JP2006250179A - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP2006250179A
JP2006250179A JP2005064480A JP2005064480A JP2006250179A JP 2006250179 A JP2006250179 A JP 2006250179A JP 2005064480 A JP2005064480 A JP 2005064480A JP 2005064480 A JP2005064480 A JP 2005064480A JP 2006250179 A JP2006250179 A JP 2006250179A
Authority
JP
Japan
Prior art keywords
vibration
mounting member
vibration isolator
cylinder member
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064480A
Other languages
Japanese (ja)
Inventor
Atsuhiro Fujiwara
敦洋 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005064480A priority Critical patent/JP2006250179A/en
Publication of JP2006250179A publication Critical patent/JP2006250179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively damp and absorb low-frequency vibrations and to provide sufficiently high durability of a device. <P>SOLUTION: In a vibration isolator 10, an outer cylinder member 26 is axially moved in synchronization with input of input vibrations, and elastic rolling elements 56 are rolled between an inner circumferential face of the outer cylinder member 26 and an outer circumferential face of an inner cylinder member 48 along with the movement of the outer cylinder member 26. In elastic rolling elements 56, the shear deformation is generated along with a radial direction in a cross-sectional face along the radial direction, so that internal friction or the like of the elastic rolling elements 56 generates damping with respect to the vibrations. In the vibration isolator 10, an inner volume in an air chamber 58 is increased/decreased along with the relative movement of the outer cylinder member 26 when the vibrations are input. Therefore, discharge of air from an air chamber 58 to an external space and intake of the air from the external space into the air chamber 58 are alternately performed through an orifice 42, resistance of air flowing through the orifice 42 in intake or discharge of the air also generates damping with respect to the vibrations. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、振動を発生するエンジン、モータ、コンプレッサー等の振動発生部をフロア、車体等の振動受部上に支持すると共に、振動発生部から振動受部への振動伝達を防止するために用いられる防振装置に関する。   The present invention is used to support vibration generating parts such as an engine, a motor, and a compressor that generate vibration on a vibration receiving part such as a floor or a vehicle body, and to prevent vibration transmission from the vibration generating part to the vibration receiving part. The present invention relates to a vibration isolator.

一般産業用の振動を発生する機械を支持して防振を図る防振装置としては、ゴムを用いた防振ゴムや、金属製のコイルスプリングとダンパとを組み合わせたものが知られている(例えば、特許文献1参照)。   As an anti-vibration device for supporting a machine for generating vibrations for general industrial use, an anti-vibration rubber using rubber and a combination of a metal coil spring and a damper are known ( For example, see Patent Document 1).

防振装置における支持系の固有振動数を10Hz以下としないと防振が成立しないような低周波数の振動を発生する機械の場合、防振ゴムでは剪断支持や傾斜支持が必要であるが、このような支持形態ではへたりや強度等の問題があった。また防振ゴムの場合、荷重支持時の強度やへたりを考慮するなら、一般的に圧縮側で使用することが望ましいが、ゴムの強度や剛性等から、通常の設計ではその場合の支持系の固有振動数は10Hz以上になり、この結果、防振可能な入力振動数域は14Hz(防振理論における振動伝達率曲線より、支持系の固有振動数の1.4倍以上の強制振動数でないと、振動伝達率は1以下にはならない)以上となってしまう。   In the case of a machine that generates low-frequency vibrations that cannot be vibration-proof unless the natural frequency of the support system in the vibration-proof device is 10 Hz or less, the vibration-proof rubber requires shear support or tilt support. Such a support form has problems such as sag and strength. In the case of anti-vibration rubber, considering the strength and sag when supporting the load, it is generally desirable to use it on the compression side. As a result, the input frequency region where vibration can be prevented is 14 Hz (from the vibration transmissibility curve in the vibration isolation theory, the forced frequency is 1.4 times the natural frequency of the support system). Otherwise, the vibration transmissibility will not be less than 1).

一方で、800回転/分(rpm)以下で回転する3気筒以下のエンジンなどでは、発生する強制振動数は12Hz以下となり、防振支持に必要な支持系の固有振動数は8Hz前後以下が必要となってしまう(エンジンでなくとも発生する強制振動数が12Hz以下の場合は同じことである)。この場合、支持する荷重にもよるが、防振装置のバネ要素としてのゴムは非常に柔らかいものが必要とされ、通常の圧縮型ではその強度面より構成が不可能であり、剪断型か傾斜型が必要になるが、これらの支持形態では、前述したように、へたり性の問題が解決できない。これに対し、バネ要素として金属製のコイルスプリングを用いる場合には、10Hz以下の固有振動数を得ることは可能であるが、コイルスプリングは殆ど減衰作用がないためにサージングの問題が生じ、ダンパを併設しなければならなかった。   On the other hand, in an engine of 3 cylinders or less that rotates at 800 rpm or less, the generated forced frequency is 12 Hz or less, and the natural frequency of the support system necessary for vibration isolation support is required to be about 8 Hz or less. (It is the same when the forced frequency generated even if it is not the engine is 12 Hz or less). In this case, although it depends on the load to be supported, the rubber as the spring element of the vibration isolator is required to be very soft, and the normal compression type cannot be constructed because of its strength. Although a mold is required, these support forms cannot solve the problem of sag as described above. On the other hand, when a metal coil spring is used as the spring element, it is possible to obtain a natural frequency of 10 Hz or less. However, since the coil spring has almost no damping action, a surging problem arises. Had to be attached.

また特許文献2には、第1プレートと第2プレートとの間に中空筒状のゴム状弾性部材が配置されると共に、このゴム状弾性部材の内周側に形成された空気室内に金属製のコイルスプリングが配置された防振装置が記載されている。ここで、第1プレートには空気室を装置外部へ連通させるオリフィス穴が穿設されている。この防振装置では、ゴムと比較して固有振動数を低くできるコイルスプリングを荷重支持に用いることにより、支持系の固有振動数を容易に10Hz未満に設定できるが、振動入力時に、主としてオリフィス穴を流通する空気の抵抗によって減衰を得ているため、振動に対する減衰を十分に大きくすることが困難である。
特開2002−295587号公報 特開2003−202048号公報
In Patent Document 2, a hollow cylindrical rubber-like elastic member is disposed between the first plate and the second plate, and a metal is formed in the air chamber formed on the inner peripheral side of the rubber-like elastic member. An anti-vibration device having a coil spring is described. Here, the first plate is provided with an orifice hole for communicating the air chamber to the outside of the apparatus. In this vibration isolator, the natural frequency of the support system can be easily set to less than 10 Hz by using a coil spring capable of lowering the natural frequency compared to rubber for load support. Since the damping is obtained by the resistance of the air flowing through, it is difficult to sufficiently increase the damping against the vibration.
Japanese Patent Application Laid-Open No. 2002-295587 JP 2003-202048 A

本発明の目的は、上記事実を考慮して、低周波域の振動を効果的に減衰吸収でき、しかも耐久性が高い防振装置を提供することある。   In view of the above facts, an object of the present invention is to provide a vibration isolator that can effectively attenuate and absorb vibrations in a low frequency range and has high durability.

上記の目的を達成するため、本発明の請求項1に係る防振装置は、振動発生部及び振動受部の一方に連結され、略筒状に形成された第1取付部材と、振動発生部及び振動受部の他方に連結され、前記第1取付部材の内周側に配置された第2取付部材と、前記第1取付部材と前記第2取付部材との間に介装されたコイル状の支持バネと、弾性材料により略円環状に形成されると共に、前記第1取付部材の内周面と前記第2取付部材の外周面との間に径方向に沿って圧縮状態となるように介装され、前記第1取付部材及び前記第2取付部材の少なくとも一方の軸方向に沿った相対移動に従って第1取付部材の内周面と第2取付部材の外周面との間で転動する弾性転動体と、を有することを特徴とする。   In order to achieve the above object, a vibration isolator according to claim 1 of the present invention is connected to one of a vibration generating portion and a vibration receiving portion, and includes a first mounting member formed in a substantially cylindrical shape, and a vibration generating portion. And a second mounting member connected to the other of the vibration receiving portions and disposed on the inner peripheral side of the first mounting member, and a coil shape interposed between the first mounting member and the second mounting member The support spring and the elastic material are formed in a substantially annular shape, and are compressed along the radial direction between the inner peripheral surface of the first mounting member and the outer peripheral surface of the second mounting member. It is interposed and rolls between the inner peripheral surface of the first mounting member and the outer peripheral surface of the second mounting member in accordance with the relative movement along the axial direction of at least one of the first mounting member and the second mounting member. And an elastic rolling element.

本発明の請求項1に係る防振装置では、コイル状の支持バネが第1取付部材と第2取付部材との間に介装されたことにより、第1取付部材又は第2取付部材を介して入力する外部から入力する荷重(外部荷重)を、主としてコイル状の支持バネにより支持できる。このとき、ゴム弾性体により外部荷重を支持する場合と比較し、装置(支持系)の固有振動数を低くできるので、装置の固有振動数を十分に低い値に設定できる。   In the vibration isolator according to claim 1 of the present invention, the coil-shaped support spring is interposed between the first mounting member and the second mounting member, so that the first mounting member or the second mounting member is interposed. The externally input load (external load) can be supported mainly by a coiled support spring. At this time, the natural frequency of the device (support system) can be lowered compared to the case where the external load is supported by the rubber elastic body, so that the natural frequency of the device can be set to a sufficiently low value.

また請求項1に係る防振装置では、弾性転動体が第1取付部材の内周面と第2取付部材の外周面との間に径方向に沿って圧縮状態となるように介装され、第1取付部材及び前記第2取付部材の少なくとも一方の軸方向に沿った相対移動に従って外筒部材の内周面と内筒部材の外周面との間で転動することにより、振動入力時には、弾性転動体を第1取付部材の内周面と第2取付部材の外周面との間で転動させつつ、この弾性転動体に剪断変形を生じさせることができるので、弾性転動体の内部摩擦等の作用により振動に対する減衰を得ることができ、この減衰により入力振動を効果的に吸収できる。   In the vibration isolator according to claim 1, the elastic rolling element is interposed between the inner peripheral surface of the first mounting member and the outer peripheral surface of the second mounting member so as to be in a compressed state along the radial direction, By rolling between the inner peripheral surface of the outer cylindrical member and the outer peripheral surface of the inner cylindrical member according to relative movement along the axial direction of at least one of the first mounting member and the second mounting member, at the time of vibration input, Since the elastic rolling element can be caused to undergo shear deformation while rolling between the inner peripheral surface of the first mounting member and the outer peripheral surface of the second mounting member, the internal friction of the elastic rolling member can be generated. The damping | damping with respect to a vibration can be obtained by the effect | actions etc., and an input vibration can be absorbed effectively by this damping | damping.

また請求項1に係る防振装置では、長期間に亘ってへたりが発生しないコイル状の支持バネにより略全ての支持荷重を負担し、弾性転動体により支持荷重を負担しないことから、ゴム弾性体により支持荷重を負担する防振装置と比較し、装置の耐久性を向上でき、性能劣化や損傷の発生を長期間に亘って防止できる。   Further, in the vibration isolator according to claim 1, since almost all the support load is borne by the coil-shaped support spring that does not sag for a long period of time, and the support load is not borne by the elastic rolling element, the rubber elasticity Compared with a vibration isolator that bears a supporting load by the body, the durability of the apparatus can be improved, and performance degradation and damage can be prevented over a long period of time.

