする。尚、何れかの凹部40、40と係合した上記各係合凸部44が回転検出の妨げとなるのを防止する為に、これら各係合凸部44と係合する各凹部40、40の径方向深さを大きくし、これら各係合凸部44をこれら各凹部40、40の奥部に係合させる事もできる。   In the case of the present embodiment, the uneven portion 42 is used not only as an uneven portion for detecting rotation but also as an uneven portion for transmitting rotational force between the one input side disk 9b and the first carrier 20a. To do. For this purpose, a plurality of (for example, four) engaging projections 44 (for example, four) are provided on the outer side surface (the right side surface in FIG. 6) of the one input side disk 9b with the circumferentially spaced apart ones. 6). Then, by engaging these engaging convex portions 44 with the concave portions 40, 40 provided at positions that align with the engaging convex portions 44 in the concave and convex portions 42 of the first carrier 20a. The one input side disk 9b and the first carrier 20a are coupled so as to transmit a rotational force. In the case of the present embodiment, rotation detection is performed as described above by the unevenness of the uneven portion 42 of the first carrier 20a. For this reason, the number of the engaging projections 44 provided on the outer surface of the one input side disk 9b can sufficiently transmit power between the first carrier 20a and the one input side disk 9b, and The number is such that the rotation can be detected with a required accuracy even in a state where each of the engaging convex portions 44 and the concave and convex portions 42 are engaged. In addition, in order to prevent each said engagement convex part 44 engaged with any one of the recessed parts 40 and 40 from interfering with rotation detection, each recessed part 40 and 40 engaged with these each engagement convex part 44 is shown. It is also possible to increase the depth in the radial direction and engage the engagement protrusions 44 with the back portions of the recesses 40, 40.
上述の様な本実施例の場合、面倒な加工を必要とする事なく、各入力側ディスク9a、9bの回転速度を正確に検出できる。即ち、これら入力側ディスク9a、9bと同期して回転する部材である上記第一キャリア20aは、これら各入力側ディスク9a、9bの様な、各パワーローラ11、11(図7参照)と転がり接触して動力を伝達するものではない。この為、上記第一キャリア20aの硬度を上記各入力側ディスク9a、9b程確保する必要はない。従って、上記第一キャリア20aの外周面に回転検出の為の凹凸部42を形成する作業を容易に行なえる。しかも、この凹凸部42を形成した上記第一キャリア20aは、例えばローディングカム式の押圧装置を構成するカム板やカムローラ保持器等の様な、上記入力側ディスク9a、9bと相対回転するものではない。この為、上記各入力側ディスク9a、9bの回転速度、延いては、この回転速度から算出する変速比を常に正確に求める事ができ、トロイダル型無段変速機の変速比制御を厳密に行なえる。   In the case of the present embodiment as described above, the rotational speeds of the respective input side disks 9a and 9b can be accurately detected without requiring troublesome processing. That is, the first carrier 20a, which is a member that rotates in synchronization with the input side disks 9a and 9b, rolls with the power rollers 11 and 11 (see FIG. 7) such as the input side disks 9a and 9b. It does not contact and transmit power. For this reason, it is not necessary to secure the hardness of the first carrier 20a as much as the input disks 9a, 9b. Therefore, it is possible to easily perform the operation of forming the uneven portion 42 for detecting rotation on the outer peripheral surface of the first carrier 20a. Moreover, the first carrier 20a formed with the concavo-convex portion 42 does not rotate relative to the input side disks 9a and 9b, such as a cam plate or a cam roller holder constituting a loading cam type pressing device. Absent. For this reason, the rotational speed of each of the input side disks 9a and 9b, and hence the gear ratio calculated from the rotational speed, can always be obtained accurately, and the gear ratio control of the toroidal continuously variable transmission can be performed strictly. The
又、本実施例の場合は、前述の様に、回転検出の為の凹凸部42を、一方の入力側ディスク9bと第一キャリア20aとを結合する為の凹凸としても使用する。この為、これら一方の入力側ディスク9bと第一キャリア20aとの係合部と、この入力側ディスク9bの回転検出の為のする為の被被検出部とを、別々に造る必要がなくなり、更なる加工作業の簡略化、製造コストの低減を図れる。   In the case of the present embodiment, as described above, the uneven portion 42 for detecting rotation is also used as an uneven portion for connecting one input side disk 9b and the first carrier 20a. For this reason, it is not necessary to separately make an engagement portion between the one input side disk 9b and the first carrier 20a and a detected portion for detecting the rotation of the input side disk 9b. Further processing work can be simplified and manufacturing costs can be reduced.
