JP2006279912A - Near electric field electromagnetic wave noise suppressing material - Google Patents

Near electric field electromagnetic wave noise suppressing material Download PDF

Info

Publication number
JP2006279912A
JP2006279912A JP2005127071A JP2005127071A JP2006279912A JP 2006279912 A JP2006279912 A JP 2006279912A JP 2005127071 A JP2005127071 A JP 2005127071A JP 2005127071 A JP2005127071 A JP 2005127071A JP 2006279912 A JP2006279912 A JP 2006279912A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
thin film
noise suppression
wave noise
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005127071A
Other languages
Japanese (ja)
Inventor
Shigehiro Onuma
繁弘 大沼
Tadayoshi Iwasa
忠義 岩佐
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Electric and Magnetic Alloys, Research Institute for Electromagnetic Materials filed Critical Research Institute of Electric and Magnetic Alloys
Priority to JP2005127071A priority Critical patent/JP2006279912A/en
Publication of JP2006279912A publication Critical patent/JP2006279912A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near electric field electromagnetic wave noise suppressing thin film material for efficiently suppressing near electric field electromagnetic wave noise that occurs at an electronic device or an electronic circuit operating in a sub-microwave band. <P>SOLUTION: In the near electric field electromagnetic wave noise suppressing thin film material, surface resistance Rs (ρ/t) of the thin film material is controlled to between 10 Ω/square and 1,000 Ω/square that matches the spatial characteristic impedance Z (377 Ω), in order to secure the reflection coefficient (S<SB>11</SB>) of the noise occurring at the electronic device or electronic circuit operating in a sub-microwave band to be -10 dB or lower, as a practical level, and to simultaneously secure that the electromagnetic noise suppression effect (ΔP<SB>loss</SB>/P<SB>in</SB>) is 0.5 or higher. Furthermore, the near electric field electromagnetic wave noise suppressing thin-film material comprises a soft magnetic thin-film material that satisfies the above conditions, has a magnetic resonance frequency in the desired frequency band, and represents large resistance loss, as well as the magnetic loss. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は1GHz以上、20GHz以下の高周波帯域における近傍界電磁波ノイズを抑制する導電性薄膜に関し、詳しくは高速動作する半導体素子あるいは高周波電子部品で問題となる近傍界電磁波ノイズの薄膜による抑制方法に関する。  The present invention relates to a conductive thin film that suppresses near-field electromagnetic noise in a high-frequency band of 1 GHz or more and 20 GHz or less, and particularly relates to a method for suppressing near-field electromagnetic noise that causes a problem in a semiconductor element or high-frequency electronic component that operates at high speed.

近年の高度情報化社会における電子機器は、動作周波数の高周波化が加速度的に進んでいる.代表的なものがパーソナルコンピュータであり、その中央演算処理装置の動作周波数は1GHzを超える.その他、通信機器では、携帯電話(0.9,1.5,1.9GHz)、衛星放送(11.7〜19.0GHz)、無線LAN(2.45,5.0,19.0GHz)などが実施、もしくは検討されている。さらに、高速道路交通システム(ITS)におけるノンストップ自動料金収受システム(ETC)(5.8GHz)、追突防止レーダ(7.6GHz)等が用いられるようになっており、今後ますますGHz帯域での高速な半導体集積素子の利用は増加することが予測される。  In recent years, electronic devices in the advanced information society have been accelerating in frequency. A typical one is a personal computer, and the operation frequency of the central processing unit exceeds 1 GHz. In addition, in communication devices, mobile phones (0.9, 1.5, 1.9 GHz), satellite broadcasting (11.7 to 19.0 GHz), wireless LAN (2.45, 5.0, 19.0 GHz), etc. Has been implemented or is under consideration. In addition, non-stop automatic toll collection system (ETC) (5.8 GHz), rear-end collision prevention radar (7.6 GHz), etc. in highway traffic system (ITS) are used, and will continue to be used in the GHz band in the future. The use of high-speed semiconductor integrated devices is expected to increase.

また、高周波化に平行して電子機器の軽薄短小化も進行しており、使用される電子部品の小型化や半導体素子の高集積度化、電子部品実装基板の高密度化が著しく進んでいる。従って過密に集積および実装された電子部品や信号配線は共に近接する状況となり、前述の高周波化と融合して電磁波の不要輻射が発生しやすい状態となる。このことが機器の誤作動等を招き、機器の小型化や高性能化を阻害する重大な技術要因となっている。この問題に対して最近、不要輻射などのEMI(電磁波障害)が盛んに指摘されており、その総合的な対策としてEMC(電磁両立性)が重視され、この分野の研究が盛んになり始めている。駆動周波数が低周波〜数MHzまでの電子機器は、筐体などを軟磁性材料で覆う方法で対策がなされており、駆動周波数が1〜2GHz程度の電子機器は、シート状の複合磁性体を電子部品や電磁波ノイズ発生源に、直接貼り付ける対策が施されている。  In parallel with the trend toward higher frequencies, electronic devices are becoming lighter, thinner, and smaller. The size of electronic components used, the degree of integration of semiconductor elements, and the density of electronic component mounting boards are significantly increasing. . Accordingly, the electronic parts and signal wirings that are densely integrated and mounted are close to each other, and are combined with the above-described high frequency operation, so that unnecessary radiation of electromagnetic waves is likely to occur. This leads to malfunction of the equipment, and is a serious technical factor that hinders downsizing and high performance of the equipment. Recently, EMI (electromagnetic wave interference) such as unwanted radiation has been actively pointed out with respect to this problem, and EMC (electromagnetic compatibility) has been emphasized as a comprehensive countermeasure, and research in this field has begun to flourish. . Measures have been taken for electronic devices with a drive frequency of low frequency to several MHz by covering the housing with a soft magnetic material, and for electronic devices with a drive frequency of about 1 to 2 GHz, a sheet-like composite magnetic material is used. Measures are applied directly to electronic components and electromagnetic noise sources.