また請求項2に係る防振装置は、請求項1記載の防振装置において、前記第1取付部材の内周側に、前記第2取付部材及び前記弾性転動体により外部から区画された空気室を形成し、前記第1取付部材及び前記第2取付部材の少なくとも一方に前記空気室を外部へ連通させる制限通路を形成したことを特徴とする。   Further, the vibration isolator according to claim 2 is the vibration isolator according to claim 1, wherein the air chamber is partitioned from the outside by the second attachment member and the elastic rolling element on the inner peripheral side of the first attachment member. And at least one of the first mounting member and the second mounting member is formed with a restriction passage for communicating the air chamber to the outside.

また請求項3に係る防振装置は、請求項1又は2記載の防振装置において、前記第1取付部材にその内周面に対して内周側へ延出する第1ストッパ部を形成すると共に、前記第2取付部材にその外周面に対して外周側へ延出する第2ストッパ部を形成し、前記弾性転動体を前記軸方向に沿って前記第1ストッパ部と前記第2ストッパ部との間に配置したことを特徴とする。   According to a third aspect of the present invention, in the vibration isolator of the first or second aspect, the first mounting member is provided with a first stopper portion extending toward an inner peripheral side with respect to an inner peripheral surface thereof. In addition, the second mounting member is formed with a second stopper portion extending toward the outer peripheral side with respect to the outer peripheral surface thereof, and the elastic rolling element is moved along the axial direction with the first stopper portion and the second stopper portion. It is arrange | positioned between.

また請求項4に係る防振装置は、請求項1乃至3の何れか1項記載の防振装置において、前記第1取付部材及び第2取付部材の少なくとも一方の軸方向外側に、弾性変形可能とされたゴムバネ部及び、該ゴムバネ部に固着されたブラケット部材を設け、該ゴムバネ部及びブラケット部材を介して、前記第1取付部材及び第2取付部材の少なくとも一方を、振動発生部及び振動受部の一方又は他方に連結したことを特徴とする。   The vibration isolator according to claim 4 is the vibration isolator according to any one of claims 1 to 3, and is elastically deformable outward in at least one of the first mounting member and the second mounting member. And a bracket member fixed to the rubber spring portion. Through the rubber spring portion and the bracket member, at least one of the first mounting member and the second mounting member is connected to the vibration generating portion and the vibration receiving portion. It is connected to one or the other of the parts.

また請求項5に係る防振装置は、請求項1乃至3の何れか1項記載の防振装置において、前記第1取付部材の軸方向外側及び外周側に、弾性変形可能とされた第1ゴムバネ部及び第2ゴムバネ部をそれぞれ設けると共に、第1ゴムバネ部及び第2ゴムバネ部に固着されたブラケット部材を設け、前記第1ゴムバネ部及び第2ゴムバネ部と前記ブラケット部材とを介して、前記第1取付部材を振動発生部及び振動受部の一方に連結したことを特徴とする。   A vibration isolator according to claim 5 is the vibration isolator according to any one of claims 1 to 3, wherein the first mounting member is elastically deformable on an outer side in an axial direction and on an outer peripheral side. A rubber spring part and a second rubber spring part are provided respectively, and a bracket member fixed to the first rubber spring part and the second rubber spring part is provided, and the first rubber spring part, the second rubber spring part, and the bracket member The first mounting member is connected to one of the vibration generating part and the vibration receiving part.

また請求項6に係る防振装置は、請求項1乃至5の何れか1項記載の防振装置において、前記第1取付部材の内周面に前記軸方向に対して傾いた第1テーパ面を形成すると共に、前記第2取付部材の外周面に前記第1テーパ面と略平行とされた第2テーパ面を形成し、前記弾性転動体を前記第1テーパ面と前記第2テーパ面との間に圧縮状態となるように介装させたことを特徴とする。   A vibration isolator according to claim 6 is the vibration isolator according to any one of claims 1 to 5, wherein the first tapered surface is inclined with respect to the axial direction on the inner peripheral surface of the first mounting member. And a second taper surface substantially parallel to the first taper surface is formed on the outer peripheral surface of the second mounting member, and the elastic rolling element is formed with the first taper surface and the second taper surface. It is characterized by being interposed so as to be in a compressed state.

以上説明したように本発明の防振装置によれば、低周波域の振動を効果的に減衰吸収でき、しかも耐久性を十分に高いものにできる。   As described above, according to the vibration isolator of the present invention, it is possible to effectively attenuate and absorb vibrations in the low frequency range and to have sufficiently high durability.

以下、本発明の実施形態に係る防振装置について図面を参照して説明する。   Hereinafter, a vibration isolator according to an embodiment of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1及び図2には、本発明の第1の実施形態に係る防振装置が示されている。なお、符号Sは装置の軸心を示しており、この軸心Sに沿った方向を軸方向として以下の説明を行う。
(First embodiment)
1 and 2 show a vibration isolator according to a first embodiment of the present invention. Note that the symbol S indicates the axial center of the apparatus, and the following description will be made with the direction along the axial center S as the axial direction.

図1に示されるように、防振装置10は外形形状が全体として略円柱状に形成されており、この防振装置10には、軸方向に沿った一端側(図1(B)では上端側)に略円筒状に形成された外筒部材26が配置されている。外筒部材26には、内径及び外径が一定とされた円筒部28が設けられると共に、この円筒部28の頂面側を閉止する円板状の頂板部30が一体的に形成されている。   As shown in FIG. 1, the vibration isolator 10 is formed in a substantially cylindrical shape as a whole, and the vibration isolator 10 has one end side along the axial direction (the upper end in FIG. 1B). The outer cylinder member 26 formed in a substantially cylindrical shape is disposed on the side). The outer cylinder member 26 is provided with a cylindrical portion 28 having a constant inner diameter and outer diameter, and a disk-shaped top plate portion 30 that closes the top surface side of the cylindrical portion 28 is integrally formed. .

図1(B)に示されるように、頂板部30には、外周側に円筒部28の上端部から内周側へ向って下方へ傾斜したテーパ部32が形成されると共に、このテーパ部32の内周側に下方へ向って開いた略ハット状の座受部34が形成されている。座受部34の中央部には、頭部38及び軸部38からなる連結ボルト36が貫通しており、この連結ボルト36は、頭部38が溶接等により座受部34の下面側に固着されると共に、軸部38を座受部34から軸心Sに沿って上方へ突出させている。また外筒部材26のテーパ部32には、その内周側の端部に軸方向へ貫通するオリフィス穴42が形成されている。   As shown in FIG. 1B, the top plate portion 30 is formed with a tapered portion 32 inclined downward from the upper end portion of the cylindrical portion 28 toward the inner circumferential side on the outer circumferential side. A substantially hat-shaped seat receiving portion 34 opened downward is formed on the inner peripheral side of the base plate. A connecting bolt 36 including a head portion 38 and a shaft portion 38 passes through the central portion of the seat receiving portion 34. The connecting bolt 36 is fixed to the lower surface side of the seat receiving portion 34 by welding or the like. At the same time, the shaft portion 38 protrudes upward along the axis S from the seat receiving portion 34. In addition, an orifice hole 42 penetrating in the axial direction is formed in the end portion on the inner peripheral side of the tapered portion 32 of the outer cylindrical member 26.

外筒部材26には、円筒部28の下端部が内周側へ屈曲されることにより、底面部にフランジ状の外周ストッパ部44が形成されると共に、この外周ストッパ部44の内周側に円形の開口部46が形成されている。   In the outer cylinder member 26, the lower end portion of the cylindrical portion 28 is bent toward the inner peripheral side, whereby a flange-shaped outer peripheral stopper portion 44 is formed on the bottom surface portion, and on the inner peripheral side of the outer peripheral stopper portion 44. A circular opening 46 is formed.

図1(B)に示されるように、防振装置10には、軸方向に沿った一端側(図1(B)では下端側)に略円筒状に形成された内筒部材48が配置されている。内筒部材48には、内径及び外径が一定とされた円筒部50が設けられている。この円筒部50は頂面側が開口した有底円筒状に形成されており、その底面側が円板状の底板部52により閉止されている。ここで、図2に示されるように、内筒部材48の円筒部50の外径d2は、外筒部材26の円筒部28の内径d1よりも所定長小さくなっている。   As shown in FIG. 1B, the vibration isolator 10 is provided with an inner cylindrical member 48 formed in a substantially cylindrical shape on one end side in the axial direction (the lower end side in FIG. 1B). ing. The inner cylinder member 48 is provided with a cylindrical portion 50 having a constant inner diameter and outer diameter. The cylindrical portion 50 is formed in a bottomed cylindrical shape having an opening on the top surface side, and the bottom surface side is closed by a disk-shaped bottom plate portion 52. Here, as shown in FIG. 2, the outer diameter d2 of the cylindrical portion 50 of the inner cylindrical member 48 is smaller than the inner diameter d1 of the cylindrical portion 28 of the outer cylindrical member 26 by a predetermined length.

内筒部材48の底板部52にも、外筒部材26の頂板部30と同様に、中央部に頭部38及び軸部38からなる連結ボルト36が貫通しており、この連結ボルト36は、頭部38が溶接等により底板部52の上面側に固着されており、軸部38を底板部52から軸心Sに沿って下方へ突出させている。また内筒部材48には、円筒部50の上端部が外周側へ屈曲されることにより、フランジ状の内周ストッパ部54が形成されている。   Similarly to the top plate portion 30 of the outer cylinder member 26, the bottom plate portion 52 of the inner cylinder member 48 has a connecting bolt 36 formed of a head portion 38 and a shaft portion 38 passing through the center portion. The head portion 38 is fixed to the upper surface side of the bottom plate portion 52 by welding or the like, and the shaft portion 38 protrudes downward along the axis S from the bottom plate portion 52. Further, the inner cylindrical member 48 is formed with a flange-shaped inner peripheral stopper portion 54 by bending the upper end portion of the cylindrical portion 50 toward the outer peripheral side.

図1(B)及び図2に示されるように、内筒部材48は、外筒部材26と同軸的に配置されており、その円筒部50における上端側の一部を外筒部材26の開口部46を通して円筒部28の内周側へ挿入している。外筒部材26(円筒部28)の内周面と内筒部材48(円筒部50)の外周面との間には、NR(天然ゴム)、NBR(ニトリルゴム)等のゴムを素材として円環状に成形された弾性転動体56が介装されている。ここで、弾性転動体56をNR(天然ゴム)、NBR(ニトリルゴム)等のゴムにより成形することにより、弾性転動体56が常に圧縮荷重が作用した条件下で使用されても、弾性転動体56に生じる永久歪みを十分に小さいものにでき、かつ亀裂等による損傷も長期間に亘って発生しない。   As shown in FIGS. 1B and 2, the inner cylinder member 48 is disposed coaxially with the outer cylinder member 26, and a part of the upper end side of the cylindrical portion 50 is opened in the outer cylinder member 26. It is inserted into the inner peripheral side of the cylindrical portion 28 through the portion 46. Between the inner peripheral surface of the outer cylindrical member 26 (cylindrical portion 28) and the outer peripheral surface of the inner cylindrical member 48 (cylindrical portion 50), a rubber material such as NR (natural rubber) or NBR (nitrile rubber) is used as a material. An elastic rolling element 56 formed in an annular shape is interposed. Here, the elastic rolling element 56 is formed of rubber such as NR (natural rubber), NBR (nitrile rubber), etc., so that the elastic rolling element 56 is always used even under a condition where a compressive load is applied. The permanent set generated in 56 can be made sufficiently small, and damage due to cracks or the like does not occur over a long period of time.