又、上記第一キャリア20aは、運転時に軸方向に変位する量が少ない。即ち、この第一キャリア20aの運転時の軸方向変位量は、この第一キャリア20a側の入力側ディスク9b、各パワーローラ11、11の弾性変形に伴う分となる。これに対して、例えば後述する図2〜4並びに前述の図6に示す様な押圧装置のシリンダ46の軸方向変位量は、各入力側ディスク9a、9b、各パワーローラ11、11の弾性変形に伴う分の他、回転軸6の伸びも加わる為、上記第一キャリア20aの軸方向変位量に比べて大きくなる。本実施例の様に、軸方向変位量の少ない上記第一キャリア20aに被検出部43である凹凸部42を設けた場合には、この凹凸部42と回転センサとの軸方向に関するずれ量も少なく済む。この為、この凹凸部42の軸方向に関する幅寸法が限られていても、回転精度を確保し易くできる。   Further, the first carrier 20a is less displaced in the axial direction during operation. That is, the amount of axial displacement during operation of the first carrier 20a is the amount accompanying the elastic deformation of the input side disk 9b and the power rollers 11 and 11 on the first carrier 20a side. On the other hand, for example, the axial displacement amount of the cylinder 46 of the pressing device as shown in FIGS. 2 to 4 described later and FIG. In addition to the above, the extension of the rotating shaft 6 is also added, so that it becomes larger than the axial displacement of the first carrier 20a. As in this embodiment, when the first carrier 20a having a small amount of axial displacement is provided with the uneven portion 42, which is the detected portion 43, the amount of deviation in the axial direction between the uneven portion 42 and the rotation sensor is also reduced. Less. For this reason, even if the width dimension in the axial direction of the concavo-convex portion 42 is limited, it is possible to easily ensure the rotation accuracy.
尚、図示は省略するが、上記第一キャリア(を構成する第一連結板)の外周面に、有底の円孔を円周方向等間隔複数個所に形成する事により、被検出部となる凹凸部を構成する事もできる。この場合には、上記各円孔が各凹部となり、上記外周面のうちで隣り合う円孔同士の間部分が各凸部となる。又、上記被検出部43を、上述の様な凹凸部42に代えて、永久磁石のN極とS極とを円周方向に交互に配置した環状の永久磁石を外嵌する事により、上記第一キャリアの一部外周面の磁気特性を、円周方向に亙って交互に且つ等間隔に変化させても良い。   In addition, although illustration is omitted, it becomes a detected portion by forming bottomed circular holes at a plurality of circumferentially equidistant positions on the outer peripheral surface of the first carrier (the first connecting plate constituting the first carrier). An uneven portion can also be formed. In this case, each said circular hole becomes each recessed part, and the part between adjacent circular holes in the said outer peripheral surface becomes each convex part. Further, by replacing the detected portion 43 with the uneven portion 42 as described above, by fitting an annular permanent magnet in which the N poles and S poles of the permanent magnet are alternately arranged in the circumferential direction, The magnetic characteristics of the partial outer peripheral surface of the first carrier may be changed alternately and at equal intervals over the circumferential direction.
又、例えば特願2004−50958号等に開示されている様な、小径部と大径部とを円周方向に交互に連続する状態で配置した波型のエンコーダ、或いは従来から知られている各種エンコーダ等、磁気特性を円周方向に亙って交互に且つ等間隔に変化させたものであれば、何れも採用できる。そして、この様な構造を採用する場合には、この様なエンコーダ又はこのエンコーダを設けた環状部材を、上記第一キャリア20aを構成する第一連結板34の外周面に締り嵌め、接着、溶接等により外嵌固定する。この様にエンコーダや環状部材を上記第一キャリア20aに嵌合固定する場合には、この様なエンコーダや環状部材を入力側ディスク9a、9bの外周面に嵌合固定する場合の様な、トラクション面の保護を講じる必要はない。この為、これら環状部材やエンコーダの組み付け作業を容易に行なえる。   Further, for example, as disclosed in Japanese Patent Application No. 2004-50958 and the like, a wave-type encoder in which small-diameter portions and large-diameter portions are alternately arranged in the circumferential direction, or conventionally known. Any encoder can be used as long as the magnetic characteristics are changed alternately and at equal intervals in the circumferential direction. When such a structure is adopted, such an encoder or an annular member provided with this encoder is tightly fitted to the outer peripheral surface of the first connecting plate 34 constituting the first carrier 20a, and is bonded and welded. Fix by external fitting. In this way, when the encoder and the annular member are fitted and fixed to the first carrier 20a, the traction as in the case where such an encoder and the annular member are fitted and fixed to the outer peripheral surfaces of the input side disks 9a and 9b is used. There is no need to protect the surface. For this reason, the assembly work of these annular members and encoders can be easily performed.
