JP2006262698A - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
JP2006262698A
JP2006262698A JP2006151238A JP2006151238A JP2006262698A JP 2006262698 A JP2006262698 A JP 2006262698A JP 2006151238 A JP2006151238 A JP 2006151238A JP 2006151238 A JP2006151238 A JP 2006151238A JP 2006262698 A JP2006262698 A JP 2006262698A
Authority
JP
Japan
Prior art keywords
rotor
stator
partition wall
shaft
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006151238A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Yukinori Ozaki
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006151238A priority Critical patent/JP2006262698A/en
Publication of JP2006262698A publication Critical patent/JP2006262698A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease the input to an excitation coil, and to reduce the size of a drive part, by reducing the load on the rotor. <P>SOLUTION: The actuator is operated, without generating contact resistance for an airtight seal by providing the excitation coil 33 and by airtightly separating through a partition wall 40 a stator 32 placed in a stationary state and a rotor 30 actuated to rotate. Energizing the force of an energization unit 39 for further axially energizing a flow-regulating body 38 is actuated between it and a moving body 36 so that the energizing force of the energizing unit 39 is prevented from serving as the load resistance, relating to the rotation of the rotor 30. In this way, with a sure airtight sealing structure due to the partition, a frictional resistance loss by the airtight seal can be prevented, and the load resistance due to the energizing force to the flow regulation body is eliminated to make the load reducible to the rotor, so that decrease in the input to the excitation coil and to miniaturize the drive part of the rotor or the stator and the like can be attained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流路中の流体の流動を制御するアクチュエータに関するものである。   The present invention relates to an actuator that controls the flow of fluid in a flow path.

従来この種のアクチュエータとしては、特許文献1に示すようなものがある。以下その構成について図9、図10を参照して説明する。   Conventionally, there is an actuator of this type as shown in Patent Document 1. The configuration will be described below with reference to FIGS.

図9は第一の従来例であり、流体通路中の弁座1に対向して弁体2を設けたもので、弁体2は流体通路3の開口4に取付けるフランジ5に弁体2を弁座1に押し付ける方向に付勢するスプリング6を介して取付けられている。7は一端に弁体2を連結した弁棒で、この弁棒7は前記フランジ5の貫通孔8を貫通して流体通路外に延設されるとともに、弁棒7の軸方向の中程には送り雄ねじ9が形成されている。10はロータ11の内周面に形成した送り雌ねじで、この送り雌ねじ10は送り雄ねじ9に螺合する。12はロータ11の外周側に設けた永久磁石、13は永久磁石12に隙間を介して対向するように設けた静止した電磁コイル、14はロータ11の両端に設けロータ11の回転を支持する軸受、15はフランジ5に固定された取付板である。16は貫通孔8に設けたOリングで、弁棒7とフランジ5の隙間からの流体通路3中の流体が外部に漏出するのを防止するものである。17は弁棒7の端部に設け弁棒7の回動を防止する回り止め部である。この構成において、電磁コイル13に通電制御してロータ11を回転させ、ロータ11に螺合する弁棒7を軸方向に直線移動させるものである。   FIG. 9 shows a first conventional example in which a valve body 2 is provided opposite to a valve seat 1 in a fluid passage. The valve body 2 is provided with a valve body 2 on a flange 5 attached to an opening 4 of the fluid passage 3. It is attached via a spring 6 that urges the valve seat 1 in a pressing direction. Reference numeral 7 denotes a valve stem having a valve body 2 connected to one end. The valve stem 7 extends through the through hole 8 of the flange 5 and extends out of the fluid passage, and is located in the middle of the valve stem 7 in the axial direction. The feed male screw 9 is formed. Reference numeral 10 denotes a feed female screw formed on the inner peripheral surface of the rotor 11, and this feed female screw 10 is screwed into the feed male screw 9. 12 is a permanent magnet provided on the outer peripheral side of the rotor 11, 13 is a stationary electromagnetic coil provided so as to face the permanent magnet 12 through a gap, and 14 is a bearing provided at both ends of the rotor 11 to support the rotation of the rotor 11. , 15 are mounting plates fixed to the flange 5. Reference numeral 16 denotes an O-ring provided in the through hole 8 for preventing the fluid in the fluid passage 3 from the gap between the valve stem 7 and the flange 5 from leaking to the outside. Reference numeral 17 denotes an anti-rotation portion that is provided at the end of the valve stem 7 and prevents the valve stem 7 from rotating. In this configuration, the electromagnetic coil 13 is energized to rotate the rotor 11, and the valve rod 7 screwed into the rotor 11 is linearly moved in the axial direction.

図10は第二の従来例を示し、上記第一の従来例の弁棒7に接触するOリング16を無くしたものである。18は外周側に永久磁石19を設けたロータであり、ロータ18に固定された回転軸20にはその端部に送り雄ねじ21を有している。22はロータ18の外周側に隙間を設けて配置された非磁性のパイプであり、パイプ22の外周側には電磁コイル23を設けるとともに、パイプ22の両端部にシール部材であるOリング24を設けてモータを構成し、モータ取付板25と弁体2の間にスプリング26を設け端部に弁体2に連結した弁体移動手段27を回転軸20の送り雄ねじ21に螺合したものである。28はモータ取付板25に取付た弁体移動手段27の回動を防止する回り止め部である。この構成において、流体流路3中の流体はパイプ22部のOリング24により外部への漏れを防止される。
特開平5−71655号公報
FIG. 10 shows a second conventional example, in which the O-ring 16 that contacts the valve stem 7 of the first conventional example is eliminated. A rotor 18 is provided with a permanent magnet 19 on the outer peripheral side, and a rotary shaft 20 fixed to the rotor 18 has a feed male screw 21 at an end thereof. Reference numeral 22 denotes a non-magnetic pipe disposed on the outer peripheral side of the rotor 18 with a gap. An electromagnetic coil 23 is provided on the outer peripheral side of the pipe 22, and O-rings 24 as seal members are provided at both ends of the pipe 22. A motor is formed by providing a spring 26 between the motor mounting plate 25 and the valve body 2, and a valve body moving means 27 connected to the valve body 2 at the end is screwed to the feed male screw 21 of the rotary shaft 20. is there. Reference numeral 28 denotes a rotation stopper for preventing the valve body moving means 27 attached to the motor attachment plate 25 from rotating. In this configuration, the fluid in the fluid flow path 3 is prevented from leaking to the outside by the O-ring 24 of the pipe 22 part.
JP-A-5-71655

しかしながら、第一の従来例では、貫通孔8と弁棒7の間に設けたOリング16によるシール構造ではOリング16は弁棒7に密着しているため、弁棒7を動かすのに摩擦抵抗を発生して駆動力を増大せねばならず、遮断弁の駆動部の大型化および大入力化を招いていた。また、経年変化によりOリング16が弁棒7に固着して弁体2の動作が阻害され信頼性上の課題があった。   However, in the first conventional example, in the seal structure using the O-ring 16 provided between the through hole 8 and the valve stem 7, the O-ring 16 is in close contact with the valve stem 7. Resistance must be generated to increase the driving force, leading to an increase in the size and input of the drive portion of the shut-off valve. Further, due to secular change, the O-ring 16 is fixed to the valve stem 7 and the operation of the valve body 2 is obstructed, which causes a problem in reliability.

