JP2006283587A - Turbine exhaust system - Google Patents

Turbine exhaust system Download PDF

Info

Publication number
JP2006283587A
JP2006283587A JP2005101356A JP2005101356A JP2006283587A JP 2006283587 A JP2006283587 A JP 2006283587A JP 2005101356 A JP2005101356 A JP 2005101356A JP 2005101356 A JP2005101356 A JP 2005101356A JP 2006283587 A JP2006283587 A JP 2006283587A
Authority
JP
Japan
Prior art keywords
turbine
flow guide
steam
exhaust chamber
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005101356A
Other languages
Japanese (ja)
Other versions
JP4619849B2 (en
Inventor
Fumio Takahashi
文夫 高橋
Koji Ishibashi
光司 石橋
Tetsuaki Kimura
哲晃 木村
Toshinori Seki
俊徳 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005101356A priority Critical patent/JP4619849B2/en
Publication of JP2006283587A publication Critical patent/JP2006283587A/en
Application granted granted Critical
Publication of JP4619849B2 publication Critical patent/JP4619849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine exhaust system capable of uniformly and effectively restoring steam pressure blown off to an exhaust chamber from a flow guide. <P>SOLUTION: This turbine exhaust system introduces a steam flow passing through a turbine rotor 1 to a condenser arranged under a steam turbine; and has the exhaust chamber 10 having inside an inner casing 11 for surrounding the turbine rotor 1 and continuously connected to an upper part of the condenser, and the flow guide 30 continuously arranged in the inner casing 11, curvedly formed in the radial direction from the shaft direction of the turbine rotor 1 so that the steam flow passing through the turbine rotor 1 radially blows off in the exhaust chamber 10 and formed so that a radius of curvature of a cross section in a plane including the turbine axis C monotonously increases for turning a cross-sectional position toward the condenser side by minimizing a radius of curvature in a cross section of an upper half part in a vertical plane including the turbine axis C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸気タービンのロータを通過した蒸気流を下方の復水器に導くタービン排気装置に関する。   The present invention relates to a turbine exhaust device that guides a steam flow that has passed through a rotor of a steam turbine to a lower condenser.

一般に蒸気タービンでは最終段落の排気圧力を低減するほど出力が増加する。このため、排気された蒸気を復水器に導いて凝縮することにより常に真空状態を保つシステム構成が採られる。典型的な蒸気タービンは回転軸が水平となるように設置され、復水器は蒸気タービンの下方に配置される。タービン段落と復水器は排気室によって結ばれる。排気室はタービン段落を包む内ケーシングを内包するように設けられ、その外壁は復水器の外壁に接合される。タービン段落を通過した蒸気は内ケーシングから排気室に吹き出して復水器に導かれる。このとき、内ケーシングにはフローガイドが設けられ、フローガイドによりディフューザ流路が形成される。これにより、タービン段落直後の圧力が復水器よりも低く保たれて高い出力が確保される。   In general, in a steam turbine, the output increases as the exhaust pressure in the final stage decreases. For this reason, a system configuration is adopted in which the exhausted steam is always led to a condenser and condensed to maintain a vacuum state. A typical steam turbine is installed such that the rotation axis is horizontal, and the condenser is disposed below the steam turbine. The turbine stage and the condenser are connected by an exhaust chamber. The exhaust chamber is provided so as to enclose an inner casing that encloses the turbine stage, and its outer wall is joined to the outer wall of the condenser. The steam that has passed through the turbine stage is blown out from the inner casing to the exhaust chamber and led to the condenser. At this time, a flow guide is provided in the inner casing, and a diffuser flow path is formed by the flow guide. Thereby, the pressure immediately after the turbine stage is kept lower than the condenser, and a high output is secured.

この種のタービン排気装置では、タービン建屋等も含めたスペースの制約からタービン軸より上半部ではタービン段落から排気室外壁までのスパンが短い場合が多い。そのため、フローガイドを通過した蒸気の通路を確保すべく、フローガイドの対応部分(上半部分)を短縮して排気室外壁(特に天井部)とフローガイドとの隙間を拡大する構造が多く見られる(特許文献1等参照)。一方、比較的スペースに余裕が生じる回転軸の軸心から下側部分のフローガイドを上半部に対して積極的に長く形成したフローガイドもある(特許文献2等参照)。   In this type of turbine exhaust system, the span from the turbine stage to the exhaust chamber outer wall is often short in the upper half of the turbine shaft due to space limitations including the turbine building and the like. For this reason, in order to secure a passage for the steam that has passed through the flow guide, a structure that shortens the corresponding portion (upper half portion) of the flow guide and expands the gap between the exhaust chamber outer wall (particularly the ceiling) and the flow guide is often seen. (See Patent Document 1 etc.). On the other hand, there is also a flow guide in which the lower part of the flow guide is positively formed with respect to the upper half from the axis of the rotating shaft, which has a relatively large space (see Patent Document 2).

米国特許第5518366号明細書US Pat. No. 5,518,366 特開平11−200814号公報Japanese Patent Laid-Open No. 11-2000814

しかしながら、特許文献1の記載技術のように、他の部材との位置関係の制約でフローガイド上半部を短くカットするのでは、フローガイド上半部においては湾曲部分が大きく除去されて直管形状に近くなってしまい、流路断面積がほとんど拡大しない。そのため、フローガイド上半部ではディフューザ流路の本来の機能である圧力回復作用が十分に得られない。また、通常、フローガイドは排気室の天井に比較的近い位置に設けられるが、この場合、フローガイドから吹き出す流れの流量には周方向に差が生じる。このことから、両特許文献の記載技術のように、軸方向断面形状の変化を考慮せずに単にフローガイドの上半部と下半部の長さに差をつけると、フローガイドから排気室内に吹き出す蒸気圧力が不均一になってしまう。   However, if the upper half of the flow guide is cut short because of the positional relationship with other members as in the technique described in Patent Document 1, the curved portion is largely removed in the upper half of the flow guide, and the straight pipe It becomes close to the shape, and the cross-sectional area of the flow channel hardly expands. Therefore, the pressure recovery action which is the original function of the diffuser flow path cannot be sufficiently obtained in the upper half of the flow guide. Usually, the flow guide is provided at a position relatively close to the ceiling of the exhaust chamber, but in this case, the flow rate of the flow blown out from the flow guide is different in the circumferential direction. Therefore, as described in both patent documents, if the length of the upper half portion and the lower half portion of the flow guide is simply made without considering the change in the cross-sectional shape in the axial direction, The steam pressure that blows out becomes uneven.

本発明の目的は、フローガイドから排気室に吹き出す蒸気圧力を均一かつ効果的に回復させることができるタービン排気装置を提供することにある。   An object of the present invention is to provide a turbine exhaust device capable of uniformly and effectively recovering the steam pressure blown from the flow guide to the exhaust chamber.

上記目的を達成するため、本発明は、フローガイド断面の曲率を周方向に変化させる。例えばフローガイドの断面の曲率半径を上半部中心で最小に、下半部中心で最大にとり、上半部中心から下半部中心にかけて単調に増大させる。   In order to achieve the above object, the present invention changes the curvature of the flow guide cross section in the circumferential direction. For example, the radius of curvature of the cross section of the flow guide is minimized at the center of the upper half, maximized at the center of the lower half, and monotonously increased from the center of the upper half to the center of the lower half.

本発明によれば、タービン段落環帯からの吹き出し位置によらず一様な圧力回復作用を得ることができる。そして、各位置での圧力回復を最大値に近付けた設計が可能となるため、タービン排気装置全体の圧力回復作用を向上させることができる利点がある。   According to the present invention, it is possible to obtain a uniform pressure recovery action regardless of the blowing position from the turbine stage ring zone. And since the design which made the pressure recovery in each position approach the maximum value is attained, there exists an advantage which can improve the pressure recovery effect | action of the whole turbine exhaust apparatus.