図2は、請求項1、2、4に対応する、本発明の実施例2を示している。本実施例の場合も、前述の図6〜7に示した従来構造と同様に、油圧の送り込みに伴って他方の入力側ディスク9aを一方の入力側ディスク9bに向けて押圧する、ダブルピストン型の油圧式の押圧装置45を備える。そして、この押圧装置45の構成部材のうちで、回転軸6の基端寄り部分(図2、図6の左端寄り部分)に締り嵌めで結合固定する事により、この回転軸6と同期した回転を自在に設けられたシリンダ46の外周面に、このシリンダ46の回転を検出する為の被検出部43aを設置している。本実施例の場合、この被検出部43aを、凹部40a、40aと凸部41a、41aとを円周方向に亙って交互に且つ等間隔で設けた凹凸部42aとしている。即ち、上記シリンダ46の外周面の開口側半部に、この外周面から径方向に凹入する状態で複数個の凹部40、40を直接形成する事により、上記被検出部43aとなる上記凹凸部42aを構成している。   FIG. 2 shows a second embodiment of the present invention corresponding to claims 1, 2, and 4. In the case of the present embodiment as well, as in the conventional structure shown in FIGS. 6 to 7 described above, a double piston type that presses the other input side disk 9a toward one input side disk 9b as the hydraulic pressure is fed. The hydraulic pressing device 45 is provided. Then, among the constituent members of the pressing device 45, the rotation synchronized with the rotating shaft 6 is achieved by being coupled and fixed to the proximal end portion of the rotating shaft 6 (the left end portion in FIGS. 2 and 6) with an interference fit. A detected portion 43a for detecting the rotation of the cylinder 46 is provided on the outer peripheral surface of the cylinder 46 provided freely. In the case of the present embodiment, the detected portion 43a is a concavo-convex portion 42a in which the concave portions 40a and 40a and the convex portions 41a and 41a are provided alternately at equal intervals over the circumferential direction. That is, the concave and convex portions serving as the detected portion 43a are formed by directly forming a plurality of concave portions 40, 40 in a state where the outer peripheral surface of the cylinder 46 is radially recessed from the outer peripheral surface. Part 42a is configured.
この様な本実施例の場合も、前述の実施例1と同様に、面倒な加工を必要とする事なく、各入力側ディスク9a、9bの回転速度を正確に検出できる。しかも、上記押圧装置45を構成する上記シリンダ46は、油圧室47(図6参照)を構成する為に軸方向寸法が或る程度大きくなる。この為、この様に軸方向寸法が大きくなる分、上記被検出部43aの軸方向寸法を確保し易く、設置位置の自由度も高くできる。
その他の構成及び作用は、前述した実施例1と同様であるから、重複する説明は省略する。
In this embodiment as well, as in the first embodiment, the rotational speeds of the input disks 9a and 9b can be accurately detected without the need for troublesome processing. Moreover, since the cylinder 46 constituting the pressing device 45 constitutes the hydraulic chamber 47 (see FIG. 6), the axial dimension is increased to some extent. For this reason, as the axial dimension increases, the axial dimension of the detected portion 43a is easily secured, and the degree of freedom of the installation position can be increased.
Other configurations and operations are the same as those of the first embodiment described above, and thus redundant description is omitted.
図3〜4は、請求項1、2、4に対応する、本発明の実施例3を示している。本実施例の場合も、上述した実施例2と同様に、押圧装置45(図6参照)を構成するシリンダ46の外周面に、このシリンダ46の回転を検出する為の被検出部43bを設置している。但し、前述の実施例2の場合が、被検出部43aとなる凹凸部42aを上記シリンダ46の外周面に直接形成しているのに対し、本実施例の場合は、上記被検出部43bとなる凹凸部42bを、円環状の部材である環状部材48の外周面に形成している。即ち、本実施例の場合は、上記環状部材48の外周面に上記凹凸部43bを構成する凹部40b、40bと凸部41b、41bとを円周方向に亙って交互に設けている。そして、この様な環状部材48を上記シリンダ46の外周面に、図4に示す状態から図3に示す状態に、締り嵌め、接着、溶接等により嵌合固定する事で、これら環状部材48とシリンダ46とを一体に結合している。   3 to 4 show a third embodiment of the present invention corresponding to claims 1, 2, and 4. FIG. In the case of the present embodiment as well, the detected portion 43b for detecting the rotation of the cylinder 46 is installed on the outer peripheral surface of the cylinder 46 constituting the pressing device 45 (see FIG. 6), as in the second embodiment. is doing. However, in the case of the above-described second embodiment, the uneven portion 42a that becomes the detected portion 43a is formed directly on the outer peripheral surface of the cylinder 46, whereas in the case of the present embodiment, the detected portion 43b The uneven | corrugated | grooved part 42b which becomes is formed in the outer peripheral surface of the annular member 48 which is a ring-shaped member. That is, in the case of the present embodiment, the concave portions 40b and 40b and the convex portions 41b and 41b constituting the concave and convex portion 43b are alternately provided on the outer peripheral surface of the annular member 48 in the circumferential direction. Such an annular member 48 is fitted and fixed to the outer peripheral surface of the cylinder 46 from the state shown in FIG. 4 to the state shown in FIG. The cylinder 46 is integrally connected.