また、第二の従来例では、弁体2は絶えずスプリング26により付勢されているため、モータはその動作時には絶えずスプリング26の付勢力による抵抗を受けることになる。すなわち、開弁時ではスプリング26の付勢力に打ち勝って弁体2を移動させる必要があり、また開弁および閉弁時のいずれでもスプリング26の付勢力が軸方向推力として送りねじ部に加わって摩擦抵抗を発生する。このようにスプリング26の付勢力がモータに対する負荷抵抗として作用するためモータの出力を大きくする必要が生じてモータ入力の増
大およびモータの大型化を招き、モータの低入力化および小型化に対して課題があった。
In the second conventional example, since the valve body 2 is constantly urged by the spring 26, the motor constantly receives resistance due to the urging force of the spring 26 during its operation. That is, it is necessary to overcome the urging force of the spring 26 and move the valve body 2 when the valve is opened, and the urging force of the spring 26 is applied as an axial thrust to the feed screw portion at any time when the valve is opened and closed. Generates frictional resistance. Thus, since the biasing force of the spring 26 acts as a load resistance for the motor, it is necessary to increase the output of the motor, leading to an increase in motor input and an increase in size of the motor. There was a problem.

特に、限られた容量あるいは限られた電圧の電池でモータを駆動する場合では、低入力化および高出力化が実用化の可否を決める大きな課題であった。   In particular, when a motor is driven by a battery having a limited capacity or a limited voltage, low input and high output are major issues that determine the feasibility of practical use.

本発明は上記課題を解決するために、励磁コイルを有し静止しているステータと回転動作するロータとを隔壁で気密に分離することで気密シールのための接触抵抗を発生せずに動作させ、さらに流れ規制体を軸方向に付勢する付勢体の付勢力を移動体との間に作用させ、移動体の移動途中においては付勢体の付勢力がロータの回転に対して負荷抵抗とならないようにしたものである。   In order to solve the above-mentioned problems, the present invention allows a stationary stator having an exciting coil and a rotating rotor to be hermetically separated by a partition so as to operate without generating contact resistance for hermetic sealing. Further, the urging force of the urging body that urges the flow restricting body in the axial direction is applied between the moving body and the urging force of the urging body during the movement of the moving body is a load resistance against the rotation of the rotor. It is something that is not.

上記発明によれば、隔壁による確実な気密シール構造でかつ気密シールによる摩擦抵抗損失を防止でき、また流れ規制体への付勢力による負荷抵抗を無くしてロータへの負荷を低減でき、励磁コイルの低入力化、ロータあるいはステータなどの駆動部の小型化が実現できる。   According to the above invention, it is possible to prevent a loss of frictional resistance due to the airtight seal with the reliable airtight seal structure by the partition wall, and it is possible to reduce the load on the rotor by eliminating the load resistance due to the urging force to the flow restricting body. Low input and downsizing of the drive unit such as the rotor or stator can be realized.

以上の説明から明らかなように本発明のアクチュエータによれば、軸方向に付勢する付勢体を介在させて移動体に対して軸方向に移動可能に連結した流れ規制体と、ロータとステータの隙間およびロータの一方の端面側に配置しかつ一体的に形成してステータと流体側にあるロータを気密に分離する隔壁と、隔壁およびステータを取付けた取付体と、取付体に設け移動体の回転を規制する回動防止体と、隔壁のフランジ部と取付体との間に設けた第1シールと、流体と取付板との間に設けた第2シールとを備えているので、隔壁による確実な気密シール構造でかつ気密シールによる摩擦抵抗損失を防止でき、また移動体と流れ規制体との間の付勢力により負荷抵抗を低減してロータへの負荷を低減でき、駆動部であるステータの低入力化ができるという効果があり、さらにロータあるいはステータなどの駆動部の小型化を実現できる。   As is clear from the above description, according to the actuator of the present invention, the flow restricting body connected to the moving body so as to be movable in the axial direction through the biasing body biased in the axial direction, the rotor, and the stator A partition wall that is disposed on one end face side of the rotor and the rotor and that is integrally formed to hermetically separate the stator and the rotor on the fluid side, a mounting body on which the partition wall and the stator are mounted, a moving body provided on the mounting body A rotation preventing body that restricts rotation of the liquid, a first seal provided between the flange portion of the partition wall and the mounting body, and a second seal provided between the fluid and the mounting plate. It is a reliable airtight seal structure that prevents frictional resistance loss due to the airtight seal, and it can reduce the load resistance by the urging force between the moving body and the flow restricting body, reducing the load on the rotor. Lower stator input Has the effect of that can be further downsized driving unit, such as a rotor or stator.

磁極を有するロータと、励磁コイルを有するステータと、前記ロータに設けたロータ回転軸と、前記ロータ回転軸に設けた送り手段と、前記送り手段に螺合あるいは係合する移動体と、軸方向に付勢する付勢体を介在させて前記移動体に対して軸方向に移動可能に連結した流れ規制体と、前記ロータと前記ステータの隙間および前記ロータの一方の端面側に配置しかつ一体的に形成して前記ステータと流体側にある前記ロータを気密に分離する隔壁と、前記隔壁および前記ステータを取付けた取付体と、前記取付体に設け前記移動体の回転を規制する回動防止体と、前記隔壁のフランジ部と取付体との間に設けた第1シールと、流体と前記取付板との間に設けた第2シールとを備えたものである。   A rotor having magnetic poles, a stator having an exciting coil, a rotor rotating shaft provided on the rotor, a feeding means provided on the rotor rotating shaft, a moving body screwed or engaged with the feeding means, and an axial direction A flow restricting body that is connected to the moving body so as to be movable in the axial direction through an urging body that urges the rotor, and is disposed on and integrated with a gap between the rotor and the stator and one end surface of the rotor. And a partition wall that hermetically separates the stator and the rotor on the fluid side, an attachment body to which the partition wall and the stator are attached, and a rotation prevention provided on the attachment body to restrict the rotation of the moving body A body, a first seal provided between the flange portion of the partition wall and the attachment body, and a second seal provided between the fluid and the attachment plate.

そして、隔壁による確実で信頼性の高い気密シール構造にでき、かつ気密シールによる摩擦抵抗損失の防止と、流れ規制体への付勢力がロータの回転に負荷抵抗として作用するのを防止して、ステータの低入力化およびロータあるいはステータなどの駆動部の小型化が実現できる。   And, it can be a reliable and reliable airtight seal structure by the partition wall, prevents frictional resistance loss due to the airtight seal, and prevents the biasing force to the flow restricting body from acting as a load resistance on the rotation of the rotor, It is possible to reduce the input of the stator and reduce the size of the drive unit such as the rotor or the stator.

また、ロータ回転軸の中心に設けた軸穴と、この軸穴に挿入して前記ロータの回転を支持する支持軸とを有し、前記支持軸は前記隔壁に固定したものである。そして、ロータは支持軸により小径部で支持され接触半径の低減により摩擦抵抗の低減がなされて低入力化が促進され、さらに軸支持構成の小型化によりアクチュエータの小型化が実現できる。   In addition, the shaft has a shaft hole provided at the center of the rotor rotation shaft and a support shaft that is inserted into the shaft hole and supports the rotation of the rotor, and the support shaft is fixed to the partition wall. The rotor is supported by the support shaft at a small diameter portion, the frictional resistance is reduced by reducing the contact radius, and the low input is promoted. Further, the actuator can be downsized by downsizing the shaft support structure.

また、支持軸は一端を軸支持体に接合し、この軸支持体を前記隔壁に接合したものであ
る。そして、隔壁を極薄い材料で形成した場合でも支持軸を確実にかつ接合強度を高めて隔壁に取付けることができ、隔壁の薄肉化により回転力の高出力化と構造の高強度化により耐久性などの信頼性を高めることができる。
Further, one end of the support shaft is joined to the shaft support, and this shaft support is joined to the partition wall. And even when the partition wall is made of an extremely thin material, the support shaft can be securely attached to the partition wall with increased bonding strength, and the durability of the partition wall can be increased by increasing the output power and the structure strength. It is possible to improve reliability.

