JP2006283376A - Seismic-response controlled structure of lightweight steel-framed house - Google Patents

Seismic-response controlled structure of lightweight steel-framed house Download PDF

Info

Publication number
JP2006283376A
JP2006283376A JP2005104277A JP2005104277A JP2006283376A JP 2006283376 A JP2006283376 A JP 2006283376A JP 2005104277 A JP2005104277 A JP 2005104277A JP 2005104277 A JP2005104277 A JP 2005104277A JP 2006283376 A JP2006283376 A JP 2006283376A
Authority
JP
Japan
Prior art keywords
tan
viscoelastic
frame
damper
viscoelastic dampers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104277A
Other languages
Japanese (ja)
Other versions
JP4551258B2 (en
Inventor
Tomokazu Takada
友和 高田
Takashi Uchiyama
高 内山
Isao Natsubori
功 夏堀
Mamoru Sato
守 佐藤
Shigekazu Yokoyama
重和 横山
Hiroomi Tanaka
弘臣 田中
Seiji Tanigawa
清次 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Sekisui House Ltd
Original Assignee
Sumitomo Riko Co Ltd
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Sekisui House Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2005104277A priority Critical patent/JP4551258B2/en
Publication of JP2006283376A publication Critical patent/JP2006283376A/en
Application granted granted Critical
Publication of JP4551258B2 publication Critical patent/JP4551258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Residential Or Office Buildings (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic-response controlled structure which can reduce the deformation of a building by efficiently converting vibrational energy, generated by earthquakes, into thermal energy. <P>SOLUTION: In an area R1 on the upside of a middle rail 4 of a framework frame 1, a first damper unit D1 with first-fourth viscoelastic dampers 5a-5d is mounted. In an area R2 on the downside of the middle rail 4, a second damper unit D2 with fifth-eighth viscoelastic dampers 5e-5h is mounted. Additionally, in the framework frame 1, the mounting rigidity of each mounting part of the first-eighth viscoelastic dampers 5a-5h, the storage rigidity of each of the first-eighth viscoelastic dampers 5a-5h, and the loss coefficient of each of the first-eighth viscoelastic dampers 5a-5h are adjusted to satisfy predetermined conditions, when a story deformation angle is 1/200 rad in horizontal deformation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地震により発生する振動の減衰を図るために軽量鉄骨住宅に採用される制震構造に関するものである。   The present invention relates to a vibration control structure employed in a lightweight steel house in order to attenuate vibrations generated by an earthquake.

軽量鉄骨住宅の制震構造として、柱材と横架材とから構成される枠組フレームを上下の梁の間に付設し、その枠組フレームの内外に粘弾性ダンパーやオイルダンパー等の制震装置を設けることにより、地震によるエネルギーを粘性減衰エネルギーとして吸収して制震効果を得るものが知られている。具体的には、枠組フレームと梁との間に粘弾性ダンパーを設置した制震構造(特許文献1)や、枠組フレームを上下に分けて構成し、それらの2つの枠組フレームの間に粘弾性ダンパーを設置した制震構造(特許文献2)、枠組フレームの内部を上下に二分割するように補強材を水平に架設し、その補強材の上下において、二つのオイルダンパーを互い違いの傾斜状に設置したKブレース型の制震構造(特許文献3)が知られている。   As a light-damping structure for lightweight steel houses, a frame consisting of pillars and horizontal members is attached between the upper and lower beams, and viscoelastic dampers and oil dampers are installed on the inside and outside of the frame. It is known that a seismic effect can be obtained by providing energy by absorbing earthquake energy as viscous damping energy. Specifically, a seismic control structure in which a viscoelastic damper is installed between the frame and the beam (Patent Document 1), or the frame is divided into upper and lower frames, and viscoelasticity is formed between these two frame frames. Damping structure with dampers (Patent Document 2), reinforcing material is installed horizontally so that the inside of the frame is divided into two parts vertically, and the two oil dampers are staggered at the top and bottom of the reinforcing material. An installed K-brace type damping structure (Patent Document 3) is known.

特開2001−90381号公報JP 2001-90381 A 特開2001−90379号公報JP 2001-90379 A 特開2004−218207号公報JP 2004-218207 A

しかしながら、上記従来の制震構造における枠組フレームでは、粘弾性ダンパーを除いた枠組フレームの取付剛性(枠組フレーム全体の取付剛性)と粘弾性ダンパーの貯蔵剛性(硬さ)とのバランスが悪いと、粘弾性ダンパーが変位する前に枠組フレーム自体や粘弾性ダンパーの取り付け部分が変形してしまい、十分な減衰性能が得られない、という事態が発生する。   However, in the frame frame in the conventional vibration control structure, if the balance between the frame frame mounting rigidity excluding the viscoelastic damper (the entire frame frame mounting rigidity) and the viscoelastic damper storage rigidity (hardness) is poor, Before the viscoelastic damper is displaced, the frame itself and the attachment portion of the viscoelastic damper are deformed, and a situation in which sufficient damping performance cannot be obtained occurs.

本発明の目的は、上記従来の軽量鉄骨住宅の制震構造が有する問題点を解消し、粘弾性ダンパーが十分な減衰特性を発揮し、地震による振動エネルギーを効率的に熱エネルギーに変換し、建物の変形を軽減することが可能な軽量鉄骨住宅の制震構造を提供することにある。   The object of the present invention is to eliminate the problems of the conventional light-damped steel housing vibration control structure, the viscoelastic damper exhibits sufficient damping characteristics, and efficiently converts vibration energy from the earthquake into thermal energy, The object of the present invention is to provide a damping structure for a light-weight steel house that can reduce the deformation of the building.

かかる本発明の内、請求項1に記載された発明の構成は、左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、前記枠組フレームの内部が中桟によって上下2つの領域に二分割されており、その中桟の上側の領域においては、十字状のアームの4つの端縁に第一〜第四粘弾性ダンパーを設けた第一ダンパー装置が、その第一〜第四粘弾性ダンパーを、それぞれ、片側の柱材と上側の横架材との仕口、反対側の柱材と上側の横架材との仕口、片側の柱材と中桟との仕口、反対側の柱材と中桟との仕口に接続させた状態で取り付けられており、前記中桟の下側においては、十字状のアームの4つの端縁に第五〜第八粘弾性ダンパーを設けた第二ダンパー装置が、その第五〜第八粘弾性ダンパーを、それぞれ、片側の柱材と上側の横架材との仕口、反対側の柱材と上側の横架材との仕口、片側の柱材と中桟との仕口、反対側の柱材と中桟との仕口に接続させた状態で取り付けられており、層間変形角が1/200radである場合に、下記(1)〜(3)を満たすことにある。
(1)Kbs1,Kbs2,Kbs3,Kbs4,Kbs5,Kbs6,Kbs7,Kbs8がいずれも40kN/cm以上200kN/cm以下である
(2)Kbs1/K’ds1,Kbs2/K’ds2,Kbs3/K’ds3,Kbs4/K’ds4,Kbs5/K’ds5,Kbs6/K’ds6,Kbs7/K’ds7,Kbs8/K’ds8がいずれも1.5以上10以下である
(3)tanδ1,tanδ2,tanδ3,tanδ4,tanδ5,tanδ6,tanδ7,tanδ8がいずれも0.6以上である
(但し、Kbs1,Kbs2,Kbs3,Kbs4,Kbs5,Kbs6,Kbs7,Kbs8は、それぞれ、第一〜第八粘弾性ダンパーの各取付部分の取付剛性であり、K’ds1,K’ds2,K’ds3,K’ds4,K’ds5,K’ds6,K’ds7,K’ds8は、それぞれ、第一〜第八粘弾性ダンパーの各貯蔵剛性であり、tanδ1,tanδ2,tanδ3,tanδ4,tanδ5,tanδ6,tanδ7,tanδ8は、それぞれ、第一〜第八粘弾性ダンパーの各損失係数である)
Among the present inventions, the structure of the invention described in claim 1 is a vibration control of a lightweight steel frame housing in which a viscoelastic damper is installed on a frame frame composed of left and right column members and upper and lower horizontal members. In the structure, the inside of the framework frame is divided into two upper and lower regions by an intermediate rail, and in the upper region of the intermediate rail, the first to fourth edges are formed at the four end edges of the cross-shaped arm. The first damper device provided with the viscoelastic damper is connected to the first to fourth viscoelastic dampers by means of the connection between the column material on one side and the upper horizontal member, and the column material on the opposite side and the upper horizontal member, respectively. It is attached in a state where it is connected to the joint between the column material and the middle rail on one side, the joint material between the pillar material on the other side and the middle rail, and on the lower side of the middle rail, The second damper device in which the fifth to eighth viscoelastic dampers are provided at the four edges of the cross-shaped arm is the fifth to eighth. Eight viscoelastic dampers, respectively, with one column member and upper horizontal member, opposite column member and upper horizontal member, one column member and middle pier It is attached in the state where it is connected to the joint between the column material on the opposite side and the middle rail, and the following (1) to (3) are satisfied when the interlayer deformation angle is 1/200 rad.
(1) Kbs1, Kbs2, Kbs3, Kbs4, Kbs5, Kbs6, Kbs7, Kbs8 are all 40 kN / cm or more and 200 kN / cm or less (2) Kbs1 / K'ds1, Kbs2 / K'ds2, Kbs3 / K ' ds3, Kbs4 / K'ds4, Kbs5 / K'ds5, Kbs6 / K'ds6, Kbs7 / K'ds7, Kbs8 / K'ds8 are all 1.5 or more and 10 or less. (3) tanδ1, tanδ2, tanδ3 , Tan δ 4, tan δ 5, tan δ 6, tan δ 7, tan δ 8 are all 0.6 or more. It is the attachment rigidity of each attachment part, K'ds1, K'ds2, K'ds3, K'ds4, K'd 5, K′ds6, K′ds7, K′ds8 are the storage rigidity of the first to eighth viscoelastic dampers, respectively, tan δ1, tan δ2, tan δ3, tan δ4, tan δ5, tan δ6, tan δ6, tan δ8, , Each loss coefficient of the first to eighth viscoelastic dampers)