発明開示Invention disclosure

発明が解決しようとする課題Problems to be solved by the invention

今後、駆動周波数の高速化および機器の更なる軽薄短小化が進めば、電磁波の波長がプリント配線とほぼ同等のスケールになるために、従来の方法では対策が難しくなり、微細な部分から発生する電磁波ノイズを対策できる技術が(マイクロEMC)が求められてくる。  In the future, if the drive frequency is increased and the device is further reduced in thickness, the wavelength of the electromagnetic wave will be almost the same as that of the printed wiring. Technology (micro EMC) that can prevent electromagnetic noise is required.

現在マイクロEMC技術として提案されているのが、磁性薄膜を用いた電磁波ノイズ抑制技術であり、プリント基板作製時に電磁波ノイズ抑制性能を有する薄膜を同時に集積する方法である.薄膜を近傍界電磁波ノイズ抑制に用いる場合には、薄膜のインピーダンスに起因した反射が問題となり、この反射が大きいと電磁波ノイズの一部が信号源に戻ってしまい、信号源で二次障害が発生する。この反射は−10dB以下が実用上必要なレベルとされている。  Currently, the electromagnetic noise suppression technology using a magnetic thin film is proposed as a micro-EMC technology, which is a method of simultaneously integrating thin films having electromagnetic noise suppression performance during printed circuit board fabrication. When thin films are used to suppress near-field electromagnetic noise, reflection due to the impedance of the thin film becomes a problem, and if this reflection is large, part of the electromagnetic noise returns to the signal source, causing secondary disturbance in the signal source. To do. This reflection has a practically required level of −10 dB or less.

近傍界電磁波ノイズ対策への薄膜の応用は、大きな磁気損失(μ”)を利用したナノグラニュラー軟磁性薄膜の検討がなされている。しかしながら、ナノグラニュラーは電気比抵抗がおよそ数百μΩcmと小さいために、インピーダンスミスマッチングの問題から、反射が大きくなってしまい、電波吸収特性に対する大きなμ”の効果が、十分に得られない等の問題がある。よって、この材料では反射低減に関して、薄膜を短冊状にパターニングすることにより、薄膜全体のインピーダンスを制御する対策がなされている。  As for the application of thin films to near-field electromagnetic noise countermeasures, nano-granular soft magnetic thin films using a large magnetic loss (μ ”) have been studied. However, since nano-granular has a small electrical resistivity of about several hundred μΩcm, Due to the problem of impedance mismatching, there is a problem that reflection becomes large and a large μ ″ effect on the radio wave absorption characteristics cannot be obtained sufficiently. Therefore, in this material, a measure for controlling the impedance of the entire thin film by patterning the thin film into a strip shape is taken for the reflection reduction.

課題を解決するための手段Means for solving the problem

本発明者らは上記の事情を鑑みて、薄膜のインピーダンスを決定するパラーメーターとして薄膜の比抵抗(ρ)と膜厚(t)から決定される表面抵抗Rs(Ω/□)に注目し、表面抵抗(Rs)と反射(S11)および近傍界電磁波ノイズ抑制効果(Ploss/Pin)の関係について、誠意努力して検討を進めた結果、導電性薄膜の表面抵抗Rs(Ω/□)を空間の特性インピーダンス(〜377Ω)と整合が起きる、50Ω/□以上に制御することにより反射を実用レベルの−10dB以下に低減できることを見出した。さらに、表面抵抗(Rs)を、空間の特性インピーダンスZ(〜377Ω)とほぼ同等の値に制御すると、両者が完全に整合して、不要輻射が高効率で薄膜内に吸収されたのち、薄膜の抵抗損失および磁気損失により高効率で損失され、非常に大きな近傍界電磁波ノイズ抑制効果が得られることを見出した。これまで、薄膜による近傍界電磁波ノイズ対策において、表面抵抗Rsを空間のインピーダンスZと整合させる、という観点から検討された報告はない。In view of the above circumstances, the inventors pay attention to the surface resistance Rs (Ω / □) determined from the specific resistance (ρ) and the film thickness (t) of the thin film as a parameter for determining the impedance of the thin film. As a result of making sincere efforts to investigate the relationship between the surface resistance (Rs), reflection (S11), and near-field electromagnetic noise suppression effect (P loss / P in ), surface resistance Rs (Ω / □) of the conductive thin film It has been found that the reflection can be reduced to a practical level of −10 dB or less by controlling the impedance to 50Ω / □ or more, which matches with the characteristic impedance (˜377Ω) of the space. Furthermore, when the surface resistance (Rs) is controlled to a value approximately equal to the characteristic impedance Z (˜377Ω) of the space, the two are perfectly matched, and the unwanted radiation is absorbed into the thin film with high efficiency. It has been found that a very large near-field electromagnetic wave noise suppression effect can be obtained with high efficiency due to the resistance loss and magnetic loss. Up to now, there has been no report examined from the viewpoint of matching the surface resistance Rs with the spatial impedance Z in the countermeasure against near-field electromagnetic noise by a thin film.