また、軸支持体は磁性のある材料としたものである。そして、隔壁を非磁性材料で構成しても、ロータの側面に磁性材を配置できるためロータとステータ間の磁気回路の磁気抵抗を低減でき、磁気駆動力を向上でき回転力の高出力化が実現できる。   The shaft support is made of a magnetic material. Even if the partition walls are made of a nonmagnetic material, the magnetic material can be arranged on the side of the rotor, so that the magnetic resistance of the magnetic circuit between the rotor and the stator can be reduced, the magnetic driving force can be improved, and the rotational force can be increased. realizable.

また、ロータ回転軸の軸穴の流れ規制体側に封止部を設けたものである。そして、流れ規制体側からの支持軸部へのゴミ、異物などの侵入が防止でき、安定した回転を持続し信頼性を高めることができる。また、支持軸部で発生した摩耗粉あるいは塗布されていた潤滑剤などが流体側に出るのが防止でき、清浄な流体への利用ができる。   Further, a sealing portion is provided on the flow regulating body side of the shaft hole of the rotor rotation shaft. Further, it is possible to prevent dust and foreign matter from entering the support shaft portion from the flow regulating body side, and it is possible to maintain stable rotation and improve reliability. Further, it is possible to prevent wear powder generated at the support shaft portion or the applied lubricant from flowing out to the fluid side, and it can be used for a clean fluid.

また、流れ規制体と移動体は径方向にガタを設けた係止部により連結し、流れ規制体を移動体に対して首振り自在としたものである。そして、流体通路に対するアクチュエータの取付に誤差がある場合、例えば弁座に対して傾いて設置された場合でも首振り動作により流れ規制体が流体通路の弁座を正常に閉止でき、確実な流体制御動作がなされ信頼性をより一層向上することが実現できる。   Further, the flow restricting body and the moving body are connected by a locking portion provided with a backlash in the radial direction so that the flow restricting body can swing freely with respect to the moving body. And if there is an error in the mounting of the actuator to the fluid passage, for example, even if it is installed tilted with respect to the valve seat, the flow restrictor can normally close the valve seat of the fluid passage by swinging motion, and reliable fluid control It is possible to realize further improvement in reliability by the operation.

また、ロータ回転軸の外周を支持する軸受と、前記隔壁に一体形成した軸受保持部を有し、前記軸受を前記軸受保持部に保持したものである。そして、軸受保持部は隔壁に一体形成されるため芯ズレのない高精度の加工によりロータと隔壁の隙間の一層の低減がなされ、さらに凹凸の形成により隔壁の強度が向上できるため隔壁の薄肉化をより一層推進でき、ロータの回転力が向上できる。   In addition, a bearing that supports the outer periphery of the rotor rotation shaft and a bearing holding portion that is integrally formed with the partition wall are provided, and the bearing is held by the bearing holding portion. Since the bearing holding part is integrally formed with the partition wall, the clearance between the rotor and the partition wall can be further reduced by high-precision processing without misalignment, and the strength of the partition wall can be improved by forming irregularities, so that the partition wall thickness is reduced. Can be further promoted, and the rotational force of the rotor can be improved.

また、隔壁、ステータおよび回動防止体を固定した取付体と、前記ロータ回転軸の軸方向のスラスト荷重を受ける軸受体を前記取付体と前記ロータの間に備えたものである。そして、軸方向に発生したスラスト荷重によりロータが軸方向に移動して隔壁あるいは取付体などの構成要素と接触するのを防止するとともに、流体側からロータ側へゴミ、異物などが侵入するのを防止して安定した回転を持続し信頼性を高めることができる
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
An attachment body to which the partition wall, the stator and the rotation preventing body are fixed, and a bearing body for receiving an axial thrust load of the rotor rotation shaft are provided between the attachment body and the rotor. In addition, the thrust load generated in the axial direction prevents the rotor from moving in the axial direction and comes into contact with components such as a partition wall or a mounting body, and prevents dust and foreign matter from entering the rotor side from the fluid side. In the following, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1、実施の形態2)
図1は本発明の実施の形態1および実施の形態2のアクチュエータの開弁状態を示す断面図であり、図2は本発明の実施の形態1および実施の形態2のアクチュエータの閉弁状態を示す断面図である。図1において、30は外周部に永久磁石による磁極31を有するロータであり、32は励磁コイル33を囲み磁性材料で形成したステータであり、ステータ32はロータ30の磁極31の外側に対向して配置されている。34はロータ30に設けたロータ回転軸であり、ロータ回転軸34の外周部には送り手段35が設けられ、この実施の形態では螺旋状の溝(あるいは突起)による雄ねじを送り手段35として用いている。36は送り手段35に螺合する雌ねじを設けた移動体であり、37は移動体36がロータ回転軸34に対して回転しないようにする回動防止体である。
(Embodiment 1 and Embodiment 2)
FIG. 1 is a cross-sectional view showing the valve opening state of the actuator according to the first and second embodiments of the present invention, and FIG. 2 shows the valve closing state of the actuator according to the first and second embodiments of the present invention. It is sectional drawing shown. In FIG. 1, reference numeral 30 denotes a rotor having a magnetic pole 31 made of a permanent magnet on the outer periphery, 32 denotes a stator formed of a magnetic material that surrounds the exciting coil 33, and the stator 32 faces the outside of the magnetic pole 31 of the rotor 30. Has been placed. Reference numeral 34 denotes a rotor rotation shaft provided on the rotor 30, and a feed means 35 is provided on the outer periphery of the rotor rotation shaft 34. In this embodiment, a male screw with a spiral groove (or protrusion) is used as the feed means 35. ing. Reference numeral 36 denotes a moving body provided with a female screw that is screwed to the feeding means 35, and reference numeral 37 denotes a rotation preventing body that prevents the moving body 36 from rotating with respect to the rotor rotating shaft 34.

38は流体通路3中に配置され流体の流動状態を規制する流れ規制体であり、流れ規制体38は移動体36に対して軸方向に移動可能に連結されている。39は移動体36と流れ規制体38の間に介在させ軸方向に互いに離れようとする付勢力を加える付勢体である。流れ規制体38は弁座1に当接する弁ゴム板38aを弁ゴム保持部38bに取付けるとともに弁ゴム押え38cで固定している。40は流体側にあるロータ30およびそれに連なる流れ規制体38側とステータ32側とを気密に分離する隔壁であり、隔壁40はロー
タ30とステータ32との隙間にロータ30と僅かな距離(0.05〜0.2mm)を離して配置される円筒部40aとロータ30の一方の端面側に配置される側面部40bとを一体的に非磁性の材料で形成したものである。
Reference numeral 38 denotes a flow restricting body that is disposed in the fluid passage 3 and restricts the flow state of the fluid. The flow restricting body 38 is connected to the moving body 36 so as to be movable in the axial direction. Reference numeral 39 denotes an urging body that is interposed between the moving body 36 and the flow restricting body 38 and applies an urging force to be separated from each other in the axial direction. The flow restricting body 38 has a valve rubber plate 38a contacting the valve seat 1 attached to the valve rubber holding portion 38b and fixed with a valve rubber presser 38c. Reference numeral 40 is a partition wall that hermetically separates the rotor 30 on the fluid side and the flow regulating body 38 side that is connected to the rotor 30 and the stator 32 side, and the partition wall 40 is a small distance (0) from the rotor 30 in the gap between the rotor 30 and the stator 32. The cylindrical portion 40a and the side surface portion 40b disposed on one end surface side of the rotor 30 are integrally formed of a nonmagnetic material.