本発明の如く、内部が上下二つの領域に分割されて上側の領域に第一〜第四粘弾性ダンパーを有する第一ダンパー装置が取り付けられ、下側の領域に第五〜第八粘弾性ダンパーを有する第二ダンパー装置が取り付けられた枠組フレームにおいては、水平方向のみを考慮すると、枠組フレーム全体の特性を、図1の如き4直列2並列換算バネとしてモデル化することができる。なお、図1において、M1,M3,M5,M7,M9,M11,M13,M15のバネは、それぞれ、枠組フレームの第一〜第八の粘弾性ダンパーの各取付部分を弾性要素として示したものであり、M2,M4,M6,M8,M10,M12,M14,M16のバネおよびダッシュポットは、それぞれ、第一〜第八粘弾性ダンパーを粘弾性要素として示したものである。   As in the present invention, the inside is divided into two upper and lower regions, and a first damper device having first to fourth viscoelastic dampers is attached to the upper region, and fifth to eighth viscoelastic dampers are attached to the lower region. In the frame frame to which the second damper device having the above is attached, considering only the horizontal direction, the characteristics of the entire frame frame can be modeled as a 4-series 2-parallel conversion spring as shown in FIG. In FIG. 1, the springs M1, M3, M5, M7, M9, M11, M13, and M15 are shown as elastic elements corresponding to the attachment portions of the first to eighth viscoelastic dampers of the frame. The springs and dashpots of M2, M4, M6, M8, M10, M12, M14, and M16 respectively show the first to eighth viscoelastic dampers as viscoelastic elements.

したがって、枠組フレームに粘弾性ダンパーの代わりに剛体(きわめて剛性の高い鋼材等)を取り付けて測定した場合の取付強度を、枠組フレーム全体の取付剛性Kbs(sは水平成分を示す)の近似値とすることができ、その取付剛性Kbsから下式2〜4を利用して、第一〜第八粘弾性ダンパーの各取付部分の取付剛性Kbs1〜Kbs8を求めることができる。
1/2Kbs=1/Kbs1+1/Kbs2+1/Kbs3+1/Kbs4 ・・2
1/2Kbs=1/Kbs5+1/Kbs6+1/Kbs7+1/Kbs8 ・・3
Kbs1=Kbs2=Kbs3=Kbs4=Kbs5=Kbs6=Kbs7=Kbs8 ・・4
Therefore, the attachment strength when measured by attaching a rigid body (such as a very rigid steel material) to the frame frame instead of the viscoelastic damper is the approximate value of the frame frame attachment rigidity Kbs (s indicates the horizontal component). The mounting stiffness Kbs1 to Kbs8 of each mounting portion of the first to eighth viscoelastic dampers can be obtained from the mounting stiffness Kbs using the following equations 2 to 4.
1/2 Kbs = 1 / Kbs1 + 1 / Kbs2 + 1 / Kbs3 + 1 / Kbs4 ..2
1/2 Kbs = 1 / Kbs5 + 1 / Kbs6 + 1 / Kbs7 + 1 / Kbs8 ..3
Kbs1 = Kbs2 = Kbs3 = Kbs4 = Kbs5 = Kbs6 = Kbs7 = Kbs8 4

本発明の制震構造においては、層間変形量が1/200rad以上である場合に、上記の如く枠組フレームに剛体を取り付けて求められる取付剛性Kbs1〜Kbs8が、いずれも、40kN/cm以上200kN/cm以下となるように調整されることが必要である。なお、層間変形角とは、各層の層間変位をその階の高さで除した値のことである。Kbs1〜Kbs8が、40kN/cm未満となると、地震によって振動した場合に、枠組フレーム自体が変形してしまい、第一粘弾性ダンパー〜第八粘弾性ダンパーが十分な減衰特性を発揮できなくなる。なお、Kbs1〜Kbs8を増加させる方法としては、柱材や横架材の断面剛性を高める方法等を挙げることができる、反対に、Kbs1〜Kbs8が200kN/cmを上回るような設計では、枠組フレームを構成する鋼材の重量が大きくなりすぎて、軽量鉄骨住宅の施工に適用することが難しくなる。   In the vibration control structure of the present invention, when the amount of interlayer deformation is 1/200 rad or more, the mounting rigidity Kbs1 to Kbs8 required by attaching the rigid body to the frame frame as described above is 40 kN / cm or more and 200 kN / It is necessary to adjust so that it may become cm or less. The interlayer deformation angle is a value obtained by dividing the interlayer displacement of each layer by the height of the floor. When Kbs1 to Kbs8 are less than 40 kN / cm, when the frame is vibrated by an earthquake, the frame frame itself is deformed, and the first to eighth viscoelastic dampers cannot exhibit sufficient damping characteristics. In addition, as a method of increasing Kbs1 to Kbs8, a method of increasing the cross-sectional rigidity of a column member or a horizontal member can be cited. On the contrary, in a design in which Kbs1 to Kbs8 exceeds 200 kN / cm, a frame frame It becomes difficult to apply the construction of a lightweight steel house because the weight of the steel material constituting the steel becomes too large.

また、本発明の制震構造においては、上記の如く求められる第一〜第八粘弾性ダンパーの取付剛性Kbsと貯蔵剛性K’dsとの比の値(すなわち、Kbs1/K’ds1〜Kbs8/K’ds8)が、いずれも、1.5以上10以下であることが必要である。Kbs1/K’ds1〜Kbs8/K’ds8が1.5未満であると、ある程度の耐力は発揮されるものの、減衰性能が損なわれてしまう。反対に、Kbs1/K’ds1〜Kbs8/K’ds8が10を上回ると、地震によって振動した場合に、第一〜第八粘弾性ダンパーが十分に変形して減衰特性を発揮するものの、耐力が損なわれてしまう。   In the vibration control structure of the present invention, the value of the ratio between the mounting rigidity Kbs and the storage rigidity K'ds of the first to eighth viscoelastic dampers obtained as described above (that is, Kbs1 / K'ds1 to Kbs8 / In any case, K′ds8) needs to be 1.5 or more and 10 or less. When Kbs1 / K′ds1 to Kbs8 / K′ds8 is less than 1.5, a certain level of yield strength is exhibited, but the damping performance is impaired. On the contrary, when Kbs1 / K'ds1 to Kbs8 / K'ds8 exceeds 10, when the first to eighth viscoelastic dampers are sufficiently deformed and exhibit damping characteristics when vibrated by an earthquake, the proof stress is It will be damaged.

さらに、本発明の制震構造においては、第一〜第八粘弾性ダンパーの損失係数(すなわち、tanδ1〜tanδ8)の値が、いずれも0.6以上であることが必要である。tanδ1〜tanδ8が0.6未満となると、十分な減衰特性が得られなくなる。なお、本発明における第一〜第八粘弾性ダンパーの貯蔵剛性K’ds1〜K’ds8、第一〜第八粘弾性ダンパーの損失係数tanδ1〜tanδ8は、一般的な住宅の固有振動数(約1〜7Hz)の領域において常温下で測定されるものである。   Furthermore, in the damping structure of the present invention, the loss coefficients (that is, tan δ1 to tan δ8) of the first to eighth viscoelastic dampers all need to be 0.6 or more. When tan δ1 to tan δ8 is less than 0.6, sufficient attenuation characteristics cannot be obtained. In the present invention, the storage rigidity K′ds1 to K′ds8 of the first to eighth viscoelastic dampers and the loss coefficients tanδ1 to tanδ8 of the first to eighth viscoelastic dampers are the natural frequencies (about 1 to 7 Hz) and measured at room temperature.