本発明は、導電性薄膜の表面抵抗(Rs)を制御することで反射および電磁波ノイズを抑制する方法であり、近傍界電磁波ノイズ抑制への薄膜の応用化を目的として検討されたものである。  The present invention is a method of suppressing reflection and electromagnetic noise by controlling the surface resistance (Rs) of a conductive thin film, and has been studied for the purpose of applying the thin film to the suppression of near-field electromagnetic noise.

本発明が特徴とするところは次の通りである。第1の発明は、準マイクロ波帯域で発生する電磁波ノイズに対して、その反射係数(S11)を実用レベルである−10dB以下に、またノイズ抑制効果(ΔPloss/Pin)を0.5以上に抑制するために、薄膜材料の表面抵抗Rs(ρ/t)を、空間の特性インピーダンスZ(377Ω)と整合する、10Ω/□以上、1000Ω/□以下に制御することを特徴とした近傍界電磁波ノイズ抑制薄膜材料に関する。The features of the present invention are as follows. In the first invention, the electromagnetic wave noise generated in the quasi-microwave band has a reflection coefficient (S 11 ) of −10 dB or less, which is a practical level, and a noise suppression effect (ΔP loss / P in ) of 0.1. In order to suppress to 5 or more, the surface resistance Rs (ρ / t) of the thin film material is controlled to be 10Ω / □ or more and 1000Ω / □ or less, which matches the characteristic impedance Z (377Ω) of the space. The present invention relates to a near-field electromagnetic noise suppression thin film material.

第2の発明は、準マイクロ波帯域で発生する電磁波ノイズに対して、その反射係数(S11)を−10dB以下に、またノイズ抑制効果(ΔPloss/Pin)を0.7以上に抑制するために、空間の特性インピーダンスZ(377Ω)と同等の表面抵抗Rs(ρ/t)を有することを特徴とした近傍界電磁波ノイズの抑制薄膜材料に関する。The second invention suppresses the reflection coefficient (S 11 ) to −10 dB or less and the noise suppression effect (ΔP loss / P in ) to 0.7 or more with respect to electromagnetic wave noise generated in the quasi-microwave band. Therefore, the present invention relates to a near-field electromagnetic wave noise suppressing thin film material having a surface resistance Rs (ρ / t) equivalent to a space characteristic impedance Z (377Ω).

第3の発明は、利用周波数帯が1GHz以上、20GHz以下であることを特徴とする第1および第2の発明に関する。  The third invention relates to the first and second inventions, wherein the use frequency band is 1 GHz or more and 20 GHz or less.

第4の発明は、抵抗損失を利用して近傍界電磁波ノイズを損失させることを特徴とする第1および第3の発明に関する。  The fourth invention relates to the first and third inventions characterized in that near-field electromagnetic noise is lost using resistance loss.

第5の発明は、電磁波ノイズ抑制薄膜を電子回路上に密着またはその近傍に配設することを特徴とした第1ないし第4の発明に関する。  A fifth invention relates to the first to fourth inventions, characterized in that an electromagnetic wave noise suppression thin film is disposed on or in the vicinity of an electronic circuit.

第6の発明は、透磁率の自然共鳴周波数が0.5GHz以上、10GHz以下を有する電磁波ノイズ抑制導電性磁性薄膜を用い、抵抗損失と磁気損失の両者を利用し電磁波ノイズ抑制効果を得ることを特徴とした第1ないし第5の発明に関する。  The sixth invention uses an electromagnetic wave noise suppressing conductive magnetic thin film having a natural resonance frequency of permeability of 0.5 GHz or more and 10 GHz or less, and obtains an electromagnetic wave noise suppressing effect using both resistance loss and magnetic loss. The present invention relates to the first to fifth inventions characterized.

第7の発明は、ナノグラニュラー構造またはナノヘテロ構造を有する、電磁波ノイズ抑制導電性薄膜を用いることを特徴とした第1ないし第6の発明に関する  A seventh invention relates to the first to sixth inventions characterized by using an electromagnetic wave noise suppressing conductive thin film having a nano granular structure or a nano hetero structure.