41は一端を隔壁40の円筒部40aに固定した支持軸であり、支持軸41はロータ回転軸34の中心に設けた軸穴42に挿入されてロータ30の回転を支持するものである。41aは支持軸41に設けた逃し部であり、支持軸41の先端部と根元部が確実に軸穴42に接するようにしている。なお、ここでは送り手段35と移動体36は連続した螺旋状の山と溝により螺合している場合を考えたが、螺旋状の山と溝は不連続でも良く、また連続した螺旋状の山あるいは谷に対して数箇所の接触点を持つ点接触方式でも良い。43は隔壁40およびステータ32を取付けた取付体であり、この取付体43にはロータ回転軸34が貫通する貫通孔43aが設けられている。44はステータ32および隔壁40の側面部40bをカバーする側板、45は隔壁40のフランジ部40cと取付体43の間に設け気密シールするOリング(第1シール)、46は流体通路3と取付体43の間を気密シールするOリング(第2シール)である。   Reference numeral 41 denotes a support shaft having one end fixed to the cylindrical portion 40 a of the partition wall 40, and the support shaft 41 is inserted into a shaft hole 42 provided at the center of the rotor rotation shaft 34 to support the rotation of the rotor 30. Reference numeral 41 a denotes a relief portion provided on the support shaft 41, so that the tip end portion and the root portion of the support shaft 41 are surely in contact with the shaft hole 42. Here, although the case where the feeding means 35 and the moving body 36 are screwed together by continuous spiral peaks and grooves has been considered, the spiral peaks and grooves may be discontinuous, and the continuous spiral peaks and grooves may be discontinuous. A point contact method having several contact points with respect to a mountain or a valley may be used. Reference numeral 43 denotes an attachment body to which the partition wall 40 and the stator 32 are attached. The attachment body 43 is provided with a through hole 43a through which the rotor rotating shaft 34 passes. 44 is a side plate that covers the stator 32 and the side surface portion 40b of the partition wall 40, 45 is an O-ring (first seal) provided between the flange portion 40c of the partition wall 40 and the mounting body 43, and 46 is attached to the fluid passage 3. An O-ring (second seal) that hermetically seals between the bodies 43.

次に動作を説明する。まずステータ32の励磁コイル33に接続した駆動回路(図示せず)により弁閉する方向に励磁コイル33に順次通電してロータ30の磁極に電磁力を加えてロータ30を支持軸41を軸心として回転させ、ロータ回転軸34に螺合した移動体36に力を加える。移動体36は回動防止体37により回り止めされているためロータ回転軸34の回転とともに弁座1の方へ移動する。この時移動体36に連結された流れ規制体38は移動体36とともに弁座1の方へ移動し、この移動途中において付勢体39の付勢力はロータ30の回転力に対して負荷とはならない。   Next, the operation will be described. First, a drive circuit (not shown) connected to the excitation coil 33 of the stator 32 sequentially energizes the excitation coil 33 in the direction to close the valve to apply electromagnetic force to the magnetic poles of the rotor 30 to center the rotor 30 on the support shaft 41. And a force is applied to the moving body 36 screwed onto the rotor rotating shaft 34. Since the moving body 36 is prevented from rotating by the rotation preventing body 37, it moves toward the valve seat 1 along with the rotation of the rotor rotating shaft 34. At this time, the flow restricting body 38 connected to the moving body 36 moves toward the valve seat 1 together with the moving body 36. During this movement, the biasing force of the biasing body 39 is a load against the rotational force of the rotor 30. Don't be.

しかし、流れ規制体38が弁座1に当接すると付勢体39の付勢力がロータ30に負荷として作用し、ロータ30の回転力は付勢体39をあと僅かな寸法だけ圧縮させるよう移動体36を弁座1の方へ移動させる。付勢体39をあと僅かだけ圧縮してロータ30の回転を停止させると、流れ規制体38を弁座1に対して押し付けるように付勢体39の付勢力が加わり、安定した弁閉止力が加わった状態で弁閉される。図2に弁閉止力が加わった状態で流れ規制体38が弁座1を閉止した状態を示す。   However, when the flow restricting body 38 comes into contact with the valve seat 1, the urging force of the urging body 39 acts as a load on the rotor 30, and the rotational force of the rotor 30 moves so as to compress the urging body 39 by a small amount. The body 36 is moved toward the valve seat 1. When the urging body 39 is slightly compressed to stop the rotation of the rotor 30, the urging force of the urging body 39 is applied so as to press the flow restricting body 38 against the valve seat 1, and a stable valve closing force is obtained. The valve is closed in the added state. FIG. 2 shows a state where the flow restricting body 38 closes the valve seat 1 in a state where the valve closing force is applied.

次に、流れ規制体38を弁座1から離して開弁する方向に移動させる場合は、ロータ30の回転方向が逆転方向になるように駆動回路(図示せず)を切換えて駆動する。開弁動作において付勢体39の付勢力が弁座1に加わっている過程では、この付勢力がロータ30を開弁方向に回転させる力として作用するためロータ30を回転させる負荷が低減される。特に、弁閉時に流体の圧力差が弁座1の上流、下流間に生じて図中の流れ規制体38側が高い圧力となっている場合は、流れ規制体38を弁座1に押付ける力(背圧)として作用するが、付勢体39の付勢力はこの背圧を低減する方向に作用するため開弁時の負荷が低減される。   Next, when the flow restrictor 38 is moved away from the valve seat 1 in the opening direction, the drive circuit (not shown) is switched and driven so that the rotation direction of the rotor 30 is the reverse direction. In the process in which the urging force of the urging body 39 is applied to the valve seat 1 in the valve opening operation, this urging force acts as a force for rotating the rotor 30 in the valve opening direction, so that the load for rotating the rotor 30 is reduced. . Particularly, when the pressure difference of the fluid occurs between the upstream and downstream of the valve seat 1 when the valve is closed and the flow restricting body 38 in the drawing has a high pressure, the force for pressing the flow restricting body 38 against the valve seat 1 Although acting as (back pressure), the urging force of the urging body 39 acts in a direction to reduce the back pressure, so the load at the time of valve opening is reduced.

流れ規制体38が弁座1から離れると付勢体39の付勢力はロータ30の負荷とは無関係となり、ロータ30の回転により流れ規制体38を開弁位置(図1に示す)まで移動させて駆動回路(図示せず)によりロータ30の回転を停止する。なお、ロータ30の回転をステップ駆動させるいわゆるステッピングモータとしてロータ30およびステータ32を構成することにより、弁閉位置および開弁位置の精度を容易に高めることができ、励磁コイル33に印可する駆動周波数(パルスレート)を負荷に応じて変えることができる。   When the flow restricting body 38 moves away from the valve seat 1, the urging force of the urging body 39 becomes independent of the load of the rotor 30, and the flow restricting body 38 is moved to the valve opening position (shown in FIG. 1) by the rotation of the rotor 30. Then, the rotation of the rotor 30 is stopped by a drive circuit (not shown). In addition, by configuring the rotor 30 and the stator 32 as so-called stepping motors that drive the rotation of the rotor 30, the accuracy of the valve closing position and the valve opening position can be easily increased, and the drive frequency applied to the excitation coil 33. The (pulse rate) can be changed according to the load.