請求項2に記載された発明の構成は、請求項1に記載の発明において、層間変形角が1/100radである場合に、下式1を満たすことにある。
Fdsmax<Fs ・・1
(但し、Fdsmaxは、枠組フレームに発生する最大水平耐力であり、Fsは、枠組フレームの許容水平耐力である)
The structure of the invention described in claim 2 is that, in the invention described in claim 1, when the interlayer deformation angle is 1/100 rad, the following expression 1 is satisfied.
Fdsmax <Fs 1
(Where Fdsmax is the maximum horizontal strength generated in the frame, and Fs is the allowable horizontal strength of the frame)

なお、Fdsmaxは、各粘弾性ダンパー単体の軸方向に作用する反力(粘弾性ダンパー単体の引張圧縮試験によって測定されるもの)をFdjとした場合に、下式5によって与えられるものであり、許容水平耐力Fsとは、構造物を弾性体と仮定して部材に応じる応力度の最大値が許容応力度(すなわち、構造物の外力に対する安全性を確保するために定められる部材に許容できる応力度の限界)に達するときに作用し得る荷重のことである。
Fdsmax=2Fdj×a/√(a+(b/2)) ・・5
(但し、図2の模式図に示すように、aは、枠組フレームの幅であり、bは、枠組フレームの高さである)
In addition, Fdsmax is given by the following equation 5 when the reaction force acting in the axial direction of each viscoelastic damper unit (measured by a tensile compression test of the viscoelastic damper unit) is Fdj. The allowable horizontal proof stress Fs means that the maximum stress degree corresponding to a member is assumed to be an elastic body and the allowable stress degree (that is, a stress that can be allowed for a member that is determined to ensure safety against external force of the structure). It is the load that can act when the limit of the degree is reached.
Fdsmax = 2Fdj × a / √ (a 2 + (b / 2) 2 ) 5
(However, as shown in the schematic diagram of FIG. 2, a is the width of the frame and b is the height of the frame)

また、請求項2の如く構成する場合には、層間変形角が1/100radである場合にも、上記要件(1)〜(3)を満たすように構成するのが好ましい。   Further, when configured as in claim 2, it is preferable to configure so as to satisfy the above requirements (1) to (3) even when the interlayer deformation angle is 1/100 rad.

請求項3に記載された発明の構成は、請求項1、または請求項2に記載された発明において、前記第一〜第八粘弾性ダンパーが、外筒部材の内部に内芯部材を挿入し、その内芯部材と外筒部材との隙間に粘弾性体を介在させたものであることにある。   According to a third aspect of the present invention, in the first or second aspect of the invention, the first to eighth viscoelastic dampers insert an inner core member into the outer cylindrical member. The viscoelastic body is interposed in the gap between the inner core member and the outer cylinder member.

請求項4に記載された発明の構成は、請求項1〜3のいずれかに記載された発明において、前記第一〜第四粘弾性ダンパーが、前記第一ダンパー装置の十字状のアームを内芯部材としたものであり、前記第五〜第八粘弾性ダンパーが、前記第二ダンパー装置の十字状のアームを内芯部材としたものであることにある。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the first to fourth viscoelastic dampers include a cross-shaped arm of the first damper device. It is a core member, and the fifth to eighth viscoelastic dampers have a cross-shaped arm of the second damper device as an inner core member.

本発明に係る軽量鉄骨住宅の制震構造は、第一〜第八粘弾性ダンパーが適度な粘弾性を有しており、かつ、第一〜第八粘弾性ダンパーを除いた枠組フレーム全体が適度な剛性を有しているため、地震によって外力が加わった場合に、各粘弾性ダンパーが適度に変形して、十分な減衰性能が発揮される。したがって、地震による振動エネルギーが効率的に熱エネルギーに変換されるため、建物の変形を大きく軽減することができる。また、請求項2の如く、枠組フレームに発生する最大水平耐力が枠組フレームの許容水平耐力を下回るように調整することにより、許容耐力内で大きな減衰を発生させることができる。また、過度な荷重の発生による躯体構造の損傷を防止することができる。すなわち、枠組フレームに発生する最大水平耐力が許容水平耐力を超えてしまうと、アンカーボルトが脱落したり、基礎が破壊されたり、躯体が損傷したりするが、請求項2の如く構成することにより、そのような事態の発生が防止される。さらに、請求項3の如き第一〜第八粘弾性ダンパーを採用した場合には、枠組フレームの大きさや形状に合わせて、粘弾性特性を容易に調整することが可能となる。   The damping structure of the lightweight steel house according to the present invention is such that the first to eighth viscoelastic dampers have appropriate viscoelasticity, and the entire frame without the first to eighth viscoelastic dampers is moderate. Therefore, when an external force is applied due to an earthquake, each viscoelastic damper is appropriately deformed to exhibit sufficient damping performance. Therefore, the vibration energy due to the earthquake is efficiently converted into thermal energy, so that the deformation of the building can be greatly reduced. Further, as described in claim 2, by adjusting the maximum horizontal proof stress generated in the frame frame to be lower than the allowable horizontal proof strength of the frame frame, a large attenuation can be generated within the allowable proof stress. Moreover, damage to the housing structure due to the generation of an excessive load can be prevented. That is, if the maximum horizontal strength generated in the frame exceeds the allowable horizontal strength, the anchor bolt may drop off, the foundation may be destroyed, or the housing may be damaged. The occurrence of such a situation is prevented. Furthermore, when the first to eighth viscoelastic dampers according to the third aspect are employed, it is possible to easily adjust the viscoelastic characteristics according to the size and shape of the frame.

以下、本発明にかかる軽量鉄骨住宅の制震構造の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of a vibration control structure for a lightweight steel house according to the present invention will be described in detail with reference to the drawings.

図3は、実施例1の枠組フレームを示す正面図である。枠組フレーム1は、軽量の形鋼を用いた鉄骨系プレハブ構造に採用されるものであり、所定の間隔をおいて配設される一対の柱材2,2と、それらの柱材2,2の上下の端同士をそれぞれ接続する横架材(上桟、下桟)3,3とによって、高さが約2700mmで幅が約1000mmの縦長の長方形状に組み付けられている。なお、各横架材3,3は、C型鋼によって形成されたものであり、各柱材2,2は、横架材3と同じC形鋼を幅方向に接合することによって形成されたものである。また、各横架材3,3と各柱材2,2とは、溶接によって接合されている。加えて、各横架材3,3は、溶接によって梁9と接合されている。なお、枠組フレーム1は、設計上、許容水平耐力Fsが30kNとなっている。   FIG. 3 is a front view illustrating the frame frame according to the first embodiment. The frame 1 is employed in a steel-based prefabricated structure using light-weight steel, and includes a pair of pillar members 2 and 2 disposed at a predetermined interval, and the pillar members 2 and 2. These are assembled into a vertically long rectangular shape having a height of about 2700 mm and a width of about 1000 mm by horizontal members (upper and lower bars) 3 and 3 that connect the upper and lower ends of each. The horizontal members 3 and 3 are made of C-shaped steel, and the column members 2 and 2 are formed by joining the same C-shaped steel as the horizontal material 3 in the width direction. It is. The horizontal members 3 and 3 and the column members 2 and 2 are joined by welding. In addition, the horizontal members 3 and 3 are joined to the beam 9 by welding. The frame 1 has an allowable horizontal proof stress Fs of 30 kN by design.

また、柱材2,2の間には、それらの柱材2,2を中間部位同士で接続する中桟4が架設されており、その中桟4によって上下二つの領域R1,R2に分割されている。なお、中桟4も、各横架材3,3等と同様なC型鋼によって形成されたものであり、溶接によって柱材2,2に接合されている。   Further, between the pillars 2 and 2, an intermediate rail 4 connecting the pillars 2 and 2 at intermediate portions is installed, and the intermediate rail 4 is divided into two upper and lower regions R1 and R2. ing. The middle rail 4 is also formed of C-shaped steel similar to the horizontal members 3, 3, etc., and is joined to the column members 2, 2 by welding.

一方、枠組フレーム1の左右の柱材2と上側の横架材3との仕口部分、および、左右の柱材2と下側の横架材3との仕口部分には、それぞれ、金属板からなる剛接合片11,11・・が設けられている。各剛接合片11,11・・の内側には、ボルト挿通孔を穿設した固定板が折返し状に設けられており、その固定板のボルト挿通孔を利用して、後述するダンパー装置に設けられた粘弾性ダンパーの外端(ボルト挿通孔の穿設部分)を螺合(すなわち、剛接合)することができるようになっている。   On the other hand, the joint portions of the left and right column members 2 and the upper horizontal member 3 and the joint portions of the left and right pillar members 2 and the lower horizontal member 3 of the frame 1 are respectively made of metal. A rigid joint piece 11, 11... Made of a plate is provided. A fixed plate with a bolt insertion hole is provided inside each rigid joint piece 11, 11,... In a folded shape, and is provided in a damper device to be described later using the bolt insertion hole of the fixed plate. The outer end of the formed viscoelastic damper (the portion where the bolt insertion hole is drilled) can be screwed (that is, rigidly joined).