弾性転動体56は、図3に示されるように、弾性変形が生じていない非変形状態で、外径がD1、内径がD2とされており、径方向に沿った断面が円形に形成されている。   As shown in FIG. 3, the elastic rolling element 56 is in an undeformed state in which no elastic deformation occurs, the outer diameter is D1, the inner diameter is D2, and the cross section along the radial direction is formed in a circular shape. Yes.

弾性転動体56は、図1(B)に示されるように、円筒部28の内周側に挿入されると共に円筒部50の外周側へ外嵌されている。このとき、弾性転動体56は、円筒部28の内周面及び円筒部50の外周面へそれぞれ圧接すると共に、円筒部28の内周面及び円筒部50の外周面により径方向に沿って圧縮状態とされている。この圧縮状態とされた弾性転動体56は、その断面の形状が軸方向を長径方向とする略楕円状に弾性変形している。   As shown in FIG. 1B, the elastic rolling element 56 is inserted on the inner peripheral side of the cylindrical portion 28 and is fitted on the outer peripheral side of the cylindrical portion 50. At this time, the elastic rolling elements 56 are pressed against the inner peripheral surface of the cylindrical portion 28 and the outer peripheral surface of the cylindrical portion 50, respectively, and are compressed along the radial direction by the inner peripheral surface of the cylindrical portion 28 and the outer peripheral surface of the cylindrical portion 50. It is in a state. The elastic rolling element 56 in the compressed state is elastically deformed so that its cross-sectional shape is substantially elliptical with the axial direction as the major axis direction.

図1(B)及び図2に示されるように、弾性転動体56は、軸方向に沿って外周ストッパ部44と内周ストッパ部54との間に位置している。これにより、防振装置10では、外筒部材26が図2に示される引張限界点まで引張方向(図1(B)の軸方向上側)へ内筒部材48に対して相対移動すると、外周ストッパ部44及び内周ストッパ部54がそれぞれ弾性転動体56に圧接して外筒部材26の引張方向への移動を制限する。また防振装置10では、外筒部材26の圧縮方向への相対移動が内筒部材48の内周ストッパ部54が外筒部材26のテーパ部32の内周側端部に当接する圧縮限界点までに制限される。   As shown in FIG. 1B and FIG. 2, the elastic rolling element 56 is positioned between the outer peripheral stopper portion 44 and the inner peripheral stopper portion 54 along the axial direction. Accordingly, in the vibration isolator 10, when the outer cylinder member 26 moves relative to the inner cylinder member 48 in the tension direction (upward in the axial direction of FIG. 1B) to the tension limit point shown in FIG. The portion 44 and the inner peripheral stopper portion 54 are in pressure contact with the elastic rolling elements 56 to limit the movement of the outer cylindrical member 26 in the pulling direction. Further, in the vibration isolator 10, the relative movement in the compression direction of the outer cylinder member 26 is the compression limit point at which the inner peripheral stopper portion 54 of the inner cylinder member 48 contacts the inner peripheral end of the taper portion 32 of the outer cylinder member 26. Limited to.

従って、防振装置10では、外筒部材26が軸方向に沿って引張限界点(図1(B)参照)と圧縮限界点との間で内筒部材48に対して相対的に移動可能になり、外筒部材26が引張限界点と圧縮限界点との間で引張方向又は圧縮方向へ移動すると、この外筒部材26の移動に従って弾性転動体56が円筒部28の内周面と円筒部50の外周面との間で転動する。このとき、弾性転動体56は、外筒部材26が引張方向へ移動する際には、その断面が図2に示される矢印RT方向へ回転し、また外筒部材26が圧縮方向へ移動する際には、引張方向とは反対に、その断面が図2に示される矢印RP方向へ回転する。また弾性転動体56は、外筒部材26が軸方向へ移動しても、常に外周ストッパ部44と内周ストッパ部54との略中央位置に保たれる。   Therefore, in the vibration isolator 10, the outer cylinder member 26 can move relative to the inner cylinder member 48 between the tension limit point (see FIG. 1B) and the compression limit point along the axial direction. When the outer cylinder member 26 moves in the tension direction or the compression direction between the tension limit point and the compression limit point, the elastic rolling element 56 moves along the inner peripheral surface of the cylinder portion 28 and the cylinder portion according to the movement of the outer cylinder member 26. Roll between 50 outer peripheral surfaces. At this time, when the outer cylinder member 26 moves in the pulling direction, the elastic rolling element 56 rotates in the direction of the arrow RT shown in FIG. 2 and when the outer cylinder member 26 moves in the compression direction. The cross section rotates in the direction of arrow RP shown in FIG. Further, the elastic rolling element 56 is always maintained at a substantially central position between the outer peripheral stopper portion 44 and the inner peripheral stopper portion 54 even when the outer cylinder member 26 moves in the axial direction.

図1(B)に示されるように、防振装置10には、外筒部材26の内周側に内筒部材48及び弾性転動体56により外部から区画された略円柱状の空間である空気室58が形成される。空気室58内には、金属性のコイルスプリング60が外筒部材26と略同軸的に配置されており、このコイルスプリング60は、上端側の座面部62及び下端側の座面部64をそれぞれ外筒部材26の頂板部30と内筒部材48の底板部52に圧接させており、外筒部材26が圧縮限界点から引張限界点までの任意の位置にあっても、常に頂板部30と底板部52とにより軸方向へ圧縮状態に保たれる。これにより、振動入力時にコイルスプリング60が頂板部30又は底板部52に衝突して打音が発生することが防止される。   As shown in FIG. 1B, the vibration isolator 10 includes air that is a substantially columnar space partitioned from the outside by an inner cylinder member 48 and an elastic rolling element 56 on the inner peripheral side of the outer cylinder member 26. A chamber 58 is formed. In the air chamber 58, a metallic coil spring 60 is disposed substantially coaxially with the outer cylinder member 26. The coil spring 60 has an upper end side seat surface portion 62 and a lower end side seat surface portion 64 provided outside. The top plate portion 30 of the cylindrical member 26 and the bottom plate portion 52 of the inner cylindrical member 48 are pressed against each other, and the top plate portion 30 and the bottom plate are always in contact with each other even if the outer cylindrical member 26 is at an arbitrary position from the compression limit point to the tension limit point. The portion 52 is maintained in a compressed state in the axial direction. This prevents the coil spring 60 from colliding with the top plate portion 30 or the bottom plate portion 52 when a vibration is input, and generating a hitting sound.

またコイルスプリング60は、その上端側が外筒部材26の座受部34の内周側に挿入されている。ここで、座面部62の内径はコイルスプリング60の外径よりも僅かに大径とされており、コイルスプリング60の外周部は座受部34の内周面に圧接している。これにより、コイルスプリング60は、空気室58内での径方向への移動及び軸心Sに対する傾きが生じることが防止されている。   The upper end side of the coil spring 60 is inserted into the inner peripheral side of the seat receiving portion 34 of the outer cylinder member 26. Here, the inner diameter of the seat surface portion 62 is slightly larger than the outer diameter of the coil spring 60, and the outer peripheral portion of the coil spring 60 is in pressure contact with the inner peripheral surface of the seat receiving portion 34. Thereby, the coil spring 60 is prevented from moving in the radial direction in the air chamber 58 and being inclined with respect to the axis S.

防振装置10では、前述したように、外筒部材26(円筒部28)の内径がd1、内筒部材48(円筒部50)の外径がd2とされ、また非変形状態の弾性転動体56の外径がD1、内径がD2とされている。本実施形態では、内径d1及び外径d2と外径D1及び内径がD2とが下記(1)式〜(3)式の関係を満たすように、外筒部材26、内筒部材48及び弾性転動体56がそれぞれ製造されている。   In the vibration isolator 10, as described above, the outer cylinder member 26 (cylindrical portion 28) has an inner diameter d1, the inner cylinder member 48 (cylindrical portion 50) has an outer diameter d2, and the elastic rolling element in an undeformed state. The outer diameter of 56 is D1, and the inner diameter is D2. In the present embodiment, the outer cylinder member 26, the inner cylinder member 48, and the elastic roll so that the inner diameter d1, the outer diameter d2, the outer diameter D1, and the inner diameter D2 satisfy the following expressions (1) to (3). Each moving body 56 is manufactured.

D1<d1 … (1)
D2≧d2 … (2)
(D1−D2)>(d1−d2) … (3)
防振装置10では、外筒部材26、内筒部材48及び弾性転動体56がそれぞれ上記の関係を満たすことにより、弾性転動体56に周方向に沿った引張変形を生じさせることなく、弾性転動体56が径方向に沿って圧縮変形した状態に保持される。すなわち、弾性転動体56を、周方向に沿った引張変形が発生する条件下で連続的に使用すると、亀裂等の損傷が比較的短時間で発生するおそれが有るが、本実施形態では、外筒部材26と内筒部材48との間に配置された弾性転動体56に周方向に沿った引張変形が生じることがないので、弾性転動体56に亀裂等の損傷が長期間に亘って発生し難くなり、十分に長い寿命が得られる。
D1 <d1 (1)
D2 ≧ d2 (2)
(D1-D2)> (d1-d2) (3)
In the vibration isolator 10, the outer cylinder member 26, the inner cylinder member 48, and the elastic rolling element 56 satisfy the above-described relationship, respectively, so that the elastic rolling element 56 is not elastically deformed without causing tensile deformation along the circumferential direction. The moving body 56 is held in a state of being compressed and deformed along the radial direction. That is, if the elastic rolling element 56 is continuously used under conditions where tensile deformation along the circumferential direction occurs, damage such as cracks may occur in a relatively short time. Since the elastic rolling element 56 disposed between the cylindrical member 26 and the inner cylindrical member 48 is not subjected to tensile deformation along the circumferential direction, the elastic rolling element 56 is damaged such as a crack over a long period of time. And a sufficiently long life can be obtained.

本実施形態の防振装置10では、外筒部材26が軸部38を介してエンジン、モータ、コンプレッサ等の振動発生部に連結固定されると共に、内筒部材48が軸部38を介してフロア、フレーム、車体等の振動受部に連結固定される。これにより、防振装置10は、振動発生部からの荷重を受けつつ、この振動発生部を振動受部上に弾性的に支持する。このとき、防振装置10では、コイルスプリング60の静バネ定数が振動受部部の質量により生じる支持荷重の大きさに応じて設定される。   In the vibration isolator 10 of the present embodiment, the outer cylinder member 26 is connected and fixed to a vibration generating part such as an engine, a motor, and a compressor via a shaft part 38, and the inner cylinder member 48 is connected to the floor via the shaft part 38. And fixedly coupled to a vibration receiving portion such as a frame or a vehicle body. Thereby, the vibration isolator 10 elastically supports the vibration generating unit on the vibration receiving unit while receiving a load from the vibration generating unit. At this time, in the vibration isolator 10, the static spring constant of the coil spring 60 is set according to the magnitude of the support load generated by the mass of the vibration receiving portion.