以下に図面を用いて本発明の実施の形態を説明する。
図1は本発明の第1の実施の形態に係るタービン排気装置の軸方向に沿った垂直断面を表す断面図である。
図1に示した本発明のタービン排気装置は、蒸気タービン(タービンロータ1)を通過した蒸気流を蒸気タービン1の下方に設けた復水器(図示せず)に導くもので、主な構成要素として排気室10とフローガイド30を備えている。本実施の形態において、タービンロータ1は水平に配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view showing a vertical section along the axial direction of the turbine exhaust device according to the first embodiment of the present invention.
The turbine exhaust apparatus according to the present invention shown in FIG. 1 guides a steam flow that has passed through a steam turbine (turbine rotor 1) to a condenser (not shown) provided below the steam turbine 1, and has a main configuration. An exhaust chamber 10 and a flow guide 30 are provided as elements. In the present embodiment, the turbine rotor 1 is disposed horizontally.

排気室10は、タービンロータ1を包囲する内ケーシング11を内包している。内ケーシング11の内周側には環状の蒸気流路12が形成されている。排気室10の外壁13には蒸気流入管14が設けられている。蒸気流入管13から流れ込んだ蒸気は蒸気流入管13の途中に設けた分配室15を介して蒸気流路12に流入する。図示した蒸気流路12内における蒸気の流通方向は図1中の右方向である。蒸気流路12内には、各段落の静翼2が固定的に設けられている。また蒸気流路12内において、各段落の静翼2の(蒸気流路12内における)蒸気流通方向下流側(図1中の右側、以下単に下流側という)には、タービンロータ1の各段落の動翼3が配置される。   The exhaust chamber 10 contains an inner casing 11 that surrounds the turbine rotor 1. An annular steam channel 12 is formed on the inner peripheral side of the inner casing 11. A steam inlet pipe 14 is provided on the outer wall 13 of the exhaust chamber 10. The steam flowing from the steam inflow pipe 13 flows into the steam flow path 12 through the distribution chamber 15 provided in the middle of the steam inflow pipe 13. The flow direction of the steam in the illustrated steam flow path 12 is the right direction in FIG. In the steam flow path 12, the stationary blades 2 of each paragraph are fixedly provided. Further, in the steam flow path 12, each stage of the turbine rotor 1 is located downstream of the stationary blade 2 in each stage (in the steam flow path 12) in the steam flow direction (the right side in FIG. 1, hereinafter simply referred to as the downstream side). Are arranged.

タービンロータ1は軸受4により支持されている。この軸受4は蒸気流路内部ケーシング11の端部に蒸気流路12の内周側に連続するように設けたベアリングコーン(コーン)20及び隔壁21により区画された領域内に配設されている。それに対し、先のフローガイド30はベアリングコーン20の外周側を覆うようにして蒸気流路12の外周部に連接して設けられている。フローガイド30及びベアリングコーン20により形成された拡径する環状の流路は蒸気流路12に連続する。このフローガイド30及びベアリングコーン20で画定された環状の流路を環帯と呼ぶ。   The turbine rotor 1 is supported by a bearing 4. The bearing 4 is disposed in an area defined by a bearing cone (cone) 20 and a partition wall 21 provided at the end of the steam flow path inner casing 11 so as to be continuous with the inner peripheral side of the steam flow path 12. . On the other hand, the previous flow guide 30 is provided so as to be connected to the outer peripheral portion of the steam channel 12 so as to cover the outer peripheral side of the bearing cone 20. An annular flow passage having an enlarged diameter formed by the flow guide 30 and the bearing cone 20 continues to the steam flow passage 12. The annular flow path defined by the flow guide 30 and the bearing cone 20 is called an annulus.

図2及び図3に示すように、上記構成の排気室外壁13はタービンロータ1の回転軸(タービン軸)5の高さ付近で上下二分割されており、上側のものを上半側ケーシング16、下側のものを下半側ケーシング17とする。また排気室外壁13のみならず内ケーシング11や蒸気流路12、ベアリングコーン20、フローガイド30等もケーシング17,18とともに上下に二分割される。すなわち上半側ケーシング16が取外されるとタービンロータ1の上半部が露出するようになっており、メンテナンス等に配慮されている。下半側ケーシング17は復水器の上部に連接される。下半側ケーシング17の下方は開口しており、この開口部を介してタービンロータ1で膨張仕事をした後の蒸気が下方の復水器に導入される。   As shown in FIGS. 2 and 3, the exhaust chamber outer wall 13 having the above-described configuration is divided into upper and lower parts in the vicinity of the height of the rotating shaft (turbine shaft) 5 of the turbine rotor 1, and the upper one is the upper half casing 16. The lower casing is referred to as a lower half casing 17. In addition to the exhaust chamber outer wall 13, the inner casing 11, the steam flow path 12, the bearing cone 20, the flow guide 30, and the like are also divided into upper and lower parts together with the casings 17 and 18. That is, when the upper half casing 16 is removed, the upper half portion of the turbine rotor 1 is exposed, and consideration is given to maintenance and the like. The lower half casing 17 is connected to the upper part of the condenser. A lower portion of the lower half casing 17 is opened, and steam after being expanded by the turbine rotor 1 is introduced into the lower condenser through the opening.

なお図3に示すたように、下半側ケーシング17には支持板18,19が設けられている。支持板18,19は復水器により作られた真空状態と大気との圧力差により排気室外壁13に作用する加重を受けて排気室10を補強するとともに、内ケーシング11を支持する役割を果たす。支持板18はタービンロータ1の軸線に直交する面に沿って、支持板19はタービンロータ1の軸線に平行な垂直面に沿ってそれぞれ下半側ケーシング17内に架け渡されており、支持板18,19は互いに直交している(図3参照)。   As shown in FIG. 3, support plates 18 and 19 are provided in the lower half casing 17. The support plates 18 and 19 reinforce the exhaust chamber 10 by receiving a load acting on the outer wall 13 of the exhaust chamber due to the pressure difference between the vacuum created by the condenser and the atmosphere, and support the inner casing 11. . The support plate 18 is bridged in the lower half casing 17 along a plane perpendicular to the axis of the turbine rotor 1, and the support plate 19 is spanned along a vertical plane parallel to the axis of the turbine rotor 1. 18 and 19 are orthogonal to each other (see FIG. 3).

上記構成の本実施の形態のタービン排気装置における最大の特徴は、上記した環帯から排気室10内に吹き出す放射状の蒸気の流れが全周に亘って同程度に圧力回復するようにフローガイド30の形状に配慮した点にある。   The greatest feature of the turbine exhaust system of the present embodiment having the above-described configuration is that the flow guide 30 is such that the flow of the radial steam blown out from the above-described annular zone into the exhaust chamber 10 is recovered to the same extent over the entire circumference. This is in consideration of the shape.

図4はフローガイドの形状と蒸気の流れとの関係を表す模式図である。図4(a)は図4(b)と、図4(c)は図4(d)と同一の流れを表しており、図4(a)及び図4(c)にはタービンロータ1の軸方向から見た環帯内の流れの模式図が、図4(b)及び図4(d)にはタービン軸を含む垂直断面で見た環帯内の流れの模式図が示されている。図4(a)〜図4(d)において、先の各図と同じ部分に相当する部分については同符号を付して説明を省略する。   FIG. 4 is a schematic diagram showing the relationship between the shape of the flow guide and the flow of steam. 4A shows the same flow as FIG. 4B, and FIG. 4C shows the same flow as FIG. 4D. FIGS. 4A and 4C show the turbine rotor 1. A schematic view of the flow in the annulus viewed from the axial direction is shown, and FIGS. 4B and 4D show schematic views of the flow in the annulus as viewed in a vertical section including the turbine shaft. . 4 (a) to 4 (d), portions corresponding to the same portions as those in the previous drawings are denoted by the same reference numerals and description thereof is omitted.

フローガイド30の形状設定の原理には電気力学における解析手法として知られる鏡像法を用いている。蒸気タービンの最終段落を通過した流れは、初めタービンロータ1の軸方向に流れて対向面(排気室10の軸方向端壁)により妨げられ、ベアリングコーン20やフローガイド30にガイドされて転向し半径方向に放射状に広がる。   The principle of setting the shape of the flow guide 30 uses a mirror image method known as an analysis method in electrodynamics. The flow that has passed through the final stage of the steam turbine first flows in the axial direction of the turbine rotor 1 and is blocked by the opposing surface (the axial end wall of the exhaust chamber 10), and is guided by the bearing cone 20 and the flow guide 30 and turned. It spreads radially in the radial direction.