ロータ30の回転はロータ回転軸34の中心に設けた軸穴42に挿入された支持軸41により回動自在に支持されているものであり、ロータ回転軸34の外周面ではなく内周面を滑り面として接触半径を小さくして摩擦力によるトルク損失が低減される。   The rotation of the rotor 30 is rotatably supported by a support shaft 41 inserted into a shaft hole 42 provided at the center of the rotor rotation shaft 34, and the inner peripheral surface, not the outer peripheral surface of the rotor rotation shaft 34, is supported. The torque loss due to the frictional force is reduced by reducing the contact radius as a sliding surface.

以上の動作において、励磁コイル33を有するステータ32を磁気回路を横切る隔壁40により流体通路の外側に設けた気密シール構造のため、気密シールによる接触抵抗を無くしてロータ30への気密シール負荷を無くしたものである。また、流れ規制体38は付勢体39により軸方向に付勢されるものの、付勢体39の付勢力は移動体36と流れ規制体38との間に作用させた内力となり、移動体36と流れ規制体38と付勢体39は一体に動く。このため付勢力は流れ規制体38が弁座1に当接する時のみロータ30への負荷となるだけで、流れ規制体38が弁座1から離れて移動している場合では付勢力がロータ30への負荷とならず負荷低減が実現でき、流れ規制体38を弁座1から離す開弁時では付勢体39の付勢力が流れ規制体38に加わる背圧を減少させるように作用するため開弁時のロータ30への負荷が低減できる。   In the above operation, since the stator 32 having the exciting coil 33 is provided with the airtight seal structure provided outside the fluid passage by the partition wall 40 crossing the magnetic circuit, the contact resistance due to the airtight seal is eliminated and the airtight seal load on the rotor 30 is eliminated. It is a thing. In addition, although the flow restricting body 38 is urged in the axial direction by the urging body 39, the urging force of the urging body 39 becomes an internal force applied between the moving body 36 and the flow restricting body 38, and the moving body 36. The flow regulating body 38 and the biasing body 39 move together. For this reason, the urging force is only a load on the rotor 30 only when the flow restricting body 38 abuts on the valve seat 1, and when the flow restricting body 38 moves away from the valve seat 1, the urging force is not applied to the rotor 30. The load can be reduced without the load on the valve, and the biasing force of the biasing member 39 acts to reduce the back pressure applied to the flow restricting member 38 when the flow restricting member 38 is opened away from the valve seat 1. The load on the rotor 30 when the valve is opened can be reduced.

また、支持軸41をロータ回転軸34の内径方向に設けた軸穴42に挿入するにより、回転支持部を軸方向に設けずに済むため軸支持構成の小型化ができ、さらにロータ回転軸34の中空化により回転に対する慣性モーメントの低減がなされロータ30への負荷の低減あるいはロータ30が回転する時の応答性を向上できる。   Further, by inserting the support shaft 41 into the shaft hole 42 provided in the inner diameter direction of the rotor rotation shaft 34, it is not necessary to provide the rotation support portion in the axial direction, so that the shaft support configuration can be downsized. Since the inertia is reduced, the load on the rotor 30 can be reduced or the responsiveness when the rotor 30 rotates can be improved.

このように実施の形態1では、隔壁40による確実な気密シール構造でかつ気密シールによる摩擦抵抗損失を防止でき、また移動体36と流れ規制体38との間の付勢力により負荷抵抗を低減してロータへの負荷を低減でき、駆動部であるステータ32の低入力化、およびロータ30あるいはステータ32などの駆動部の小型化を実現できる。   As described above, in the first embodiment, the airtight seal structure by the partition wall 40 and the frictional resistance loss due to the airtight seal can be prevented, and the load resistance is reduced by the urging force between the moving body 36 and the flow restricting body 38. Thus, the load on the rotor can be reduced, and the input of the stator 32, which is a drive unit, can be reduced, and the drive unit such as the rotor 30 or the stator 32 can be downsized.

さらに実施の形態2では、ロータ30は小径の支持軸41で支持することで接触半径の低減により摩擦抵抗の低減がなされて駆動部への低入力化が促進され、さらに軸支持構成の小型化によりアクチュエータの小型化が実現できる。   Further, in the second embodiment, the rotor 30 is supported by the small-diameter support shaft 41, whereby the frictional resistance is reduced by the reduction of the contact radius, and the low input to the drive unit is promoted, and the shaft support structure is further downsized. This makes it possible to reduce the size of the actuator.

(実施の形態3、実施の形態4)
図3は本発明の実施の形態3および実施の形態4のアクチュエータの断面図である。図において、図1、図2の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Embodiment 3 and Embodiment 4)
FIG. 3 is a sectional view of the actuator according to the third and fourth embodiments of the present invention. In the figure, the same members and the same functions as those of the embodiment of FIGS. 1 and 2 are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

47は支持軸41の一端を接合した軸支持体であり、軸支持体47はさらに隔壁40の側面部40bの流体通路3側に接合されている。軸支持体47は外形が隔壁40の円筒部40aの内側形状に沿うように精度良く仕上げるとともに、その中心部に開口47aを設けて支持軸41の端部を嵌め合わせることで隔壁40の円筒部40aの中心に芯ズレなく支持軸41を配置している。なお、軸支持体47への支持軸41の接合および隔壁40への軸支持体47の接合は溶接などで容易に実施できる。48はロータ30の軸方向のスラスト荷重を受けるスラスト軸受で、弁閉時に付勢体39の付勢力が加わる時にもロータ回転軸34の滑らかな動作を確保する。また、軸支持体47を磁性材料とすることにより磁性材をロータ30の磁極31の側面近傍に配置でき、ロータ30とステータ32の側面における磁気回路の磁気抵抗が小さくなる。   Reference numeral 47 denotes a shaft support in which one end of the support shaft 41 is joined. The shaft support 47 is further joined to the fluid passage 3 side of the side surface portion 40 b of the partition wall 40. The shaft support 47 is accurately finished so that the outer shape conforms to the inner shape of the cylindrical portion 40a of the partition wall 40, and an opening 47a is provided at the center thereof to fit the end portion of the support shaft 41 so that the cylindrical portion of the partition wall 40 is fitted. The support shaft 41 is arranged in the center of 40a without misalignment. The joining of the support shaft 41 to the shaft support 47 and the joining of the shaft support 47 to the partition wall 40 can be easily performed by welding or the like. A thrust bearing 48 receives the axial thrust load of the rotor 30 and ensures smooth operation of the rotor rotating shaft 34 even when the biasing force of the biasing body 39 is applied when the valve is closed. Further, by using the shaft support 47 as a magnetic material, the magnetic material can be disposed in the vicinity of the side surface of the magnetic pole 31 of the rotor 30, and the magnetic resistance of the magnetic circuit on the side surfaces of the rotor 30 and the stator 32 is reduced.