具体的には、コイルスプリング60の静バネ定数は、防振装置10が振動発生部からの静的な荷重を受けた状態で、図2に示されるように、外筒部材26が引張限界点と圧縮限界点との略中央付近(初期位置)に位置することが望ましい。これにより、振動発生部からの荷重を受けた状態で、外筒部材26の圧縮方向及び引張方向へのストロークを略等しいものにできる。   Specifically, the static spring constant of the coil spring 60 is such that when the vibration isolator 10 receives a static load from the vibration generating portion, the outer cylinder member 26 has a tension limit point as shown in FIG. It is desirable to be located near the center (initial position) between the compression limit point and the compression limit point. Thereby, in the state which received the load from a vibration generation part, the stroke to the compression direction of the outer cylinder member 26 and a tension | pulling direction can be made substantially equal.

また防振装置10では、振動発生部からの荷重を金属製のコイルスプリング60により支持していることにより、ゴム弾性体をバネ要素として用いた防振装置と比較し、装置(支持系)の固有振動数を低い値(例えば、10Hz未満)に設定できる。   Further, in the vibration isolator 10, the load from the vibration generating part is supported by the metal coil spring 60, so that the apparatus (support system) is compared with the vibration isolator using the rubber elastic body as a spring element. The natural frequency can be set to a low value (for example, less than 10 Hz).

次に、本実施形態に係る防振装置10の作用について説明する。   Next, the operation of the vibration isolator 10 according to the present embodiment will be described.

防振装置10では、振動発生部から振動が入力すると、この振動の入力に同期して外筒部材26が引張方向及び圧縮方向へ相対移動(振動)すると共に、この外筒部材26の相対移動に従って弾性転動体56が外筒部材26の内周面と内筒部材48の外周面との間で転動する。このとき、弾性転動体56が外筒部材26と内筒部材48との間で径方向に沿って圧縮されていることから、外筒部材26と内筒部材48との間で転動する弾性転動体56には、その径方向に沿った断面内で径方向に沿った剪断変形が生じる。これにより、弾性転動体56は、剪断変形に伴って内部摩擦等により振動に対する減衰を発生させる。   In the vibration isolator 10, when vibration is input from the vibration generating unit, the outer cylinder member 26 is relatively moved (vibrated) in the tension direction and the compression direction in synchronization with the input of the vibration, and the relative movement of the outer cylinder member 26 is also performed. Accordingly, the elastic rolling element 56 rolls between the inner peripheral surface of the outer cylindrical member 26 and the outer peripheral surface of the inner cylindrical member 48. At this time, since the elastic rolling element 56 is compressed along the radial direction between the outer cylinder member 26 and the inner cylinder member 48, elasticity that rolls between the outer cylinder member 26 and the inner cylinder member 48. The rolling element 56 undergoes shear deformation along the radial direction within a cross section along the radial direction. As a result, the elastic rolling element 56 generates damping against vibration due to internal friction or the like accompanying shear deformation.

また防振装置10では、振動発生部から振動が入力すると、この振動の入力に同期して外筒部材26が引張方向及び圧縮方向へ相対移動(振動)すると共に、この外筒部材26の相対移動に従って空気室58の内容積が拡縮する。このとき、外筒部材26に空気室58を装置の外部空間に連通するオリフィス穴42が穿設されていることから、このオリフィス穴42を通して空気室58内から外部空間への空気の排出(排気)と外部空間から空気室58内への空気の吸入(吸気)とが交互に行われる。これにより、防振装置10では、吸排気時にオリフィス穴42内を流通する空気の流通抵抗によっても振動に対する減衰を発生させる。   Further, in the vibration isolator 10, when vibration is input from the vibration generating unit, the outer cylinder member 26 is relatively moved (vibrated) in the tension direction and the compression direction in synchronization with the input of the vibration, and the outer cylinder member 26 is relatively moved. The internal volume of the air chamber 58 expands and contracts as it moves. At this time, the outer cylindrical member 26 is provided with an orifice hole 42 that allows the air chamber 58 to communicate with the external space of the apparatus. Therefore, air is discharged from the air chamber 58 to the external space through the orifice hole 42 (exhaust gas). ) And air suction (intake) from the external space into the air chamber 58 are alternately performed. Thereby, in the vibration isolator 10, the damping | damping with respect to a vibration generate | occur | produces also by the distribution resistance of the air which distribute | circulates the inside of the orifice hole 42 at the time of intake / exhaust.

なお、本実施形態では、オリフィス穴42を外筒部材26の頂板部30に形成したが、このようなオリフィス穴42は、内筒部材48やコイルスプリング60等の他の部品により閉塞されず、常に開放状態に維持されるならば、外筒部材26の円筒部28や内筒部材48等の他の部位に形成しても良い。またオリフィス穴42を通過する空気の流通抵抗等を調整するために、所要の長さを有するパイプ部を外筒部材26又は内筒部材48に設け、このパイプ部内の中空部をオリフィス穴としても良い。   In this embodiment, the orifice hole 42 is formed in the top plate portion 30 of the outer cylinder member 26. However, such an orifice hole 42 is not blocked by other parts such as the inner cylinder member 48 and the coil spring 60, If it is always maintained in an open state, it may be formed in other parts such as the cylindrical portion 28 and the inner cylinder member 48 of the outer cylinder member 26. In addition, in order to adjust the flow resistance of air passing through the orifice hole 42, a pipe portion having a required length is provided in the outer cylinder member 26 or the inner cylinder member 48, and the hollow portion in the pipe portion is used as the orifice hole. good.

以上説明したように、本実施形態に係る防振装置10では、振動入力時には、オリフィス穴42を通して空気室58が外部空間との間で空気を吸気及び排気すると共に、弾性転動体56が外筒部材26の内周面と内筒部材48の外周面との間で転動することにより、オリフィス穴42内を通過する空気の流通抵抗によっても振動に対する減衰を発生できることに加え、外筒部材26の内周面と内筒部材48の外周面との間で転動しつつ剪断変形する弾性転動体56によっても振動に対する減衰を発生できるので、主としてオリフィス穴42内を通過する空気の流通抵抗によって振動に対する減衰を発生する従来の防振装置と比較し、振動発生部から入力する振動に対する減衰を十分に大きなものにでき、入力振動を効果的に吸収でき、振動受部へ伝達される振動を十分に低レベルにできる。   As described above, in the vibration isolator 10 according to the present embodiment, at the time of vibration input, the air chamber 58 sucks and exhausts air to and from the external space through the orifice hole 42, and the elastic rolling element 56 is the outer cylinder. By rolling between the inner peripheral surface of the member 26 and the outer peripheral surface of the inner cylindrical member 48, the outer cylindrical member 26 can be damped due to the flow resistance of the air passing through the orifice hole 42. Since the elastic rolling element 56 that shears and deforms while rolling between the inner peripheral surface of the inner cylindrical member 48 and the outer peripheral surface of the inner cylindrical member 48 can also generate damping against vibrations, the flow resistance of air that passes through the orifice hole 42 is mainly used. Compared with the conventional anti-vibration device that generates damping against vibration, the damping against vibration input from the vibration generator can be made sufficiently large to absorb the input vibration effectively, The vibration transmitted to it in a sufficiently low level.

また本実施形態に係る防振装置10では、コイルスプリング60が外筒部材26と内筒部材48との間に介装され、このコイルスプリング60により振動発生部の質量により生じる支持荷重を支持することにより、ゴム弾性体を圧縮変形させて支持荷重を支持する場合と比較し、装置(支持系)の固有振動数を大幅に低くできるので、装置の固有振動数を十分に低い値に、例えば10Hz未満に容易に設定できる。   Further, in the vibration isolator 10 according to the present embodiment, the coil spring 60 is interposed between the outer cylinder member 26 and the inner cylinder member 48, and the coil spring 60 supports a support load generated by the mass of the vibration generating portion. As a result, the natural frequency of the device (support system) can be greatly reduced compared to the case where the rubber elastic body is compressed and deformed to support the supporting load, so that the natural frequency of the device can be reduced to a sufficiently low value, for example, It can be easily set to less than 10 Hz.

この結果、防振装置10によれば、振動発生部から入力する振動の周波数域が低いもの(例えば、14Hz未満)であっても、このような低周波域の振動に対する振動伝達率を1未満に維持して、振動発生部から入力する振動を確実に吸収できるので、振動発生部から振動受部へ伝達される振動を十分に低レベルにできる。   As a result, according to the vibration isolator 10, even if the frequency range of vibration input from the vibration generating unit is low (for example, less than 14 Hz), the vibration transmissibility with respect to such low frequency range vibration is less than 1. Since the vibration input from the vibration generator can be reliably absorbed, the vibration transmitted from the vibration generator to the vibration receiver can be made sufficiently low.

また本実施形態に係る防振装置10では、長期間に亘ってへたりが発生しないコイルスプリング60により略全ての支持荷重を負担し、ゴム製の弾性転動体56は支持荷重を負担しないことから、ゴム弾性体により支持荷重を負担する防振装置と比較し、装置の耐久性を向上でき、性能劣化や損傷の発生を長期間に亘って防止できる。   Further, in the vibration isolator 10 according to the present embodiment, almost all support load is borne by the coil spring 60 that does not sag for a long period of time, and the rubber elastic rolling element 56 does not bear the support load. Compared with a vibration isolator that bears a supporting load by a rubber elastic body, the durability of the apparatus can be improved, and performance deterioration and occurrence of damage can be prevented over a long period of time.

なお、本実施形態では、コイルスプリング60をバネ鋼等の金属材料により形成したが、得ようとする静バネ定数や固有振動数によっては、樹脂材料によりコイルスプリング60を形成しても良い。また本実施形態に係る防振装置10では、外筒部材26を振動発生部に連結すると共に、内筒部材48を振動受部に連結したが、これとは逆に、外筒部材26を振動受部に連結すると共に、内筒部材48を振動発生部に連結しても良い。   In the present embodiment, the coil spring 60 is formed of a metal material such as spring steel. However, the coil spring 60 may be formed of a resin material depending on the static spring constant or natural frequency to be obtained. Further, in the vibration isolator 10 according to the present embodiment, the outer cylinder member 26 is connected to the vibration generating unit, and the inner cylinder member 48 is connected to the vibration receiving unit. On the contrary, the outer cylinder member 26 is vibrated. While connecting with a receiving part, you may connect the inner cylinder member 48 with a vibration generation part.

(第2の実施形態)
次に、本発明の第2の実施形態に係る防振装置について説明する。なお、第2の実施形態に係る防振装置12において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Second Embodiment)
Next, a vibration isolator according to the second embodiment of the present invention will be described. Note that, in the vibration isolator 12 according to the second embodiment, the same reference numerals are given to portions having the same configuration and operation as those of the vibration isolator 10 according to the first embodiment, and description thereof is omitted.