図4(a)及び図4(c)から分かるように、タービン軸方向から見ると、蒸気流路12から吹き出してフローガイド30内を流れる蒸気は半径方向に沿って放射状に流れる。鏡像法では、天井(排気室外壁13の上面)13aを挟んで実際の流れ(天井13aの下側に示した流れ)と線対称の関係にある虚の流れ(天井13aの上側に示した流れ)を仮想する。   As can be seen from FIGS. 4A and 4C, when viewed from the turbine axial direction, the steam that blows out from the steam flow path 12 and flows through the flow guide 30 flows radially along the radial direction. In the mirror image method, an imaginary flow (flow shown on the upper side of the ceiling 13a) having a line-symmetrical relationship with the actual flow (flow shown on the lower side of the ceiling 13a) across the ceiling (upper surface of the exhaust chamber outer wall 13) 13a. ).

蒸気流路12から天井13aまでの距離が十分にあれば虚実二つの流れの干渉は小さくなる。そのため、蒸気流路12から天井13aまでの距離を十分にとることができれば流れの吹き出し中心線Fがタービンロータ1の中心軸Cに近付き(中心軸Cに対する吹き出し中心線Fのオフセット距離δが小さくなり)、実際の流れは中心軸Cを中心とする軸対称流れに近似する(図4(a)及び図4(b)参照)。   If the distance from the steam flow path 12 to the ceiling 13a is sufficient, the interference between the two real flows becomes small. Therefore, if a sufficient distance from the steam flow path 12 to the ceiling 13a can be obtained, the flow blowing center line F approaches the center axis C of the turbine rotor 1 (the offset distance δ of the blowing center line F with respect to the center axis C is small). The actual flow approximates an axially symmetric flow centered on the central axis C (see FIGS. 4A and 4B).

しかしながら、現実にはタービン建屋等との設計の関係上、蒸気流路12から天井13aまでの距離を十分に確保することは困難である。蒸気流路12が天井13aに近付くと、フローガイド30から天井方向(上方向)に向かう流れが妨げられ、それだけ下向きの流れが増加する。そのため、流れの吹き出し中心線Fは中心軸Cよりも距離δだけ天井13a側に偏心する(図4(c)及び図4(d)参照)。排気室10の側壁の影響が及ぶとオフセット距離δはさらに増加する。   However, in reality, it is difficult to ensure a sufficient distance from the steam flow path 12 to the ceiling 13a due to the design relationship with the turbine building or the like. When the steam flow path 12 approaches the ceiling 13a, the flow from the flow guide 30 toward the ceiling (upward) is prevented, and the downward flow increases accordingly. Therefore, the flow blowing center line F is eccentric to the ceiling 13a side by a distance δ from the central axis C (see FIGS. 4C and 4D). When the influence of the side wall of the exhaust chamber 10 is exerted, the offset distance δ further increases.

本願発明者等は上記のことに勘案し、中心軸Cから吹き出し中心線Fがオフセットしても、吹き出し中心線Fを中心に放射状に広がる各方向への流れ(周方向各所に向かう径方向流れのそれぞれ)を相似形に整流し、各方向への流れを同じように圧力回復させることに想到した。本発明では、これをフローガイド30の形状により実現する。   In consideration of the above, the inventors of the present application, even if the blowing center line F is offset from the center axis C, flows in each direction radially extending around the blowing center line F (radial flow toward each place in the circumferential direction). I thought to restore the pressure in the same way in each direction. In the present invention, this is realized by the shape of the flow guide 30.

フローガイド30は、内ケーシング11に連設され、タービンロータ1を通過した蒸気流が排気室10内に放射状に吹き出すように、吹き出し中心Fを含む面内の断面の形状がタービン軸方向から半径方向に湾曲した円弧状に形成されている。このフローガイド30はまた、吹き出し中心線Fを含む面内の断面の曲率半径Rが、上半部中心の断面の曲率半径Rを最小として断面位置が復水器側に向かうにつれて単調に増大するように形成されている。曲率で言えば、最小曲率半径Rの断面の曲率が最大値であり、そこから断面位置が周方向に移動するにつれて曲率が単調に減少し、最大曲率半径Rの下半部中心の断面において曲率が最小値となる。なお、タービン中心軸Cを含む面内の断面で見た場合、フローガイド30は、タービン中心軸Cを含む面内の断面(上半部中心断面)の曲率半径が上半部中心の断面の曲率半径を最小(曲率は最大)として断面位置が復水器側に向かうにつれて単調に増大(曲率は減少)するように形成されている。 The flow guide 30 is connected to the inner casing 11 so that the cross-sectional shape including the blowing center F has a radius from the turbine axis direction so that the steam flow that has passed through the turbine rotor 1 is blown radially into the exhaust chamber 10. It is formed in an arc shape curved in the direction. The flow guide 30 is also the radius of curvature R of the cross section in the plane including the balloon center line F is monotonically increases as cross-sectional position of the radius of curvature R 1 of the cross section of the upper half around the minimum is directed to the condenser side It is formed to do. In terms of curvature, cross-sectional curvature of the minimum radius of curvature R 1 is the maximum value, then decreased curvature monotonically from which cross-sectional position is moved in the circumferential direction, the cross section of the lower half of the center of maximum curvature radius R 2 The curvature becomes the minimum value at. When viewed in a cross section in the plane including the turbine central axis C, the flow guide 30 has a cross section in the plane including the turbine central axis C (upper half central cross section) having a radius of curvature of the upper half center. The radius of curvature is minimized (curvature is maximized), and the cross-sectional position is monotonously increased (curvature is decreased) toward the condenser side.

上記を踏まえ、フローガイド30の形状を決定するにはまず、蒸気流路12から排気室10の天井部13aまでの距離から吹き出し中心線Fを割り出す。そして、吹き出し中心線Fを中心に放射状に広がる流れがそれぞれ相似形をなすように、吹き出し中心線Fを軸に回転する面内において吹き出し中心線Fからフローガイド30の最外周部までの距離Lに比例させてフローガイド30の断面の曲率半径Rを設定する。   Based on the above, in order to determine the shape of the flow guide 30, first, the blowing center line F is determined from the distance from the steam flow path 12 to the ceiling portion 13 a of the exhaust chamber 10. Then, a distance L from the blowing center line F to the outermost peripheral portion of the flow guide 30 in a plane rotating around the blowing center line F so that flows radially spreading around the blowing center line F have similar shapes. Is set to a radius of curvature R of the cross section of the flow guide 30.

図4(c)及び図4(d)に示したように、吹き出し中心線Fが中心軸Cの上側に偏心した場合、吹き出し中心線Fからフローガイド30の最外周部までの距離Lは、上半部中心で最小(L)、下半部中心で最大(L)となる。距離Lの測定方向を吹き出し中心線Fを中心に変化させると、測定方向が上半部中心から下半部中心に向かうにつれて単調に増大する。この距離Lの変化に比例させて軸方向断面で見たフローガイド30の曲率半径Rを変化させ、吹き出し中心線Fを含む各面内で流れの断面の相似性を保つ。具体的には、吹き出し中心線Fを含む各断面におけるフローガイド30の曲率半径Rは、距離Lと同様に上半部中心で最小(R)、下半部中心で最大(R)であり、距離Lの増減に比例して単調に増減する。なお、蒸気流路12が排気室10の天井13aに近付く程、フローガイド30の上半部中心断面の曲率半径Rは下半部中心断面の曲率半径Rに対して小さくなる。 As shown in FIGS. 4C and 4D, when the blowing center line F is eccentric to the upper side of the central axis C, the distance L from the blowing center line F to the outermost peripheral portion of the flow guide 30 is It is the minimum (L 1 ) at the center of the upper half and the maximum (L 2 ) at the center of the lower half. When the measurement direction of the distance L is changed around the balloon center line F, the measurement direction monotonously increases from the upper half center toward the lower half center. The curvature radius R of the flow guide 30 viewed in the axial cross section is changed in proportion to the change in the distance L, and the similarity of the flow cross section is maintained in each plane including the blowing center line F. Specifically, the radius of curvature R of the flow guide 30 in each cross section including the blowing center line F is the minimum (R 1 ) at the center of the upper half and the maximum (R 2 ) at the center of the lower half, as with the distance L. Yes, and increases and decreases monotonically in proportion to the increase and decrease of the distance L. Incidentally, as the steam channel 12 approaches the ceiling 13a of the exhaust chamber 10, the radius of curvature R 1 of the upper half center section of the flow guide 30 smaller relative radius of curvature R 2 of the lower half center section.