第8の発明は、ノイズ発生部に対策する電磁波ノイズ抑制導電性薄膜の寸法幅が信号配線幅の2倍以上であることを特徴とした第1ないし第7の発明に関する。  An eighth invention relates to the first to seventh inventions, characterized in that the electromagnetic noise suppressing conductive thin film for countermeasures against the noise generating portion has a dimension width of at least twice the signal wiring width.

発明の効果The invention's effect

高速動作する半導体内部のような微小回路から発生する電磁波ノイズを抑制するために、薄膜による対策が急務となっている現在、本発明では、導電性薄膜の表面抵抗(Rs)を制御することで、反射(S11)が実用レベルまで抑制され、また空間のインピーダンスZ(377Ω)との整合状態により大きな電磁波ノイズ抑制効果が得られることを説明した.これらの結果は、近傍界電磁波ノイズ抑制対策への薄膜材料の応用化に向けた基本技術であり、薄膜電磁波ノイズ抑制体の応用化を実現可能とするものである。  In order to suppress electromagnetic noise generated from a microcircuit such as a semiconductor that operates at high speed, countermeasures using a thin film are urgently needed. In the present invention, the surface resistance (Rs) of a conductive thin film is controlled by the present invention. It was explained that reflection (S11) was suppressed to a practical level and that a large electromagnetic noise suppression effect was obtained by matching with the impedance Z (377Ω) of the space. These results are basic technologies for application of thin film materials to near field electromagnetic noise suppression measures, and enable application of thin film electromagnetic noise suppression bodies.

以下、本発明に実施の形態について説明する.はじめに、本発明において用いている薄膜は、スパッタ法によりガラス基板上に作製したAl−O導電性薄膜である.RFマグネトロンスパッタを用いてAlターゲットをAr+O混合ガス雰囲気中での反応性スパッタ法により以下の条件で、含有酸素量が異なり任意の比抵抗(ρ)を有するAl−O導電性薄膜を作製した。Embodiments of the present invention will be described below. First, the thin film used in the present invention is an Al—O conductive thin film formed on a glass substrate by sputtering. An Al—O conductive thin film having an arbitrary specific resistance (ρ) with different oxygen content was prepared by reactive sputtering in an Ar + O 2 mixed gas atmosphere using RF magnetron sputtering under the following conditions. .

スパッタガス圧 : 5×10−3Torr
投入電力 : 150W
基板 : Corning#7059
酸素流量比 : 1.0〜1.6%
膜 厚 : 〜1μm
Sputtering gas pressure: 5 × 10 −3 Torr
Input power: 150W
Substrate: Corning # 7059
Oxygen flow ratio: 1.0-1.6%
Film thickness: ~ 1μm

得られた試料について直流4端子法により電気比抵抗(ρ)の測定を行い、その値と膜厚からRs=ρ/tにより表面抵抗Rs(Ω/□)を求めた。  The specific resistance (ρ) of the obtained sample was measured by the direct current four-terminal method, and the surface resistance Rs (Ω / □) was determined from the value and film thickness by Rs = ρ / t.

得られた試料の電磁波ノイズ抑制効果は図1に示す電磁波ノイズ評価系を用いて調べた。図1を参照すると、電磁波ノイズ抑制効果の評価系は裏面が全面地導体である誘電基板1上に形成されたマイクロストリップライン(MSL)1a上の両端を同軸ケーブル2a,2bで介してネットワークアナライザ4に接続した構成であり、試料3は15×35mmになるように切り出しMSL上に膜面が接する形で配置される。 ここで評価に用いたMSLの線幅は3.5mmであり線長は40mmである。  The electromagnetic noise suppression effect of the obtained sample was investigated using the electromagnetic noise evaluation system shown in FIG. Referring to FIG. 1, the evaluation system for electromagnetic wave noise suppression effect is a network analyzer through coaxial cables 2a and 2b on both ends of a microstrip line (MSL) 1a formed on a dielectric substrate 1 whose back surface is a ground conductor. The sample 3 is cut out so as to have a size of 15 × 35 mm, and is arranged on the MSL so that the film surface is in contact therewith. The line width of the MSL used for evaluation here is 3.5 mm, and the line length is 40 mm.