図4及び図5には、それぞれ本発明の第2の実施形態に係る防振装置12が示されている。   4 and 5 each show a vibration isolator 12 according to a second embodiment of the present invention.

図4に示される防振装置12が第1の実施形態に係る防振装置10と異なる点は、外筒部材26の頂板部30に固定された連結ボルト36に代えて、外筒部材26の頂板部30にプレート状の連結ブラケット66が溶接等により固定されている点である。この連結ブラケット66は、図4(A)に示されるように径方向へ細長い略菱形の面形状を有しており、長手方向両端部にはそれぞれ厚さ方向へ貫通する挿通穴68が穿設されている。また防振装置12では、図4(B)に示されるように、オリフィス穴42が連結ブラケット66により閉塞されないように、外筒部材26の円筒部28に径方向に沿って貫通するように形成されている。   The vibration isolator 12 shown in FIG. 4 is different from the vibration isolator 10 according to the first embodiment in that instead of the connecting bolt 36 fixed to the top plate portion 30 of the outer cylinder member 26, the outer cylinder member 26 A plate-like connection bracket 66 is fixed to the top plate portion 30 by welding or the like. As shown in FIG. 4A, the connection bracket 66 has a substantially rhombic surface shape elongated in the radial direction, and insertion holes 68 penetrating in the thickness direction are formed at both ends in the longitudinal direction. Has been. Further, as shown in FIG. 4B, the vibration isolator 12 is formed so as to penetrate the cylindrical portion 28 of the outer cylindrical member 26 along the radial direction so that the orifice hole 42 is not blocked by the connecting bracket 66. Has been.

防振装置12では、連結ブラケット66における一対の挿通穴68をそれぞれ挿通した連結ボルト(図示省略)の先端側が振動発生部に設けられたねじ穴内へ捻じ込まれることにより、外筒部材26が連結ブラケット66を介して振動発生部に連結される。また振動発生部にはねじ穴の代わりに挿通穴を形成し、この挿通穴及び挿通穴68をそれぞれ挿通した連結ボルトの先端部にナット(図示省略)を捻じ込むことにより、外筒部材26を振動発生部に連結しても良い。   In the vibration isolator 12, the outer cylinder member 26 is connected by screwing the distal ends of connection bolts (not shown) through the pair of insertion holes 68 in the connection bracket 66 into screw holes provided in the vibration generating portion. It is connected to the vibration generating part via the bracket 66. In addition, an insertion hole is formed in the vibration generating portion instead of the screw hole, and a nut (not shown) is screwed into the distal end portion of the connecting bolt inserted through each of the insertion hole and the insertion hole 68 to thereby remove the outer cylinder member 26. You may connect with a vibration generation part.

なお、防振装置12においては、図5(A)及び(B)に示されるように、内筒部材48の底板部52に固定された連結ボルト36に代えて、内筒部材48の底板部52にプレート状の連結ブラケット66を溶接等により固定し、この連結ブラケット66を介して内筒部材48を振動受部に連結しても良く、また外筒部材26及び内筒部材48の双方にそれぞれ連結ボルト36に代えて連結ブラケット66を固定し、外筒部材26及び内筒部材48をそれぞれ連結ブラケット66を介して振動発生部及び振動受部に連結しても良い。   In the vibration isolator 12, as shown in FIGS. 5A and 5B, the bottom plate portion of the inner cylinder member 48 is replaced with the connecting bolt 36 fixed to the bottom plate portion 52 of the inner cylinder member 48. A plate-like connection bracket 66 may be fixed to the plate 52 by welding or the like, and the inner cylinder member 48 may be connected to the vibration receiving portion via the connection bracket 66, or both the outer cylinder member 26 and the inner cylinder member 48 may be connected to each other. Instead of the connection bolt 36, the connection bracket 66 may be fixed, and the outer cylinder member 26 and the inner cylinder member 48 may be connected to the vibration generating part and the vibration receiving part via the connection bracket 66, respectively.

(第3の実施形態)
次に、本発明の第3の実施形態に係る防振装置について説明する。なお、第3の実施形態に係る防振装置14において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Third embodiment)
Next, a vibration isolator according to the third embodiment of the present invention will be described. Note that in the vibration isolator 14 according to the third embodiment, the same reference numerals are given to the same components and operations as those of the vibration isolator 10 according to the first embodiment, and the description thereof is omitted.

図6(A)及び(B)には、それぞれ本発明の第3の実施形態に係る防振装置14が示されている。   6A and 6B show a vibration isolator 14 according to a third embodiment of the present invention.

図6(A)に示される防振装置14が第1の実施形態に係る防振装置10と異なる点は、外筒部材26におけるテーパ部32の内面側に環状のストッパゴム70が加硫接着等により固着されている点である。このストッパゴム70は、内筒部材48の内周ストッパ部54に対応するように配置されており、外筒部材26が圧縮限界点まで相対移動すると、内筒部材48の内周ストッパ部54と圧接して圧縮変形することにより、内筒部材48の内周ストッパ部54と外筒部材26のがテーパ部32とが衝突した際の衝撃を緩和する。   The anti-vibration device 14 shown in FIG. 6A is different from the anti-vibration device 10 according to the first embodiment in that an annular stopper rubber 70 is vulcanized and bonded to the inner surface side of the tapered portion 32 of the outer cylinder member 26. It is a point fixed by etc. The stopper rubber 70 is disposed so as to correspond to the inner peripheral stopper portion 54 of the inner cylinder member 48, and when the outer cylinder member 26 moves relative to the compression limit point, the stopper rubber 70 and the inner peripheral stopper portion 54 of the inner cylinder member 48 By compressing and deforming by pressure contact, the impact when the inner peripheral stopper portion 54 of the inner cylindrical member 48 and the outer cylindrical member 26 collide with the tapered portion 32 is reduced.

なお、図6(B)に示されるように、防振装置14においては、テーパ部32にストッパゴム70を固着する代わりに、内周ストッパ部54のテーパ部32側の面に環状のストッパゴム72を固着しても良い。   As shown in FIG. 6B, in the vibration isolator 14, instead of fixing the stopper rubber 70 to the tapered portion 32, an annular stopper rubber is provided on the surface of the inner peripheral stopper portion 54 on the tapered portion 32 side. 72 may be fixed.

本実施形態に係る防振装置14では、過大な圧縮荷重が入力して外筒部材26が圧縮限界点まで相対移動しても、ストッパゴム70,72が内周ストッパ部54又はテーパ部32に圧接して圧縮変形することにより、内筒部材48の内周ストッパ部54と外筒部材26がテーパ部32とが衝突した際の衝撃を緩和して打音の発生を効果的に防止できる。   In the vibration isolator 14 according to the present embodiment, even if an excessive compressive load is input and the outer cylinder member 26 moves relative to the compression limit point, the stopper rubbers 70 and 72 become the inner peripheral stopper portion 54 or the tapered portion 32. By compressing and deforming by pressure contact, the impact when the inner peripheral stopper portion 54 of the inner cylinder member 48 and the outer cylinder member 26 collide with the tapered portion 32 can be mitigated, and the generation of hitting sound can be effectively prevented.

(第4の実施形態)
次に、本発明の第4の実施形態に係る防振装置について説明する。なお、第3の実施形態に係る防振装置16において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Fourth embodiment)
Next, a vibration isolator according to a fourth embodiment of the present invention will be described. Note that, in the vibration isolator 16 according to the third embodiment, the same reference numerals are given to portions having the same configuration and operation as those of the vibration isolator 10 according to the first embodiment, and description thereof is omitted.

図7(A)及び(B)には、それぞれ本発明の第4の実施形態に係る防振装置16が示されている。   FIGS. 7A and 7B each show a vibration isolator 16 according to a fourth embodiment of the present invention.

図7(A)に示される防振装置16が第1の実施形態に係る防振装置10と異なる点は、外筒部材26における座受部34内に円板状のクッションゴム74が嵌挿され、このクッションゴム74が加硫接着等により座受部34の内面側に固着されている点である。これにより、コイルスプリング60は、上端側の座面部62をクッションゴム74へ圧接させ、クッションゴム74と内筒部材48の底板部52との間で圧縮状態に保持される。   The anti-vibration device 16 shown in FIG. 7A is different from the anti-vibration device 10 according to the first embodiment in that a disc-shaped cushion rubber 74 is inserted into the seat receiving portion 34 of the outer cylinder member 26. The cushion rubber 74 is fixed to the inner surface side of the seat receiving portion 34 by vulcanization adhesion or the like. Thereby, the coil spring 60 presses the seat surface portion 62 on the upper end side against the cushion rubber 74 and is held in a compressed state between the cushion rubber 74 and the bottom plate portion 52 of the inner cylinder member 48.

なお、図7(B)に示されるように、防振装置16においては、座受部34にクッションゴム74を固着する代わりに、内筒部材48における底板部52の内面側にクッションゴム76を固着し、コイルスプリング60の下端側の座面部64をクッションゴム76に圧接させても良い。   7B, in the vibration isolator 16, instead of fixing the cushion rubber 74 to the seat receiving portion 34, the cushion rubber 76 is provided on the inner surface side of the bottom plate portion 52 in the inner cylinder member 48. The seating surface portion 64 on the lower end side of the coil spring 60 may be fixed and pressed against the cushion rubber 76.

第1の実施形態に係る防振装置10では、コイルスプリング60を十分に予圧縮できない場合に、過大な引張荷重が入力して外筒部材26が引張限界点まで相対移動すると、コイルスプリング60の座面部62又は座面部64が座受部34又は底板部52から瞬間的に離間した後、座面部62又は座面部64が座受部34又は底板部52に衝突して打音が発生するおそれがあるが、本実施形態に係る防振装置16では、コイルスプリング60を十分に予圧縮できなくても、過大な引張荷重が入力して外筒部材26が引張限界点まで相対移動した際に、圧縮状態にあったクッションゴム74,76が軸方向へ膨張(復元)することにより、コイルスプリング60の座面部62又は座面部64が座受部34又は底板部52との間に隙間ができ難くなるので、座面部62又は座面部64と座受部34又は底板部52との衝突により打音が発生することを効果的に防止できる。   In the vibration isolator 10 according to the first embodiment, when the coil spring 60 cannot be sufficiently pre-compressed and an excessive tensile load is input and the outer cylinder member 26 moves relative to the tension limit point, the coil spring 60 After the seat surface portion 62 or the seat surface portion 64 is instantaneously separated from the seat receiving portion 34 or the bottom plate portion 52, the seat surface portion 62 or the seat surface portion 64 may collide with the seat receiving portion 34 or the bottom plate portion 52, and a hitting sound may be generated. However, in the vibration isolator 16 according to the present embodiment, even when the coil spring 60 cannot be sufficiently pre-compressed, an excessive tensile load is input and the outer cylinder member 26 moves relative to the tension limit point. When the cushion rubbers 74 and 76 in the compressed state expand (restore) in the axial direction, a gap is formed between the seat surface portion 62 or the seat surface portion 64 of the coil spring 60 and the seat receiving portion 34 or the bottom plate portion 52. Difficult Runode, can be effectively prevented tapping sound is generated by the collision between the seat surface portion 62 or the seat surface portion 64 and the seat receiving portion 34 or the bottom plate 52.