なお、上記ではフローガイド30とともに環状の流路を形成するベアリングコーン20の形状を特に考慮に入れていないが、ベアリングコーン20を考慮しても解析結果に大差は生じないことが確認されている。   In the above description, the shape of the bearing cone 20 that forms the annular flow path with the flow guide 30 is not particularly taken into consideration, but it has been confirmed that there is no great difference in the analysis result even when the bearing cone 20 is taken into consideration. .

フローガイド30の平面展開図を図5及び図6に示す。これらの図において先の各図と同様の部分には同符号を付し説明を省略する。
先に説明したフローガイド30を製作する一つの方法は、フローガイド30を複数の部分30aに区分し、この部分30aを平板で形成して図5の状態とする。そして、各部分30aを設定の曲率半径を持つように円弧状に曲成し、隣接するもの同士を溶接等の手段により接合する。このとき、各部分30aの4つの角の角度(角度α,β等)や辺の長さ(長さl,l等)を隣接する部分30aとの間で調整し、目的とする曲率変化、半径方向の長さを得る。このようにフローガイド30を製作した場合、曲率半径Rは周方向変化に対して段階的に変化する。勿論、図5及び図6のものに限らず種々の制作方法が考えられ、例えばプレス加工等の機械加工や鋳造により曲率半径Rが周方向変化に対して連続的に変化するように精密な三次元局面を形成することも可能であり、本発明の原理に基づく限りにおいては、そのようにフローガイド30を製作することがより好ましい。
Plan views of the flow guide 30 are shown in FIGS. In these drawings, the same parts as those in the previous drawings are denoted by the same reference numerals, and description thereof is omitted.
One method of manufacturing the flow guide 30 described above is to divide the flow guide 30 into a plurality of portions 30a, and form the portions 30a as flat plates as shown in FIG. Then, each portion 30a is bent in an arc shape so as to have a set radius of curvature, and adjacent portions are joined together by means such as welding. At this time, the angles of the four corners (angles α, β, etc.) and the lengths of the sides (lengths l 1 , l 2, etc.) of each portion 30a are adjusted with the adjacent portions 30a to obtain the desired curvature. Change, get the radial length. When the flow guide 30 is manufactured in this way, the curvature radius R changes stepwise with respect to the circumferential change. Of course, various production methods are conceivable, not limited to those shown in FIGS. 5 and 6. For example, a precise tertiary so that the radius of curvature R is continuously changed with respect to the circumferential direction change by machining such as press working or casting. It is also possible to form the original aspect, and as long as it is based on the principle of the present invention, it is more preferable to manufacture the flow guide 30 as such.

また、上記のようにして吹き出し中心線Fを含む各断面内でのフローガイド30の曲率半径Rが定まると、フローガイド30のタービン軸方向の寸法も自ずと定まる。したがって、吹き出し中心線Fを含む各面内における蒸気の流路を厳密に相似関係に保つ場合、フローガイド30に対向してタービン軸方向を向いた排気室10の内壁面(端壁)13bの軸方向位置とその形状も定まる。吹き出し中心線Fを含む各断面においてフローガイド30との面間距離が曲率半径R(又は距離L)に比例して変化するように端壁13bのタービン軸方向位置と形状とを定めれば、流れの相似性をより効果的に確保することができる。   Further, when the radius of curvature R of the flow guide 30 in each cross section including the blowing center line F is determined as described above, the dimension of the flow guide 30 in the turbine axial direction is also determined naturally. Therefore, when the steam flow path in each plane including the blowout center line F is kept strictly similar, the inner wall surface (end wall) 13b of the exhaust chamber 10 facing the flow guide 30 and facing the turbine axial direction is formed. The axial position and its shape are also determined. If the position and shape of the end wall 13b in the turbine axial direction are determined so that the distance between the surfaces of the flow guide 30 and the flow guide 30 varies in proportion to the radius of curvature R (or distance L) in each cross section including the blowing center line F, The flow similarity can be more effectively ensured.

しかし、上半側ケーシング16及び下半側ケーシング17は容器壁となる箱型形状に製缶したものであり、端壁13bを複雑な三次元曲面に成形することは制作上現実的ではない。排気室10の端壁13bの形状に関しては、適当な自由度を持たせて平面的に形成する方が現実的であり、フローガイド30までの距離が全体として適度に設定されていれば足りる。この場合、製作容易性を重視するなら図7に示したように端壁13bを垂直にしても良いし、製作容易性を確保しつつ流れの相似性をより良く実現するなら、図1に示したようにフローガイド30の最外周部が描く楕円を含む面の傾斜に合わせて端壁13bを傾斜させることが好ましい。   However, the upper half casing 16 and the lower half casing 17 are made in a box shape as a container wall, and it is not realistic in production to mold the end wall 13b into a complicated three-dimensional curved surface. Regarding the shape of the end wall 13b of the exhaust chamber 10, it is more realistic to form it planarly with an appropriate degree of freedom, and it is sufficient if the distance to the flow guide 30 is appropriately set as a whole. In this case, the end wall 13b may be vertical as shown in FIG. 7 if emphasis is placed on manufacturability, or if the similarity in flow is better realized while ensuring manufacturability, it is shown in FIG. As described above, it is preferable to incline the end wall 13b in accordance with the inclination of the surface including the ellipse drawn by the outermost peripheral portion of the flow guide 30.

図8及び図9は本実施の形態に係るタービン排気装置の要部をタービン軸方向から投影して表した概念図である。これらの図において、先の各図と同様の部分には同符号を付し説明を省略する。
図8はフローガイド30を比較的狭い範囲にのみ設けた場合であり、主に半径方向の流れに対して圧力回復が得られる。図9はフローガイド30を下方に延長し、半径方向の流れにだけでなく方向が変わり下方に向かう流れに対しても圧力回復を得ることを意図している。図10のようにフローガイド30の下半側が上半側に対してより長くなるようにするには、例えば周方向角度θの変化に対する曲率の変化率を大きくし、吹き出し中心線Fからフローガイド30の最外周部までの距離L(θ)の変化率も大きくすれば良い。図10の構成は、例えば中心軸Cと吹き出し中心線Fとの距離δが大きく上向きの流量に対して下向きの流量が大きい場合に特に有効である。
FIG. 8 and FIG. 9 are conceptual diagrams showing the main part of the turbine exhaust device according to the present embodiment projected from the turbine axial direction. In these drawings, the same parts as those in the previous drawings are given the same reference numerals, and the description thereof is omitted.
FIG. 8 shows a case where the flow guide 30 is provided only in a relatively narrow range, and pressure recovery is obtained mainly for the flow in the radial direction. FIG. 9 is intended to extend the flow guide 30 downward to obtain pressure recovery not only for radial flow but also for direction change and downward flow. In order to make the lower half side of the flow guide 30 longer than the upper half side as shown in FIG. 10, for example, the rate of change of the curvature with respect to the change in the circumferential angle θ is increased, and The change rate of the distance L (θ) to the outermost peripheral portion of 30 may be increased. The configuration of FIG. 10 is particularly effective when, for example, the distance δ between the central axis C and the blowout center line F is large and the downward flow rate is large with respect to the upward flow rate.

次に上記構成の本実施の形態のタービン排気装置の動作及び作用を説明する。
蒸気流入管14から流入した蒸気は、分配室15で周方向に分配されて蒸気流路12に導かれる。内ケーシング11の内周側の蒸気流路12を通過した蒸気は環帯から排気室10に吹き出す。排気室10に吹き出すことにより流路断面積が拡大されるため、蒸気は減速しつつ下方に転向して復水器に導かれる。
Next, the operation and action of the turbine exhaust apparatus of the present embodiment having the above-described configuration will be described.
The steam flowing in from the steam inlet pipe 14 is distributed in the circumferential direction in the distribution chamber 15 and guided to the steam flow path 12. The steam that has passed through the steam flow path 12 on the inner peripheral side of the inner casing 11 blows out from the annular zone to the exhaust chamber 10. Since the flow passage cross-sectional area is enlarged by blowing it into the exhaust chamber 10, the steam is turned downward while being decelerated and led to the condenser.