このため、軸支持体47の厚さを大きくすることにより支持軸41を強度を高めて支持でき、さらに強度を持った軸支持体47を隔壁40に接合することで隔壁40の強度を高めることができる。ところで、ロータ30とステータ32との間の距離である磁気ギャップは磁気回路の抵抗となるためできるだけ小さく設定すべきであり、従ってロータ30とステータ32の間に配置される隔壁40は薄さが必要となる。特に隔壁40を生産性に優れた絞り加工で成形する場合では側面部40bは素材の薄さとなり、支持軸41を直接接合するのは強度上困難となる。しかし、強度を持った軸支持体47を介して支持軸41を設置すると、極薄板の絞り加工による隔壁40の形成と隔壁40の補強が両立でき生産性
を高めることができる。
For this reason, the support shaft 41 can be supported with increased strength by increasing the thickness of the shaft support 47, and the strength of the partition 40 can be increased by joining the strong shaft support 47 to the partition 40. Can do. By the way, the magnetic gap which is the distance between the rotor 30 and the stator 32 becomes a resistance of the magnetic circuit and should be set as small as possible. Therefore, the partition 40 disposed between the rotor 30 and the stator 32 is thin. Necessary. In particular, when the partition wall 40 is formed by drawing with excellent productivity, the side surface portion 40b is thin, and it is difficult to join the support shaft 41 directly in terms of strength. However, if the support shaft 41 is installed via the shaft support 47 having strength, the formation of the partition wall 40 and the reinforcement of the partition wall 40 by the drawing process of the ultrathin plate can be compatible and the productivity can be improved.

さらに、軸支持体47を磁性材料とした場合では対向するロータ30とステータ32間の磁気回路抵抗が低減されているため、励磁コイル33に通電されると隔壁40の円筒部40aが介在する磁気ギャップ部において一層大きい磁束を発生でき、ロータ30の回転力を高めることや所定の回転力を得るための励磁コイル33への電気入力を低減できる。特に、隔壁40は対向するロータ30とステータ32間に配置されるため非磁性材で構成する必要があり、円筒部40aと側面部40bを一体で形成する時は磁性材の軸支持体47により磁気抵抗の低減による磁気回路の改善ができる。   Further, when the shaft support 47 is made of a magnetic material, the magnetic circuit resistance between the rotor 30 and the stator 32 facing each other is reduced. Therefore, when the excitation coil 33 is energized, the magnetic part in which the cylindrical portion 40a of the partition wall 40 is interposed. A larger magnetic flux can be generated in the gap portion, and the electrical input to the exciting coil 33 for increasing the rotational force of the rotor 30 and obtaining a predetermined rotational force can be reduced. In particular, since the partition wall 40 is disposed between the rotor 30 and the stator 32 facing each other, the partition wall 40 needs to be made of a nonmagnetic material. When the cylindrical portion 40a and the side surface portion 40b are integrally formed, the magnetic material shaft support 47 is used. The magnetic circuit can be improved by reducing the magnetic resistance.

このように実施の形態3では、隔壁40を極薄い材料で形成した場合でも支持軸41を確実にかつ接合強度を高めて隔壁40に取付けることができ、隔壁40の薄肉化により回転力の高出力化と構造の高強度化により耐久性などの信頼性を高めることができ、さらに生産性を向上できる。   As described above, in the third embodiment, even when the partition wall 40 is formed of an extremely thin material, the support shaft 41 can be securely attached to the partition wall 40 with an increased bonding strength. Reliability and durability can be improved by increasing the output and strengthening the structure, and productivity can be further improved.

さらに実施の形態4では、隔壁40を非磁性材料で構成しても、ロータ30の側面に磁性材を配置できるためロータ30とステータ32間の磁気回路の磁気抵抗を低減でき、磁気駆動力を向上でき回転力の高出力化あるいは駆動部の低入力化が実現できる。   Furthermore, in the fourth embodiment, even if the partition 40 is made of a nonmagnetic material, a magnetic material can be disposed on the side surface of the rotor 30, so that the magnetic resistance of the magnetic circuit between the rotor 30 and the stator 32 can be reduced and the magnetic driving force can be reduced. It is possible to improve the output of the rotational force or reduce the input of the drive unit.

(実施の形態5)
図4は本発明の実施の形態5のアクチュエータの断面図である。図において、図1〜図3の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Embodiment 5)
FIG. 4 is a sectional view of the actuator according to the fifth embodiment of the present invention. In the figure, the same members and the same functions as those in the embodiment of FIGS.

49はロータ回転軸34に開けた軸穴42が流れ規制体38側に開口しないよう流れ規制体38側に設けた封止部である。   A sealing portion 49 is provided on the flow restricting body 38 side so that the shaft hole 42 formed in the rotor rotating shaft 34 does not open on the flow restricting body 38 side.

このため、流体通路3に面した流れ規制体38側から支持軸41部へゴミ、異物などが侵入するのが防止できるとともに、支持軸41部で発生した摩耗粉あるいは塗布されていた潤滑剤などが流体通路3側に漏出するのが防止できる。なお、軸穴42はロータ30側から先端が開口しないように開けた盲穴でも良いが、高精度の加工ができ入口部と先端部の寸法確認ができる貫通穴として加工後に封止栓を設けて封止部49とすることで軸穴42の加工性および信頼性が向上できる。   For this reason, it is possible to prevent dust, foreign matter and the like from entering the support shaft 41 from the flow regulating body 38 side facing the fluid passage 3, and wear powder generated at the support shaft 41 or lubricant that has been applied, etc. Can be prevented from leaking out to the fluid passage 3 side. The shaft hole 42 may be a blind hole opened so that the tip does not open from the rotor 30 side, but a sealing plug is provided after machining as a through hole that can be processed with high accuracy and the dimensions of the inlet and tip can be confirmed. By using the sealing portion 49, the workability and reliability of the shaft hole 42 can be improved.

このように、流れ規制体38側からの支持軸41部へのゴミ、異物などの侵入が防止でき、安定した回転を持続し耐久性および信頼性を高めることができる。また、支持軸41部で発生した摩耗粉あるいは塗布されていた潤滑剤などが流体通路側に出るのが防止でき、流体への汚染の防止と清浄な流体への利用ができるなど適応範囲を広げることができる。   As described above, it is possible to prevent dust and foreign matter from entering the support shaft 41 from the flow restricting body 38 side, and it is possible to maintain stable rotation and improve durability and reliability. Further, it is possible to prevent wear powder generated at the support shaft 41 portion or applied lubricant from flowing out to the fluid passage side, thereby preventing the contamination of the fluid and using it for a clean fluid, thereby expanding the applicable range. be able to.

(実施の形態6)
図5は本発明の実施の形態6のアクチュエータの断面部分図である。図において、図1〜図4の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Embodiment 6)
FIG. 5 is a partial sectional view of the actuator according to the sixth embodiment of the present invention. In the figure, the same members and the same functions as those in the embodiment of FIGS.

50は移動体36に設けた外周方向に延びる外周突起36aと流れ規制体38の弁ゴム保持部38bに設けた内周方向に延びる内周突起38dとを嵌め合わせて係止した係止部であり、外周突起36aは流れ規制体38の内周壁38eとガタ(隙間)を設けるように形成され、内周突起38dは移動体36の外周壁36bとガタ(隙間)を設けるように形成されている。   Reference numeral 50 denotes a locking portion that fits and locks an outer peripheral protrusion 36a provided on the moving body 36 extending in the outer peripheral direction and an inner peripheral protrusion 38d extending on the inner peripheral direction provided on the valve rubber holding portion 38b of the flow restricting body 38. The outer peripheral protrusion 36a is formed to provide a backlash (gap) with the inner peripheral wall 38e of the flow restricting body 38, and the inner peripheral protrusion 38d is formed to provide a backlash (gap) with the outer peripheral wall 36b of the moving body 36. Yes.