なお、防振装置16においては、座受部34及び底板部52の双方にそれぞれクッションゴム74,76を固着し、コイルスプリング60の両側の座面部62,64をそれぞれクッションゴム74,76に圧接させても良い。   In the vibration isolator 16, cushion rubbers 74 and 76 are fixed to both the seat receiving part 34 and the bottom plate part 52, respectively, and the seat surface parts 62 and 64 on both sides of the coil spring 60 are pressed against the cushion rubbers 74 and 76, respectively. You may let them.

(第5の実施形態)
次に、本発明の第5の実施形態に係る防振装置について説明する。なお、第5の実施形態に係る防振装置18において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Fifth embodiment)
Next, a vibration isolator according to a fifth embodiment of the present invention will be described. Note that in the vibration isolator 18 according to the fifth embodiment, parts having the same configuration and operation as those of the vibration isolator 10 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図8(A)及び(B)には、それぞれ本発明の第5の実施形態に係る防振装置18が示されている。   8A and 8B show a vibration isolator 18 according to the fifth embodiment of the present invention.

図8(A)に示される防振装置18が第1の実施形態に係る防振装置10と異なる点は、内筒部材48に底板部52に固定された連結ボルト36を省略し、この連結ボルト36に代えて、内筒部材48の軸方向外側の下面部にブロック状のゴム弾性体78を加硫接着により固着すると共に、このゴム弾性体78の下面部にプレート状の連結ブラケット80を加硫接着により固着した点である。   The anti-vibration device 18 shown in FIG. 8A is different from the anti-vibration device 10 according to the first embodiment in that the connection bolt 36 fixed to the bottom plate portion 52 on the inner cylinder member 48 is omitted, and this connection Instead of the bolt 36, a block-like rubber elastic body 78 is fixed to the lower surface portion of the inner cylindrical member 48 in the axial direction by vulcanization, and a plate-like connection bracket 80 is attached to the lower surface portion of the rubber elastic body 78. It is a point fixed by vulcanization adhesion.

連結ブラケット80には、その両端部にそれぞれ振動受部との連結用ボルトを挿通するための挿通穴81が穿設されている。これにより、防振装置18では、内筒部材48がゴム弾性体78及び連結ブラケット80を介して振動受部に連結される。   The connection bracket 80 is provided with insertion holes 81 for inserting connection bolts to the vibration receiving portions at both ends thereof. Thereby, in the vibration isolator 18, the inner cylinder member 48 is connected to the vibration receiving portion via the rubber elastic body 78 and the connection bracket 80.

従って、第5の実施形態に係る防振装置18では、振動発生部から外筒部材26へ軸方向に沿った振動が入力した際には、第1の実施形態に係る防振装置10と同様に、弾性転動体56の剪断変形により生じる減衰及びオリフィス穴42内を通過する空気抵抗により生じる減衰により振動を吸収できることに加え、ゴム弾性体78に軸方向に沿った弾性変形(圧縮及び引張変形)が生じるような周波数域の振動が入力した場合には、この振動をゴム弾性体78の内部摩擦等により得られる減衰によっても振動を吸収できる。   Therefore, in the vibration isolator 18 according to the fifth embodiment, when vibration along the axial direction is input from the vibration generating unit to the outer cylinder member 26, the vibration isolator 10 according to the first embodiment is the same. Furthermore, in addition to being able to absorb vibration due to the damping caused by the shear deformation of the elastic rolling element 56 and the damping caused by the air resistance passing through the orifice hole 42, the rubber elastic body 78 is elastically deformed along the axial direction (compression and tensile deformation). When the vibration in the frequency range that causes () is input, the vibration can be absorbed also by the attenuation obtained by the internal friction of the rubber elastic body 78 or the like.

また防振装置18では、振動発生部から外筒部材26へ軸直角方向に沿った振動が入力した際には、ゴム弾性体78に軸直角方向に沿って弾性変形(剪断変形)することにより、この軸直角方向に沿った振動に対する減衰を発生できるので、軸方向に沿った振動に加えて軸直角方向に沿った振動も効果的に吸収できる。   Further, in the vibration isolator 18, when vibration along the direction perpendicular to the axis is input from the vibration generating unit to the outer cylinder member 26, the rubber elastic body 78 is elastically deformed (shear deformation) along the direction perpendicular to the axis. In addition to the vibration along the axial direction, the vibration along the direction perpendicular to the axis can be effectively absorbed.

なお、図8(B)に示されるように、防振装置18においては、ゴム弾性体78の軸方向中間部に金属等からなる仕切板82を1枚ないし複数枚(本実施形態では、2枚)インサートしてゴム弾性体78を仕切板82とゴム材料との積層構造としても良い。このようにゴム弾性体78を仕切板82とゴム材料との積層構造とすることにより、ゴム弾性体78の軸方向に沿った剛性が高くなると共に、軸直角方向に沿った剛性が低くなるので、仕切板82がインサートされていないゴム弾性体78を用いた場合と比較し、ゴム弾性体78により吸収できる軸直角方向に沿った振動の周波数域を低周波数側にシフトできる。   As shown in FIG. 8B, in the vibration isolator 18, one or a plurality of partition plates 82 made of metal or the like (in the present embodiment, 2 in the axial direction intermediate portion of the rubber elastic body 78). Sheet) and the rubber elastic body 78 may have a laminated structure of the partition plate 82 and the rubber material. Since the rubber elastic body 78 has a laminated structure of the partition plate 82 and the rubber material, the rigidity along the axial direction of the rubber elastic body 78 is increased and the rigidity along the direction perpendicular to the axis is decreased. Compared with the case where the rubber elastic body 78 into which the partition plate 82 is not inserted is used, the frequency range of vibration along the direction perpendicular to the axis that can be absorbed by the rubber elastic body 78 can be shifted to the low frequency side.

(第6の実施形態)
次に、本発明の第6の実施形態に係る防振装置について説明する。なお、第3の実施形態に係る防振装置20において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Sixth embodiment)
Next, a vibration isolator according to a sixth embodiment of the present invention will be described. Note that in the vibration isolator 20 according to the third embodiment, the same reference numerals are given to portions having the same configuration and operation as those of the vibration isolator 10 according to the first embodiment, and description thereof is omitted.

図9(A)及び(B)には本発明の第6の実施形態に係る防振装置20が示されている。   9A and 9B show a vibration isolator 20 according to a sixth embodiment of the present invention.

図9に示される防振装置20が第1の実施形態に係る防振装置10と異なる点は、外筒部材26の頂板部30に固定された連結ボルト36を省略し、この連結ボルト36に代えて、外筒部材26に第1ゴム弾性体84及び第2ゴム弾性体86を固着すると共に、第1ゴム弾性体84及び第2ゴム弾性体86に連結ブラケット87を固着した点である。またオリフィス穴42は内筒部材48の円筒部50の下端側に穿設されている。   The vibration isolator 20 shown in FIG. 9 is different from the vibration isolator 10 according to the first embodiment in that the connecting bolt 36 fixed to the top plate portion 30 of the outer cylinder member 26 is omitted, Instead, the first rubber elastic body 84 and the second rubber elastic body 86 are fixed to the outer cylinder member 26, and the connection bracket 87 is fixed to the first rubber elastic body 84 and the second rubber elastic body 86. The orifice hole 42 is formed in the lower end side of the cylindrical portion 50 of the inner cylinder member 48.

連結ブラケット87は、図9(B)に示されるように、略長方形の板状材料が径方向に沿った断面形状が下方へ向って開いた略コ字状なるように屈曲されて形成されている。これにより、連結ブラケット87には、長手方向中央部に座受部34の上面部と平行な方向へ延在するベース部88と、このベース部88の側端部から下方へ屈曲された一対のステー部90とが一体的に形成される。またベース部88の中央部には、軸部38が軸心Sに沿って上方へ突出するように連結ボルト36が固定されている。   As shown in FIG. 9B, the connection bracket 87 is formed by bending a substantially rectangular plate-shaped material so that a cross-sectional shape along the radial direction is a substantially U-shape opened downward. Yes. As a result, the connecting bracket 87 has a base portion 88 extending in a direction parallel to the upper surface portion of the seat receiving portion 34 at the longitudinal center portion, and a pair of bent downwards from the side end portions of the base portion 88. The stay portion 90 is integrally formed. Further, the connecting bolt 36 is fixed to the central portion of the base portion 88 so that the shaft portion 38 protrudes upward along the axis S.

第1ゴム弾性体84は略肉厚円板状に形成されており、その下面部が座受部34の軸方向外側の上面部に加硫接着により固着されると共に、上面部が連結ブラケット87のベース部88の中央部に加硫接着により固着されている。。また第2ゴム弾性体86は、図9(A)に示されるように、幅方向(矢印Y方向)中央部から両端部へ向って徐々に肉厚が増加するようなプレート状に形成されており、これら一対の第2ゴム弾性体86は、その内周側の側面部が円筒部28の外周面に加硫接着により固着されると共に、外周側の側面部が連結ブラケット87のステー部90に加硫接着により固着されている。これにより、防振装置20では、外筒部材26が第1ゴム弾性体84、第2ゴム弾性体86及び連結ブラケット87を介して振動発生部に連結される。   The first rubber elastic body 84 is formed in a substantially thick disk shape, and the lower surface portion thereof is fixed to the upper surface portion of the seat receiving portion 34 in the axial direction by vulcanization and the upper surface portion is connected to the connection bracket 87. The base portion 88 is fixed to the center portion by vulcanization adhesion. . Further, as shown in FIG. 9A, the second rubber elastic body 86 is formed in a plate shape in which the thickness gradually increases from the center portion in the width direction (arrow Y direction) toward both end portions. The pair of second rubber elastic bodies 86 have their inner peripheral side surfaces fixed to the outer peripheral surface of the cylindrical portion 28 by vulcanization adhesion, and the outer peripheral side surfaces are the stay portions 90 of the connecting bracket 87. It is fixed by vulcanization adhesion. Thereby, in the vibration isolator 20, the outer cylinder member 26 is connected to the vibration generating portion via the first rubber elastic body 84, the second rubber elastic body 86, and the connection bracket 87.

従って、第6の実施形態に係る防振装置20では、振動発生部から外筒部材26へ軸方向に沿った振動が入力した際には、第1の実施形態に係る防振装置10と同様に、弾性転動体56の剪断変形により生じる減衰及びオリフィス穴42内を通過する空気抵抗により生じる減衰により振動を吸収できることに加え、第1ゴム弾性体84に軸方向に沿った圧縮及び引張変形が生じると共に、一対の第2ゴム弾性体86に軸方向に沿った剪断変形が生じることから、第1ゴム弾性体84及び第2ゴム弾性体86の内部摩擦等により得られる減衰によっても振動を吸収できる。   Therefore, in the vibration isolator 20 according to the sixth embodiment, when vibration along the axial direction is input from the vibration generating unit to the outer cylindrical member 26, the same as the vibration isolator 10 according to the first embodiment. Furthermore, in addition to being able to absorb vibration due to the damping caused by the shear deformation of the elastic rolling element 56 and the damping caused by the air resistance passing through the orifice hole 42, the first rubber elastic body 84 is subjected to compression and tensile deformation along the axial direction. In addition, the pair of second rubber elastic bodies 86 undergoes shear deformation along the axial direction, so that vibration is also absorbed by damping obtained by internal friction of the first rubber elastic body 84 and the second rubber elastic body 86. it can.