ここで、一般的な構成のフローガイドを有するタービン排気装置の軸方向に沿った垂直断面図を本発明に対する比較例として図10に示す。なお、先の各図と同様の部分には同符号を付し説明を省略する。
前述したように、タービン建屋等も含めたスペースの制約からタービン軸5より上半部ではタービン段落から排気室天井13aまでのスパンが短い場合が多い。そのため、図10ではフローガイド30’を通過した蒸気の通路を確保すべく、フローガイド30’の上半部分を短縮して排気室天井13aとフローガイド30’との隙間を拡大している。
Here, FIG. 10 shows a vertical sectional view along the axial direction of a turbine exhaust apparatus having a flow guide of a general configuration as a comparative example for the present invention. In addition, the same code | symbol is attached | subjected to the part similar to each previous figure, and description is abbreviate | omitted.
As described above, the span from the turbine stage to the exhaust chamber ceiling 13a is often short in the upper half portion of the turbine shaft 5 due to space restrictions including the turbine building and the like. For this reason, in FIG. 10, the upper half of the flow guide 30 ′ is shortened to widen the gap between the exhaust chamber ceiling 13 a and the flow guide 30 ′ in order to secure a passage for the steam that has passed through the flow guide 30 ′.

しかしながら、フローガイド30’の断面はタービン中心軸を含むどの面内でも同じ曲率半径Rである。このようなフローガイド30’を用いた場合、排気室天井13a等との位置関係の制約でその上半部を短くカットしてしまうと、フローガイド30’の上半部においては湾曲部分が大きく除去されて直管形状に近くなってしまい、流路断面積がほとんど拡大しない。そのため、フローガイド30’の上半部では圧力回復作用が十分に得られない。また、蒸気流路12が排気室天井13aに近付くと、前述した通り、フローガイド30’から排気室10に流れ込む蒸気流量には周方向に差が生じる。このことから、図10のように軸方向断面におけるフローガイド30’の曲率半径Rの周方向変化を考慮せずにフローガイド30’の上半部と下半部の長さに差をつけると、蒸気流量と圧力回復性能の周方向変化が不一致となり、フローガイド30’から排気室10内に吹き出す蒸気圧力が不均一になってしまう。 However, the cross section of the flow guide 30 ′ has the same radius of curvature R 0 in any plane including the turbine central axis. When such a flow guide 30 ′ is used, if the upper half of the flow guide 30 ′ is cut short due to the positional relationship with the exhaust chamber ceiling 13a and the like, the curved portion is large in the upper half of the flow guide 30 ′. As a result, the cross-sectional area of the flow path is hardly enlarged. Therefore, the pressure recovery action cannot be sufficiently obtained in the upper half of the flow guide 30 ′. Further, when the steam flow path 12 approaches the exhaust chamber ceiling 13a, as described above, a difference occurs in the circumferential direction in the flow rate of the steam flowing from the flow guide 30 ′ into the exhaust chamber 10. Therefore, as shown in FIG. 10, when the difference between the upper half portion and the lower half portion of the flow guide 30 ′ is taken into consideration without considering the circumferential change of the radius of curvature R of the flow guide 30 ′ in the axial section. The change in the circumferential direction of the steam flow rate and the pressure recovery performance becomes inconsistent, and the steam pressure blown out from the flow guide 30 ′ into the exhaust chamber 10 becomes non-uniform.

それに対し、本実施の形態では、前述したようにタービン中心軸Cからの吹き出し中心線Fの偏心距離δに応じ、吹き出し中心線Fを含むどの面内でも断面形状が相似形をなすようにフローガイド30が構成されている。これにより、フローガイド30から排気室10に吹き出す蒸気の流れを全周に亘って相似形に形成することができ、蒸気圧力を均一かつ効果的に回復させることができる。勿論、前述したようにフローガイド30の形状に合わせて蒸気の流路断面が周方向に相似形をなすように排気室外壁13(特に端壁13b)を設計すれば、より蒸気圧力を均一かつ効果的に回復させることができる。   On the other hand, in the present embodiment, as described above, according to the eccentric distance δ of the blowing center line F from the turbine center axis C, the flow is performed so that the cross-sectional shape is similar in any plane including the blowing center line F. A guide 30 is configured. Thereby, the flow of the steam blown from the flow guide 30 to the exhaust chamber 10 can be formed in a similar shape over the entire circumference, and the steam pressure can be recovered uniformly and effectively. Of course, if the exhaust chamber outer wall 13 (especially the end wall 13b) is designed so that the cross section of the flow path of the steam has a similar shape in the circumferential direction according to the shape of the flow guide 30, as described above, the steam pressure can be made more uniform and uniform. It can be recovered effectively.

図11は本発明の第2の実施の形態に係るタービン排気装置の要部断面を表す概念図である。この図において、先の各図と同様の部分には同符号を付し説明を省略する。
第1の実施の形態ではフローガイド30の断面を曲率半径Rの円弧形状としていたが、必ずしも円弧形状である必要はない。本実施の形態では、フローガイド30Aの断面の曲率を半径方向位置(吹き出し中心線Fからの距離)によっても変化させている。フローガイド30Aの断面は全周に亘って概ね相似形をなしている。内ケーシング11との接続部分の断面の接線がタービン軸線となす角度(始まり角)φ0を決め、フローガイド30Aの断面上のある接点でフローガイド断面に接する接線とタービン軸線とがなす角度φ、及びそのフローガイド断面を含む面の周方向の角度(断面の周方向位置)θをパラメータとするフローガイド断面上の点における曲率半径R(θ,φ)を与えることで、よりフローガイド30A内の蒸気の流れを最適化することができる。
FIG. 11 is a conceptual diagram showing a cross-section of the main part of a turbine exhaust device according to a second embodiment of the present invention. In this figure, parts similar to those in the previous figures are given the same reference numerals, and description thereof is omitted.
In the first embodiment, the cross section of the flow guide 30 has an arc shape with a radius of curvature R. However, the flow guide 30 does not necessarily have an arc shape. In the present embodiment, the curvature of the cross section of the flow guide 30A is also changed by the radial position (distance from the blowing center line F). The cross-section of the flow guide 30A is generally similar over the entire circumference. The angle (starting angle) φ0 formed by the tangent of the cross section of the connecting portion with the inner casing 11 and the turbine axis is determined, and the angle φ formed by the tangent that is in contact with the flow guide cross section at a certain contact on the cross section of the flow guide 30A and the turbine axis. And a radius of curvature R (θ, φ) at a point on the flow guide cross section with the angle (circumferential position of the cross section) θ of the surface including the flow guide cross section as a parameter, The steam flow can be optimized.

具体的には、本実施の形態におけるフローガイド30Aは、蒸気の吹き出し中心線を含む面内の断面が角度φの増大に伴って曲率を小さくし、なおかつ蒸気の吹き出し中心線を含む垂直面内の上半部の断面での曲率を最大として断面位置が復水器側に向かうにつれて単調にほぼ相似的に減少するように形成されている。つまり、フローガイド断面上のある点における局部的な曲率半径R(θ,φ)は、同一の角度φを与えたとき上半部中心での断面で最小(曲率は最大)、下半部中心での断面で最大値(曲率は最小)となり、断面位置が復水器側に周方向移動するにつれて(角度θの変化につれて)単調に増加する(曲率は単調に減少する)。なお、タービン中心軸Cを含む面内の断面で見た場合、フローガイド30Aは、タービンロータ1の中心軸を含む面内の断面がその接線と中心軸がなす角度の増大に伴って曲率を小さくし、なおかつタービンロータ1の中心軸を含む面内の断面の曲率が中心軸を含む垂直面内の上半部の断面で最大となり断面位置が復水器側に向かうにつれて単調に減少するように形成されている。   Specifically, in the flow guide 30A according to the present embodiment, the cross section in the plane including the steam blowing center line decreases in curvature as the angle φ increases, and the vertical guide includes the steam blowing center line. It is formed so that the curvature in the cross section of the upper half is maximized and the cross-sectional position monotonously decreases substantially in a similar manner toward the condenser side. That is, the local radius of curvature R (θ, φ) at a certain point on the flow guide cross section is the minimum (curvature is maximum) in the cross section at the center of the upper half when the same angle φ is given, and the center of the lower half The maximum value (curvature is minimum) in the cross-section at, and increases monotonously (curvature decreases monotonously) as the cross-sectional position moves circumferentially toward the condenser side (as the angle θ changes). In addition, when viewed in a cross-section in a plane including the turbine central axis C, the flow guide 30A has a curvature as the cross-section in the plane including the central axis of the turbine rotor 1 increases with an angle between the tangent line and the central axis. The curvature of the cross section in the plane including the central axis of the turbine rotor 1 is maximized in the upper half section in the vertical plane including the central axis, and the cross sectional position is monotonously decreased as it goes to the condenser side. Is formed.