図2に表面抵抗Rsの異なるAl−O導電性薄膜の電磁波ノイズ抑制特性の評価結果を示す。点線がMSL単独の特性を表し、プロット形により表面抵抗Rsの大きさを区別している。図2から実用レベルの−10dB以下の反射(S11)を示す表面抵抗は50Ω/□以上であることが分かる。また、1GHz以下ではRsが50Ω/□以上であっても周波数の波長に起因した問題からS11は−10dB以下とはならず、この結果から対応周波数は1GHz以上であることが分かる。さらに、Rsが50および200Ω/□では透過(S21)が大きく減衰しており、それらの値から1−[|S11|+|S21|]により電磁波ノイズ抑制効果(ΔPloss/Pin)を求めると0.6を超える非常に大きな電磁波ノイズ抑制効果が得られる.以上の結果から、1GHz以上での反射(S11)を−10dB以下に抑制するためには表面抵抗を50Ω/□以上に制御した導電性薄膜が有効であることが分かる。FIG. 2 shows the evaluation results of the electromagnetic wave noise suppression characteristics of Al—O conductive thin films having different surface resistances Rs. A dotted line represents the characteristics of MSL alone, and the magnitude of the surface resistance Rs is distinguished by a plot shape. It can be seen from FIG. 2 that the surface resistance showing a reflection (S11) of −10 dB or less at a practical level is 50Ω / □ or more. In addition, even when Rs is 50 Ω / □ or more at 1 GHz or less, S11 does not become −10 dB or less from the problem due to the wavelength of the frequency, and from this result, it can be seen that the corresponding frequency is 1 GHz or more. Further, when Rs is 50 and 200Ω / □, transmission (S21) is greatly attenuated, and from these values, 1- [| S11 | 2 + | S21 | 2 ] suppresses electromagnetic wave noise (ΔP loss / P in ). Is obtained, a very large electromagnetic noise suppression effect exceeding 0.6 is obtained. From the above results, it can be seen that a conductive thin film having a surface resistance controlled to 50 Ω / □ or more is effective for suppressing reflection (S11) at 1 GHz or more to −10 dB or less.

図3は各周波数での電磁波ノイズ抑制効果(ΔPloss/Pin)の表面抵抗(Rs)依存性をまとめた結果である。図3によれば、各周波数ともRsが10Ω/□付近に近いほど電磁波ノイズ抑制効果(ΔPloss/Pin)は増加するような挙動を示している。1GHzはブロードな変化であるが、2GHzおよび6GHzが共に顕著に現れている。これは、〜10Ω/□のRsと空間のインピーダンスZ(377Ω)との整合状態を表しており、すなわちRsが最も空間のインピーダンスZ(377Ω)に近い時に両者が完全に整合し、低反射(S11)で導電性薄膜に導入された電磁波ノイズは導電性薄膜の抵抗損失により高効率で損失されている状態を表している。FIG. 3 summarizes the surface resistance (Rs) dependence of the electromagnetic wave noise suppression effect (ΔP loss / P in ) at each frequency. According to FIG. 3, the electromagnetic wave noise suppression effect (ΔP loss / P in ) increases as Rs approaches 10 2 Ω / □ near each frequency. Although 1 GHz is a broad change, both 2 GHz and 6 GHz appear remarkably. This represents a matching state between Rs of 10 2 Ω / □ and space impedance Z (377 Ω), that is, when Rs is closest to the space impedance Z (377 Ω), both are perfectly matched and low. The electromagnetic wave noise introduced into the conductive thin film by reflection (S11) represents a state of being lost with high efficiency due to the resistance loss of the conductive thin film.

また図4は、構成元素、膜厚、比抵抗の異なる多種の導電性薄膜について6GHzでの電磁波ノイズ抑制効果(ΔPloss/Pin)の表面抵抗(Rs)依存性をまとめた結果である。何れの場合でも、比抵抗(ρ)と膜厚(t)から決定されるRs(ρ/t)で整理すると、Rs=〜10Ω/□にピークを持つ曲線にほぼ一致する。FIG. 4 shows the results of the surface resistance (Rs) dependence of the electromagnetic wave noise suppression effect (ΔP loss / P in ) at 6 GHz for various conductive thin films having different constituent elements, film thicknesses, and specific resistances. In any case, when arranged by Rs (ρ / t) determined from the specific resistance (ρ) and the film thickness (t), it almost coincides with a curve having a peak at Rs = −10 2 Ω / □.

以上の結果から、電磁波ノイズ抑制効果(ΔPloss/Pin)はRsに依存性を持つために、より大きな電磁波ノイズ抑制効果(ΔPloss/Pin)を得るためには、Rsが空間のインピーダンスZ(377Ω)と完全に整合するように制御することが重要である。From the above results, since the electromagnetic wave noise suppression effect (ΔP loss / P in ) is dependent on Rs, in order to obtain a larger electromagnetic wave noise suppression effect (ΔP loss / P in ), Rs is the impedance of the space. It is important to control to perfectly match Z (377Ω).

図5は、Rsが同様なAl−O非磁性膜と〜2GHzに透磁率の自然共鳴周波数を有するCoAlO磁性膜の各周波数での電磁波ノイズ抑制効果(ΔPloss/Pin)のRs依存性をまとめた結果である。CoAlO磁性膜の1GHzおよび2GHzをAl−O非磁性膜と比較すると、ピーク位置が低Rs側にシフトし電磁波ノイズ抑制効果(ΔPloss/Pin)が増大する。また、6GHzでは両者ともほぼ同様の結果となる。以上のことから、自然共鳴周波数付近では抵抗損失に加え磁気損失も電磁波ノイズ抑制効果(ΔPloss/Pin)に大きく寄与することがわかる。FIG. 5 shows the Rs dependence of the electromagnetic wave noise suppression effect (ΔP loss / P in ) at each frequency of an Al—O nonmagnetic film having a similar Rs and a CoAlO magnetic film having a natural resonance frequency of permeability at ˜2 GHz. It is the summary result. When 1 GHz and 2 GHz of the CoAlO magnetic film are compared with the Al—O nonmagnetic film, the peak position is shifted to the low Rs side, and the electromagnetic wave noise suppression effect (ΔP loss / P in ) increases. In addition, at 6 GHz, both results are almost the same. From the above, it can be seen that in the vicinity of the natural resonance frequency, the magnetic loss in addition to the resistance loss greatly contributes to the electromagnetic wave noise suppression effect (ΔP loss / P in ).