また防振装置18では、振動発生部から外筒部材26へ軸直角方向に沿った振動が入力した際には、入力振動が第2ゴム弾性体86の厚さ方向(図9(A)の矢印X方向)に沿ったものである場合には、第1ゴム弾性体84が矢印X方向に沿って剪断変形すると共に、一対の第2ゴム弾性体86がそれぞれ矢印X方向に沿って圧縮及び引張変形し、入力振動が第2ゴム弾性体86の厚さ方向と直交する方向(図9(A)の矢印Y方向)に沿ったものである場合には、第1ゴム弾性体84が矢印Y方向に沿って剪断変形すると共に、一対の第2ゴム弾性体86がそれぞれ矢印Y方向に沿って剪断変形する。   Further, in the vibration isolator 18, when vibration along the direction perpendicular to the axis is input from the vibration generating unit to the outer cylindrical member 26, the input vibration is in the thickness direction of the second rubber elastic body 86 (FIG. 9A). (The direction of arrow X), the first rubber elastic body 84 shears and deforms along the arrow X direction, and the pair of second rubber elastic bodies 86 are compressed and compressed along the arrow X direction, respectively. When the tensile deformation occurs and the input vibration is along the direction perpendicular to the thickness direction of the second rubber elastic body 86 (the arrow Y direction in FIG. 9A), the first rubber elastic body 84 is moved to the arrow. While being shear-deformed along the Y direction, the pair of second rubber elastic bodies 86 is shear-deformed along the arrow Y direction.

この結果、防振装置20では、矢印X方向に沿った振動に対する剛性と矢印Y方向に沿った振動に対する剛性を異なる値に設定することができる。すなわち、第2ゴム弾性体86は、圧縮及び引張方向の剛性よりも剪断方向に沿った剛性が低いことから、防振装置20では、矢印X方向に沿った振動が矢印Y方向に沿った振動よりも相対的に高い周波数である場合に入力振動を効果的に吸収でき、また矢印Y方向に沿った振動が矢印X方向に沿った振動よりも相対的に低い周波数である場合に入力振動を効果的に吸収できる。   As a result, in the vibration isolator 20, the rigidity with respect to the vibration along the arrow X direction and the rigidity with respect to the vibration along the arrow Y direction can be set to different values. That is, since the second rubber elastic body 86 has a lower rigidity along the shear direction than a rigidity in the compression and tension directions, in the vibration isolator 20, vibration along the arrow X direction is vibration along the arrow Y direction. The input vibration can be effectively absorbed when the frequency is relatively higher than the frequency, and the input vibration is absorbed when the vibration along the arrow Y direction is a relatively lower frequency than the vibration along the arrow X direction. Can absorb effectively.

(第7の実施形態)
次に、本発明の第7の実施形態に係る防振装置について説明する。なお、第7の実施形態に係る防振装置22において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Seventh embodiment)
Next, a vibration isolator according to the seventh embodiment of the present invention will be described. Note that in the vibration isolator 22 according to the seventh embodiment, parts having the same configuration and function as those of the vibration isolator 10 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図10には本発明の第7の実施形態に係る防振装置22が示されている。   FIG. 10 shows a vibration isolator 22 according to a seventh embodiment of the present invention.

図10に示される防振装置22が第1の実施形態に係る防振装置10と異なる点は、外筒部材26の内周面が軸方向に対して下方へ向って内径が外周側に広がるような外周テーパ面92として形成されると共に、内筒部材48の外周面が外周テーパ面92と略平行とされた内周テーパ面94として形成されている点であり、弾性転動体56は外周テーパ面92と内周テーパ面94との間に径方向に沿って圧縮状態となるように介装されている。   The anti-vibration device 22 shown in FIG. 10 is different from the anti-vibration device 10 according to the first embodiment in that the inner peripheral surface of the outer cylindrical member 26 is directed downward with respect to the axial direction and the inner diameter is widened to the outer peripheral side. The outer peripheral tapered surface 92 is formed, and the outer peripheral surface of the inner cylindrical member 48 is formed as an inner peripheral tapered surface 94 substantially parallel to the outer peripheral tapered surface 92. The taper surface 92 and the inner peripheral taper surface 94 are interposed so as to be compressed along the radial direction.

第7の実施形態に係る防振装置22では、外筒部材26の圧縮方向への内筒部材48に対する相対的な移動量が増加するに従って、内周テーパ面94により弾性転動体56の内径及び外径が強制的に拡張されると共に、弾性転動体56に周方向に沿った引張変形が生じ、この引張変形が徐々に増加する。これにより、防振装置22では、外筒部材26の圧縮方向への内筒部材48に対する相対的な移動量が増加するに従って、弾性転動体56が発生する振動に対する減衰を非線形的に増加させることができる。   In the vibration isolator 22 according to the seventh embodiment, as the relative movement amount of the outer cylinder member 26 relative to the inner cylinder member 48 in the compression direction increases, As the outer diameter is forcibly expanded, the elastic rolling element 56 undergoes tensile deformation along the circumferential direction, and this tensile deformation gradually increases. Thereby, in the vibration isolator 22, the attenuation with respect to the vibration which the elastic rolling element 56 generate | occur | produces non-linearly increases as the relative moving amount with respect to the inner cylinder member 48 to the compression direction of the outer cylinder member 26 increases. Can do.

この結果、防振装置22によれば、入力振動の振幅が増加するに従って振動に対する減衰を非線形的に徐々に増加できるので、大振幅の振動入力時や圧縮方向への過大な荷重入力時に、外筒部材26に圧縮方向への過大な相対移動が生じることを効果的に抑制できる。   As a result, according to the vibration isolator 22, the attenuation against vibration can be gradually increased in a non-linear manner as the amplitude of the input vibration increases. Therefore, when the vibration is input at a large amplitude or when an excessive load is applied in the compression direction, It can suppress effectively that the cylinder member 26 produces the excessive relative movement to a compression direction.

また防振装置22では、外筒部材26の内周面に外周テーパ面92と逆方向の傾きを与えると共に、内筒部材48の外周面に内周テーパ面94とは逆方向の傾きを与えれば、外筒部材26の引張方向への内筒部材48に対する相対的な移動量が増加するに従って、弾性転動体56が発生する減衰を非線形的に増加させるような特性を得ることができる。   Further, in the vibration isolator 22, the inner peripheral surface of the outer cylindrical member 26 is inclined in the opposite direction to the outer peripheral tapered surface 92, and the outer peripheral surface of the inner cylindrical member 48 is inclined in the opposite direction to the inner peripheral tapered surface 94. For example, it is possible to obtain characteristics such that the damping generated by the elastic rolling elements 56 increases nonlinearly as the amount of relative movement of the outer cylinder member 26 with respect to the inner cylinder member 48 in the pulling direction increases.

(第8の実施形態)
次に、本発明の第8の実施形態に係る防振装置について説明する。なお、第8の実施形態に係る防振装置24において、第1の実施形態に係る防振装置10と構成及び作用が同一の部分には同一符号を付して説明を省略する。
(Eighth embodiment)
Next, a vibration isolator according to an eighth embodiment of the present invention will be described. Note that in the vibration isolator 24 according to the eighth embodiment, parts having the same configuration and function as those of the vibration isolator 10 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図11には本発明の第7の実施形態に係る防振装置24が示されている。   FIG. 11 shows a vibration isolator 24 according to a seventh embodiment of the present invention.

図11に示される防振装置24が第1の実施形態に係る防振装置10と異なる点は、内筒部材48の外周面における軸方向中間部に凹状曲面からなる転動保持部96が周方向に沿って延在するように形成されている点である。これにより、内筒部材48の外周面における転動保持部96が形成された領域では外径が縮小することになり、弾性転動体56が転動保持部96に接している状態では、弾性転動体56の径方向に沿った圧縮変形量が他の領域に接している場合と比較して小さくなるので、外筒部材26が圧縮方向又は引張方向へ相対移動し、弾性転動体56が転動保持部96から離脱する際には、弾性転動体56の径方向に沿った圧縮変形量が増加する。従って、防振装置22では、外筒部材26が圧縮限界点と引張限界点との略中央の初期位置にある場合には、外筒部材26には弾性転動体56の径方向への変形抵抗に対応する保持力が作用する。   The anti-vibration device 24 shown in FIG. 11 is different from the anti-vibration device 10 according to the first embodiment in that a rolling holding portion 96 made of a concave curved surface is provided in the middle in the axial direction on the outer peripheral surface of the inner cylinder member 48. It is a point formed so as to extend along the direction. As a result, the outer diameter is reduced in the region where the rolling holding portion 96 is formed on the outer peripheral surface of the inner cylindrical member 48, and when the elastic rolling element 56 is in contact with the rolling holding portion 96, the elastic rolling Since the amount of compressive deformation along the radial direction of the moving body 56 is smaller than that in contact with other regions, the outer cylindrical member 26 moves relative to the compression direction or the tensile direction, and the elastic rolling element 56 rolls. When detaching from the holding portion 96, the amount of compressive deformation along the radial direction of the elastic rolling element 56 increases. Therefore, in the vibration isolator 22, when the outer cylinder member 26 is at an initial position substantially at the center between the compression limit point and the tension limit point, the outer cylinder member 26 has a resistance to deformation in the radial direction of the elastic rolling element 56. A holding force corresponding to is applied.

この結果、本実施形態に係る防振装置24では、支持荷重がの変化が転動保持部96により生じる保持力以下であるならば、外筒部材26が軸方向に沿って相対移動せず初期位置に保持される。   As a result, in the vibration isolator 24 according to the present embodiment, if the change in the support load is equal to or less than the holding force generated by the rolling holding portion 96, the outer cylinder member 26 does not move relative to the initial direction in the axial direction. Held in position.

本発明の第1の実施形態に係る防振装置の構成を示しており、(A)は防振装置の平面図、(B)は防振装置の側面断面図である。The structure of the vibration isolator which concerns on the 1st Embodiment of this invention is shown, (A) is a top view of a vibration isolator, (B) is side sectional drawing of a vibration isolator. 図1に示される外筒部材が初期位置にある状態を示す防振装置の側面断面図である。It is side surface sectional drawing of the vibration isolator which shows the state which has the outer cylinder member shown by FIG. 1 in an initial position. 図1に示される弾性転動体の構成を示しており、(A)は弾性転動体の側面断面図、(B)は弾性転動体の平面図である。The structure of the elastic rolling element shown by FIG. 1 is shown, (A) is side surface sectional drawing of an elastic rolling element, (B) is a top view of an elastic rolling element. 本発明の第2の実施形態に係る防振装置の構成を示しており、(A)は防振装置の平面図、(B)は防振装置の側面断面図である。The structure of the vibration isolator which concerns on the 2nd Embodiment of this invention is shown, (A) is a top view of a vibration isolator, (B) is side sectional drawing of a vibration isolator. 本発明の第2の実施形態に係る防振装置の構成を示しており、(A)は防振装置の平面図、(B)は防振装置の側面断面図である。The structure of the vibration isolator which concerns on the 2nd Embodiment of this invention is shown, (A) is a top view of a vibration isolator, (B) is side sectional drawing of a vibration isolator. 本発明の第3の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on the 8th Embodiment of this invention.