この様な本実施例の場合も、前述した実施例1、2と同様に、面倒な加工や組み付け作業を必要とする事なく、各入力側ディスク9a、9b(図6参照)の回転速度を正確に検出できる。即ち、上記環状部材48を上記シリンダ46に嵌合固定する作業は、トラクション面の保護を講じる事なく行なえる。この為、この作業を容易に行なえる。しかも、本実施例の場合は、上記凹凸部43bを設けた上記環状部材48を上記シリンダ46に外嵌する事により、上記押圧装置45の油漏れを防止できる。即ち、この押圧装置45の油圧室47の油圧が上昇{押圧装置45のピストン49(図6参照)の径の大きさでも異なるが、0.4〜0.8MP程度に上昇}した場合に、この油圧に基づき上記シリンダ46の開口縁が拡径する傾向となっても、上記環状部材48がこの拡径を抑える。この為、この様な拡径に基づくシリンダ46の内周面とピストン49の外周面との摺接部で油が漏れる事を抑えられて、この油漏れに基づく上記押圧装置45の押圧力の低下を防止できる。この結果、転がり接触部で滑りが生じる事を防止できる他、上記押圧装置45に圧油を導入する為の油圧ポンプの小型化を図れ、伝達効率の低下も防止できる。
その他の構成及び作用は、前述した実施例1、2と同様であるから、重複する説明は省略する。
In the case of this embodiment as well, as in Embodiments 1 and 2, the rotational speeds of the input side disks 9a and 9b (see FIG. 6) are reduced without requiring troublesome processing and assembly work. It can be detected accurately. That is, the operation of fitting and fixing the annular member 48 to the cylinder 46 can be performed without taking protection of the traction surface. For this reason, this operation can be easily performed. In addition, in the case of the present embodiment, oil leakage of the pressing device 45 can be prevented by externally fitting the annular member 48 provided with the uneven portion 43b to the cylinder 46. That is, when the hydraulic pressure in the hydraulic chamber 47 of the pressing device 45 is increased (even though the diameter of the piston 49 (see FIG. 6) of the pressing device 45 is different, the pressure increases to about 0.4 to 0.8 MP), Even if the opening edge of the cylinder 46 tends to expand on the basis of this hydraulic pressure, the annular member 48 suppresses the expansion. For this reason, it is possible to prevent oil from leaking at the sliding contact portion between the inner peripheral surface of the cylinder 46 and the outer peripheral surface of the piston 49 based on such an enlarged diameter, and the pressing force of the pressing device 45 based on the oil leak is reduced. Decline can be prevented. As a result, it is possible to prevent slippage at the rolling contact portion, to reduce the size of the hydraulic pump for introducing pressure oil into the pressing device 45, and to prevent a decrease in transmission efficiency.
Other configurations and operations are the same as those of the first and second embodiments described above, and a duplicate description is omitted.
図5は、請求項1、2、5に対応する、本発明の実施例4を示している。本実施例の場合は、入力軸5の中間部外周面に固設した駆動歯車50の凹凸を、回転検出の為の被検出部43bとしている。即ち、前述の図6に示した様に、無段変速装置を構成するケーシング15(図6参照)のうちで、エンジンを設けた側(図6の左側)の開口部を塞ぐ塞ぎ部材51は、上記入力軸5を回転自在に支持する他、図5に詳示する様に、この入力軸5の回転に基づき駆動される、歯車ポンプ等の油圧ポンプ52を内蔵している。この油圧ポンプ52は、トロイダル型無段変速機1の変速比制御弁や押圧装置45(図6参照)等の圧油を必要とする部分に圧油を送り込む為のものである。そして、この油圧ポンプ52を上記入力軸5により回転駆動する為に、この入力軸5に上記駆動歯車50を固設する(入力軸5と一体に形成しても、この入力軸5と別体としても良い)と共に、上記油圧ポンプ52の被駆動軸53に被駆動歯車54を固設し、これら駆動歯車50と被駆動歯車54とを噛合させている。本実施例の場合、これら各歯車50、54のうちの駆動歯車50の外周面(歯面)に回転センサを近接対向させる事により、この駆動歯車50、延いては、入力軸5、この入力軸5と同期して回転する各入力側ディスク9a、9b(図6参照)の回転速度を検出自在としている。尚、上記駆動歯車50に代えて、上記被駆動歯車54の回転を検出しても良い。これら駆動歯車50と被駆動歯車54とのうちで、運転時に軸方向変位量の小さい歯車の回転を検出する事が、回転速度検出の安定性確保の面からは好ましい。   FIG. 5 shows a fourth embodiment of the present invention corresponding to claims 1, 2, and 5. In the case of the present embodiment, the unevenness of the drive gear 50 fixed on the outer peripheral surface of the intermediate portion of the input shaft 5 is used as the detected portion 43b for detecting rotation. That is, as shown in FIG. 6 described above, the closing member 51 that closes the opening on the side (left side in FIG. 6) where the engine is provided in the casing 15 (see FIG. 6) constituting the continuously variable transmission is as follows. In addition to rotatably supporting the input shaft 5, as shown in detail in FIG. 5, a hydraulic pump 52 such as a gear pump that is driven based on the rotation of the input shaft 5 is incorporated. The hydraulic pump 52 is for feeding pressure oil to a portion requiring pressure oil, such as the gear ratio control valve of the toroidal type continuously variable transmission 1 or the pressing device 45 (see FIG. 