図6は、空間のインピーダンスZ(377Ω)とRsが整合している高い電磁波ノイズ抑制効果(ΔPloss/Pin)を示すAl−O導電性薄膜について、1.0mmと3.5mm幅のマイクロストリップラインを用いて、信号線幅に対する試料幅の関係を調べた結果である。この結果から、信号線幅が1mmおよび3.5mmと異なった場合でも、信号線幅の〜2倍の試料幅を設ければ、高い電磁波ノイズ抑制効果(ΔPloss/Pin)が保持できることが分かる。FIG. 6 shows 1.0 mm and 3.5 mm wide micro thin films of Al—O conductive thin film exhibiting a high electromagnetic noise suppression effect (ΔP loss / P in ) in which space impedance Z (377Ω) and Rs are matched. It is the result of investigating the relationship between the sample line width and the signal line width using the strip line. From this result, even when the signal line width is different from 1 mm and 3.5 mm, a high electromagnetic wave noise suppression effect (ΔP loss / P in ) can be maintained if a sample width of ˜2 times the signal line width is provided. I understand.

比較のため、図7に強磁性微粉末をポリマー中に高密度に分散させた複合磁性体シート(市販の電磁波ノイズ抑制体)について、実施例と同様な方法で評価を行なった。今回検討を行った代表的なAl−O導電性薄膜(Rs=200Ω/□,ρ=2.5×10μΩcm,t=1.25μm)と複合磁性体シート(t=50μm)を比較すると、反射(S11)の値は〜1GHz以上で見ると両者とも実用レベルの−10dBはクリアされており同様の結果であるが、透過(S21)には大きな差が見られている。これらから求まる電磁波ノイズ抑制効果(ΔPloss/Pin)で比較するとAl−O導電性薄膜のほうが2〜3倍大きな値となっている。また、両者の厚さはAl−O導電性薄膜が〜1μm、複合磁性体シートが〜50μmであるので、Al−O導電性薄膜は複合磁性体シートに比べて〜50分の1の厚さで2〜3倍の性能を示している。For comparison, a composite magnetic material sheet (commercially available electromagnetic wave noise suppressor) in which ferromagnetic fine powder is dispersed in a polymer at a high density in FIG. 7 was evaluated in the same manner as in the example. Comparing the representative Al—O conductive thin film (Rs = 200Ω / □, ρ = 2.5 × 10 4 μΩcm, t = 1.25 μm) and the composite magnetic sheet (t = 50 μm) examined this time When the reflection (S11) value is viewed at ˜1 GHz or more, the practical level of −10 dB is cleared in both cases, which is the same result, but a large difference is seen in the transmission (S21). Compared with the electromagnetic wave noise suppression effect (ΔP loss / P in ) obtained from these, the Al—O conductive thin film is 2 to 3 times larger. Moreover, since the thickness of both is about 1 μm for the Al—O conductive thin film and about 50 μm for the composite magnetic material sheet, the thickness of the Al—O conductive thin film is about 1 / 50th the thickness of the composite magnetic material sheet. 2 to 3 times the performance.

高速動作する半導体内部のような微小回路から発生する電磁波ノイズを抑制するために、薄膜による対策が急務となっている現在、本発明では、導電性薄膜の表面抵抗(Rs)を制御することで、反射(S11)が実用レベルまで抑制され、また空間のインピーダンスZ(377Ω)との整合状態により大きな電磁波ノイズ抑制効果が得られることを説明した。これらの結果は、近傍界電磁波ノイズ抑制対策として薄膜材料を適用する場合の基本技術であり、これらによって薄膜電磁波ノイズ抑制体の実現を可能とすることが期待され、産業上の利用可能性は極めて大きい。  In order to suppress electromagnetic noise generated from a microcircuit such as a semiconductor that operates at high speed, countermeasures using a thin film are urgently needed. In the present invention, the surface resistance (Rs) of a conductive thin film is controlled by the present invention. It has been explained that reflection (S11) is suppressed to a practical level, and that a large electromagnetic noise suppression effect is obtained by matching with the impedance Z (377Ω) of the space. These results are basic technologies when thin film materials are applied as a countermeasure for suppressing near-field electromagnetic noise, which is expected to enable the realization of a thin film electromagnetic noise suppressor, and the industrial applicability is extremely high. large.