また、枠組フレーム1の左右の柱材2と中桟4との仕口部分の上下には、それぞれ、金属板からなる剛接合片12,12・・が設けられている。各剛接合片12,12・・の内側には、ボルト挿通孔を穿設した固定板が折返し状に設けられており、その固定板のボルト挿通孔を利用して、後述するダンパー装置に設けられた粘弾性ダンパーの外端(ボルト挿通孔の穿設部分)を螺合(すなわち、剛接合)することができるようになっている。   Further, rigid joint pieces 12, 12,... Made of metal plates are provided above and below the joint portions of the left and right column members 2 and the middle rail 4 of the frame 1 respectively. A fixed plate with a bolt insertion hole is provided inside each rigid joint piece 12, 12,... In a folded shape, and is provided in a damper device to be described later using the bolt insertion hole of the fixed plate. The outer end of the formed viscoelastic damper (the portion where the bolt insertion hole is drilled) can be screwed (that is, rigidly joined).

そして、上記した各剛接合片11,11・・、剛接合片12,12・・を利用して、枠組フレーム1の上側の領域R1には、第一ダンパー装置D1が取り付けられており、枠組フレーム1の下側の領域R2には、第二ダンパー装置D2が取り付けられている。   The first damper device D1 is attached to the upper region R1 of the frame 1 using the above-described rigid joint pieces 11, 11,... And the rigid joint pieces 12, 12,. A second damper device D2 is attached to the lower region R2 of the frame 1.

図4は、第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dを有する第一ダンパー装置D1を示したものである。第一ダンパー装置D1は、断面長方形状の十字状のアームの各端縁に、同一の特性を有する粘弾性ダンパー(第一粘弾性ダンパー5a〜第四粘弾性ダンパー5d)を設けたものであり、中央部分から外側の4つの端縁まで(第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dの外側の端縁まで)の長さがすべて等しくなっている。なお、第一ダンパー装置D1と第二ダンパー装置D2とは、同一構造、同一規格のものである。   FIG. 4 shows a first damper device D1 having a first viscoelastic damper 5a to a fourth viscoelastic damper 5d. The first damper device D1 is provided with viscoelastic dampers (first viscoelastic damper 5a to fourth viscoelastic damper 5d) having the same characteristics at each end of a cross-shaped arm having a rectangular cross section. The lengths from the central portion to the four outer edges (from the first viscoelastic damper 5a to the outer edge of the fourth viscoelastic damper 5d) are all equal. The first damper device D1 and the second damper device D2 have the same structure and the same standard.

また、第一ダンパー装置D1に設けられた第一粘弾性ダンパー5aは、第一ダンパー装置D1のアーム7の先端側の外周を、アーム7よりも一回り大きな断面長方形状の筒状の外筒部材6で被覆したものである。そして、アーム7と外筒部材6との隙間には、粘弾性体8が介在した状態になっている。また、外筒部材6の外側の端縁には、ネジ溝を螺刻したボルト挿通孔9が穿設されている。なお、第一ダンパー装置D1に取り付けられた第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dおよび第二ダンパー装置D2に取り付けられた第五粘弾性ダンパー5e〜第八粘弾性ダンパー5hは、すべて、同一構造、同一規格のものである。   Further, the first viscoelastic damper 5a provided in the first damper device D1 is a cylindrical outer cylinder having a rectangular cross section that is slightly larger than the arm 7 on the outer periphery on the distal end side of the arm 7 of the first damper device D1. It is covered with the member 6. A viscoelastic body 8 is interposed in the gap between the arm 7 and the outer cylinder member 6. Further, a bolt insertion hole 9 in which a thread groove is screwed is formed in the outer edge of the outer cylinder member 6. The first viscoelastic damper 5a to the fourth viscoelastic damper 5d attached to the first damper device D1 and the fifth viscoelastic damper 5e to the eighth viscoelastic damper 5h attached to the second damper device D2 are all The same structure and the same standard.

第一ダンパー装置D1は、第一粘弾性ダンパー5aの外側の端縁を、左側の柱材2と上側の横架材3との仕口部分に設けられた剛接合片11に剛接合させ、第二粘弾性ダンパー5bの外側の端縁を、右側の柱材2と上側の横架材3との仕口部分に設けられた剛接合片11に剛接合させ 第三粘弾性ダンパー5cの外側の端縁を、左側の柱材2と中桟4との仕口部分に設けられた剛接合片12に剛接合させ、第四粘弾性ダンパー5dの外側の端縁を、右側の柱材2と中桟4との仕口部分に設けられた剛接合片12に剛接合させた状態で、枠組フレーム1の上側の領域R1に取り付けられている。一方、第二ダンパー装置D2は、第五粘弾性ダンパー5eの外側の端縁を、左側の柱材2と中桟4との仕口部分に設けられた剛接合片12に剛接合させ、第六粘弾性ダンパー5fの外側の端縁を、右側の柱材2と中桟4との仕口部分に設けられた剛接合片12に剛接合させ 第七粘弾性ダンパー5gの外側の端縁を、左側の柱材2と下側の横架材3との仕口部分に設けられた剛接合片11に剛接合させ、第八粘弾性ダンパー5hの外側の端縁を、右側の柱材2と下側の横架材3との仕口部分に設けられた剛接合片11に剛接合させた状態で、枠組フレーム1の下側の領域R1に取り付けられている。   The first damper device D1 rigidly joins the outer edge of the first viscoelastic damper 5a to the rigid joining piece 11 provided at the joint between the left column member 2 and the upper horizontal member 3. The outer edge of the second viscoelastic damper 5b is rigidly joined to a rigid joining piece 11 provided at the joint between the right column member 2 and the upper horizontal member 3. The outer side of the third viscoelastic damper 5c Are rigidly joined to a rigid joining piece 12 provided at the joint between the left pillar 2 and the middle rail 4, and the outer edge of the fourth viscoelastic damper 5d is joined to the right pillar 2 And attached to the upper region R1 of the frame 1 in a state of being rigidly joined to the rigid joining piece 12 provided at the joint portion between the intermediate frame 4 and the intermediate rail 4. On the other hand, the second damper device D2 rigidly joins the outer edge of the fifth viscoelastic damper 5e to the rigid joining piece 12 provided at the joint between the left column member 2 and the middle rail 4. The outer edge of the sixth viscoelastic damper 5f is rigidly joined to the rigid joint piece 12 provided at the joint between the right column 2 and the middle rail 4. The outer edge of the seventh viscoelastic damper 5g is The left column member 2 and the lower horizontal member 3 are rigidly joined to a rigid joint piece 11 provided at the joint portion, and the outer edge of the eighth viscoelastic damper 5h is connected to the right column member 2 In the state of being rigidly joined to the rigid joining piece 11 provided at the joint portion between the frame member 3 and the lower horizontal member 3, it is attached to the lower region R 1 of the frame 1.

そして、第一ダンパー装置D1の第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dは、左右の柱材2,2の間に相対的な変位が発生した場合や上側の横架材3と中桟4との間に相対的な変位が発生した場合に(すなわち、上下あるいは左右にずれた場合に)、粘弾性体8が剪断変形することによって、減衰性能を発揮するようになっている。一方、第二ダンパー装置D2の第五粘弾性ダンパー5e〜第八粘弾性ダンパー5hは、左右の柱材2,2の間に相対的な変位が発生した場合や下側の横架材3と中桟4との間に相対的な変位が発生した場合に(すなわち、上下あるいは左右にずれた場合に)、粘弾性体8が剪断変形することによって、減衰性能を発揮するようになっている。   The first viscoelastic damper 5a to the fourth viscoelastic damper 5d of the first damper device D1 are used when a relative displacement occurs between the left and right column members 2 and 2 or between the upper horizontal member 3 and the middle. When relative displacement occurs between the crosspiece 4 (that is, when it is displaced up and down or left and right), the viscoelastic body 8 is subjected to shear deformation, thereby exhibiting damping performance. On the other hand, the fifth viscoelastic damper 5e to the eighth viscoelastic damper 5h of the second damper device D2 are used when a relative displacement occurs between the left and right column members 2 and 2 or with the lower horizontal member 3. When relative displacement occurs between the middle rail 4 (that is, when it is displaced up and down or left and right), the viscoelastic body 8 is subjected to shear deformation to exhibit damping performance. .