その他の点については第1の実施の形態と同様であり、第1の実施の形態と同様の効果を得ることができるとともに上記のように蒸気の流れをより最適にすることができる。   The other points are the same as those of the first embodiment, and the same effects as those of the first embodiment can be obtained, and the steam flow can be further optimized as described above.

図12は本発明の第3の実施の形態に係るタービン排気装置の軸方向に沿った垂直断面を表す断面図である。この図において先の各図と同様の部分には同符号を付し説明を省略する。
本実施の形態は、フローガイド30から復水器側への蒸気の流れの圧力を回復させるディフューザ流路を設け、より高い蒸気圧力回復能力を確保した実施の形態である。
FIG. 12 is a cross-sectional view showing a vertical cross section along the axial direction of a turbine exhaust device according to a third embodiment of the present invention. In this figure, parts similar to those in the previous figures are given the same reference numerals, and description thereof is omitted.
The present embodiment is an embodiment in which a diffuser flow path for recovering the pressure of the steam flow from the flow guide 30 to the condenser side is provided to ensure a higher steam pressure recovery capability.

本実施の形態においては、排気室10の下半側にてフローガイド30Bの先端部を復水器側にさらに延在し、この延在部30Baとタービン軸方向を向く排気室10のフローガイド30Bとの対向端壁13bとの間にディフューザを形成する。さらに、延在部30Baは内ケーシング11中の蒸気流れ方向上流側(図12中の左側)に反らせてあり、なおかつフローガイド延在部30Baに対向し延在部30Baとの間にディフューザを形成するように上記支持板18は延在部30Baと同じ方向に傾斜させてある。その他の構成は第1の実施の形態と同様である。   In the present embodiment, the front end of the flow guide 30B is further extended to the condenser side on the lower half side of the exhaust chamber 10, and the flow guide of the exhaust chamber 10 facing this extending portion 30Ba and the turbine axial direction. A diffuser is formed between the opposite end wall 13b and 30B. Further, the extending portion 30Ba is warped in the steam flow direction upstream side (the left side in FIG. 12) in the inner casing 11, and a diffuser is formed between the extending portion 30Ba and the flow guide extending portion 30Ba. As described above, the support plate 18 is inclined in the same direction as the extending portion 30Ba. Other configurations are the same as those of the first embodiment.

上半部でフローガイド30Bを通過した流れの多くは、フローガイド30Bの背後(図12中の左側)に回り込んで下方に向かい、フローガイド30Bと支持板18の間のディフューザ流路を通過して圧力を回復する。さらに、フローガイド30Bの延在部30Baを吹き出し方向と逆方向に反らせることによって、環帯の下半から吹き出した流れがフローガイド30Bと排気室端壁13bとの間のディフューザ流路を通過する。これにより、図1に示した第1の実施の形態に比しても、上半側又は下半側から噴出したそれぞれの流れに対してより高い圧力回復作用を確保することができる。   Most of the flow that has passed through the flow guide 30B in the upper half wraps behind the flow guide 30B (on the left side in FIG. 12) and moves downward to pass through the diffuser flow path between the flow guide 30B and the support plate 18. To restore pressure. Furthermore, the flow blown out from the lower half of the annulus passes through the diffuser flow path between the flow guide 30B and the exhaust chamber end wall 13b by warping the extending portion 30Ba of the flow guide 30B in the direction opposite to the blowing direction. . Thereby, even if compared with 1st Embodiment shown in FIG. 1, a higher pressure recovery effect | action can be ensured with respect to each flow ejected from the upper half side or the lower half side.

なお、本実施の形態においては断面が直線状の支持板18を用いた例を説明したが、図13に示したように支持板18をフローガイド延在部30Baの反り方向に折り曲げる構成としても良い。勿論、折り曲げるのではなく湾曲させても良い。これらの場合も同様の効果を得ることができる。また、本実施の形態は、第2の実施の形態のようなフローガイド30Aを持つタービン排気装置にも適用可能であることは言うまでもない。また、本実施の形態は、図10に示した一般的なタービン排気装置に適用しても蒸気圧力回復の効果を向上させることができる。   In the present embodiment, the example in which the support plate 18 having a linear cross section is used has been described. However, as shown in FIG. 13, the support plate 18 may be bent in the warp direction of the flow guide extension 30Ba. good. Of course, it may be bent instead of being bent. In these cases, similar effects can be obtained. Needless to say, this embodiment is also applicable to a turbine exhaust apparatus having a flow guide 30A as in the second embodiment. Further, the present embodiment can improve the effect of steam pressure recovery even when applied to the general turbine exhaust system shown in FIG.

本発明の第1の実施の形態に係るタービン排気装置の軸方向に沿った垂直断面を表す断面図である。It is sectional drawing showing the vertical cross section along the axial direction of the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るタービン排気装置の排気室の鳥瞰図である。It is a bird's-eye view of the exhaust chamber of the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るタービン排気装置の下半側ケーシングの排気室の鳥瞰図である。It is a bird's-eye view of the exhaust chamber of the lower half casing of the turbine exhaust device according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るタービン排気装置に備えられたフローガイドの形状と蒸気の流れとの関係を表す模式図である。It is a schematic diagram showing the relationship between the shape of the flow guide with which the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention was equipped, and the flow of steam. 本発明の第1の実施の形態に係るタービン排気装置に備えられたフローガイドの平面展開図である。It is a plane expanded view of the flow guide with which the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention was equipped. 本発明の第1の実施の形態に係るタービン排気装置に備えられたフローガイドの平面展開図である。It is a plane expanded view of the flow guide with which the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention was equipped. 本発明の第1の実施の形態に係るタービン排気装置の軸方向に沿った垂直断面を表す断面図であって、排気室の他の構成例を表す図である。It is sectional drawing showing the vertical cross section along the axial direction of the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention, Comprising: It is a figure showing the other structural example of an exhaust chamber. 本発明の第1の実施の形態に係るタービン排気装置の要部をタービン軸方向から投影して表した概念図である。It is the conceptual diagram which projected and represented the principal part of the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention from a turbine axial direction. 本発明の第1の実施の形態に係るタービン排気装置の要部をタービン軸方向から投影して表した概念図である。It is the conceptual diagram which projected and represented the principal part of the turbine exhaust apparatus which concerns on the 1st Embodiment of this invention from a turbine axial direction. 一般的な構成のフローガイドを有するタービン排気装置の軸方向に沿った垂直断面図を本発明に対する比較例として表した図である。It is the figure which represented the vertical cross section along the axial direction of the turbine exhaust apparatus which has a flow guide of a general structure as a comparative example with respect to this invention. 本発明の第2の実施の形態に係るタービン排気装置の要部断面を表す概念図である。It is a conceptual diagram showing the principal part cross section of the turbine exhaust apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るタービン排気装置の軸方向に沿った垂直断面を表す断面図である。It is sectional drawing showing the vertical cross section along the axial direction of the turbine exhaust apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係るタービン排気装置の他の構成例の軸方向に沿った垂直断面を表す断面図である。It is sectional drawing showing the vertical cross section along the axial direction of the other structural example of the turbine exhaust apparatus which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 タービンロータ
10 排気室
11 内ケーシング
13b 端壁
16 上半側ケーシング
17 下半側ケーシング
18 支持板
30 フローガイド
30A フローガイド
30B フローガイド
30Ba 延在部
F 吹き出し中心線
R 曲率半径
DESCRIPTION OF SYMBOLS 1 Turbine rotor 10 Exhaust chamber 11 Inner casing 13b End wall 16 Upper half side casing 17 Lower half side casing 18 Support plate 30 Flow guide 30A Flow guide 30B Flow guide 30Ba Extension part F Outlet center line R Curvature radius