このため、図6に示すように流れ規制体38にほぼ軸方向の外力Pが開弁方向に加わると、流れ規制体38は移動体36あるいはロータ回転軸34に対して角度θだけ傾き、いわゆる首振り動作が生じる。従って、アクチュエータが流体通路の弁座に対して傾いて設置された場合でも流れ規制体38は弁座の傾きに対してなじむように自在に首振り動作し、確実な弁閉止が実現できる。   Therefore, as shown in FIG. 6, when a substantially axial external force P is applied to the flow restricting body 38 in the valve opening direction, the flow restricting body 38 is inclined with respect to the moving body 36 or the rotor rotating shaft 34 by an angle θ, so-called. Swing motion occurs. Therefore, even when the actuator is installed to be inclined with respect to the valve seat of the fluid passage, the flow restricting body 38 freely swings so as to be adapted to the inclination of the valve seat, and a reliable valve closing can be realized.

このように、流体通路に対するアクチュエータの取付に誤差がある場合、例えば弁座に対して傾いて設置された場合でも首振り動作により流れ規制体が流体通路の弁座を正常に閉止でき、確実な流体制御動作がなされ信頼性をより一層向上することが実現できる。   As described above, when there is an error in the mounting of the actuator to the fluid passage, for example, even when the actuator is inclined with respect to the valve seat, the flow restricting body can normally close the valve seat of the fluid passage by the swinging operation, which is reliable. It is possible to realize further improvement in reliability by performing the fluid control operation.

(実施の形態7)
図7は本発明の実施の形態7のアクチュエータの断面図である。図において、図1〜図6の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Embodiment 7)
FIG. 7 is a sectional view of an actuator according to a seventh embodiment of the present invention. In the figure, the same members and the same functions as those in the embodiment of FIGS.

51は隔壁40の側面部40b側に設けロータ回転軸34の外周を支持する第一の軸受であり、この軸受51は隔壁40の側面部40bに一体形成した軸受保持部52に収納され保持されている。この軸受保持部52は絞り加工により側面部40bに環状の突出部40dを設けるとともに中央に凹部40eを設けて形成している。53は取付体43側に設けロータ回転軸34の外周を支持する第二の軸受であり、この軸受53は取付体43に固定されている。なお、ここでは第一の軸受51と第二の軸受53でロータ回転軸34を回転支持する場合を示したが、第一の軸受51の軸方向長さを大きくし第二の軸受53を無くして片持ち支持とすることができる。   A first bearing 51 is provided on the side surface 40b side of the partition wall 40 and supports the outer periphery of the rotor rotating shaft 34. The bearing 51 is housed and held in a bearing holding portion 52 formed integrally with the side surface portion 40b of the partition wall 40. ing. The bearing holding portion 52 is formed by providing an annular protrusion 40d on the side surface portion 40b and a recess 40e in the center by drawing. Reference numeral 53 denotes a second bearing provided on the attachment body 43 side and supporting the outer periphery of the rotor rotating shaft 34, and the bearing 53 is fixed to the attachment body 43. Here, the case where the rotor rotating shaft 34 is rotatably supported by the first bearing 51 and the second bearing 53 is shown, but the axial length of the first bearing 51 is increased to eliminate the second bearing 53. Can be cantilevered.

このため、軸受保持部52は絞り加工により隔壁40の円筒部40aに対して芯ズレなく形成でき、軸受51を回転の中心に精度良く配置できる。また、極薄板で形成された隔壁40は環状の突出部40dおよび中央の凹部40eの凹凸の形成により補強できる。   For this reason, the bearing holding portion 52 can be formed without any misalignment with respect to the cylindrical portion 40a of the partition wall 40 by drawing, and the bearing 51 can be accurately placed at the center of rotation. Further, the partition wall 40 formed of an extremely thin plate can be reinforced by forming the projections and recesses of the annular projection 40d and the central recess 40e.

このように、軸受保持部は隔壁に一体形成されるため芯ズレのない高精度の加工によりロータと隔壁の隙間を一層低減でき、さらに凹凸の形成により隔壁の強度が向上できるため隔壁の薄肉化をより一層推進でき、ステータとロータ間の磁気ギャップの低減によりロータの回転力が一層向上できる。   In this way, since the bearing holding part is integrally formed with the partition wall, the gap between the rotor and the partition wall can be further reduced by high-precision processing without misalignment, and the strength of the partition wall can be improved by forming irregularities, so that the partition wall thickness is reduced. Further, the rotational force of the rotor can be further improved by reducing the magnetic gap between the stator and the rotor.

(実施の形態8)
図8は本発明の実施の形態8のアクチュエータの断面図である。図において、図1〜図6の実施の形態と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
(Embodiment 8)
FIG. 8 is a sectional view of an actuator according to the eighth embodiment of the present invention. In the figure, the same members and the same functions as those in the embodiment of FIGS.

54は支持軸41で回転支持されるロータ回転軸34の軸方向のスラスト荷重を受ける軸受体である。この軸受体54はロータ回転軸34の外周部に接して設けるとともに、隔壁40、ステータ32および回動防止体37を固定した取付体43に設けたロータ回転軸34が貫通する貫通孔43aとロータ30の間に貫通孔43aを塞ぐように配置している。   A bearing body 54 receives a thrust load in the axial direction of the rotor rotating shaft 34 that is rotatably supported by the support shaft 41. The bearing body 54 is provided in contact with the outer peripheral portion of the rotor rotating shaft 34, and the through hole 43a and the rotor through which the rotor rotating shaft 34 is provided in the mounting body 43 to which the partition wall 40, the stator 32 and the rotation preventing body 37 are fixed. 30 is arranged so as to close the through hole 43a.

このため、流れ規制体38に背圧が加わっている開弁時では流れ規制体38を弁座1から引き離す時に軸方向の反力がスラスト力として軸受体54を介して取付体43に加わる。この軸受体54によりロータ30が取付体43などに当接するのが防止されるとともに、摩擦抵抗の小さい摺動材で軸受体54を形成することにより摩擦損失の低減がなされる。さらに、軸受体54は取付体43の貫通孔43aを塞ぐように配置されているため、流
体通路3側からゴミ、異物などがロータ30側に侵入するのを防止できる。また、スラスト軸受とゴミ侵入防止蓋を一つで併用できるため小型化あるいは生産性が高められる。
For this reason, when the back pressure is applied to the flow restricting body 38, an axial reaction force is applied to the mounting body 43 via the bearing body 54 as a thrust force when the flow restricting body 38 is pulled away from the valve seat 1. The bearing body 54 prevents the rotor 30 from coming into contact with the attachment body 43 and the like, and the friction loss is reduced by forming the bearing body 54 with a sliding material having a small frictional resistance. Furthermore, since the bearing body 54 is disposed so as to close the through hole 43a of the mounting body 43, dust, foreign matter, and the like can be prevented from entering the rotor 30 side from the fluid passage 3 side. Further, since the thrust bearing and the dust intrusion prevention lid can be used together in one, downsizing or productivity can be improved.

このように、軸方向に発生したスラスト荷重によりロータが軸方向に移動して隔壁あるいは取付体などの構成要素と接触するのを防止するとともに、流体側からロータ側へゴミ、異物などが侵入するのを防止して安定した回転を持続し信頼性を高めることができ、さらに小型化あるいは生産性が向上できる。   As described above, the thrust load generated in the axial direction prevents the rotor from moving in the axial direction and comes into contact with a component such as a partition wall or an attachment body, and dust, foreign matter, etc. enter the rotor side from the fluid side. Can be maintained to maintain stable rotation and increase reliability, and further miniaturization or productivity can be improved.