実施例1の枠組フレーム1においては、水平方向のみを考慮した場合、上記の如く、粘弾性特性を図1のような4直列2並列換算バネとしてモデル化でき、第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dを有する第一ダンパー装置D1の代わりに剛体(第一ダンパー装置D1と同様な十字状の金属板等)を取り付けて測定した場合の取付強度を、枠組フレーム1全体の取付強度Kbsとして近似させることができる。また、枠組フレーム1においては、各領域R1,R2が中桟4を軸として上下対称であるため、第一ダンパー装置D1、第二ダンパー装置D2の第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの取付剛性Kbs1〜Kbs8、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの取付剛性Kbs1〜Kbs8の間に、上式2〜4が成立する。   In the frame 1 of the first embodiment, when only the horizontal direction is considered, the viscoelastic characteristics can be modeled as a 4-series 2-parallel conversion spring as shown in FIG. The attachment strength when the rigid body (a cross-shaped metal plate or the like similar to the first damper device D1) is attached instead of the first damper device D1 having the four viscoelastic dampers 5d is measured. It can be approximated as Kbs. Further, in the frame frame 1, each region R1, R2 is vertically symmetric about the middle rail 4, so that the first viscoelastic damper 5a to the eighth viscoelastic damper of the first damper device D1 and the second damper device D2. The above formulas 2 to 4 are established among the mounting rigidity Kbs1 to Kbs8 of 5h and the mounting rigidity Kbs1 to Kbs8 of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h.

そのため、上下の領域R1,R2における剛接合片11,11、剛接合片12,12の間に、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの代わりに、略同一形状の剛体(第一ダンパー装置D1と同様な十字状の金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図3の矢印方向)、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式2〜4を用いて、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの各取付部分の取付剛性Kbs1〜Kbs8を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、56.3kN/cmであった。取付剛性Kbs1〜Kbs8の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1〜Kbs8の算出結果を表2に示す。   Therefore, between the rigid joint pieces 11 and 11 and the rigid joint pieces 12 and 12 in the upper and lower regions R1 and R2, instead of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h, a rigid body having substantially the same shape (first A cross-shaped metal plate similar to one damper device D1 is attached, and in that state, the frame 1 is horizontally deformed so that the interlayer deformation angle is 1/200 rad (in the direction of the arrow in FIG. 3), and the applied stress The attachment rigidity Kbs of the frame 1 is calculated from the relationship between the deformation and the deformation amount, and the attachment rigidity Kbs1 to Kbs8 of each attachment part of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h is calculated using the above equations 2-4. Was calculated. The calculated value of the attachment rigidity Kbs of the frame 1 was 56.3 kN / cm. Table 1 shows the calculation results of the mounting rigidity Kbs1 to Kbs8. Table 2 shows the calculation results of the attachment rigidity Kbs1 to Kbs8 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

一方、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの貯蔵剛性K’ds1〜K’ds8は、それぞれ、下式6により算出される。
K’ds1〜K’ds8=G×S/d ・・6
なお、上式6において、Gは剪断弾性係数であり、K’ds1〜K’ds8の算出にあたっては、粘弾性体の特性から剪断弾性係数Gを0.18N/mmとした。また、Sは第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの各粘弾性体8の面積であり、dは各粘弾性体8の厚み(粘弾性体8単体の厚み)である。
On the other hand, the storage rigidity K′ds1 to K′ds8 of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h is calculated by the following expression 6, respectively.
K′ds1 to K′ds8 = G × S / d 6
In the above equation 6, G is a shear elastic modulus, and in calculating K′ds1 to K′ds8, the shear elastic modulus G was set to 0.18 N / mm 2 from the characteristics of the viscoelastic body. S is the area of each viscoelastic body 8 of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h, and d is the thickness of each viscoelastic body 8 (the thickness of the viscoelastic body 8 alone).

それゆえ、貯蔵剛性K’ds1〜K’ds8が、それぞれ、表1に示す数値となるように、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの各粘弾性体8の面積S、厚みdを調整した(すなわち、貯蔵剛性K’ds1〜K’ds8が表1に示す数値となるように第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hを設計した)。   Therefore, the area S and the thickness of each viscoelastic body 8 of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h so that the storage rigidity K′ds1 to K′ds8 are the values shown in Table 1, respectively. d was adjusted (that is, the first viscoelastic damper 5a to the eighth viscoelastic damper 5h were designed so that the storage rigidity K′ds1 to K′ds8 was a numerical value shown in Table 1).

また、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hの各損失係数tanδ1〜tanδ8を測定した。なお、かかる損失係数tanδ1〜tanδ8の測定は、動的加振機((株)鷺宮製作所製)を用いて、20℃の雰囲気下で、2Hzの正弦波を利用して200%の剪断歪を加えた場合の変形−荷重を挙動を調べることによって行った。損失係数tanδ1〜tanδ8の測定結果を表1に示す。   Further, the respective loss coefficients tan δ1 to tan δ8 of the first viscoelastic damper 5a to the eighth viscoelastic damper 5h were measured. The loss factors tan δ1 to tan δ8 are measured using a dynamic shaker (manufactured by Kakinomiya Seisakusho Co., Ltd.) and a 200% shear strain using a 2 Hz sine wave in an atmosphere of 20 ° C. When applied, deformation-loading was performed by examining the behavior. Table 1 shows the measurement results of the loss coefficients tan δ1 to tan δ8.

上記の如く、枠組フレーム1の取付剛性Kbs、取付剛性Kbs1〜Kbs8を求めた後に、上下の領域R1,R2における剛接合片11,11、剛接合片12,12の間から剛体を取り外し、上下の領域R1,R2に、それぞれ、第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dを有する第一ダンパー装置D1と、第五粘弾性ダンパー5e〜第八粘弾性ダンパー5hを有する第二ダンパー装置D2とを取り付けた。かかる如く第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hを取り付けた枠組フレーム1においては、貯蔵剛性K’ds1〜K’ds8および取付剛性Kbs1〜Kbs8を考慮すると、Kbs1/K’ds1の値は、5.14に調整されていることになり、Kbs2/K’ds2の値は、5.17に調整されていることになり、Kbs3/K’ds3の値は、5.15に調整されていることになり、Kbs4/K’ds4の値は、5.13に調整されていることになり、Kbs5/K’ds5の値は、4.90に調整されていることになり、Kbs6/K’ds6の値は、5.00に調整されていることになり、Kbs7/K’ds7の値は、5.13に調整されていることになり、Kbs8/K’ds8の値は、4.99に調整されていることになる(表1参照)。   After obtaining the mounting rigidity Kbs and the mounting rigidity Kbs1 to Kbs8 of the frame 1 as described above, the rigid body is removed from between the rigid joint pieces 11 and 11 and the rigid joint pieces 12 and 12 in the upper and lower regions R1 and R2, The first damper device D1 having the first viscoelastic damper 5a to the fourth viscoelastic damper 5d and the second damper device having the fifth viscoelastic damper 5e to the eighth viscoelastic damper 5h in the regions R1 and R2, respectively. D2 was attached. As described above, in the frame 1 to which the first viscoelastic damper 5a to the eighth viscoelastic damper 5h are attached, the value of Kbs1 / K'ds1 is considered in consideration of the storage rigidity K'ds1 to K'ds8 and the attachment rigidity Kbs1 to Kbs8. Is adjusted to 5.14, the value of Kbs2 / K'ds2 is adjusted to 5.17, and the value of Kbs3 / K'ds3 is adjusted to 5.15. Therefore, the value of Kbs4 / K'ds4 is adjusted to 5.13, the value of Kbs5 / K'ds5 is adjusted to 4.90, and Kbs6 / The value of K'ds6 is adjusted to 5.00, the value of Kbs7 / K'ds7 is adjusted to 5.13, and the value of Kbs8 / K'ds8 is 4 .99 adjusted Become Rukoto (see Table 1).

そして、第一粘弾性ダンパー5a〜第八粘弾性ダンパー5hを取り付けた枠組フレーム1において、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。   Then, in the frame 1 to which the first viscoelastic damper 5a to the eighth viscoelastic damper 5h are attached, the frame 1 is horizontally placed so that the interlayer deformation angle is 1/200 rad using a large dynamic vibrator. The storage stiffness K′as, the loss stiffness K ″ as, and the loss coefficient tanδa of the entire system are measured from the deformation-load relationship, and the horizontal components tanδa / tanδ1 and tanδa / tanδ2 that serve as indicators of the damping characteristics are measured. The calculation results are shown in Table 1. Further, tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/100 rad are shown in Table 2.

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式5に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles of 1/200 rad and 1/100 rad was calculated based on the above formula 5. Tables 1 and 2 show the calculated Fdsmax.