6). Then, in order to rotationally drive the hydraulic pump 52 by the input shaft 5, the drive gear 50 is fixed to the input shaft 5 (even if it is formed integrally with the input shaft 5, it is separated from the input shaft 5. The driven gear 54 is fixed to the driven shaft 53 of the hydraulic pump 52, and the driven gear 50 and the driven gear 54 are engaged with each other. In the case of the present embodiment, a rotation sensor is brought close to and opposed to the outer peripheral surface (tooth surface) of the drive gear 50 out of the gears 50 and 54, whereby the drive gear 50, further the input shaft 5, The rotational speeds of the input side disks 9a and 9b (see FIG. 6) that rotate in synchronization with the shaft 5 can be detected. Instead of the drive gear 50, the rotation of the driven gear 54 may be detected. Of these driving gears 50 and driven gears 54, it is preferable from the viewpoint of ensuring the stability of rotational speed detection to detect the rotation of a gear having a small axial displacement during operation.
この様な本実施例の場合も、前述の実施例1〜3と同様に、面倒な加工や組み付け作業を必要とする事なく、上記入力側ディスク9a、9bの回転速度を正確に検出できる。しかも、上記トロイダル型無段変速機1は、上述の様に、変速比制御弁や押圧装置45等の圧油を必要とする部分に圧油を送り込む為の油圧ポンプ52を駆動すべく、この油圧ポンプ52の被駆動軸53と入力軸5とをそれぞれ歯車50、54を介して接続する必要がある。そして、この様な歯車50、54の凹凸を、回転検出の為の被検出部43bとした本実施例の場合には、他の部分に各入力側ディスク9a、9bの回転速度を検出する為の被検出部を設ける必要がなくなり、更なる加工作業の簡略化、製造コストの低減を図れる。 その他の構成及び作用は、前述した実施例1〜3と同様であるから、重複する説明は省略する。   In the case of this embodiment as well, the rotational speeds of the input side disks 9a and 9b can be accurately detected without the need for troublesome processing and assembly work as in the first to third embodiments. Moreover, the toroidal-type continuously variable transmission 1 is driven by the hydraulic pump 52 for feeding the pressure oil to the parts requiring the pressure oil such as the transmission ratio control valve and the pressing device 45 as described above. It is necessary to connect the driven shaft 53 of the hydraulic pump 52 and the input shaft 5 via gears 50 and 54, respectively. In the case of this embodiment, in which the unevenness of the gears 50 and 54 is used as a detected portion 43b for detecting rotation, the rotational speed of each of the input side disks 9a and 9b is detected in other portions. This eliminates the need to provide the detected portion, further simplifies the processing work, and reduces the manufacturing cost. Other configurations and operations are the same as those in the first to third embodiments, and thus a duplicate description is omitted.
本発明は、トロイダル型無段変速機の種類が、ダブルキャビティ型であるかシングルキャビティ型であるかを問わず、更にはハーフトロイダル型であるかフルトロイダル型であるかを問わず、実施できる。又、回転速度を検出する為の回転センサや被検出部等の構成も、従来から知られているものも含め、各種構成を採用できる。   The present invention can be carried out regardless of whether the type of toroidal continuously variable transmission is a double cavity type or a single cavity type, and whether it is a half toroidal type or a full toroidal type. . In addition, various configurations including a conventionally known configuration such as a rotation sensor for detecting a rotation speed and a detected portion can be adopted.
本発明の実施例1を示す要部斜視図。The principal part perspective view which shows Example 1 of this invention. 同実施例2を示す要部斜視図。The principal part perspective view which shows the same Example 2. FIG. 同実施例3を示す要部斜視図。The principal part perspective view which shows the same Example 3. FIG. シリンダと環状部材とを組み付ける前の状態を示す、図3と同様の斜視図。The perspective view similar to FIG. 3 which shows the state before a cylinder and an annular member are assembled | attached. 本発明の実施例4を、図6の背面後方(紙面の裏側右方)から見た状態で示す要部斜視図。The principal part perspective view which shows Example 4 of this invention in the state seen from the back back surface (back side right side of paper surface) of FIG. 従来から知られているトロイダル型無段変速機を組み込んだ無段変速装置の1例を示す断面図。Sectional drawing which shows an example of the continuously variable transmission incorporating the toroidal type continuously variable transmission conventionally known. 図6のA−A断面図。AA sectional drawing of FIG.