電磁波ノイズ抑制効果の評価系である。  This is an evaluation system for electromagnetic wave noise suppression effect. 表面抵抗Rsの異なるAl−O導電性薄膜の電磁波ノイズ抑制特性の評価結果である。  It is an evaluation result of the electromagnetic wave noise suppression characteristic of the Al-O electroconductive thin film from which surface resistance Rs differs. Al−O導電性薄膜における各周波数での電磁波ノイズ抑制効果(ΔPloss/Pin)の表面抵抗(Rs)依存性である。A surface resistance (Rs) dependence of electromagnetic noise suppression effect (ΔP loss / P in) at each frequency in the Al-O conductive thin film. 多種の導電性薄膜について6GHzでの電磁波ノイズ抑制効果(ΔPloss/Pin)の表面抵抗(Rs)依存性をまとめた結果である。It is the result which put together the surface resistance (Rs) dependence of the electromagnetic wave noise suppression effect ((DELTA) Ploss / Pin) in 6 GHz about various electroconductive thin films. Rsが同様なAl−O非磁性膜と〜2GHzに透磁率の自然共鳴周波数を有するCoAlO磁性膜の各周波数での電磁波ノイズ抑制効果(ΔPloss/Pin)のRs依存性をまとめた結果である。As a result of summarizing the Rs dependence of the electromagnetic noise suppression effect (ΔP loss / P in ) at each frequency of the Al—O nonmagnetic film having the same Rs and the CoAlO magnetic film having a natural resonance frequency of permeability of about 2 GHz. is there. 信号線幅に対する試料幅の関係を調べた結果である。  It is the result of investigating the relationship between the sample width and the signal line width. 本導電性薄膜と複合磁性体シートの比較を行なった結果である。  It is the result of having performed comparison with this electroconductive thin film and a composite magnetic material sheet.

Claims (8)

準マイクロ波帯域で発生する電磁波ノイズに対して、その反射係数(S11)を実用レベルである−10dB以下に、またノイズ抑制効果(ΔPloss/Pin)を0.5以上に抑制するために、薄膜材料の表面抵抗Rs(ρ/t)を、空間の特性インピーダンスZ(377Ω)と整合する、10Ω/□以上、1000Ω/□以下に制御することを特徴とする近傍界電磁波ノイズ抑制薄膜材料。To reduce the reflection coefficient (S 11 ) to −10 dB or less, which is a practical level, and the noise suppression effect (ΔP loss / P in ) to 0.5 or more with respect to electromagnetic wave noise generated in the quasi-microwave band. Further, the near-field electromagnetic wave noise suppression thin film characterized in that the surface resistance Rs (ρ / t) of the thin film material is controlled to 10 Ω / □ or more and 1000 Ω / □ or less to match the spatial characteristic impedance Z (377 Ω). material. 準マイクロ波帯域で発生する電磁波ノイズに対して、その反射係数(S11)を−10dB以下に、またノイズ抑制効果(ΔPloss/Pin)を0.7以上に抑制するために、空間の特性インピーダンスZ(377Ω)と同等の表面抵抗Rs(ρ/t)を有することを特徴とする近傍界電磁波ノイズ抑制薄膜材料。In order to reduce the reflection coefficient (S 11 ) to −10 dB or less and the noise suppression effect (ΔP loss / P in ) to 0.7 or more with respect to electromagnetic wave noise generated in the quasi-microwave band, A near-field electromagnetic noise suppression thin film material having a surface resistance Rs (ρ / t) equivalent to a characteristic impedance Z (377Ω). 利用周波数帯が1GHz以上、20GHz以下であることを特徴とした請求項1〜2に記載の近傍界電磁波ノイズ抑制薄膜材料。The use frequency band is 1 GHz or more and 20 GHz or less, The near-field electromagnetic wave noise suppression thin film material according to claim 1 or 2 characterized by things. 抵抗損失を用いることを特徴とした請求項1〜3のいずれか1項に記載の近傍界電磁波ノイズ抑制薄膜材料。Resistance film is used, The near field electromagnetic wave noise suppression thin film material of any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれか1項に記載の電磁波ノイズ抑制薄膜材料を電子回路上に密着またはその近傍に配設することを特徴とした近傍界電磁波ノイズ抑制材料。A near-field electromagnetic noise suppression material, comprising: the electromagnetic wave noise suppression thin film material according to any one of claims 1 to 4 in close contact with or in the vicinity of an electronic circuit. 請求項1〜5のいずれか1項に記載の薄膜材料で、その透磁率の自然共鳴周波数が0.5GHz以上、10GHz以下を有する電磁波ノイズ抑制導電性磁性薄膜で、抵抗損失と磁気損失の両者を利用し電磁波ノイズ抑制効果を得ることを特徴とする近傍界電磁波ノイズ抑制薄膜材料。An electromagnetic wave noise-suppressing conductive magnetic thin film having a natural resonance frequency of 0.5 GHz or more and 10 GHz or less in the thin film material according to any one of claims 1 to 5, wherein both resistance loss and magnetic loss are obtained. A near-field electromagnetic wave noise suppression thin film material characterized by obtaining an electromagnetic wave noise suppression effect using 請求項1〜6のいずれか1項に記載の薄膜材料で、その膜構造がナノグラニュラー構造またはナノヘテロ構造であることを特徴とした近傍界電磁波ノイズ抑制材料。7. A near-field electromagnetic wave noise suppression material according to claim 1, wherein the film structure is a nano granular structure or a nano hetero structure. 請求項1〜7のいずれか1項に記載の電磁波ノイズ抑制薄膜材料の寸法幅が、信号配線もしくは電子デバイス幅の2倍以上であることを特徴とした、近傍界電磁波ノイズ抑制材料。A near-field electromagnetic noise suppression material, wherein the dimensional width of the electromagnetic noise suppression thin film material according to any one of claims 1 to 7 is at least twice the width of a signal wiring or an electronic device.
JP2005127071A 2005-03-28 2005-03-28 Near electric field electromagnetic wave noise suppressing material Withdrawn JP2006279912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127071A JP2006279912A (en) 2005-03-28 2005-03-28 Near electric field electromagnetic wave noise suppressing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127071A JP2006279912A (en) 2005-03-28 2005-03-28 Near electric field electromagnetic wave noise suppressing material