実施例1の枠組フレーム1の上下各領域R1,R2の剛接合片11,11・・を、ピン結合可能なピン挿通孔を有するピン接合片13,13・・に変更するとともに、上下の領域R1,R2の剛接合片12,12・・を、ピン結合可能なピン挿通孔を有するピン接合片14,14・・に変更した(図5参照)。そして、実施例1と同様に、上下の各領域R1,R2の左右におけるピン接合片13,13、ピン接合片14の間に剛体(第一ダンパー装置D1と同様な十字状の金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図5の矢印方向)、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式2〜4を用いて、第一粘弾性ダンパー〜第八粘弾性ダンパーの各取付部分の取付剛性Kbs1〜Kbs8を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、49.0kN/cmであった。取付剛性Kbs1〜Kbs8の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1〜Kbs8の算出結果を表2に示す。   The rigid joint pieces 11, 11,... In the upper and lower regions R1, R2 of the frame 1 of the first embodiment are changed to pin joint pieces 13, 13,. The rigid joint pieces 12, 12,... Of R1, R2 are changed to pin joint pieces 14, 14,... Having pin insertion holes that can be pin-coupled (see FIG. 5). As in the first embodiment, a rigid body (a cross-shaped metal plate similar to the first damper device D1) is provided between the pin joint pieces 13 and 13 and the pin joint pieces 14 on the left and right of the upper and lower regions R1 and R2. In this state, the frame 1 is horizontally deformed so that the interlayer deformation angle is 1/200 rad (in the direction of the arrow in FIG. 5), and the mounting rigidity Kbs of the frame 1 is determined from the relationship between the applied stress and the amount of deformation. And the mounting stiffness Kbs1 to Kbs8 of each mounting portion of the first viscoelastic damper to the eighth viscoelastic damper was calculated using the above equations 2 to 4. The calculated value of the mounting rigidity Kbs of the frame 1 was 49.0 kN / cm. Table 1 shows the calculation results of the mounting rigidity Kbs1 to Kbs8. Table 2 shows the calculation results of the attachment rigidity Kbs1 to Kbs8 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

また、図6は、実施例2の枠組フレーム1の上側の領域R1に取り付ける第一ダンパー装置D11を示したものである。なお、実施例2の枠組フレーム1の下側の領域R2に取り付ける第二ダンパー装置D12は、第一ダンパー装置D11と同一構造、同一規格のものである。実施例2の第一ダンパー装置D11は、実施例1の第一ダンパー装置D1と同様に、断面長方形状の十字状のアームの各端縁に、同一の特性を有する粘弾性ダンパー(第一粘弾性ダンパー5a〜第四粘弾性ダンパー5d)を設けたものであり、中央部分から外側の4つの端縁まで(第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dの外側の端縁まで)の長さがすべて等しくなっている。しかしながら、第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dの外側の端縁の構造が、実施例1の第一ダンパー装置D1と異なっている。   FIG. 6 shows the first damper device D11 attached to the upper region R1 of the frame 1 of the second embodiment. Note that the second damper device D12 attached to the lower region R2 of the frame 1 of the second embodiment has the same structure and the same standard as the first damper device D11. Similar to the first damper device D1 of the first embodiment, the first damper device D11 of the second embodiment has viscoelastic dampers (first viscosity) having the same characteristics at each end of the cross-shaped arm having a rectangular cross section. Elastic damper 5a to fourth viscoelastic damper 5d), from the central portion to the four outer edges (from the first viscoelastic damper 5a to the outer edge of the fourth viscoelastic damper 5d). All the lengths are equal. However, the structure of the outer edge of the first viscoelastic damper 5a to the fourth viscoelastic damper 5d is different from the first damper device D1 of the first embodiment.

第一ダンパー装置D11に設けられた第一粘弾性ダンパー15a〜第四粘弾性ダンパー15dは、規格上同一のものであり、実施例1の第一ダンパー装置D1に設けられた第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dの構造と略同様であるが、外筒部材6の外側の端縁の形状が実施例1のものと異なっている。すなわち、第一粘弾性ダンパー15a〜第四粘弾性ダンパー15dの外筒部材6の外側の端縁には、ピン挿通孔を穿設したピン結合部材16が固着されている。第一ダンパー装置D11に設けられた第一粘弾性ダンパー15a〜第四粘弾性ダンパー15dのその他の部分の形状、構造は、実施例1の第一ダンパー装置D1に設けられた第一粘弾性ダンパー5a〜第四粘弾性ダンパー5dと同様である。また、第一ダンパー装置D11に取り付けられた第一粘弾性ダンパー15a〜第四粘弾性ダンパー15d、および、第二ダンパー装置D12に取り付けられた第五粘弾性ダンパー15e〜第八粘弾性ダンパー15hは、それぞれ、貯蔵剛性(K’ds1〜K’ds8)が表1の数値となるように調整されている。   The first viscoelastic damper 15a to the fourth viscoelastic damper 15d provided in the first damper device D11 are the same in terms of standards, and the first viscoelastic damper provided in the first damper device D1 of the first embodiment. Although it is substantially the same as the structure of 5a-4th viscoelastic damper 5d, the shape of the outer edge of the outer cylinder member 6 is different from that of the first embodiment. That is, a pin coupling member 16 having a pin insertion hole is fixed to the outer edge of the outer cylinder member 6 of the first viscoelastic damper 15a to the fourth viscoelastic damper 15d. The shapes and structures of the other parts of the first viscoelastic damper 15a to the fourth viscoelastic damper 15d provided in the first damper device D11 are the same as those of the first viscoelastic damper provided in the first damper device D1 of the first embodiment. The same as 5a to the fourth viscoelastic damper 5d. The first viscoelastic damper 15a to the fourth viscoelastic damper 15d attached to the first damper device D11 and the fifth viscoelastic damper 15e to the eighth viscoelastic damper 15h attached to the second damper device D12 are The storage rigidity (K′ds1 to K′ds8) is adjusted so as to be the values shown in Table 1.

また、第一ダンパー装置D11に取り付けられた第一粘弾性ダンパー15a〜第四粘弾性ダンパー15d、および、第二ダンパー装置D12に取り付けられた第五粘弾性ダンパー15e〜第八粘弾性ダンパー15hの各損失係数tanδ1〜tanδ8を、実施例1と同様の方法によって測定した。測定結果を表1に示す。   Further, the first viscoelastic damper 15a to the fourth viscoelastic damper 15d attached to the first damper device D11 and the fifth viscoelastic damper 15e to the eighth viscoelastic damper 15h attached to the second damper device D12. Each loss coefficient tan δ1 to tan δ8 was measured by the same method as in Example 1. The measurement results are shown in Table 1.

しかる後、枠組フレーム1の上側の領域R1のピン接合片13,13、ピン接合片14,14の間に、第一粘弾性ダンパー15a〜第四粘弾性ダンパー15dを有する第一ダンパー装置D11を実施例1と同様の態様で取り付け、下側の領域R2のピン接合片13,13、ピン接合片14,14の間に、第五粘弾性ダンパー15e〜第八粘弾性ダンパー15hを有する第二ダンパー装置D12を実施例1と同様の態様で取り付けた。   Thereafter, the first damper device D11 having the first viscoelastic damper 15a to the fourth viscoelastic damper 15d between the pin joint pieces 13 and 13 and the pin joint pieces 14 and 14 in the upper region R1 of the frame 1 is installed. The second viscoelastic damper 15e is attached in the same manner as in the first embodiment, and the fifth viscoelastic damper 15h to the eighth viscoelastic damper 15h are provided between the pin joint pieces 13 and 13 and the pin joint pieces 14 and 14 in the lower region R2. The damper device D12 was attached in the same manner as in Example 1.

そして、実施例1と同様に、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。なお、第一粘弾性ダンパー15a〜第八粘弾性ダンパー15hを取り付けた実施例2の枠組フレーム1においては、第一粘弾性ダンパー15a〜第八粘弾性ダンパー15hの各貯蔵剛性K’ds1〜K’ds8および各取付剛性Kbs1〜Kbs8を考慮すると、Kbs1/K’ds1の値が4.93に調整されていることになり、Kbs2/K’ds2の値が5.01に調整されていることになり、Kbs3/K’ds3の値が4.98に調整されていることになり、Kbs4/K’ds4の値が5.01に調整されていることになり、Kbs5/K’ds5の値が4.93に調整されていることになり、Kbs6/K’ds6の値が4.98に調整されていることになり、Kbs7/K’ds7の値が4.90に調整されていることになり、Kbs8/K’ds8の値が5.03に調整されていることにな(表1参照)。   Then, similarly to the first embodiment, using a large dynamic vibrator, the frame frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/200 rad. Storage stiffness K′as, loss stiffness K ″ as, and loss coefficient tan δa were measured, and horizontal components tan δa / tan δ1 and tan δa / tan δ2 serving as indexes of damping characteristics were calculated. The calculation results are shown in Table 1. Tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/100 rad are shown in Table 2. The first viscoelastic damper 15a to the eighth viscoelastic damper. In the frame 1 of the second embodiment to which 15h is attached, the storage rigidity K′ds1 to K′d of the first viscoelastic damper 15a to the eighth viscoelastic damper 15h. 8 and each mounting rigidity Kbs1 to Kbs8, the value of Kbs1 / K'ds1 is adjusted to 4.93, and the value of Kbs2 / K'ds2 is adjusted to 5.01. Thus, the value of Kbs3 / K'ds3 is adjusted to 4.98, the value of Kbs4 / K'ds4 is adjusted to 5.01, and the value of Kbs5 / K'ds5 is It is adjusted to 4.93, the value of Kbs6 / K'ds6 is adjusted to 4.98, and the value of Kbs7 / K'ds7 is adjusted to 4.90. Thus, the value of Kbs8 / K′ds8 is adjusted to 5.03 (see Table 1).