符号の説明Explanation of symbols
1 トロイダル型無段変速機
2 第一遊星歯車式変速機
3 第二遊星歯車式変速機
4 第三遊星歯車式変速機
5 入力軸
6 回転軸
7 伝達軸
8 出力軸
9a、9b 入力側ディスク
10 出力側ディスク
11 パワーローラ
12 トラニオン
13 枢軸
14a、14b 支持板
15 ケーシング
16a、16b 支持ポスト
17 玉軸受
18 中空回転軸
19 第一太陽歯車
20、20a 第一キャリア
21 遊星歯車
22 遊星歯車
23 遊星歯車
24 第一リング歯車
25 第二太陽歯車
26 第二キャリア
27 低速用クラッチ
28 第三太陽歯車
29 第二リング歯車
30 高速用クラッチ
31 遊星歯車
32 遊星歯車
33 中間支持板
34 第一連結板
35 第二連結板
36 遊星軸
37 遊星軸
38 遊星軸
39 ローディングナット
40、40a、40b 凹部
41、41a、41b 凸部
42、42a、42b 凹凸部
43、43a、43b 被検出部
44 係合凸部
45 押圧装置
46 シリンダ
47 油圧室
48 環状部材
49 ピストン
50 駆動歯車
51 塞ぎ部材
52 油圧ポンプ
53 被駆動軸
54 被駆動歯車
55 連結部
56 円筒部
DESCRIPTION OF SYMBOLS 1 Toroidal type continuously variable transmission 2 1st planetary gear type transmission 3 2nd planetary gear type transmission 4 3rd planetary gear type transmission 5 Input shaft 6 Rotating shaft 7 Transmission shaft 8 Output shaft 9a, 9b Input side disk 10 Output side disk 11 Power roller 12 Trunnion 13 Axis 14a, 14b Support plate 15 Casing 16a, 16b Support post 17 Ball bearing 18 Hollow rotary shaft 19 First sun gear 20, 20a First carrier 21 Planetary gear 22 Planetary gear 23 Planetary gear 24 First ring gear 25 Second sun gear 26 Second carrier 27 Low speed clutch 28 Third sun gear 29 Second ring gear 30 High speed clutch 31 Planetary gear 32 Planetary gear 33 Intermediate support plate 34 First connection plate 35 Second connection Plate 36 Planetary axis 37 Planetary axis 38 Planetary axis 39 Loading nut 40, 40a, 4 b Concave part 41, 41a, 41b Convex part 42, 42a, 42b Concave part 43, 43a, 43b Detected part 44 Engaging convex part 45 Pressing device 46 Cylinder 47 Hydraulic chamber 48 Annular member 49 Piston 50 Drive gear 51 Closing member 52 Hydraulic pressure Pump 53 Driven shaft 54 Driven gear 55 Connecting part 56 Cylindrical part

Claims (8)

  1. それぞれが断面円弧形である互いの内側面同士を対向させた状態で、互いに同心に、且つ互いに独立した回転自在に支持された第一、第二各ディスクと、これら各ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられた複数の支持部材と、これら各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、上記第一、第二各ディスクの内側面に転がり接触させた複数のパワーローラとを備えたトロイダル型無段変速機に於いて、上記第一ディスクの回転を検出する為の被検出部を、この第一ディスク以外の部材で、この第一ディスクと同期して回転する部材に設置した事を特徴とするトロイダル型無段変速機。   The first and second discs are concentrically and rotatably supported independently of each other, each having an arc-shaped cross section facing each other, and the central axes of these discs. A plurality of support members that are provided with a freely oscillating displacement centering on the pivot at the position of twisting, and each peripheral surface that is rotatably supported by each of these support members and has a spherical convex surface In the toroidal-type continuously variable transmission including a plurality of power rollers that are in rolling contact with the inner surface of each second disk, the detected part for detecting the rotation of the first disk is the first part. A toroidal continuously variable transmission characterized in that it is installed on a member that rotates in synchronization with the first disk, other than the disk.