Publications (1)

Publication Number Publication Date
JP2006279912A true JP2006279912A (en) 2006-10-12

Family

ID=37214113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127071A Withdrawn JP2006279912A (en) 2005-03-28 2005-03-28 Near electric field electromagnetic wave noise suppressing material

Country Status (1)

Country Link
JP (1) JP2006279912A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090586A1 (en) 2010-12-27 2012-07-05 Kagawa Seiji Near-field electromagnetic wave absorber
WO2012114587A1 (en) 2011-02-25 2012-08-30 Kagawa Seiji Near-field-noise-suppressing sheet
WO2013002276A1 (en) 2011-06-30 2013-01-03 Kagawa Seiji Near-field noise suppression film
EP2938175A4 (en) * 2012-12-19 2016-11-02 Toda Kogyo Corp Electromagnetic interference suppression body
JP2017022319A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090586A1 (en) 2010-12-27 2012-07-05 Kagawa Seiji Near-field electromagnetic wave absorber
WO2012114587A1 (en) 2011-02-25 2012-08-30 Kagawa Seiji Near-field-noise-suppressing sheet
US8952273B2 (en) 2011-02-25 2015-02-10 Seiji Kagawa Near-field noise suppression sheet
WO2013002276A1 (en) 2011-06-30 2013-01-03 Kagawa Seiji Near-field noise suppression film
US9907218B2 (en) 2011-06-30 2018-02-27 Seiji Kagawa Near-field noise suppression film
EP2938175A4 (en) * 2012-12-19 2016-11-02 Toda Kogyo Corp Electromagnetic interference suppression body
JP2017022319A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board

Similar Documents

Publication Publication Date Title
EP1876670B1 (en) High efficiency slot fed microstrip patch antenna
CA2520963C (en) High efficiency slot fed microstrip antenna having an improved stub
CN100455178C (en) Electromagnetic wave noise suppressor, structural body with electromagnetic wave noise suppressing function, and process for producing them
US6982671B2 (en) Slot fed microstrip antenna having enhanced slot electromagnetic coupling
EP2136613B1 (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
KR20010095325A (en) Signal transmission cable with a noise absorbing high loss magnetic film formed on a sheath of the cable
Stergiou et al. Hybrid polymer composites for electromagnetic absorption in electronic industry
JP2006279912A (en) Near electric field electromagnetic wave noise suppressing material
KR20010095320A (en) Wiring board comprising granular magnetic film
EP1143518A1 (en) Resin-molded unit including an electronic circuit component covered by a protective magnetic film
JP2002158486A (en) Electromagnetic wave absorbing film
EP1146637B1 (en) Electronic component of a high frequency current suppression type and bonding wire for the same
Kim et al. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss
JP4611700B2 (en) Electromagnetic wave noise suppression sheet and method of using the same
JP2005327853A (en) Electromagnetic wave noise suppressor and its manufacturing method
KR100755775B1 (en) Electromagnetic noise supression film and process of production thereof
EP1143777B1 (en) Cooling device capable of considerably suppressing a high-frequency current flowing in an electric component
JP2006093414A (en) Conduction noise suppressor and conduction noise countermeasure method
JP5912278B2 (en) Electromagnetic interference suppressor
CA2432174C (en) High efficiency quarter-wave transformer
KR100636826B1 (en) Noise-suppression flexible films, electromagnetic shielded circuit boards and including the same
Lal et al. Broad-Band EMI Suppression Absorber
JP4611698B2 (en) EMC countermeasure member and EMC countermeasure method
JP4191888B2 (en) Electromagnetic noise suppressor and electromagnetic noise suppression method using the same
JP2005251918A (en) Electromagnetic wave noise suppressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603