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式5に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles of 1/200 rad and 1/100 rad was calculated based on the above formula 5. Tables 1 and 2 show the calculated Fdsmax.

Figure 2006283376
Figure 2006283376

Figure 2006283376
Figure 2006283376

表1、表2より、枠組フレーム1の第一〜第八粘弾性ダンパーの取付部分の取付剛性Kbs1〜Kbs8、第一〜第八粘弾性ダンパーの貯蔵剛性K’ds1〜K’ds4、第一〜第八粘弾性ダンパーの損失係数tanδ1〜tanδ8が、本発明の条件を満たすように調整された実施例1,2の枠組フレーム1においては、減衰特性の指標となる水平成分のtanδa/tanδ1,tanδa/tanδ2がいずれも50%以上となり、良好な減衰特性を発現し得ることが分かる。また、表1、表2より、実施例1,2における枠組フレーム1に発生する最大水平耐力Fdsmaxは、枠組フレーム1の許容水平耐力Fs(30kN)に比べて十分に小さくなっていることが分かる。   From Tables 1 and 2, the mounting rigidity Kbs1 to Kbs8 of the first to eighth viscoelastic damper mounting portions of the frame 1 is stored, the storage rigidity K'ds1 to K'ds4 of the first to eighth viscoelastic dampers, first. In the frame 1 of the first and second embodiments in which the loss coefficients tan δ1 to tan δ8 of the eighth viscoelastic damper are adjusted so as to satisfy the conditions of the present invention, the horizontal component tan δa / tan δ1, which serves as an index of the damping characteristic It can be seen that tan δa / tan δ2 is 50% or more, and good attenuation characteristics can be exhibited. Also, from Tables 1 and 2, it can be seen that the maximum horizontal strength Fdsmax generated in the frame 1 in Examples 1 and 2 is sufficiently smaller than the allowable horizontal strength Fs (30 kN) of the frame 1. .

なお、本発明の軽量鉄骨住宅の制震構造の構成は、上記実施形態の態様に何ら限定されるものではなく、枠組フレームや粘弾性ダンパー等の構成を、本発明の趣旨を逸脱しない範囲で適宜変更することができる。   In addition, the structure of the light-damped steel house vibration control structure of the present invention is not limited to the aspect of the above-described embodiment, and the structure of the frame frame, the viscoelastic damper, and the like is within the scope of the present invention. It can be changed as appropriate.

たとえば、本発明においては、第一〜第八粘弾性ダンパーの貯蔵剛性K’dsの値を枠組フレームの取付剛性Kbsの値に合わせて適宜調整することが可能である。それゆえ、第一〜第八粘弾性ダンパーの特性を、用途に合わせて適宜変更することができる。したがって、ゴム系、アスファルト系、アクリル系、スチレン系等の各種の高分子化合物を粘弾性体として好適に用いることができる。また、ダンパー装置に設けられる第一〜第八粘弾性ダンパーは、上記実施形態の如く、内芯部材として機能するアームの外周を外筒部材で覆い、アームと外筒部材との隙間に粘弾性体を介在させたものに限定されず、芯プレートと一対の外プレートとの間に粘弾性体を介在させたものや、表裏一対のプレートの間に粘弾性体を介在させたもの等に変更することも可能である。   For example, in the present invention, the value of the storage rigidity K'ds of the first to eighth viscoelastic dampers can be appropriately adjusted according to the value of the mounting rigidity Kbs of the frame frame. Therefore, the characteristics of the first to eighth viscoelastic dampers can be appropriately changed according to the application. Therefore, various polymer compounds such as rubber, asphalt, acrylic, and styrene can be suitably used as the viscoelastic body. Further, the first to eighth viscoelastic dampers provided in the damper device cover the outer periphery of the arm functioning as the inner core member with the outer cylinder member as in the above embodiment, and viscoelasticity is formed in the gap between the arm and the outer cylinder member. It is not limited to those with a body interposed, but is changed to one with a viscoelastic body interposed between a core plate and a pair of outer plates, or with a viscoelastic body between a pair of front and back plates It is also possible to do.

加えて、本発明の制震構造に採用される枠組フレームは、上記実施形態の如く同一特性の粘弾性ダンパーを設けたダンパー装置を中桟の上下に取り付けたものに限定されず、
異なる特性の粘弾性ダンパーを設けたダンパー装置を中桟の上下に取り付けたものに変更することも可能である。かかる場合でも、Kbs1〜Kbs8,K’ds1〜K’ds8,tanδ1〜tanδ8が上記所定の関係を満たすように調整されていれば、枠組フレームは十分な減衰性能を発揮することができるものとなる。
In addition, the frame frame employed in the vibration control structure of the present invention is not limited to the one in which the damper device provided with the viscoelastic damper having the same characteristics as in the above embodiment is mounted above and below the middle rail,
It is also possible to change the damper device provided with viscoelastic dampers having different characteristics to those attached to the top and bottom of the middle rail. Even in such a case, if Kbs1 to Kbs8, K′ds1 to K′ds8, and tan δ1 to tan δ8 are adjusted to satisfy the predetermined relationship, the frame frame can exhibit sufficient attenuation performance. .

本発明の枠組フレームを4直列2並列換算バネとしてモデル化して示す説明図である。It is explanatory drawing which models and shows the frame frame of this invention as 4 series 2 parallel conversion springs. 本発明の枠組フレームを示す模式図である。It is a schematic diagram which shows the frame frame of this invention. 実施例1の枠組フレームの正面図である。It is a front view of the frame frame of Example 1. (a)は実施例1のダンパー装置の正面図であり、(b)は(a)におけるA−A線断面図である。(A) is a front view of the damper apparatus of Example 1, (b) is the sectional view on the AA line in (a). 実施例2の枠組フレームの正面図である。It is a front view of the frame frame of Example 2. (a)は実施例2のダンパー装置の正面図であり、(b)は(a)におけるB−B線断面図である。(A) is a front view of the damper apparatus of Example 2, (b) is the BB sectional drawing in (a).

符号の説明Explanation of symbols

1・・枠組フレーム、2・・柱材、3・・横架材、4・・中桟、5a,15a・・第一粘弾性ダンパー、5b,15b・・第二粘弾性ダンパー、5c,15c・・第三粘弾性ダンパー、5d,15d・・第四粘弾性ダンパー、5e,15e・・第五粘弾性ダンパー、5f,15f・・第六粘弾性ダンパー、5g,15g・・第七粘弾性ダンパー、5h,15h・・第八粘弾性ダンパー、6・・外筒部材、7・・内芯部材、8・・粘弾性体、D1,D11・・第一ダンパー装置、D2,D12・・第二ダンパー装置。   1 ・ ・ Framework frame 2 ・ ・ Column material 3 ・ ・ Horizontal material 4 ・ ・ Medium cross 5a, 15a ・ ・ First viscoelastic damper, 5b, 15b ・ ・ Second viscoelastic damper, 5c, 15c · · Third viscoelastic damper, 5d, 15d · · Fourth viscoelastic damper, 5e, 15e · · Fifth viscoelastic damper, 5f, 15f · · Sixth viscoelastic damper, 5g, 15g · · Seventh viscoelastic Damper, 5h, 15h .. Eighth viscoelastic damper, 6 .... Outer cylinder member, 7 .... Inner core member, 8 .... Viscoelastic body, D1, D11 ... First damper device, D2, D12 ... Two damper device.

Claims (4)

左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、
前記枠組フレームの内部が中桟によって上下2つの領域に二分割されており、その中桟の上側の領域においては、
十字状のアームの4つの端縁に第一〜第四粘弾性ダンパーを設けた第一ダンパー装置が、その第一〜第四粘弾性ダンパーを、それぞれ、片側の柱材と上側の横架材との仕口、反対側の柱材と上側の横架材との仕口、片側の柱材と中桟との仕口、反対側の柱材と中桟との仕口に接続させた状態で取り付けられており、
前記中桟の下側においては、
十字状のアームの4つの端縁に第五〜第八粘弾性ダンパーを設けた第二ダンパー装置が、その第五〜第八粘弾性ダンパーを、それぞれ、片側の柱材と上側の横架材との仕口、反対側の柱材と上側の横架材との仕口、片側の柱材と中桟との仕口、反対側の柱材と中桟との仕口に接続させた状態で取り付けられており、
層間変形角が1/200radである場合に、下記(1)〜(3)を満たすことを特徴とする軽量鉄骨住宅の制震構造。
(1)Kbs1,Kbs2,Kbs3,Kbs4,Kbs5,Kbs6,Kbs7,Kbs8がいずれも40kN/cm以上200kN/cm以下である
(2)Kbs1/K’ds1,Kbs2/K’ds2,Kbs3/K’ds3,Kbs4/K’ds4,Kbs5/K’ds5,Kbs6/K’ds6,Kbs7/K’ds7,Kbs8/K’ds8がいずれも1.5以上10以下である
(3)tanδ1,tanδ2,tanδ3,tanδ4,tanδ5,tanδ6,tanδ7,tanδ8がいずれも0.6以上である
(但し、Kbs1,Kbs2,Kbs3,Kbs4,Kbs5,Kbs6,Kbs7,Kbs8は、それぞれ、第一〜第八粘弾性ダンパーの各取付部分の取付剛性であり、K’ds1,K’ds2,K’ds3,K’ds4,K’ds5,K’ds6,K’ds7,K’ds8は、それぞれ、第一〜第八粘弾性ダンパーの各貯蔵剛性であり、tanδ1,tanδ2,tanδ3,tanδ4,tanδ5,tanδ6,tanδ7,tanδ8は、それぞれ、第一〜第八粘弾性ダンパーの各損失係数である)
It is a light-damping structure for light-weight steel houses, with viscoelastic dampers installed on a frame frame composed of left and right pillars and upper and lower horizontal members.
The inside of the frame is divided into two upper and lower regions by a middle rail, and in the upper region of the middle rail,
A first damper device in which first to fourth viscoelastic dampers are provided at four edges of a cross-shaped arm, the first to fourth viscoelastic dampers are respectively connected to a column member on one side and an upper horizontal member. The connection between the column material on the opposite side and the horizontal member on the upper side, the connection between the column material on one side and the middle beam, and the connection between the column material on the other side and the middle beam It is attached with
Under the middle rail,
The second damper device provided with the fifth to eighth viscoelastic dampers on the four edges of the cross-shaped arm, the fifth to eighth viscoelastic dampers, respectively, with the column member on one side and the horizontal member on the upper side, respectively. The connection between the column material on the opposite side and the horizontal member on the upper side, the connection between the column material on one side and the middle beam, and the connection between the column material on the other side and the middle beam It is attached with
When the interlayer deformation angle is 1/200 rad, the following structure (1) to (3) is satisfied.
(1) Kbs1, Kbs2, Kbs3, Kbs4, Kbs5, Kbs6, Kbs7, Kbs8 are all 40 kN / cm or more and 200 kN / cm or less (2) Kbs1 / K'ds1, Kbs2 / K'ds2, Kbs3 / K ' ds3, Kbs4 / K'ds4, Kbs5 / K'ds5, Kbs6 / K'ds6, Kbs7 / K'ds7, Kbs8 / K'ds8 are all 1.5 or more and 10 or less. (3) tanδ1, tanδ2, tanδ3 , Tan δ4, tan δ5, tan δ6, tan δ7, tan δ8 are all 0.6 or more (provided that Kbs1, Kbs2, Kbs3, Kbs4, Kbs5, Kbs6, Kbs7, Kbs8 are the first to eighth viscoelastic dampers, respectively. It is the attachment rigidity of each attachment part, K'ds1, K'ds2, K'ds3, K'ds4, K'd 5, K′ds6, K′ds7, K′ds8 are the storage rigidity of the first to eighth viscoelastic dampers, respectively, tan δ1, tan δ2, tan δ3, tan δ4, tan δ5, tan δ6, tan δ6, tan δ8, , Each loss coefficient of the first to eighth viscoelastic dampers)
層間変形角が1/100radである場合に、下式1を満たすことを特徴とする請求項1に記載の軽量鉄骨住宅の制震構造。
Fdsmax<Fs ・・1
(但し、Fdsmaxは、枠組フレームに発生する最大水平耐力であり、Fsは、枠組フレームの許容水平耐力である)
2. The light-damped steel house vibration control structure according to claim 1, wherein the following expression 1 is satisfied when the interlayer deformation angle is 1/100 rad.
Fdsmax <Fs 1
(Where Fdsmax is the maximum horizontal strength generated in the frame, and Fs is the allowable horizontal strength of the frame)
前記第一〜第八粘弾性ダンパーが、外筒部材の内部に内芯部材を挿入し、その内芯部材と外筒部材との隙間を粘弾性体で充填したものであることを特徴とする請求項1、または請求項2に記載の建物の制震構造。   The first to eighth viscoelastic dampers are characterized in that an inner core member is inserted into an outer cylinder member, and a gap between the inner core member and the outer cylinder member is filled with a viscoelastic body. The building vibration control structure according to claim 1 or claim 2. 前記第一〜第四粘弾性ダンパーが、前記第一ダンパー装置の十字状のアームを内芯部材としたものであり、前記第五〜第八粘弾性ダンパーが、前記第二ダンパー装置の十字状のアームを内芯部材としたものであることを特徴とする請求項1〜3のいずれかに記載の建物の制震構造。   The first to fourth viscoelastic dampers have cross-shaped arms of the first damper device as inner core members, and the fifth to eighth viscoelastic dampers have a cross shape of the second damper device. The building's seismic control structure according to any one of claims 1 to 3, wherein said arm is an inner core member.
JP2005104277A 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house Active JP4551258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104277A JP4551258B2 (en) 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104277A JP4551258B2 (en) 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house

Publications (2)

Publication Number Publication Date
JP2006283376A true JP2006283376A (en) 2006-10-19
JP4551258B2 JP4551258B2 (en) 2010-09-22

Family

ID=37405573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104277A Active JP4551258B2 (en) 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house

Country Status (1)

Country Link
JP (1) JP4551258B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183053A (en) * 2008-01-30 2009-08-13 Toshiba Corp Closed type metallic switch gear
CN115749034A (en) * 2022-12-24 2023-03-07 苏州达康建筑科技有限公司 Building energy dissipation supports metal damping device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141174A (en) * 1997-11-14 1999-05-25 Asahi Chem Ind Co Ltd Vibration control structure of building
JPH11256870A (en) * 1998-03-16 1999-09-21 Takenaka Komuten Co Ltd Vibration control device using viscous body or viscoelastic body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141174A (en) * 1997-11-14 1999-05-25 Asahi Chem Ind Co Ltd Vibration control structure of building
JPH11256870A (en) * 1998-03-16 1999-09-21 Takenaka Komuten Co Ltd Vibration control device using viscous body or viscoelastic body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183053A (en) * 2008-01-30 2009-08-13 Toshiba Corp Closed type metallic switch gear
CN115749034A (en) * 2022-12-24 2023-03-07 苏州达康建筑科技有限公司 Building energy dissipation supports metal damping device

Also Published As

Publication number Publication date
JP4551258B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
CA2524547A1 (en) Fork configuration dampers and method of using same
RU2279584C1 (en) Rubber vibration isolator for equipment
TW201400678A (en) Composite damping joint
JP6035528B2 (en) Cabinet vibration control structure
JP4464307B2 (en) Seismic control structure of lightweight steel house
JP4456515B2 (en) Seismic control structure of lightweight steel house
JP4551258B2 (en) Seismic control structure of lightweight steel house
JP4456514B2 (en) Seismic control structure of lightweight steel house
JP2012042016A (en) Three-dimensional base isolation device
Ismail An elastoplastic bracing system for structural vibration control
JP4603918B2 (en) Seismic control structure of lightweight steel house
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JP6912102B2 (en) Energy absorption mechanism and wooden building
JP3890073B1 (en) Frame joint parts
JP6420012B1 (en) Passive vibration control device for buildings
JP4703971B2 (en) Energy absorbing brace damping device and energy absorbing device
JP2010242449A (en) Seismic response control repair structure and seismic response control repair method for existing building
JP5305756B2 (en) Damping wall using corrugated steel
Ramakrishna et al. Experiments on coupled technique for adjacent similar buildings
JP5438790B2 (en) Vibration control panel
WO2009142040A1 (en) Earthquake-proof structure
JP4706281B2 (en) Building seismic control structure
JP2005314917A (en) Vibration control stud
JP6037298B1 (en) Energy absorption mechanism
JP4609628B2 (en) Seismic shock absorber and seismic joint device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Ref document number: 4551258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250