Claims (8)

蒸気タービンのロータを通過した蒸気流を前記蒸気タービンの下方に設けた復水器に導くタービン排気装置において、
前記蒸気タービンのロータを包囲する内ケーシングを内部に有し、前記復水器の上部に連接した排気室と、
前記内ケーシングに連設され、前記タービンロータを通過した蒸気流が前記排気室内に放射状に吹き出すように前記タービンロータの軸方向から半径方向外側に湾曲して形成されており、前記タービンロータの中心軸を含む面内の断面の曲率半径が前記中心軸を含む垂直面内の上半部の断面で最小となり断面位置が前記復水器側に向かうにつれて単調に増大するように形成されたフローガイドと
を備えたことを特徴とするタービン排気装置。
In a turbine exhaust device for guiding a steam flow that has passed through a rotor of a steam turbine to a condenser provided below the steam turbine,
An exhaust chamber that has an inner casing surrounding the rotor of the steam turbine and is connected to the upper portion of the condenser;
The steam flow that is connected to the inner casing and that has passed through the turbine rotor is radially curved from the axial direction of the turbine rotor so as to blow out radially into the exhaust chamber. A flow guide formed such that the radius of curvature of the cross section in the plane including the axis is the smallest in the cross section of the upper half in the vertical plane including the central axis, and the cross sectional position monotonously increases toward the condenser side. And a turbine exhaust device.
蒸気タービンのロータを通過した蒸気流を前記蒸気タービンの下方に設けた復水器に導くタービン排気装置において、
前記蒸気タービンのロータを包囲する内ケーシングを内部に有し、前記復水器の上部に連接した排気室と、
前記内ケーシングに連設され、前記タービンロータを通過した蒸気流が前記排気室内に放射状に吹き出すように前記タービンロータの軸方向から半径方向外側に湾曲して形成されており、前記タービンロータの中心軸を含む面内の断面がその接線と前記中心軸がなす角度の増大に伴って曲率を小さくし、なおかつ前記タービンロータの中心軸を含む面内の断面の曲率が前記中心軸を含む垂直面内の上半部の断面で最大となり断面位置が前記復水器側に向かうにつれて単調に減少するように形成されたフローガイドと
を備えたことを特徴とするタービン排気装置。
In a turbine exhaust device for guiding a steam flow that has passed through a rotor of a steam turbine to a condenser provided below the steam turbine,
An exhaust chamber that has an inner casing surrounding the rotor of the steam turbine and is connected to the upper portion of the condenser;
The steam flow that is connected to the inner casing and that has passed through the turbine rotor is radially curved from the axial direction of the turbine rotor so as to blow out radially into the exhaust chamber. A vertical plane in which the in-plane section including the axis decreases in curvature as the angle between the tangent line and the central axis increases, and the in-plane section curvature including the central axis of the turbine rotor includes the central axis. A turbine exhaust system comprising: a flow guide formed so as to be maximum in a cross section of an upper half portion of the inside and to be monotonously decreased as the cross-sectional position is directed toward the condenser side.
請求項1又は2に記載のタービン排気装置において、前記フローガイドの断面の曲率が断面位置の周方向変化に対して段階的に変化することを特徴とするタービン排気装置。   3. The turbine exhaust apparatus according to claim 1, wherein a curvature of a cross section of the flow guide changes stepwise with respect to a change in a circumferential direction of a cross section position. 4. 請求項1又は2に記載のタービン排気装置において、前記フローガイドに対向するタービン軸方向を向く前記排気室の端壁は、前記フローガイドの最外周部が描く楕円を含む面の傾斜方向に傾斜していることを特徴とするタービン排気装置。   3. The turbine exhaust device according to claim 1, wherein an end wall of the exhaust chamber facing the turbine axial direction facing the flow guide is inclined in an inclination direction of a plane including an ellipse drawn by an outermost peripheral portion of the flow guide. A turbine exhaust system characterized by that. 請求項1又は2に記載のタービン排気装置において、前記蒸気タービンは水平に配置され、かつ前記排気室が上下二分割されており、上半側ケーシングを取外すことにより前記タービンロータの上半部が露出するように構成されていることを特徴とするタービン排気装置。   3. The turbine exhaust device according to claim 1, wherein the steam turbine is horizontally disposed, and the exhaust chamber is divided into upper and lower parts, and an upper half part of the turbine rotor is formed by removing an upper half side casing. A turbine exhaust device configured to be exposed. 請求項1又は2に記載のタービン排気装置において、前記排気室の下半側にて前記フローガイドの先端部を前記復水器側にさらに延在し、この延在部によりタービン軸方向を向く前記排気室の前記フローガイドとの対向端壁との間にディフューザを形成することを特徴とするタービン排気装置。   3. The turbine exhaust device according to claim 1, wherein a front end portion of the flow guide further extends toward the condenser side at a lower half side of the exhaust chamber, and the turbine shaft direction is directed by the extension portion. A turbine exhaust system, wherein a diffuser is formed between an end wall of the exhaust chamber facing the flow guide. 請求項6に記載のタービン排気装置において、前記フローガイドの延在部を前記内ケーシング中の蒸気流れ方向上流側に反らせ、なおかつこのフローガイドの延在部に対向し前記延在部との間にディフューザを形成する前記排気室の補強用の支持板を備えたことを特徴とするタービン排気装置。   The turbine exhaust device according to claim 6, wherein the extension portion of the flow guide is warped upstream in the steam flow direction in the inner casing, and is opposed to the extension portion of the flow guide and between the extension portion. A turbine exhaust system comprising: a support plate for reinforcing the exhaust chamber that forms a diffuser in the exhaust chamber. 蒸気タービンのロータを通過した蒸気流を前記蒸気タービンの下方に設けた復水器に導くタービン排気装置において、
前記蒸気タービンのロータを包囲する内ケーシングを内部に有し、前記復水器の上部に連接した排気室と、
この排気室の下半側にて前記復水器側に延在した部分とタービン軸方向を向く前記排気室の前記フローガイドとの対向端壁との間にディフューザを形成するフローガイドと、
このフローガイドの前記延在部を前記内ケーシング中の蒸気流れ方向上流側に反らせ、なおかつこのフローガイドの延在部に対向し前記延在部との間にディフューザを形成する前記排気室の補強用の支持板と
を備えたことを特徴とするタービン排気装置。
In a turbine exhaust device for guiding a steam flow that has passed through a rotor of a steam turbine to a condenser provided below the steam turbine,
An exhaust chamber that has an inner casing surrounding the rotor of the steam turbine and is connected to the upper portion of the condenser;
A flow guide that forms a diffuser between a portion extending to the condenser side on the lower half side of the exhaust chamber and an end wall facing the flow guide of the exhaust chamber facing the turbine axial direction;
Reinforcement of the exhaust chamber in which the extension portion of the flow guide is warped toward the upstream side in the steam flow direction in the inner casing and a diffuser is formed between the extension portion and the extension portion of the flow guide. And a support plate for the turbine.
JP2005101356A 2005-03-31 2005-03-31 Turbine exhaust system Expired - Fee Related JP4619849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101356A JP4619849B2 (en) 2005-03-31 2005-03-31 Turbine exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101356A JP4619849B2 (en) 2005-03-31 2005-03-31 Turbine exhaust system

Publications (2)

Publication Number Publication Date
JP2006283587A true JP2006283587A (en) 2006-10-19
JP4619849B2 JP4619849B2 (en) 2011-01-26

Family

ID=37405778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101356A Expired - Fee Related JP4619849B2 (en) 2005-03-31 2005-03-31 Turbine exhaust system

Country Status (1)