本発明の実施の形態1および実施の形態2のアクチュエータの開弁状態を示す断面図Sectional drawing which shows the valve opening state of the actuator of Embodiment 1 and Embodiment 2 of this invention 同アクチュエータの閉弁状態を示す断面図Sectional view showing the valve closed state of the actuator 本発明の実施の形態3および実施の形態4のアクチュエータの断面図Sectional drawing of the actuator of Embodiment 3 and Embodiment 4 of this invention 本発明の実施の形態5のアクチュエータの断面図Sectional drawing of the actuator of Embodiment 5 of this invention 本発明の実施の形態6のアクチュエータの部分断面図Partial sectional view of an actuator according to Embodiment 6 of the present invention 同アクチュエータの首振り動作を示す断面図Sectional view showing the swing motion of the actuator 本発明の実施の形態7のアクチュエータの断面図Sectional drawing of the actuator of Embodiment 7 of this invention 本発明の実施の形態8のアクチュエータの断面図Sectional drawing of the actuator of Embodiment 8 of this invention 従来のアクチュエータの断面図Cross section of conventional actuator 従来の他のアクチュエータの断面図Sectional view of another conventional actuator

符号の説明Explanation of symbols

30 ロータ
31 磁極
32 ステータ
33 励磁コイル
34 ロータ回転軸
35 送り手段
36 移動体
37 回動防止体
38 流れ規制体
39 付勢体
40 隔壁
41 支持軸
42 軸穴
43 取付体
47 軸支持体
49 封止部
50 係止部
51 軸受
52 軸受保持部
54 軸受体
DESCRIPTION OF SYMBOLS 30 Rotor 31 Magnetic pole 32 Stator 33 Excitation coil 34 Rotor rotating shaft 35 Feed means 36 Moving body 37 Anti-rotation body 38 Flow restricting body 39 Energizing body 40 Partition 41 Support shaft 42 Shaft hole 43 Attachment body 47 Shaft support body 49 Sealing Part 50 Locking part 51 Bearing 52 Bearing holding part 54 Bearing body

Claims (4)

磁極を有するロータと、励磁コイルを有するステータと、前記ロータに設けたロータ回転軸と、前記ロータ回転軸に設けた送り手段と、前記送り手段に螺合あるいは係合する移動体と、軸方向に付勢する付勢体を介在させて前記移動体に対して軸方向に移動可能に連結した流れ規制体と、前記ロータと前記ステータの隙間および前記ロータの一方の端面側に配置しかつ一体的に形成して前記ステータと流体側にある前記ロータを気密に分離する隔壁と、前記隔壁および前記ステータを取付けた取付体と、前記取付体に設け前記移動体の回転を規制する回動防止体と、前記隔壁のフランジ部と取付体との間に設けた第1シールと、流体と前記取付板との間に設けた第2シールとを備えたアクチュエータ。 A rotor having magnetic poles, a stator having an exciting coil, a rotor rotating shaft provided on the rotor, a feeding means provided on the rotor rotating shaft, a moving body screwed or engaged with the feeding means, and an axial direction A flow restricting body that is connected to the moving body so as to be movable in the axial direction through an urging body that urges the rotor, and is disposed on and integrated with a gap between the rotor and the stator and one end surface of the rotor. And a partition wall that hermetically separates the stator and the rotor on the fluid side, an attachment body to which the partition wall and the stator are attached, and a rotation prevention provided on the attachment body to restrict the rotation of the moving body An actuator comprising: a body; a first seal provided between the flange portion of the partition wall and the attachment body; and a second seal provided between the fluid and the attachment plate. 流れ規制体と移動体は径方向にガタを設けた係止部により連結し、流れ規制体を首振り自在とした請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the flow restricting body and the moving body are connected by a locking portion having a backlash in the radial direction so that the flow restricting body can swing freely. ロータ回転軸の外周を支持する軸受と、隔壁に一体形成した軸受保持部を有し、前記軸受を前記軸受保持部に保持した請求項1記載のアクチュエータ。 The actuator according to claim 1, further comprising: a bearing that supports an outer periphery of the rotor rotation shaft; and a bearing holding portion that is integrally formed with the partition wall, wherein the bearing is held by the bearing holding portion. 隔壁、ステータおよび回動防止体を固定した取付体と、ロータ回転軸の軸方向のスラスト荷重を受ける軸受体を前記取付体とロータの間に備えた請求項1〜3のいずれか1項に記載のアクチュエータ。 The attachment body which fixed the partition, the stator, and the rotation prevention body, and the bearing body which receives the axial thrust load of a rotor rotating shaft were provided in any one of Claims 1-3 provided between the said attachment body and the rotor. The actuator described.
JP2006151238A 2006-05-31 2006-05-31 Actuator Pending JP2006262698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151238A JP2006262698A (en) 2006-05-31 2006-05-31 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151238A JP2006262698A (en) 2006-05-31 2006-05-31 Actuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18335897A Division JPH1130356A (en) 1997-07-09 1997-07-09 Actuator

Publications (1)

Publication Number Publication Date
JP2006262698A true JP2006262698A (en) 2006-09-28

Family

ID=37101293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151238A Pending JP2006262698A (en) 2006-05-31 2006-05-31 Actuator

Country Status (1)

Country Link
JP (1) JP2006262698A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104533A (en) * 2017-06-15 2017-08-29 湖南万通科技股份有限公司 A kind of electromechanical assembly and the sample making apparatus with the electromechanical assembly
WO2018051989A1 (en) * 2016-09-16 2018-03-22 日本電産株式会社 Motor
JP2020167826A (en) * 2019-03-29 2020-10-08 日本電産サンキョー株式会社 Motor, and valve body driving device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051989A1 (en) * 2016-09-16 2018-03-22 日本電産株式会社 Motor
CN109792186A (en) * 2016-09-16 2019-05-21 日本电产株式会社 Motor
CN109792186B (en) * 2016-09-16 2021-11-02 日本电产株式会社 Motor
CN107104533A (en) * 2017-06-15 2017-08-29 湖南万通科技股份有限公司 A kind of electromechanical assembly and the sample making apparatus with the electromechanical assembly
CN107104533B (en) * 2017-06-15 2024-06-07 湖南方略环保技术有限公司 Electromechanical device and sample preparation equipment with same
JP2020167826A (en) * 2019-03-29 2020-10-08 日本電産サンキョー株式会社 Motor, and valve body driving device
JP7219138B2 (en) 2019-03-29 2023-02-07 日本電産サンキョー株式会社 Motor and valve drive

Similar Documents

Publication Publication Date Title
KR101234937B1 (en) Motor-operated valve
US9127694B2 (en) High-flow electro-hydraulic actuator
US8585014B2 (en) Linear solenoid and valve device using the same
JPH02292583A (en) Electrically driven control valve
JP2001221359A (en) Hermetically sealed motor driven valve
JP2012013197A (en) Motor operated valve
JP2005180592A (en) Valve device
JPH1130356A (en) Actuator
JP2006262698A (en) Actuator
JP2005048922A (en) Valve
JP4565913B2 (en) Actuator
JPS61153073A (en) Rotary valve
JP2011077356A (en) Linear solenoid and valve device using the same
CN111051749A (en) Double eccentric valve
JP2006153204A (en) Needle valve
JP6271784B2 (en) Stepping motor and electric valve using the same
JP4289068B2 (en) valve
JP4479856B2 (en) Fluid control valve
JPH08312822A (en) Motor-driven control valve
JP2009008003A (en) Valve lift actuator
JP4389905B2 (en) Fluid control valve
JPH1089520A (en) Actuator
JP2006170361A (en) Valve device
JP2009097622A (en) Solenoid valve structure
CN218415945U (en) Rotor assembly for electric control valve and electric control valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Effective date: 20081028

Free format text: JAPANESE INTERMEDIATE CODE: A02