  2. 第一ディスクが、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で、ケーシング内に回転自在に支持された回転軸のうちで軸方向に離隔した2個所位置に、この回転軸と同期した回転を自在として支持された1対の外側ディスクであり、第二ディスクが、上記回転軸の中間部周囲に、それぞれが断面円弧形である軸方向両側面を上記各外側ディスクの軸方向片側面に対向させた状態で、上記回転軸に対する相対回転を自在に支持された内側ディスクであり、各支持部材が、軸方向に関してこれら内側ディスクの軸方向両側面と各外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、上記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けらており、各パワーローラが、上記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、上記内側ディスクの軸方向両側面と各外側ディスクの軸方向片側面とに転がり接触させており、上記各外側ディスクの回転を検出する為の被検出部を、これら各外側ディスク以外の部材で、これら各外側ディスクと同期して回転する部材に設置した、請求項1に記載したトロイダル型無段変速機。   The first disk is in two axially separated positions among the rotation shafts rotatably supported in the casing, with each axial side surface having a circular arc cross section facing each other. A pair of outer disks supported to freely rotate in synchronization with the rotation shaft, and the second disk has axially opposite side surfaces each having an arc cross section around the intermediate portion of the rotation shaft. An inner disk that is supported to freely rotate relative to the rotating shaft in a state of being opposed to one axial side surface of each outer disk. Each of the power rollers is provided with a plurality of oscillating displacements around a pivot that is twisted with respect to the rotating shaft, and a plurality of each of the power rollers is disposed between one axial side surface of the outer disk. For supporting member Each peripheral surface that is supported in a freely rolling manner and has a spherical convex surface is in rolling contact with both axial side surfaces of the inner disk and one axial side surface of each outer disk, and detects the rotation of each outer disk. The toroidal-type continuously variable transmission according to claim 1, wherein the detected portion is installed on a member that rotates in synchronization with each outer disk by a member other than these outer disks.
  3. 差動ユニットである遊星歯車式変速機を構成するキャリアが、第一ディスクと同期した回転を自在に設けられており、このキャリアに被検出部を設置した、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。   The carrier which comprises the planetary gear type transmission which is a differential unit is freely provided to rotate in synchronization with the first disk, and the detected portion is installed on this carrier. A toroidal-type continuously variable transmission according to claim 1.
  4. 圧油の送り込みに伴って第一ディスクを第二ディスクに向けて押圧する、油圧式の押圧装置を備え、この押圧装置を構成するシリンダが上記第一ディスクと同期した回転を自在に設けられており、このシリンダに被検出部を設置した、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。   A hydraulic pressing device is provided that presses the first disk toward the second disk as the pressure oil is fed, and a cylinder constituting the pressing device is freely provided to rotate in synchronization with the first disk. The toroidal continuously variable transmission according to any one of claims 1 to 2, wherein a detected portion is installed in the cylinder.
  5. 第一ディスクと同期して回転する部材が、エンジンからの動力をこの第一ディスクに入力する為の入力軸、又は、この入力軸に設けた駆動歯車により回転駆動される被駆動部材であり、被検出部を、上記駆動歯車の凹凸、又は、上記被駆動部材に設けられてこの駆動歯車と噛合する被駆動歯車の凹凸とした、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。   The member that rotates in synchronization with the first disk is an input shaft for inputting power from the engine to the first disk, or a driven member that is rotationally driven by a drive gear provided on the input shaft. 3. The detection unit according to claim 1, wherein the detected portion is an unevenness of the driving gear or an unevenness of the driven gear that is provided on the driven member and meshes with the driving gear. Toroidal continuously variable transmission.
  6. トロイダル型無段変速機と、複数の歯車を組み合わせて成る歯車式の差動ユニットとを備え、このうちの差動ユニットは、上記トロイダル型無段変速機を構成する第一ディスクと共に入力軸により回転駆動される第一の入力部と、同じく第二ディスクに接続される第二の入力部とを有し、これら第一、第二の入力部同士の間の速度差に応じた回転を取り出して出力軸に伝達するものである無段変速装置に於いて、上記トロイダル型無段変速機が、請求項1〜5のうちの何れか1項に記載したトロイダル型無段変速機である事を特徴とする無段変速装置。   A toroidal-type continuously variable transmission and a gear-type differential unit formed by combining a plurality of gears. Among these units, the differential unit is coupled with an input shaft together with a first disk constituting the toroidal-type continuously variable transmission. It has a first input unit that is rotationally driven and a second input unit that is also connected to the second disk, and takes out rotation according to the speed difference between the first and second input units. In the continuously variable transmission that transmits to the output shaft, the toroidal continuously variable transmission is the toroidal continuously variable transmission according to any one of claims 1 to 5. A continuously variable transmission characterized by the above.
  7. トロイダル型無段変速機と差動ユニットとをクラッチ装置を介して接続すると共に、このクラッチ装置の断接に基づき動力の伝達状態を切り換え自在とした、請求項6に記載した無段変速装置。   The continuously variable transmission according to claim 6, wherein the toroidal continuously variable transmission and the differential unit are connected via a clutch device, and the transmission state of power can be switched based on the connection and disconnection of the clutch device.
  8. トロイダル型無段変速機の変速比を調節して差動ユニットを構成する複数の歯車の相対的変位速度を変化させる事により、入力軸を一方向に回転させた状態のまま出力軸の回転状態を、停止状態を挟んで正転及び逆転に変換自在とした、請求項6〜7のうちの何れか1項に記載した無段変速装置。
    By adjusting the gear ratio of the toroidal-type continuously variable transmission and changing the relative displacement speed of the gears that make up the differential unit, the output shaft rotates while the input shaft rotates in one direction. The continuously variable transmission according to any one of claims 6 to 7, wherein the transmission is convertible into forward rotation and reverse rotation with the stop state interposed therebetween.