Country Link
JP (1) JP4619849B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509534A (en) * 2006-11-13 2010-03-25 アルストム テクノロジー リミテッド Turbine diffuser and exhaust system
CN102434233A (en) * 2011-12-09 2012-05-02 青岛捷能汽轮机集团股份有限公司 Exhaust steam cylinder of miniature steam turbine
JP2012107619A (en) * 2010-11-15 2012-06-07 General Electric Co <Ge> Exhaust hood diffuser
JP2012112351A (en) * 2010-11-26 2012-06-14 Mitsubishi Heavy Ind Ltd Gas outlet guide tube of turbine
CN102588017A (en) * 2011-01-14 2012-07-18 株式会社日立制作所 Exhaust system for steam turbine
JP2013174160A (en) * 2012-02-24 2013-09-05 Toshiba Corp Steam turbine
JP2015017520A (en) * 2013-07-10 2015-01-29 三菱日立パワーシステムズ株式会社 Low pressure exhaust chamber of steam turbine
JP2017096274A (en) * 2015-11-24 2017-06-01 ゼネラル・エレクトリック・カンパニイ System and method for turbine diffuser
US20180202319A1 (en) * 2015-08-12 2018-07-19 General Electric Company Diffuser for a turbine engine and method of forming same
WO2019111370A1 (en) * 2017-12-07 2019-06-13 三菱重工エンジン&ターボチャージャ株式会社 Diffuser and turbocharger
WO2019131632A1 (en) * 2017-12-28 2019-07-04 三菱日立パワーシステムズ株式会社 Exhaust chamber and steam turbine
EP4130443A1 (en) * 2021-07-29 2023-02-08 Solar Turbines Incorporated Exhaust diffuser with collector

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254806A (en) * 1975-10-31 1977-05-04 Hitachi Ltd Turbine exhaust chamber
JPS5293809A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Low-pressure turbine steam discharge hood
JPH0666157A (en) * 1992-06-30 1994-03-08 Westinghouse Electric Corp <We> Turbomachinery
JPH0842306A (en) * 1994-06-29 1996-02-13 Abb Manag Ag Diffuser for turbomachinery
US5518366A (en) * 1994-06-13 1996-05-21 Westinghouse Electric Corporation Exhaust system for a turbomachine
JPH08260904A (en) * 1995-03-29 1996-10-08 Toshiba Corp Exhaust chamber of steam turbine
JPH11200814A (en) * 1998-01-19 1999-07-27 Mitsubishi Heavy Ind Ltd Exhauster for axial flow turbine
JP2000204908A (en) * 1999-01-18 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd Axial turbine
US6533546B2 (en) * 2000-07-31 2003-03-18 Alstom (Switzerland) Ltd. Low-pressure steam turbine with multi-channel diffuser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254806A (en) * 1975-10-31 1977-05-04 Hitachi Ltd Turbine exhaust chamber
JPS5293809A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Low-pressure turbine steam discharge hood
JPH0666157A (en) * 1992-06-30 1994-03-08 Westinghouse Electric Corp <We> Turbomachinery
US5518366A (en) * 1994-06-13 1996-05-21 Westinghouse Electric Corporation Exhaust system for a turbomachine
JPH0842306A (en) * 1994-06-29 1996-02-13 Abb Manag Ag Diffuser for turbomachinery
JPH08260904A (en) * 1995-03-29 1996-10-08 Toshiba Corp Exhaust chamber of steam turbine
JPH11200814A (en) * 1998-01-19 1999-07-27 Mitsubishi Heavy Ind Ltd Exhauster for axial flow turbine
JP2000204908A (en) * 1999-01-18 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd Axial turbine
US6533546B2 (en) * 2000-07-31 2003-03-18 Alstom (Switzerland) Ltd. Low-pressure steam turbine with multi-channel diffuser

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509534A (en) * 2006-11-13 2010-03-25 アルストム テクノロジー リミテッド Turbine diffuser and exhaust system
JP2012107619A (en) * 2010-11-15 2012-06-07 General Electric Co <Ge> Exhaust hood diffuser
JP2012112351A (en) * 2010-11-26 2012-06-14 Mitsubishi Heavy Ind Ltd Gas outlet guide tube of turbine
CN102588017A (en) * 2011-01-14 2012-07-18 株式会社日立制作所 Exhaust system for steam turbine
US20120183397A1 (en) * 2011-01-14 2012-07-19 Hitachi, Ltd. Exhaust System for Steam Turbine
US9033656B2 (en) * 2011-01-14 2015-05-19 Mitsubishi Hitachi Power Systems, Ltd. Exhaust system for steam turbine
CN102434233A (en) * 2011-12-09 2012-05-02 青岛捷能汽轮机集团股份有限公司 Exhaust steam cylinder of miniature steam turbine
CN102434233B (en) * 2011-12-09 2014-05-28 青岛捷能汽轮机集团股份有限公司 Exhaust steam cylinder of miniature steam turbine
JP2013174160A (en) * 2012-02-24 2013-09-05 Toshiba Corp Steam turbine
JP2015017520A (en) * 2013-07-10 2015-01-29 三菱日立パワーシステムズ株式会社 Low pressure exhaust chamber of steam turbine
US10704423B2 (en) * 2015-08-12 2020-07-07 General Electric Company Diffuser for a turbine engine and method of forming same
US20180202319A1 (en) * 2015-08-12 2018-07-19 General Electric Company Diffuser for a turbine engine and method of forming same
JP2017096274A (en) * 2015-11-24 2017-06-01 ゼネラル・エレクトリック・カンパニイ System and method for turbine diffuser
WO2019111370A1 (en) * 2017-12-07 2019-06-13 三菱重工エンジン&ターボチャージャ株式会社 Diffuser and turbocharger
US11187144B2 (en) 2017-12-07 2021-11-30 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Diffuser and turbocharger
WO2019131632A1 (en) * 2017-12-28 2019-07-04 三菱日立パワーシステムズ株式会社 Exhaust chamber and steam turbine
JP2019120152A (en) * 2017-12-28 2019-07-22 三菱日立パワーシステムズ株式会社 Exhaust chamber and steam turbine
KR20200057779A (en) * 2017-12-28 2020-05-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Exhaust chamber and steam turbine
CN111417767A (en) * 2017-12-28 2020-07-14 三菱日立电力系统株式会社 Exhaust chamber and steam turbine
KR102326915B1 (en) 2017-12-28 2021-11-17 미츠비시 파워 가부시키가이샤 exhaust and steam turbine
CN111417767B (en) * 2017-12-28 2022-07-08 三菱重工业株式会社 Exhaust chamber and steam turbine
US11591934B2 (en) 2017-12-28 2023-02-28 Mitsubishi Heavy Industries, Ltd. Exhaust hood and steam turbine
EP4130443A1 (en) * 2021-07-29 2023-02-08 Solar Turbines Incorporated Exhaust diffuser with collector

Also Published As

Publication number Publication date
JP4619849B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4619849B2 (en) Turbine exhaust system
JP4541950B2 (en) Turbine exhaust system and method for modifying the same
JP4627217B2 (en) Turbine exhaust system
JP2006242184A (en) Air bleed manifold and compressor case assembly
JP5818908B2 (en) Axial flow compressor
JP5398405B2 (en) Channel structure and gas turbine exhaust diffuser
EP2853694B1 (en) Steam turbine
JP3776580B2 (en) Axial turbine exhaust system
KR20180068901A (en) Outdoor unit of air conditioner
US20130224006A1 (en) Steam turbine
JP6847673B2 (en) Turbine exhaust chamber
JP5618879B2 (en) Axial exhaust turbine
JP2019157680A (en) Steam turbine device
JP2011080401A (en) Swirl generator for centrifugal compressor
US20210285338A1 (en) Steam turbine exhaust chamber, flow guide for steam turbine exhaust chamber, and steam turbine
JP6944871B2 (en) Exhaust chamber and steam turbine
JP2015194085A (en) steam turbine
JP2017110631A (en) Insert component for radial turbine, turbocharger
JP4557787B2 (en) Steam turbine
JP2019035364A (en) Steam turbine
JP2011174452A (en) Multiblade blower
JP2013170486A (en) Axial-flow exhaust turbine
JP2016217285A (en) Steam turbine
JP2009133254A (en) Exhaust chamber for steam turbine
JP2021099087A (en) Draft tube of water turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees