JP2006281270A - Hand welding analyzer and hand welding torch-integrated type monitoring camera applicable to the analyzer - Google Patents

Hand welding analyzer and hand welding torch-integrated type monitoring camera applicable to the analyzer Download PDF

Info

Publication number
JP2006281270A
JP2006281270A JP2005104443A JP2005104443A JP2006281270A JP 2006281270 A JP2006281270 A JP 2006281270A JP 2005104443 A JP2005104443 A JP 2005104443A JP 2005104443 A JP2005104443 A JP 2005104443A JP 2006281270 A JP2006281270 A JP 2006281270A
Authority
JP
Japan
Prior art keywords
welding
manual welding
image
manual
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104443A
Other languages
Japanese (ja)
Inventor
Satoru Asai
Katsumi Kubo
Masatake Sakuma
Ryusuke Tsuboi
克巳 久保
正剛 佐久間
竜介 坪井
知 浅井
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP2005104443A priority Critical patent/JP2006281270A/en
Publication of JP2006281270A publication Critical patent/JP2006281270A/en
Application status is Pending legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hand welding analyzer that images the behavior of a TIG hand welding operation and that evaluates welding skill based on the feature amount extracted from the image, and also to provide a hand welding torch integrated type monitoring camera that is applicable to the analyzer. <P>SOLUTION: The hand welding analyzer analyzes and processes the image information around a molten pool during the welding that is imaged by the monitoring camera installed in the periphery of the target hand welding operation. The analyzer is equipped with a hand welder integrated type image pickup unit 1 that integrally connects the monitoring camera 2 with the hand welding torch 3, an image data recorder 8 that processes and records the digital signals of the image from the image pickup unit, a data processor 9 that processes the recorded image information as data, and a display device 10 that displays the information so processed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、手溶接作業分析装置および手溶接作業分析装置に適用する手溶接トーチ一体型監視カメラの改良に関する。 The present invention relates to an improvement in manual welding torch integrated surveillance camera applied to manual welding operations analyzer and manual welding operations analyzer.

最近の溶接技術分野、例えばTIG溶接分野では、溶接施工の自動化が進む一方で、自動化の困難な部分に対して依然として熟練溶接士の技能、能力に依存することが高く、熟練技能の継承が問題になっている。 Recent welding art, for example by TIG welding art, while automation of welding progresses, still skilled welder skills against difficult part of the automation, high depend on the ability of the skilled skill transfer problem It has become.

また、溶接施工の自動化に伴って知識情報が高度化、複雑化する中において、経験の浅い溶接士あるいは熟練溶接士にとっても、溶接施工中の種々の挙動を画像処理し、画像処理した知識情報をフィードバックし、練度を高める溶接士支援システムの構築が必要とされている。 Moreover, the knowledge information is advanced along with the automation of welding, the inside of complicated, even for shallow welder or skilled welder experienced various behavior during welding and image processing, the image processing knowledge information the feedback, there is a need to construct a welder support system to increase proficiency.

このような情況の中にあって、例えば、従来のTIGによる手溶接作業分析装置では、溶接士の作業時間を測定し、時間を管理して技能習得を図るべき作業ポイントを明確化し、溶接作業の効率化を測るものが大半であった。 There in this context, for example, in manual welding operations analyzer according to a conventional TIG, measuring the operation time of the welder, to clarify the working point to achieve skill acquisition to manage time, welding a measure of efficiency was a majority.

そして、溶接作業の効率化向上のために、溶接部分をカメラで撮像し、この知識情報を基にして溶接線倣いや溶接条件を制御する技術を溶接士にフィードバックさせる特許文献1が提案されている。 Then, for efficiency improvement of welding operation, welding portions captured by the camera, this patent document 1 to be fed back to the welder technical knowledge information based on controlling the weld line scanning and welding conditions have been proposed by there.

また、溶接部分の映像信号に基づき溶接池の状態を把握し、溶接に必要な操作情報を与えてモニター画面に表示する特許文献2が提案されている。 Further, to understand the state of the weld pool on the basis of the video signal of the welded parts, Patent Document 2 has been proposed to be displayed on the monitor screen giving operation information required for welding.

また、溶接部分の状況を検出し、溶接軌跡、溶接条件を修正し、良質の溶接部分が施工できる視覚センサー内蔵型溶接トーチを実現した特許文献3が提案されている。 Further, to detect the status of the welded parts, welding locus, modify welding conditions, Patent Document 3 has been proposed weld quality was realized a visual sensor-type welding torch which can construction.
特許第3322549号公報 Patent No. 3322549 Publication 特開2002−205166号公報 JP 2002-205166 JP 特開2003−164971号公報 JP 2003-164971 JP

溶接技術に係る溶接機の施工中の挙動は、溶接機の自動化の開発とともにその分析が進んでいるものの、手溶接の施工を行う場合の熟練溶接士の挙動分析は殆ど進んでいない。 Behavior during the welding machine construction according to the welding technique, although progressed the analysis with the development of the automation of the welding machine, the behavior analysis of the skilled welder when performing application of manual welding does not almost proceed. より一層の溶接施工の自動化推進と相俟って、溶接技術に係る熟練技術の継承を側面から支援するには、これまでよりもより一層高い分解能で熟練溶接士の挙動を分析し、高度化、複雑化した溶接技術を、熟練溶接士自身へのフィードバックも含めて経験の浅い溶接士でも容易に理解、習得ができるような支援システムの構築が必要とされている。 What more welding automation promotion coupled with the construction, the supporting inheritance skilled technology according to the welding technique from the side analyzes the behavior of a skilled welder with even higher resolution than ever before, advanced , the complexity of the welding technology, is also easily understood in shallow welder experience, including feedback to the skilled welder itself, there is a need for construction of the support system, such as it is to learn.

一般に、熟練溶接士の溶接施工中の挙動分析においては、磁気や超音波等の媒体を用いて身体表面に予め装着されたセンサの3次元的な位置を同時に検出する方法などが知られている。 Generally, in the behavior analysis in the welding of skilled welding workers, it has been known a method of simultaneously detecting the three-dimensional position of the premounted sensor body surface using a magnetic or media such as ultrasound is .

しかし、このような媒体を用いても、手先の器用さを売り物とする熟練溶接士の技能分析を行うことは難しい。 However, even with such a medium, it is difficult to perform the skill analysis of skilled welder to sale manual dexterity.

また、上述開示された特許文献は、溶接作業のモニタリングにおいて、溶接機を自動制御用途に特化した特徴抽出に適した構成を示したものであり、手溶接において、熟練溶接士の溶接機操作により制御される量、具体的には、TIG手溶接における溶加棒の送給量の分析は究明されていない。 Further, patent documents mentioned above discloses, in the monitoring of the welding operation, which shows a configuration suitable for feature extraction specific to the automatic control applications the welder, in manual welding, the skilled welder welder operation the quantity to be controlled by, specifically, analysis of feed rate of filler rod in TIG manual welding has not been investigated.

また、上述開示された特許文献は、例えばMAG溶接の場合、ワイヤの送給量をワイヤ自動送給機構の駆動部でモニタリングしていても、溶接施工中のワイヤ突き出し量の変化に対応した送給量の時間変動を測定していない。 Further, patent documents mentioned above discloses, for example, in the case of MAG welding, also be monitored feed amount of the wire by the driving unit of the automatic wire feeding mechanism, feed in response to changes in the wire protruding amount in the welding feeding amount of not measured the time change.

また、溶加棒は、一般に、表面が一様に光沢しているため、画像処理しても、その画像から溶加棒の送給量を識別することが難しい。 Further, filler rod is generally, the surface is uniformly glossy, even when the image processing, it is difficult to identify a feed rate of filler rod from the image.

また、自動溶接機の場合、ワイヤ送給機構を備えているので、その送給駆動装置の送り量をモニタリングすれば、溶融池への溶加棒の送給量を測定できるようになっているが、手溶接では、通常、右手に持ったトーチを運棒しつつ、左手に持った溶加棒を送り出す動作を行うため、手元に溶加棒の送給量測定機構を設けることが難しい。 Also, in the case of the automatic welding machine is provided with the wire feed mechanism, if monitoring the feed amount of the feed drive system, so as to measure the feed rate of filler rod into the weld pool but in manual welding, usually while Unbo torch having on the right, for performing an operation for feeding the filler rod having the left hand, it is difficult to provide a feed amount measuring mechanism filler rod at hand.

このような事情から、熟練溶接士の溶接技能を経験の浅い溶接士に承継させるにあたり、熟練溶接士の挙動、溶加棒の送給量等の手溶接に係る知識情報を画像化し、画像化した溶接技術をデジタル的に分析して可視化しておくことが必要とされていた。 Under such circumstances, when the taking over the welding skills of a skilled welder shallow welder experienced behavior skilled welder, knowledge information relating to manual welding of the feed amount of the filler rod is imaged, imaging welding techniques to digitally analyzed has been required that you visualized.

本発明は、このような事情に照らしてなされたもので、例えば、TIG手溶接作業に際し、熟練溶接士の溶加棒送給挙動等を映像、可視化し、熟練インストラクタや経験の浅い溶接士が当該熟練溶接士のコツあるいは技能等に基づく施工挙動を容易に把握できるようにするとともに、可視化した映像から溶加棒の送給速度や送給量の時間的推移、溶加棒の送給挙動やトーチ運棒の挙動に伴って変化する溶融池の形状、大きさ等の変化を定量的に分析、評価可能な手溶接作業分析装置および手溶接作業分析装置に適用する手溶接トーチ一体型監視カメラを提供することを目的とする。 The present invention has such has been made in light of the circumstances, e.g., when TIG manual welding operations, a skilled welder of filler rod feeding behavior like video, visualize, shallow welder of skill instructor and experience together so that the construction behavior based on the skilled welder tips or skills, etc. can be easily grasped, the time course of feed rate and feed rate of filler rod from visualized image, feeding the filler rod behavior the shape of the molten pool of changes and with the behavior of the torch rod operating quantitatively analyze changes in such size, evaluable hand welding analyzer and manual welding torch integrated monitoring applied to manual welding operations analyzer an object of the present invention is to provide a camera.

本発明に係る手溶接作業分析装置は、上述の目的を達成するために、請求項1に記載したように、手溶接作業対象周辺に設置した監視カメラで撮影した溶接施工中の溶融池周辺の画像情報を分析、処理する手溶接作業分析装置において、手溶接トーチに監視カメラを一体接続させる手溶接機一体型撮像装置と、この撮像装置からの画像のデジタル信号を処理、収録する画像データ収録装置と、収録された画像をデータとして情報処理するデータ処理装置と、処理した情報をディスプレイするディスプレイ装置とを備えたものである。 Hand welding analyzer according to the present invention, in order to achieve the above object, claim to 1 as described in, the molten pool around the manual welding operation target weld construction taken with installed surveillance cameras around analyzing image information, in manual welding operations analyzer for processing, and manual welding-integrated imaging device for integrally connecting the surveillance camera to the manual welding torch, processes a digital signal of the image from the imaging device, the image data recording to record a device, and a data processing unit for processing the recording image as data, and the processed information and a display device for display.

また、本発明に係る手溶接作業分析装置は、上述の目的を達成するために、請求項2に記載したように、監視カメラは、溶接アーク光のピーク波長から離れた帯域に通過域を有する光学フィルタを備えたものである。 Moreover, manual welding performance analysis device according to the present invention, in order to achieve the above object, as described in claim 2, the monitoring camera has a pass band in the band away from the peak wavelength of the welding arc light those with an optical filter.

また、本発明に係る手溶接作業分析装置は、上述の目的を達成するために、請求項3に記載したように、手溶接機一体型撮像装置は、監視カメラで撮像された画像を基に溶接中の手溶接トーチの挙動を分析する際、画像中の溶接母材の開先端におけるアーク光の反射強度のコントラストの変化から開先端輪郭線位置を検出するとともに、画像から検出される手溶接トーチの先端位置とで手溶接トーチねらい位置を換算し、前記手溶接トーチのトーチ運棒の分析データを取得する構成にしたものである。 Moreover, manual welding performance analysis device according to the present invention, in order to achieve the above object, as described in claim 3, manual welding-integrated imaging device, based on the image captured by the monitoring camera when analyzing the behavior of the manual welding torch during welding, the change in contrast in the reflection intensity of the arc light in the open distal end of the welding base metal in the image and detects the open tip contour line position, the hand is detected from the image welding converting the manual welding torch aiming position in the distal end position of the torch, in which a configuration of acquiring the analysis data of the torch rod operating the manual welding torch.

また、本発明に係る手溶接作業分析装置は、上述の目的を達成するために、請求項4に記載したように、手溶接機一体撮像装置は、監視カメラで撮像された画像を基にTIG溶接分析を行う際、溶加棒に一定間隔で印を付すとともに、印を付した溶加棒の溶融池への挿入位置、手溶接トーチの電極先端と溶融池との距離、溶加棒の送給量のデータを取得する構成にしたものである。 Moreover, manual welding performance analysis device according to the present invention, in order to achieve the above object, as described in claim 4, manual welding-integrated imaging device, TIG on the basis of the image captured by the monitoring camera when performing the welding analysis, along with subjecting the indicia at regular intervals in filler rod, the insertion position into the molten pool of filler rods marked, the distance between the molten pool and the electrode tip of the manual welding torch, the filler rod it is obtained by the configuration obtaining the feed rate of the data.

また、本発明に係る手溶接作業分析装置は、上述の目的を達成するために、請求項5に記載したように、溶加棒に一定間隔で付した印は、その周方向に沿って細く削ったくびれ線であることを特徴とする。 Also, the manual welding performance analysis device according to the present invention, in order to achieve the above object, as described in claim 5, indicia marked at regular intervals in the filler rod is thinner along its peripheral direction characterized in that it is a cut constricted line.

また、本発明に係る手溶接作業分析装置は、上述の目的を達成するために、請求項6に記載したように、手溶接一体撮像装置は、監視カメラで撮像された画像を基にTIG溶接分析を行う際、溶融池表面におけるアーク光の反射と開先表面での反射の相違から溶融池の輪郭形状を取得する構成にしたものである。 Moreover, manual welding performance analysis device according to the present invention, in order to achieve the above object, as described in claim 6, manual welding integral imaging apparatus, TIG welding based on an image captured by a surveillance camera when performing the analysis, it is obtained by the configuration obtaining the outline shape of the molten pool from the difference in reflection at the reflection and groove surfaces of the arc light in the molten pool surface.

また、本発明に係る手溶接作業分析装置に適用する手溶接トーチ一体型監視カメラは、上述の目的を達成するために、請求項7に記載したように、手溶接作業対象周辺に設置した監視カメラで撮影した溶接施工中の溶融池周辺の画像情報を分析、処理する手溶接作業分析装置において、手溶接トーチに監視カメラを一体接続させる手溶接機一体型撮像装置と、この撮像装置からの画像のデジタル信号を処理、収録する画像データ収録装置と、収録された画像をデータとして情報処理するデータ処理装置と、処理した情報をディスプレイするディスプレイ装置とを備える一方、前記手溶接機一体撮像装置は、前記監視カメラを前記手溶接トーチに対して移動せる軸方向位置調整スライド部と、カメラ仰角を調整するカメラ仰角調整スライド部と Moreover, manual welding torch integrated surveillance camera applied to manual welding performance analysis device according to the present invention, in order to achieve the above object, as described in claim 7, it was installed around the hand welding object monitoring analyzing image information of the molten pool around in welding taken by the camera, in manual welding operations analyzer for processing, and manual welding-integrated imaging device for integrally connecting the surveillance camera to the manual welding torch, from the imaging device processing the digital signal of the image, while having an image data acquisition apparatus to record, a data processing unit for processing the recording image as data, and a display device for displaying the processed information, the manual welding-integrated imaging device has an axial position adjustment slide portion to move the monitoring camera to the manual welding torch, the camera elevation control slide section to adjust the camera elevation 備えたものである。 It includes those were.

本発明に係る手溶接作業分析装置および手溶接作業分析装置に適用する手溶接トーチ一体型監視カメラは、手溶接の施工作業中の溶接士の手元の挙動を撮像し、撮像した画像からその挙動をデータ化したので、このデータ情報を基に複数の熟練溶接士の間での個人差の定量化、経験の浅い溶接士との動きの相違、特定の個人が溶接技能を修得する過程における挙動の変化等のこれまでに充分な分析、評価が行なわれてこなかった溶接を対象とした技能の分析、考察を容易に実現することができる。 Manual welding torch integrated surveillance camera applied to manual welding operations analyzer and manual welding operations analyzer according to the present invention, its behavior from an image captured at hand of the behavior of the welder during construction work manual welding, and imaging since was data reduction, behavior in the quantification of the individual differences of data information between a skilled welder based, difference motion shallow welder experienced process certain individuals acquire welding skills so far enough analysis of such a change, the evaluation has not been performed welded analysis skills that target, it is possible to easily realize a consideration.

特に、手溶接における溶加棒の送給量の自動評価等、これまでの評価が難しいとされていた特徴量の抽出、分析評価ができるため、従来、人手によって多くの補正処理が必要となっていた処理手続きが自動化され、多種、多様な条件での分析経験の実施や多数の溶接士による作業の分析、比較が大幅に効率化される。 In particular, automatic evaluation of feed rate of filler rod in manual welding, heretofore extraction evaluation difficult and which do feature amount, since it is assay, conventional, it requires more correction manually which was treated procedure is automated, various analysis operations according to an exemplary and numerous welder analysis experience in a variety of conditions, comparison is much more efficient.

また、手溶接の技能をデータとして情報化することにより、従来よりも詳細に技能の本質に迫る分析評価が可能になるため、これまでとは異なるアプローチによる、より高度な自動溶接技術の開発に寄与することができ、さらに高齢化と人手不足が懸念される溶接分野における効率的な訓練プログラムの策定やデータ利用により、溶接装置の適用範囲のより一層の拡大を図ることができる。 Also, the skill of manual welding by information as data, since the analysis approach the essence of skill in more detail than the conventional evaluation becomes possible, by a different approach from the past, the development of more sophisticated automatic welding techniques can contribute to, can be further by formulating and data efficient use of training programs in aging and welding areas labor shortage is concerned, aim to further expand the application range of welding apparatus.

以下、本発明に係る手溶接作業分析装置および手溶接作業分析装置に適用する手溶接トーチ一体型監視カメラの実施形態を図面および図面に付した符号を引用して説明する。 Hereinafter, it will be described with reference to code an embodiment of the manual welding torch integrated surveillance camera applied to manual welding operations analyzer and manual welding operations analyzer according to the present invention were subjected to the drawing and the drawings.

図1は、本発明に係る手溶接作業分析装置の実施形態を示す概念図である。 Figure 1 is a conceptual diagram illustrating an embodiment of a manual welding performance analysis device according to the present invention.

本実施形態に係る手溶接作業分析装置は、例えば、CCDカメラ(CCD:charge coupled device)2を手溶接トーチ3に一体として接続する手溶接機一体型撮像装置1を右手で把持し、溶加棒4を左手で把持する溶接士5の、その手溶接トーチ一体型撮像装置1の手溶接トーチ3に電流を制御しながら与える電源装置6と、この電源装置6から与えられた電流を基に手溶接トーチ3からのアーク熱で溶加棒4を溶融し、溶接母材7に溶接施工する際、CCDカメラ2で溶接トーチ3、溶加棒4、あるいは溶融池等の変化を撮像し、撮像した画像を1フレーム毎に連続画像化したデジタル信号を処理、収録する画像データ収録装置8と、収録された画像をデータとして情報処理するデータ処理装置9と、処理した情報をディスプレイするディスプレ Hand welding analysis apparatus according to the present embodiment, for example, CCD camera (CCD: charge coupled device) holding the manual welding-integrated imaging device 1 to be connected integrally with the right hand 2 to manual welding torch 3, filler of welder 5 for gripping the rod 4 with the left hand, the power supply device 6 that controllably current to manual welding torch 3 of the manual welding torch integrated imaging apparatus 1, based on the current supplied from the power supply apparatus 6 melting the filler rod 4 with an arc heat from manual welding torch 3, when welding the welding base material 7, the welding torch 3 by the CCD camera 2, filler rod 4, or imaging a change in the weld pool or the like, processing a digital signal obtained by continuously imaging for each frame the captured image, the image data acquisition device 8 for recording, a data processing device 9 for processing the recording image as data, to display the processed information display 装置10とを備えて構成されている。 It is constituted by a device 10.

手溶接機一体型撮像装置1は、図2に示すように、手溶接トーチ3に一体として接続させるCCDカメラ2を手溶接トーチ3の電極11に向う軸方向に移動させる軸方向位置調整スライド部12と、この軸方向位置調整スライド部12に交差し、電極11および溶接施工中に生成される溶融池が画角内に入るようにCCDカメラ2の仰角を自在に調整できるカメラ仰角調整スライド部13と、軸方向移動後のカメラ仰角調整スライド部13をセットする軸方向位置固定ねじ部14と、CCDカメラ2の仰角調整後の位置をセットするカメラ仰角位置固定ねじ部15と、CCDカメラ2をカメラ仰角調整スライド部13にセットさせるカメラ位置固定部19と、CCDカメラ2で撮像した画像をデジタル信号に変換して画像データ収録装置に送 Manual welding-integrated imaging device 1, as shown in FIG. 2, the axial position control slide part which moves in the axial direction toward the electrode 11 of the manual welding torch 3 of the CCD camera 2 to be connected integrally to the manual welding torch 3 12 and intersects this axis direction position adjusting slide 12, the camera elevation control slide section the elevation of the CCD camera 2 as molten pool generated in the electrode 11 and welding falls within the angle of view can be freely adjusted 13, an axial position fixing screw unit 14 for setting the camera elevation adjustment slide portion 13 after axial movement, the camera elevation position fixing screw section 15 to set the position after the elevation adjustment of the CCD camera 2, the CCD camera 2 the camera position fixing portion 19 to be inserted in the camera elevation control slide unit 13, sent to the image data acquisition device converts the image captured by the CCD camera 2 to a digital signal ケーブル16とを備えている。 And a cable 16.

そして、電極11等を撮像するとき、CCDカメラ2は、その軸線の延長線が手溶接トーチ3の電極11から5mm〜20mmの範囲内の交わる位置にセットされる。 Then, when imaging the electrode 11 or the like, CCD camera 2, the extension line of the axis is set at a position of intersection of the range of 5mm~20mm from the electrode 11 of the manual welding torch 3.

また、CCDカメラ2は、像を良好に結像させるカメラレンズ17を備えるとともに、このカメラレンズ17にCCD面に入射する光の強弱、周波数帯域の制限を行う光学フィルタ18を備えている。 Further, CCD camera 2 is provided with a camera lens 17 to satisfactorily form an image, the intensity of light incident on the camera lens 17 to the CCD surface, is provided with an optical filter 18 for limiting the frequency band.

この光学フィルタ18は、分析の対象となる特徴量によって必要に応じた減弱率、波長帯域を選択してCCDカメラ2に設けられている。 The optical filter 18, the attenuation factor according to need by the characteristic quantity to be analyzed, is provided to the CCD camera 2 by selecting the wavelength band.

また、この光学フィルタ18は、例えば、溶接アーク光のピーク波長から離れた帯域、具体的には850nm以上の波長帯域、あるいは1064nmで半値幅が10nm程度の狭い帯域に通過域を持つ場合にも適用される。 Further, the optical filter 18, for example, band apart from a peak wavelength of the welding arc light, specifically 850nm or more wavelength band, or even when the half width at 1064nm has a pass band to a narrow band of about 10nm It is applied.

また、この光学フィルタ18は、部分的に異なる透過率分布を持つ波長依存性のない減光フィルタと、透過波長を赤外領域で、かつ溶接光のピーク波長から離れた帯域に設定した狭帯域フィルタとを組み合わせることによってより鮮明な像が撮像される。 Further, the optical filter 18, a neutral density filter having no wavelength dependence with partially different transmittance distributions, narrow band transmission wavelength in the infrared region, and is set to the band away from the peak wavelength of the welding beam sharper image is imaged by combining a filter.

なお、ケーブル16は、明示的に図示したが、実際においては、溶接士5のトーチ運棒の動きや施工状態を監視する視界を妨げない位置に、手溶接トーチ3に配線される。 Incidentally, the cable 16 is explicitly have been shown, in practice, in a position that does not interfere with the field of view of monitoring the movement and construction conditions of the torch rod operating the welder 5, and is wired to manual welding torch 3.

また、CCDカメラ2は、手溶接トーチ3から見て手溶接の進行方向となる方向に設置され、溶加棒4の挿入位置、溶融池の先行距離、電極11、溶接部の開先線等がカメラ視野内に入る位置にセットされる。 Further, CCD camera 2 is installed in a direction in which the traveling direction of the manual welding as viewed from the manual welding torch 3, the insertion position of the filler rod 4, prior distance of the molten pool, the electrodes 11, open top line or the like of the weld There is set to the position that fall within the camera field of view.

このような位置にセットされたCCDカメラ2によって撮像された溶接施工状態の画像の一例を図3に示す。 An example of such a set in position a of the welding state of being captured by the CCD camera 2 images in FIG.

図3は、一例として、TIG手溶接による初層の開先キャップ溶接の画像を示すものであり、溶融池20とその周辺位置にある電極11、電極先端部11a、アーク光21、溶融池20に挿入されている溶加棒4の輪郭4aなどが映し出されている。 Figure 3 shows, as an example, which shows the image of the groove cap welding first layer by TIG manual welding, the electrode 11 is in the molten pool 20 and its peripheral position, electrode tip 11a, the arc light 21, the molten pool 20 like contour 4a of filler rod 4 is projected, which is inserted into.

また、アーク光21の開先面に対する反射によって、溶融池20の両側に位置する開先エッジ線22が目視確認されている。 Also, the reflex to open crest of the arc light 21, the groove edge line 22 located on opposite sides of the molten pool 20 is visually checked.

このような画像を基に、溶接士5の手溶接施工作業の分析、特徴抽出の処理が行われる。 Based on such an image, analyzing the manual welding operations the welder 5, the process of feature extraction are performed.

図4は、図1で示したデータ処理装置9内で処理された情報の一つとして、手溶接トーチ3のウィービングと称する運棒挙動の抽出、つまり溶接母材7の開先中心線から見た手溶接トーチ先端位置の動きを抽出処理するアルゴリズムである。 4 is seen as one of the information processed by the data processing apparatus 9 shown in FIG. 1, the extraction of Unbo behavior called weaving of manual welding torch 3, i.e. from the groove center line of the welding base material 7 and an algorithm for extraction movements of the hand welding torch tip position.

本実施形態に係るアルゴリズムは、画像抽出工程(ステップ1)、直線エッジ成分検出工程(ステップ2)、開先エッジ線分交点座標算出工程(ステップ3)、開先中心線算出工程(ステップ4)、開先中心線と電極先端の画像上距離算出工程(ステップ5)、画像から実寸値を換算する実寸値換算工程(ステップ6)および手溶接トーチ運棒挙動評価工程(ステップ7)を備えた構成になっている。 Algorithm according to the present embodiment, the image extraction step (Step 1), straight edge component detection step (Step 2), the groove edge line intersection coordinate calculating step (Step 3), the groove center line calculating step (Step 4) , groove center line and the electrode tip image on distance calculating step (step 5), with the exact value conversion step of converting the actual value from the image (step 6) and manual welding torch rod operating behavior evaluation step (step 7) It has a configuration.

まず、本実施形態では、画像抽出工程(ステップ1)で、上述データ処理装置9内で連続的に収録されている溶融池20における周辺画像の1フレーム分を対象として画像抽出が行われる。 First, in the present embodiment, the image extraction step (Step 1), the image extraction is performed as a target one frame of the peripheral image in the molten pool 20 which is continuously recorded by above data processing apparatus 9.

溶融池20の周辺の画像抽出が行われると、直線エッジ成分検出工程(ステップ2)では、予めCCDカメラ2の手溶接トーチ3への設置位置の固定に対し、CCDカメラ2の視野内に得られる手溶接トーチ電極先端座標(x ,y )と、CCDカメラ2の視野の中点(x ,y )(CCDカメラ方位の事前設定から、CCDカメラ光軸線と手溶接トーチ中心軸の延長線の交点にほぼ相当)を結ぶ直線に対する垂線Ivを設定し、設定した垂線Iv上のラインプロファイル(輝度分布)を求める。 When the image extraction near the molten pool 20 is performed, linear in the edge component detection step (Step 2), the fixed installation position of the manual welding torch 3 in advance CCD camera 2, resulting in the visual field of the CCD camera 2 a manual welding torch electrode tip coordinates (x 0, y 0) to be the field of view of the midpoint of the CCD camera 2 (x c, y c) ( from preconfigured CCD camera orientation, CCD camera optical axis and manual welding torch central axis set the perpendicular Iv for a straight line connecting the substantially equivalent) to the intersection of the extension of obtaining the line profile on a perpendicular line Iv set (brightness distribution).

一方、CCDカメラ視野中点から視野の外周に至る直線は、アーク光21、溶融池20、開先加工面(アーク光の反射光)、溶接母材7の表面を順次通ると考えられる。 Meanwhile, the straight line extending from the CCD camera field of view center point on the outer periphery of the field of view, the arc light 21, the molten pool 20, beveling surface (arc light reflected light) is considered to successively pass through the surface of the welding base material 7. すなわち、「明(光源)」、「暗」、「明」、「暗」の順にプロファイルを有すると予想される。 That is, "light (light source)", "dark", "light", is expected to have a profile in the order of "dark".

このとき、開先面から溶接母材7の表面に移行する境界に相当する開先端において、輝度が急激に低減する。 At this time, in the open distal end corresponding to the boundary of transition from groove surface on the surface of the welding base material 7, the luminance is rapidly decreased.

輝度のこのような急激な低減に対し、開先エッジ線分交点座標算出工程(ステップ43)では、以下に示す分析、処理が行われる。 For such a rapid reduction in the brightness, the groove edge line intersection coordinate calculating step (step 43), the analysis described below, the process is carried out.

まず、輝度が低減したときの座標と、輝度勾配が負で、かつ勾配の絶対値が最大となる座標点(x ,y ),(x ,y )から求める。 First, the coordinates at which the brightness is reduced, the luminance gradient is negative, and the coordinate point where the absolute value is maximum gradient (x L, y L), obtained from (x R, y R).

このような処理を、上述の垂線Ivに平行な直線に対しても輝度変化の座標を求め、求めた座標を手溶接トーチ3の電極11の左右それぞれの視野内において直線で結び、開先端エッジに相当する2本の線分を検出する。 Such processing obtains the coordinates of the luminance change with respect to a straight line parallel to the perpendicular line Iv described above, connected by a straight line within the left and right hand welding torch 3 of the electrode 11 the coordinates calculated field, open leading edge detecting the two line segments corresponding to.

次に、CCDカメラ視野のX,Y座標を基に、検出した2本の線分の交点(CCDカメラ視野における無限遠点)を求める。 Then, X of the CCD camera field of view, based on the Y coordinate, determining an intersection of two line segments detected (the point at infinity in the CCD camera field of view). さらに、開先中心線算出工程(ステップ44)では、開先の中心線は無限遠点を通ることから、この無限遠点と垂線Iv上の開先端に中点{(x +x )/2,(y +y )/2}}に相当する点を結ぶ直線を検出する。 Further, the groove center line calculating step (step 44), the center line of the groove from passing through the point at infinity, the middle point {(x L + x R) to the open front end on the infinity point and the perpendicular line Iv / 2, to detect the straight line connecting the point corresponding to (y L + y R) / 2}}. 検出した直線は、画像上の溶接線(開先の中心線)と見做して扱う。 Detected straight line, we treat regarded as the image on the welding line (the center line of the groove).

開先中心線と電極先端との画像上距離算出工程(ステップ45)では、検出された中心線と電極先端との距離Dを算出する。 In the image on the distance calculation step of the groove center line and the electrode tip (step 45), and calculates the distance D between the detected center line electrode tip.

このようにして距離Dが求められると、画像からの実寸値換算工程(ステップ46)では、画像から実寸値への換算が行われる。 When the distance D is determined this way, the exact value conversion process from the image (step 46), conversion from image to actual value is carried out. すなわち、画像上で得られた寸法が既知の物体のピクセル数、例えば電極の太さを基準として実寸値への換算係数Fを算出し、この換算係数Fを中心線と電極先端の距離Dに乗じることにより、実寸値Mを次式から求める。 That is, the number of dimensions obtained on the image of the known object pixel, for example, the thickness of the electrode was calculated conversion factor F to actual value as a reference, the distance D of the center line and the electrode tip of this conversion factor F by multiplying, obtaining the actual value M from the following equation.

[数2] [Number 2]
M=F×D M = F × D
上述に示した各工程による一連の連続した処理を各フレーム毎に算出し、撮像された時間、例えば一定の時間間隔Δtに対応する時系列データを得る。 Calculating a series of successive processes according to the steps shown in above for each frame, obtain imaging time, for example, time-series data corresponding to the predetermined time interval Delta] t. この時系列データを基に、横軸に時間を採り、縦軸に実寸値Mを採ってプロットし、手溶接トーチ運棒の動きの周期や振幅を、手溶接トーチ運棒挙動評価工程(ステップ47)で評価する。 Based on this time-series data, the horizontal axis represents time, the vertical axis represents the actual value M are plotted, the period and amplitude of the movement of the manual welding torch rod operating, manual welding torch rod operating behavior evaluation step (step evaluated in 47).

このように、本実施形態は、手溶接機一体型撮像装置でトーチ運棒を撮像し、撮像した手溶接トーチ運棒の画像を基にして分析し、処理してトーチ運棒を評価する構成にしたので、溶接士自身の挙動の確認の下、溶接技術のさらなる飛躍のためのデータ情報とすることができ、経験の浅い溶接士の教育資料として溶接技術の継承に寄与することができる。 Thus, the present embodiment takes an image of the torch rod operating in manual welding-integrated imaging device, and analyzed on the basis of the image of the captured hand welding torch rod operating the process to evaluate the torch rod operating configuration so was under the confirmation of the behavior of the welder itself, can be a data information for the further growth of welding technology, it is possible to contribute to the inheritance of welding technology as educational materials of inexperienced welder.

なお、手作業トーチ運棒を評価するにあたり、手溶接トーチ運棒の特徴抽出、換算処理を簡便、かつ高速に行うには、撮影条件を考慮し、幾つかの仮定を採り入れることがある。 Incidentally, in evaluating the hand torch rod operating, feature extraction manual welding torch rod operating, to do the conversion process simple and fast, considering imaging conditions, it may adopt a number of assumptions. この仮定として、「CCDカメラが開先中心線軸上近傍にあり、大幅な偏位による左右開先線の実寸換算において、同じ換算係数を用いる」とする要件を採り入れてもよい。 As this assumption, "there CCD camera in the vicinity of the groove center line axis, in actual size in terms of the left and right open top line by a substantial deviation, using the same conversion factor" may be adopted a requirement to.

また、より局所的な換算係数の取得により、CCDカメラ位置の傾きによる補正を考慮し、溶接速度の計測を含む高い精度の分析評価を行うには、母材開先面に一定(既知)の間隔で直線や点などの印を設け、その印の間隔や画像上での大きさ(ピクセル数)から実寸法に換算してもよい。 Further, more by the acquisition of a local scale factor, consider the correction due to the inclination of the CCD camera position to do assay of high accuracy, including the measurement of welding speed, constant HahazaiHiraku crest of (known) provided indicia such as lines and points at intervals, may be converted intervals and images on the size of the mark from the (number of pixels) in real dimensions.

図5は、TIG手溶接における溶加棒送給量の分析処理を行うフロー図である。 Figure 5 is a flow diagram for performing analytical processing of filler rod feed rate in TIG manual welding.

溶加棒4は、予め一定間隔で送給量の評価を行うため、マーキングが付される。 Filler rod 4 in order to evaluate the feed rate in advance at regular intervals, the marking is attached. このマーキングには、例えば、溶加棒の周方向に沿って細く削ったくびれ線が用いられる。 The marking, for example, thin shaved constricted line along the circumferential direction of the filler rod is used. くびれ線をマーキングとして用いると、溶加棒罫書刻印位置座標検出工程(ステップ1)では、溶加棒4のくびれ線の角部で、アーク光21の反射率が局所的に変化するので、輝度の高い溶加棒4が撮像、検出される。 With constricted line as a marking, the filler rod scribed marking position coordinate detection step (Step 1), at the corner of the constricted lines filler rod 4, the reflectance of the arc light 21 changes locally, luminance high filler rod 4 of the imaging is detected.

このようなマーキングを付した溶加棒4を用いて溶接施工したときの画像が図6に示される。 Image when welding with filler rod 4 marked with such markings are shown in Figure 6. この図6中、電極先端(手溶接トーチ先端)、溶加棒軸方向線Pが上述のマーキングを用いることによって可視化されている。 The In FIG. 6, the electrode tip (manual welding torch tip), filler rod axial line P is visualized by using the marking described above.

また、図6中、溶加棒先端位置の検出は、溶加棒が溶融池に挿入されている状態かどうかの判断が行われる。 Further, in FIG. 6, the detection of the filler rod tip position is determined whether the state filler rod is inserted into the molten pool is made. すなわち、溶加棒が挿入されていない状態においては、開先端での溶融池の形状輪郭の一方の開先側面の延長がなだらかな曲線を描き、反対側の開先側面の輪郭につながるか、あるいはアーク光が重畳することで輝度が高く、しかも境界が不鮮明な輪郭となる。 That is, either in the state where the filler rod is not inserted, draw a is gentle curve extension of one of the groove side surface of the shaped contour of the molten pool in the open tip, leading to the contour of the groove side surface of the opposite side, or high luminance by the arc light is superimposed, moreover boundary is blurred contours. 尤も、開先がギャップを有する場合、溶融池の形状輪郭は、開先端における溶融池の形状輪郭線の一部が鋭敏な形状になり、輪郭の輝度が低く、しかも境界が不鮮明になる性質がある。 However, if the groove has a gap, the shape contour of the molten pool will become part of keen shape of the molten pool shape contours in the open front end, low brightness of the contour, yet the property of the boundary becomes unclear is there.

他方、溶加棒が挿入されていない状態になると、溶融池の形状輪郭は変化し、溶加棒挿入部分の溶融池輪郭が溶加棒の渕に接触し、開先端における溶融池の形状輪郭が挿入部近傍で緩やかでなくなる。 On the other hand, when a state results in which the filler rod is not inserted, the shape contour of the molten pool changes, molten pool contour of filler rod insertion portion into contact with the edge of filler rod, the molten pool in the open end shape contour There is no longer a gradual by inserting the vicinity. このため、溶融池と溶加棒の接触部分で局所的に溶融池が盛り上がり、輪郭の鮮明度が高まり、しかも輪郭線の輝度が高くなる。 Therefore, locally molten pool raised at the contact portion of the molten pool and filler rod, increases the sharpness of the contour, yet the brightness of the contour line increases.

このような事象を利用して、溶加棒先端位置座標検出工程(ステップ2)では、溶融池への溶加棒の挿入の成否の判定と溶加棒先端位置検出が行われる。 Using such an event, the filler rod tip position coordinate detection step (Step 2), is determined and filler rod tip position detection of success or failure of the insertion of the filler rod into the weld pool is performed.

また、ラインプロファイル(輝度分布)処理工程(ステップ3)では、電極先端位置を含む溶加棒軸方向線Pのラインプロファイル(輝度分布)が図6に示す画像から求められる。 Further, the line profile (luminance distribution) process (step 3), the line profile of the filler rod axial line P including the electrode tip position (luminance distribution) is determined from the image shown in FIG.

また、図6に見られる溶融池周辺の画像では、溶加棒表面に3箇所の罫書刻印N ,N ,N からの反射光による輝度の高い領域が認められる。 Further, in the image of the molten pool around seen in FIG. 6, a region with high luminance by the reflected light from the scribed marking N 1, N 2, N 3 of three to filler rod surface is observed. 図6に示した溶加棒軸方向線Pに沿って手溶接トーチ先端部から罫書刻印N ,N ,N の位置までの輝度分布を求めたのが図7である。 The along the filler rod axis line P was determined luminance distribution from the manual welding torch tip to the position of the scribed marking N 1, N 2, N 3 is a diagram 7 shown in FIG. そして溶加棒の送給に伴い、時間経過とともに溶加棒が消費され、罫書刻印N ,N ,N は、画像の最も遠い場所に出現し、溶融池に向って順次移動し、最後に溶加棒先端位置と重なって溶融池内に消滅する。 And with the feeding of filler rod, filler rod is consumed over time, scribed marking N 1, N 2, N 3 emerges into the furthest location of the image, sequentially moves toward the molten pool, Finally it overlaps with the filler rod tip position disappear in molten pool.

このとき、個々の画像に対し、得られた溶加棒先端位置座標と罫書刻印N ,N ,N の位置座標との間の距離Dwを求め、上述の手溶接トーチ運棒と同様に、時系列データを得る。 At this time, for each individual image, obtains a distance Dw between the resultant filler rod tip position coordinates and scribed marking N 1, N 2, the position coordinates of N 3, as in the above-manual welding torch rod operating , when obtaining a series data. 得られた時系列データは図8に示される。 Time-series data obtained are shown in Figure 8.

図8では、プロットしたデータに鋸歯状の最遠罫所刻印検出位置急変部分が現れるが、これは、手溶接の進行に伴い溶加棒が消費されるとともに、罫書きの相対位置が変化し、映像視野の端から順次新しい罫書き刻印が出現するためである。 8, but appears farthest ruled plant marking detection position sudden change portion of the sawtooth in the plotted data, which, together with the filler rod with the progress of manual welding is consumed, the relative positions of the scoring changes , is for sequentially new scoring stamped emerges from the end of the video field of view.

溶加棒の送給量を評価するには、鋸歯状プロットを実際の溶加棒送給状況に対応した直線状のプロットに変換した上で溶加棒の長さあるいはその直径を考慮し、溶加棒送給体積量に変換する処理が必要とされる。 To evaluate the feed rate of the filler rod is taken into account the length or the diameter of the serrated plots actual filler rod feed situation filler rod on which is converted into linear plot corresponding, processing for converting the filler rod feed volume amount is required.

このため、送給量積算処理工程(ステップ4)では、上述の鋸歯状プロットにおいて、得られた距離Dwの隣りの画像の変化量を求め、この大きさが画像上で溶加棒に付した罫書刻印N ,N ,N の間隔に相当するピクセル量Iを求めるとともに、距離Dwからピクセル量Iを差し引いた値を積算距離Dwcとして算出する。 For this reason, feed rate integration process (step 4), the serrated plot described above, obtains the variation amount of the image next to the distance obtained Dw, this size is subjected to a filler rod on the image with obtaining the scribed marking N 1, N 2, pixel amount corresponding to the spacing of the N 3 I, it calculates a value obtained by subtracting the pixel quantity I from the distance Dw as cumulative distance Dwc.

検出される罫書刻印が変わる度にピクセル量Iを差し引く回数は、順次増えていくため、最終的に積算距離Dwcは負の値となるが、解析対象となる全ての画像フレームの処理が終了した時点で再スタートを原点に採り、傾きを正負逆に変換して再び処理する。 Times subtracting the detected scribed marking is changed every time the pixel quantities I, because, with a growing sequentially, but eventually cumulated Dwc a negative value, the processing of all image frames to be analyzed has been completed taken to restart the origin point, again treated by converting the slope in opposite polarities.

送給量積算処理工程(ステップ4)で得られた処理結果は、図9に示される。 Processing results obtained in feed amount integration process (step 4) is shown in FIG.

送給量積算処理工程(ステップ4)の終了後、消費された溶加棒の実寸への換算が実寸換算処理工程(ステップ54)で行われる。 After completion of the feed amount integration process (step 4), in terms of the actual size of consumed filler rod is made to scale in terms of process (step 54).

溶加棒の送給速度の評価は、罫書変位フィッティング工程(ステップ6)で、上述の溶加棒の実寸への換算データを対象にして全体または部分の領域に分割し、直線フィッティングによる近似計算から傾きを求め、最終的に、溶加棒送給量、速度評価工程(ステップ7)で溶加棒の送給量および送給速度の評価を行う。 Evaluation of feed rate of the filler rod is a scribed displacement fitting process (Step 6), divided into regions of the whole or parts intended for conversion data to the actual size of the above filler rod, approximate calculation by linear fitting determined the slope from, eventually, filler rod feed rate, performs feed rate and evaluation of the delivery rate of the filler rod at a speed evaluation step (step 7).

このように、本実施形態は、手溶接機一体型撮像装置で溶加棒のラインプロファイル(輝度分布)を撮像し、撮像した溶加棒のラインプロファイルの画像を基に分析し、処理して溶加棒の送給量、速度を評価する構成にしたので、溶接上自身の挙動の確認の下、溶接技術のさらなる飛躍のためのデータ情報とすることができ、経験の浅い溶接士の教育資料として溶接技術の継承に寄与することができる。 Thus, the present embodiment takes an image of the filler rod line profile (luminance distribution) in manual welding-integrated imaging device, and analyzed on the basis of the image of the line profile of the imaged filler rod, treated with feed rate of filler rod, since the configuration to evaluate the speed, under the confirmation of the behavior of the welding on its own, it can be a data information for the further growth of welding technology, education of inexperienced welder it can contribute to inherit welding techniques as a resource.

図10は、溶融池形状の分析処理を行うフロー図である。 Figure 10 is a flow diagram for performing analytical processing of weld shape.

本実施形態に係る溶融池形状を分析処理するアルゴリズムは、溶融池側面輪郭検出工程(ステップ1)、重畳箇所輪郭推定工程(ステップ2)、溶融池面積評価工程(ステップ3)、実寸換算工程(ステップ4)を備えて構成されている。 Algorithm to analyze process the weld shape according to the present embodiment, the molten pool side contour detecting step (step 1), superposed portions contour estimation step (step 2), the molten pool area evaluation step (step 3), the actual size in terms of process ( is configured to include a step 4).

まず、溶融池側面輪郭検出工程(ステップ1)では、溶融池表面のアーク光反射率が低く、開先面での反射率が高いため、電極先端位置を中心として360°全周方向のラインプロファイル(輝度分布)を求め、電極先端からの輝度変化をトレースした後、得られる座標点の集合に楕円形状の当て嵌めを行い、溶融池の大まかな輪郭の検出が行われる。 First, the molten pool side contour detecting step (step 1), low arc light reflectance of the molten pool surface, due to the high reflectance at the groove surface, 360 ° the entire circumferential direction of the line profile around the electrode tip position seeking (luminance distribution), after tracing the change in luminance from the electrode tip, it performs fitting elliptical to a set of the obtained coordinate points, the detection of rough outline of the molten pool takes place.

また、溶融池側面輪郭検出工程(ステップ1)では、予め求めておいた溶加棒の送給位置、電極の位置を基にして溶融池が開先面と接する側面部の輪郭を検出する。 Further, to detect the contour of the side surface portion in contact with the molten pool side profile detecting step (step 1), the feeding position of the filler rod obtained in advance, the molten pool based on the position of the electrode is open crest.

電極先端位置から開先面までの線分上でのラインプロファイルは、アーク光、溶融池表面、ビード表面、開先側面に沿って「明」、「暗」、「明」、「明」の順になり、溶融池の輪郭は、「暗」、「明」へのラインプロファイル変化を閾値処理して検出する。 Line profile on a line segment from the electrode tip position to the groove surface, arc light, the molten pool surface, bead surface, along the groove side "bright", "dark", "light", the "bright" becomes in the order, the contour of the molten pool, "dark", and detecting the threshold the line profile changes to "bright".

検出された輪郭座標点を基に、楕円近似を行うとともに(重畳箇所輪郭検出工程、ステップ2)、楕円の面積を溶融池面積評価工程(ステップ3)で求める。 Based on the detected contour coordinate points, performs elliptical approximation (superimposed portions contour detecting step, step 2), determined in the area of ​​the ellipse molten pool area evaluation step (step 3).

溶融池面積評価工程(ステップ3)で楕円の面積が求められると、求められた楕円の面積を基にして実寸換算工程(ステップ4)で画像上の溶融池面積を実寸に換算する。 If the area of ​​the ellipse is determined by the molten pool area evaluation step (step 3), based on the area of ​​the obtained ellipse converting the molten pool area on the image to scale to scale in terms of process (Step 4). 実寸への換算後、電極や溶加棒に隠れた箇所の情報を利用することなく溶融池面積の評価が得られる。 After conversion to actual size, evaluation of the molten pool area without using information of a portion hidden electrode or filler rod is obtained.

このように、本実施形態は、手溶接機一体型撮像装置で溶融池のラインプロファイルを撮像し、撮像した溶融池のラインプロファイルの画像を基に溶融池の形状を分析、処理する構成にしたので、溶接士自身の挙動の確認の下、溶接技術のさらなる飛躍のためのデータ情報とすることができ、経験の浅い溶接士の教育資料として溶接技術の継承に寄与することができる。 Thus, the present embodiment takes an image of the line profile of the molten pool in manual welding-integrated imaging device, analyzing the shape of the molten pool on the basis of the image of the line profile of the molten pool obtained by imaging, and a configuration for processing since, under the confirmation of the behavior of the welder itself, can be a data information for the further growth of welding technology, it is possible to contribute to the inheritance of welding technology as educational materials of inexperienced welder.

本発明に係る手溶接作業分析装置の実施形態を示す概念図。 Conceptual diagram illustrating an embodiment of a manual welding performance analysis device according to the present invention. 本発明に係る手溶接作業分析装置に適用する手溶接一体型撮像装置を示す概念図。 Conceptual diagram showing a manual welding integrated imaging apparatus applied to a manual welding performance analysis device according to the present invention. 本発明に係る手溶接作業分析装置に適用する手溶接一体型撮像装置で撮像された溶融池周辺を示す画像図。 Image view showing a molten pool around imaged by manual welding integrated imaging apparatus applied to a manual welding performance analysis device according to the present invention. 本発明に係る手溶接作業分析装置における手溶接トーチ運棒の分析処理を示すフロー図。 Flow diagram illustrating the analysis process of manual welding torch rod operating in manual welding operations spectrometer according to the present invention. 本発明に係る手溶接作業分析装置における溶加棒の送給量分析処理を示すフロー図。 Flow diagram showing the feeding amount analysis process of filler rod in manual welding operations spectrometer according to the present invention. 本発明に係る手溶接作業分析装置における手溶接トーチ先端部分および溶加棒のラインプロファイルを示す画像図。 Image showing a line profile of the manual welding torch head portion and the filler rod in manual welding operations spectrometer according to the present invention. 本発明に係る手溶接作業分析装置における画像化された溶加棒のピクセル輝度を示す線図。 Diagram showing the pixel intensities of the imaged filler rod in manual welding operations spectrometer according to the present invention. 本発明に係る手溶接作業分析装置における溶加棒先端、罫書刻印間距離の実寸換算後を示す線図。 Diagram showing filler rod tip, the post exact Conversion scribed marking distance in manual welding operations spectrometer according to the present invention. 本発明に係る手溶接作業分析装置における溶加棒積算送給量を示す線図。 Diagram showing the filler rod integrated delivery amount in manual welding operations spectrometer according to the present invention. 本発明に係る手溶接作業分析装置における溶融池の形状の分析処理を示すフロー図。 Flow diagram illustrating the processing for analyzing the shape of the molten pool in manual welding operations spectrometer according to the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

1 手溶接機一体型撮像装置2 CCDカメラ3 手溶接トーチ4 溶加棒4a 輪郭5 溶接士6 電源装置7 溶接母材8 画像データ収録装置9 データ処理装置10 ディスプレイ装置11 電極11a 電極先端部12 軸方向位置調整スライド部13 カメラ仰角調整スライド部14 軸方向位置固定ねじ部15 カメラ仰角位置固定ねじ部16 ケーブル17 カメラレンズ18 光学フィルタ19 カメラ位置固定部20 溶融池21 アーク光22 開先エッジ線 1 hand welding-integrated imaging device 2 CCD camera 3 Hand welding torch 4 filler rod 4a contour 5 welder 6 power supply 7 welding base material 8 image data recording device 9 data processing apparatus 10 a display device 11 electrode 11a electrode tip 12 The axial position control slide unit 13 camera elevation control slide portion 14 the axial position fixing screw section 15 camera elevation position fixing screw portion 16 cable 17 camera lens 18 an optical filter 19 camera position fixing portion 20 molten pool 21 arc light 22 groove edge line

Claims (7)

  1. 手溶接作業対象周辺に設置した監視カメラで撮影した溶接施工中の溶融池周辺の画像情報を分析、処理する手溶接作業分析装置において、手溶接トーチに監視カメラを一体接続させる手溶接機一体型撮像装置と、この撮像装置からの画像のデジタル信号を処理、収録する画像データ収録装置と、収録された画像をデータとして情報処理するデータ処理装置と、処理した情報をディスプレイするディスプレイ装置とを備えたことを特徴とする手溶接作業分析装置。 Analyzing image information of the molten pool around the manual welding operation target weld construction taken with installed surveillance cameras around, in manual welding operations analyzer for processing, manual welding-integrated to integrally connect the surveillance camera to the manual welding torch comprising an imaging device, processing the digital signal of the image from the imaging device, and an image data acquisition apparatus to record, a data processing unit for processing the recording image as data, and a display device for displaying the processed information hand welding analyzer, characterized in that the.
  2. 監視カメラは、溶接アーク光のピーク波長から離れた帯域に通過域を有する光学フィルタを備えたことを特徴とする請求項1記載の手溶接作業分析装置。 Surveillance cameras, manual welding operations analyzer according to claim 1, characterized in that it comprises an optical filter having a pass band in the band away from the peak wavelength of the welding arc light.
  3. 手溶接機一体型撮像装置は、監視カメラで撮像された画像を基に溶接中の手溶接トーチの挙動を分析する際、画像中の溶接母材の開先端におけるアーク光の反射強度のコントラストの変化から開先端輪郭線位置を検出するとともに、画像から検出される手溶接トーチの先端位置とで手溶接トーチねらい位置を換算し、前記手溶接トーチのトーチ運棒の分析データを取得する構成にしたことを特徴とする請求項1記載の手溶接作業分析装置。 Manual welding-integrated imaging device, when analyzing the behavior of the manual welding torch during welding on the basis of the image captured by a surveillance camera, the reflection intensity of the arc light in the open distal end of the welding base metal in the image contrast detects the open tip contour line position from the change, it converts the manual welding torch aiming position in the distal end position of the manual welding torch is detected from the image, a configuration that acquires the analysis data of the torch rod operating the manual welding torch hand welding analyzer according to claim 1, characterized in that the.
  4. 手溶接機一体撮像装置は、監視カメラで撮像された画像を基にTIG溶接分析を行う際、溶加棒に一定間隔で印を付すとともに、印を付した溶加棒の溶融池への挿入位置、手溶接トーチの電極先端と溶融池との距離、溶加棒の送給量のデータを取得する構成にしたことを特徴とする請求項1記載の手溶接作業分析装置。 Manual welding-integrated imaging device, when performing TIG welding analysis based on the image captured by the monitoring camera, inserted along with subjecting the indicia at regular intervals in filler rod, the molten pool of filler rods marked position, the distance between the electrode tip of the manual welding torch weld pool hand welding analyzer according to claim 1, characterized in that it has a structure to obtain the feed rate of the data of filler rod.
  5. 溶加棒に一定間隔で付した印は、その周方向に沿って細く削ったくびれ線であることを特徴とする請求項4記載の手溶接作業分析装置。 Mark the filler rod was subjected at regular intervals, manual welding operations analyzer according to claim 4, wherein it is a constricted line shaved thin along its circumferential direction.
  6. 手溶接一体撮像装置は、監視カメラで撮像された画像を基にTIG溶接分析を行う際、溶融池表面におけるアーク光の反射と開先表面での反射の相違から溶融池の輪郭形状を取得する構成にしたことを特徴とする請求項1記載の手溶接作業分析装置。 Manual welding integral imaging apparatus, when performing TIG welding analysis based on the image captured by the surveillance camera, to acquire the contour of the molten pool from the difference in reflection at the reflection and groove surfaces of the arc light in the molten pool surface configuration manual welding operations analyzer according to claim 1, characterized in that the.
  7. 手溶接作業対象周辺に設置した監視カメラで撮影した溶接施工中の溶融池周辺の画像情報を分析、処理する手溶接作業分析装置において、手溶接トーチに監視カメラを一体接続させる手溶接機一体型撮像装置と、この撮像装置からの画像のデジタル信号を処理、収録する画像データ収録装置と、収録された画像をデータとして情報処理するデータ処理装置と、処理した情報をディスプレイするディスプレイ装置とを備える一方、前記手溶接機一体撮像装置は、前記監視カメラを前記手溶接トーチに対して移動せる軸方向位置調整スライド部と、カメラ仰角を調整するカメラ仰角調整スライド部とを備えたことを特徴とする手溶接作業分析装置に適用する手溶接トーチ一体型監視カメラ。 Analyzing image information of the molten pool around the manual welding operation target weld construction taken with installed surveillance cameras around, in manual welding operations analyzer for processing, manual welding-integrated to integrally connect the surveillance camera to the manual welding torch comprising an imaging device, processing the digital signal of the image from the imaging device, and an image data acquisition apparatus to record, a data processing unit for processing the recording image as data, and a display device for displaying the processed information Meanwhile, the manual welding-integrated imaging device, and characterized in that the monitoring camera with the axial position adjustment slider portion to move with respect to the manual welding torch, and a camera elevation control slide section to adjust the camera elevation manual welding torch integrated surveillance camera applied to manual welding operations analyzer for.
JP2005104443A 2005-03-31 2005-03-31 Hand welding analyzer and hand welding torch-integrated type monitoring camera applicable to the analyzer Pending JP2006281270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104443A JP2006281270A (en) 2005-03-31 2005-03-31 Hand welding analyzer and hand welding torch-integrated type monitoring camera applicable to the analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104443A JP2006281270A (en) 2005-03-31 2005-03-31 Hand welding analyzer and hand welding torch-integrated type monitoring camera applicable to the analyzer

Publications (1)

Publication Number Publication Date
JP2006281270A true JP2006281270A (en) 2006-10-19

Family

ID=37403705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104443A Pending JP2006281270A (en) 2005-03-31 2005-03-31 Hand welding analyzer and hand welding torch-integrated type monitoring camera applicable to the analyzer

Country Status (1)

Country Link
JP (1) JP2006281270A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110388A (en) * 2006-10-31 2008-05-15 Toshiba Corp Method and apparatus for measuring welding operation information
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8747116B2 (en) 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US8915740B2 (en) 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
USRE45398E1 (en) 2009-03-09 2015-03-03 Lincoln Global, Inc. System for tracking and analyzing welding activity
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
JP2016525945A (en) * 2013-05-24 2016-09-01 リンカーン グローバル,インコーポレイテッド System and method for providing a computerized eyewear device for welding aid
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9685099B2 (en) 2009-07-08 2017-06-20 Lincoln Global, Inc. System for characterizing manual welding operations
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9895267B2 (en) 2009-10-13 2018-02-20 Lincoln Global, Inc. Welding helmet with integral user interface
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US10198962B2 (en) 2013-09-11 2019-02-05 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947067A (en) * 1982-07-26 1984-03-16 Gen Electric Arc welding torch with integral visual sensor
JPS62151073A (en) * 1985-12-25 1987-07-06 Fujitsu Ltd Data conversion control system
JPH0623548A (en) * 1992-07-08 1994-02-01 Mitsubishi Heavy Ind Ltd Arc shape detector for tig welding
JP2000246441A (en) * 1999-03-03 2000-09-12 Hitachi Ltd Remote monitoring device for welding state
JP2001071140A (en) * 1999-09-02 2001-03-21 Toshiba Corp Device and method for supporting manual welding and device and method for training manual welding
JP2002205166A (en) * 2001-01-04 2002-07-23 Kawasaki Heavy Ind Ltd Display for welding state

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947067A (en) * 1982-07-26 1984-03-16 Gen Electric Arc welding torch with integral visual sensor
JPS62151073A (en) * 1985-12-25 1987-07-06 Fujitsu Ltd Data conversion control system
JPH0623548A (en) * 1992-07-08 1994-02-01 Mitsubishi Heavy Ind Ltd Arc shape detector for tig welding
JP2000246441A (en) * 1999-03-03 2000-09-12 Hitachi Ltd Remote monitoring device for welding state
JP2001071140A (en) * 1999-09-02 2001-03-21 Toshiba Corp Device and method for supporting manual welding and device and method for training manual welding
JP2002205166A (en) * 2001-01-04 2002-07-23 Kawasaki Heavy Ind Ltd Display for welding state

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110388A (en) * 2006-10-31 2008-05-15 Toshiba Corp Method and apparatus for measuring welding operation information
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US8747116B2 (en) 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US10056011B2 (en) 2008-08-21 2018-08-21 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10204529B2 (en) 2008-08-21 2019-02-12 Lincoln Global, Inc. System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment
US8915740B2 (en) 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
US9965973B2 (en) 2008-08-21 2018-05-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9928755B2 (en) 2008-08-21 2018-03-27 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US9858833B2 (en) 2008-08-21 2018-01-02 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9836995B2 (en) 2008-08-21 2017-12-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9818312B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9818311B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9792833B2 (en) 2008-08-21 2017-10-17 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9779636B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9779635B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9761153B2 (en) 2008-08-21 2017-09-12 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9754509B2 (en) 2008-08-21 2017-09-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9293057B2 (en) 2008-08-21 2016-03-22 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9293056B2 (en) 2008-08-21 2016-03-22 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
US9336686B2 (en) 2008-08-21 2016-05-10 Lincoln Global, Inc. Tablet-based welding simulator
US9691299B2 (en) 2008-08-21 2017-06-27 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US10249215B2 (en) 2008-08-21 2019-04-02 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
USRE45398E1 (en) 2009-03-09 2015-03-03 Lincoln Global, Inc. System for tracking and analyzing welding activity
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9685099B2 (en) 2009-07-08 2017-06-20 Lincoln Global, Inc. System for characterizing manual welding operations
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US10068495B2 (en) 2009-07-08 2018-09-04 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US10134303B2 (en) 2009-07-10 2018-11-20 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9911359B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9911360B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9836994B2 (en) 2009-07-10 2017-12-05 Lincoln Global, Inc. Virtual welding system
US9895267B2 (en) 2009-10-13 2018-02-20 Lincoln Global, Inc. Welding helmet with integral user interface
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9050679B2 (en) 2009-11-13 2015-06-09 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9012802B2 (en) 2009-11-13 2015-04-21 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9050678B2 (en) 2009-11-13 2015-06-09 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9089921B2 (en) 2009-11-13 2015-07-28 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8987628B2 (en) 2009-11-13 2015-03-24 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9269279B2 (en) 2010-12-13 2016-02-23 Lincoln Global, Inc. Welding training system
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
JP2016525945A (en) * 2013-05-24 2016-09-01 リンカーン グローバル,インコーポレイテッド System and method for providing a computerized eyewear device for welding aid
US10198962B2 (en) 2013-09-11 2019-02-05 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup

Similar Documents

Publication Publication Date Title
US7489392B2 (en) Systems and methods for using light to indicate inconsistency locations on a composite structure
US8569655B2 (en) Welding helmet with integral user interface
JP4986626B2 (en) System and method for measuring the defect characteristics of the composite structure
US8111905B2 (en) Autofocus video tool and method for precise dimensional inspection
US7495758B2 (en) Apparatus and methods for two-dimensional and three-dimensional inspection of a workpiece
US5438422A (en) Error detection apparatus and method for use with engravers
Bae et al. An optical sensing system for seam tracking and weld pool control in gas metal arc welding of steel pipe
US8411083B2 (en) Method and device for displaying an indication of the quality of the three-dimensional data for a surface of a viewed object
JP4696325B2 (en) Automatic welding and defect repair method and an automatic welding device
US8137738B2 (en) Method and apparatus for recognizing a structure to be applied onto a substrate with multiple cameras
JP5981143B2 (en) Method of controlling a robot tool
US5040125A (en) Positional information detecting method in arc welding
US9230449B2 (en) Welding training system
US4280137A (en) Method and apparatus for automatically controlling arc welding
US20070278196A1 (en) Method for testing undercut on the inner diameter of pipe welds
WO2003074221A1 (en) Automatic groove copy welder and welding method
CN1306242C (en) Method for measuring sequential file generation, measuring system
US5463462A (en) Method of and apparatus for inspecting honeycomb-shaped object having plural through holes
US20110006047A1 (en) Method and system for monitoring and characterizing the creation of a manual weld
EP2410488A1 (en) Method of structured light-based measurement
US5349156A (en) Sensing of gas metal arc welding process characteristics for welding process control
CN106205291A (en) Virtual testing and inspection of a virtual weldment
CN1580748A (en) Methods and apparatus for inspection of lines embedded in highly textured material
JPH08505703A (en) Method for determining the characteristics of the object surface
US20100128222A1 (en) Method for visual field testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Effective date: 20091221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426