JP2005106097A 2005-04-01 2005-04-01 Toroidal continuously variable transmission and continuously variable transmisson Pending JP2006283900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106097A JP2006283900A (en) 2005-04-01 2005-04-01 Toroidal continuously variable transmission and continuously variable transmisson

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106097A JP2006283900A (en) 2005-04-01 2005-04-01 Toroidal continuously variable transmission and continuously variable transmisson

Publications (1)

Publication Number Publication Date
JP2006283900A true JP2006283900A (en) 2006-10-19

Family

ID=37406029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106097A Pending JP2006283900A (en) 2005-04-01 2005-04-01 Toroidal continuously variable transmission and continuously variable transmisson

Country Status (1)

Country Link
JP (1) JP2006283900A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030749A (en) * 2007-07-30 2009-02-12 Nsk Ltd Continuously variable transmission
JP2014013080A (en) * 2007-02-16 2014-01-23 Fallbrook Intellectual Property Co Llc Drive train, variator, and infinitely variable transmission
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9291251B2 (en) 2010-11-10 2016-03-22 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9506562B2 (en) 2005-10-28 2016-11-29 Fallbrook Intellectual Property Company Llc Electromotive drives
US9528561B2 (en) 2008-06-23 2016-12-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9574642B2 (en) 2008-10-14 2017-02-21 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9732848B2 (en) 2003-02-28 2017-08-15 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9903450B2 (en) 2008-08-26 2018-02-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10036453B2 (en) 2004-10-05 2018-07-31 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428939B2 (en) 2003-02-28 2019-10-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9732848B2 (en) 2003-02-28 2017-08-15 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10036453B2 (en) 2004-10-05 2018-07-31 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US9506562B2 (en) 2005-10-28 2016-11-29 Fallbrook Intellectual Property Company Llc Electromotive drives
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10711869B2 (en) 2005-11-22 2020-07-14 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10703372B2 (en) 2007-02-01 2020-07-07 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9676391B2 (en) 2007-02-01 2017-06-13 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9878719B2 (en) 2007-02-01 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
JP2014013080A (en) * 2007-02-16 2014-01-23 Fallbrook Intellectual Property Co Llc Drive train, variator, and infinitely variable transmission
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9574643B2 (en) 2007-04-24 2017-02-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2009030749A (en) * 2007-07-30 2009-02-12 Nsk Ltd Continuously variable transmission
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10704687B2 (en) 2007-12-21 2020-07-07 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9739375B2 (en) 2007-12-21 2017-08-22 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9850993B2 (en) 2008-02-29 2017-12-26 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10634224B2 (en) 2008-06-06 2020-04-28 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9528561B2 (en) 2008-06-23 2016-12-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9878717B2 (en) 2008-08-05 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10704657B2 (en) 2008-08-26 2020-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9903450B2 (en) 2008-08-26 2018-02-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9574642B2 (en) 2008-10-14 2017-02-21 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10746270B2 (en) 2009-04-16 2020-08-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9920823B2 (en) 2009-04-16 2018-03-20 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9291251B2 (en) 2010-11-10 2016-03-22 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10323732B2 (en) 2013-04-19 2019-06-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10920882B2 (en) 2016-01-15 2021-02-16 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods

Similar Documents

Publication Publication Date Title
US8545357B2 (en) Gear transmission
JP5060969B2 (en) Robot joint drive device
JP5720781B2 (en) Continuously variable transmission
JP5559149B2 (en) Space-saving transmission assembly
EP1750037B1 (en) Shift position sensor of automated manual transmission
JP5356462B2 (en) Turning structure of industrial robot using eccentric rocking type reducer
EP1753976B1 (en) Variator
JP5131353B2 (en) Continuously variable transmission
JP5133914B2 (en) Improvements on continuously variable ratio power transmission
US8360927B2 (en) Vehicle power transmission device
CN103133625B (en) Transmission output gear group
US20030125154A1 (en) Continuously variable transmission apparatus
JP2012172685A (en) Toroidal type continuously variable transmission
JP4699470B2 (en) Eccentric rocking speed reducer
JP4123869B2 (en) Toroidal continuously variable transmission and continuously variable transmission
US20100276246A1 (en) Driving force distribution device
KR20070058001A (en) Forward-reverse switching device for stepless speed changer
EP2180210B1 (en) Reduction gear
KR20140113721A (en) Continuously variable transmission
JP2014098402A (en) Dual clutch type automatic transmission
JP5895679B2 (en) Torque transmission joint and electric power steering device
US6981928B2 (en) Continuously variable transmission apparatus
US5368529A (en) Toroidal type continuously variable transmission
JP3885650B2 (en) Continuously variable transmission
JP2012202457A (en) Cycloid decelerator and in-wheel motor drive device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070507