符号の説明Explanation of symbols

10 防振装置
12 防振装置
14 防振装置
16 防振装置
18 防振装置
20 防振装置
22 防振装置
24 防振装置
26 外筒部材(第1取付部材)
42 オリフィス穴(制限通路)
44 外周ストッパ部
48 内筒部材(第2取付部材)
54 内周ストッパ部
56 弾性転動体
58 空気室
60 コイルスプリング(支持バネ)
66 連結ブラケット(ブラケット部材)
78 ゴム弾性体(ゴムバネ部)
80 連結ブラケット(ブラケット部材)
84 第1ゴム弾性体(第1ゴムバネ部)
86 第2ゴム弾性体(第2ゴムバネ部)
87 連結ブラケット(ブラケット部材)
DESCRIPTION OF SYMBOLS 10 Anti-vibration device 12 Anti-vibration device 14 Anti-vibration device 16 Anti-vibration device 18 Anti-vibration device 20 Anti-vibration device 22 Anti-vibration device 24 Anti-vibration device 26 Outer cylinder member (1st attachment member)
42 Orifice hole (restricted passage)
44 Outer peripheral stopper 48 Inner cylinder member (second mounting member)
54 Inner peripheral stopper 56 Elastic rolling element 58 Air chamber 60 Coil spring (support spring)
66 Connecting bracket (bracket member)
78 Rubber elastic body (Rubber spring)
80 Connecting bracket (bracket member)
84 1st rubber elastic body (1st rubber spring part)
86 Second rubber elastic body (second rubber spring part)
87 Connecting bracket (bracket member)

Claims (6)

振動発生部及び振動受部の一方に連結され、略筒状に形成された第1取付部材と、
振動発生部及び振動受部の他方に連結され、前記第1取付部材の内周側に配置された第2取付部材と、
前記第1取付部材と前記第2取付部材との間に介装されたコイル状の支持バネと、
弾性材料により略円環状に形成されると共に、前記第1取付部材の内周面と前記第2取付部材の外周面との間に径方向に沿って圧縮状態となるように介装され、前記第1取付部材及び前記第2取付部材の少なくとも一方の軸方向に沿った相対移動に従って第1取付部材の内周面と第2取付部材の外周面との間で転動する弾性転動体と、
を有することを特徴とする防振装置。
A first mounting member connected to one of the vibration generating portion and the vibration receiving portion and formed in a substantially cylindrical shape;
A second mounting member connected to the other of the vibration generating unit and the vibration receiving unit and disposed on the inner peripheral side of the first mounting member;
A coiled support spring interposed between the first mounting member and the second mounting member;
It is formed in a substantially annular shape by an elastic material, and is interposed between the inner peripheral surface of the first mounting member and the outer peripheral surface of the second mounting member so as to be compressed along the radial direction, An elastic rolling element that rolls between the inner peripheral surface of the first mounting member and the outer peripheral surface of the second mounting member in accordance with the relative movement along the axial direction of at least one of the first mounting member and the second mounting member;
And a vibration isolator.
前記第1取付部材の内周側に、前記第2取付部材及び前記弾性転動体により外部から区画された空気室を形成し、
前記第1取付部材及び前記第2取付部材の少なくとも一方に前記空気室を外部へ連通させる制限通路を形成したことを特徴とする請求項1記載の防振装置。
An air chamber partitioned from the outside by the second mounting member and the elastic rolling element is formed on the inner peripheral side of the first mounting member,
2. The vibration isolator according to claim 1, wherein a restriction passage for communicating the air chamber to the outside is formed in at least one of the first attachment member and the second attachment member.
前記第1取付部材にその内周面に対して内周側へ延出する第1ストッパ部を形成すると共に、前記第2取付部材にその外周面に対して外周側へ延出する第2ストッパ部を形成し、
前記弾性転動体を前記軸方向に沿って前記第1ストッパ部と前記第2ストッパ部との間に配置したことを特徴とする請求項1又は2記載の防振装置。
The first mounting member is formed with a first stopper portion extending toward the inner peripheral side with respect to the inner peripheral surface thereof, and the second stopper is extended with respect to the outer peripheral surface of the second mounting member toward the outer peripheral side. Forming part,
The vibration isolator according to claim 1 or 2, wherein the elastic rolling element is disposed between the first stopper portion and the second stopper portion along the axial direction.
前記第1取付部材及び第2取付部材の少なくとも一方の軸方向外側に、弾性変形可能とされたゴムバネ部及び、該ゴムバネ部に固着されたブラケット部材を設け、該ゴムバネ部及びブラケット部材を介して、前記第1取付部材及び第2取付部材の少なくとも一方を、振動発生部及び振動受部の一方又は他方に連結したことを特徴とする請求項1乃至3の何れか1項記載の防振装置。   A rubber spring portion that is elastically deformable and a bracket member fixed to the rubber spring portion are provided outside at least one of the first attachment member and the second attachment member, and the rubber spring portion and the bracket member are interposed therebetween. The vibration isolator according to any one of claims 1 to 3, wherein at least one of the first attachment member and the second attachment member is connected to one or the other of the vibration generating portion and the vibration receiving portion. . 前記第1取付部材の軸方向外側及び外周側に、弾性変形可能とされた第1ゴムバネ部及び第2ゴムバネ部をそれぞれ設けると共に、第1ゴムバネ部及び第2ゴムバネ部に固着されたブラケット部材を設け、前記第1ゴムバネ部及び第2ゴムバネ部と前記ブラケット部材とを介して、前記第1取付部材を振動発生部及び振動受部の一方に連結したことを特徴とする請求項1乃至3の何れか1項記載の防振装置。   A first rubber spring part and a second rubber spring part that are elastically deformable are provided on the outer side and the outer peripheral side in the axial direction of the first mounting member, respectively, and a bracket member fixed to the first rubber spring part and the second rubber spring part is provided. The first mounting member is connected to one of a vibration generating portion and a vibration receiving portion via the first rubber spring portion, the second rubber spring portion, and the bracket member. The vibration isolator of any one of Claims. 前記第1取付部材の内周面に前記軸方向に対して傾いた第1テーパ面を形成すると共に、前記第2取付部材の外周面に前記第1テーパ面と略平行とされた第2テーパ面を形成し、
前記弾性転動体を前記第1テーパ面と前記第2テーパ面との間に圧縮状態となるように介装させたことを特徴とする請求項1乃至5の何れか1項記載の防振装置。
A first taper surface that is inclined with respect to the axial direction is formed on the inner peripheral surface of the first mounting member, and a second taper that is substantially parallel to the first taper surface on the outer peripheral surface of the second mounting member. Forming a surface,
6. The vibration isolator according to claim 1, wherein the elastic rolling element is interposed between the first tapered surface and the second tapered surface so as to be in a compressed state. .
JP2005064480A 2005-03-08 2005-03-08 Vibration isolator Pending JP2006250179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064480A JP2006250179A (en) 2005-03-08 2005-03-08 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064480A JP2006250179A (en) 2005-03-08 2005-03-08 Vibration isolator

Publications (1)

Publication Number Publication Date
JP2006250179A true JP2006250179A (en) 2006-09-21

Family

ID=37090909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064480A Pending JP2006250179A (en) 2005-03-08 2005-03-08 Vibration isolator

Country Status (1)

Country Link
JP (1) JP2006250179A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018921A (en) * 2006-06-16 2008-01-31 Central Japan Railway Co Vibration-proof floating floor structure
JP2010013213A (en) * 2008-07-02 2010-01-21 Nippon Otis Elevator Co Car guide device of elevator
CN107642578A (en) * 2016-07-20 2018-01-30 伍鐌科技股份有限公司 Vibration damping device and vibration damping device package
CN108150389A (en) * 2017-12-20 2018-06-12 加西贝拉压缩机有限公司 A kind of refrigeration compressor movement support construction
CN108194315A (en) * 2017-12-20 2018-06-22 加西贝拉压缩机有限公司 A kind of compressor movement support construction
US10077820B2 (en) 2016-03-28 2018-09-18 Hyundai Motor Company Structure of semi-active mount
CN109106285A (en) * 2017-06-26 2019-01-01 美的集团股份有限公司 Dust catcher

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4417442Y1 (en) * 1966-06-03 1969-07-29
JPS5215659U (en) * 1975-07-19 1977-02-03
JPS5565739A (en) * 1978-11-13 1980-05-17 Shibaura Eng Works Co Ltd Anti-vibration configuration of vibration apparatus
JPS55113843U (en) * 1979-02-03 1980-08-11
JPS5773439U (en) * 1980-10-22 1982-05-06
JPS5970946U (en) * 1982-11-01 1984-05-14 特許機器株式会社 Vibration absorber
JPS5993533A (en) * 1982-11-19 1984-05-30 Yanmar Diesel Engine Co Ltd Vibration absorbing rubber for engine
JPS62297551A (en) * 1986-06-16 1987-12-24 Hitachi Ltd Axle spring for rolling stock
JPH0893846A (en) * 1994-09-28 1996-04-12 Tokkyo Kiki Kk Vibration control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4417442Y1 (en) * 1966-06-03 1969-07-29
JPS5215659U (en) * 1975-07-19 1977-02-03
JPS5565739A (en) * 1978-11-13 1980-05-17 Shibaura Eng Works Co Ltd Anti-vibration configuration of vibration apparatus
JPS55113843U (en) * 1979-02-03 1980-08-11
JPS5773439U (en) * 1980-10-22 1982-05-06
JPS5970946U (en) * 1982-11-01 1984-05-14 特許機器株式会社 Vibration absorber
JPS5993533A (en) * 1982-11-19 1984-05-30 Yanmar Diesel Engine Co Ltd Vibration absorbing rubber for engine
JPS62297551A (en) * 1986-06-16 1987-12-24 Hitachi Ltd Axle spring for rolling stock
JPH0893846A (en) * 1994-09-28 1996-04-12 Tokkyo Kiki Kk Vibration control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018921A (en) * 2006-06-16 2008-01-31 Central Japan Railway Co Vibration-proof floating floor structure
JP2010013213A (en) * 2008-07-02 2010-01-21 Nippon Otis Elevator Co Car guide device of elevator
US10077820B2 (en) 2016-03-28 2018-09-18 Hyundai Motor Company Structure of semi-active mount
CN107642578A (en) * 2016-07-20 2018-01-30 伍鐌科技股份有限公司 Vibration damping device and vibration damping device package
CN109106285A (en) * 2017-06-26 2019-01-01 美的集团股份有限公司 Dust catcher
CN108150389A (en) * 2017-12-20 2018-06-12 加西贝拉压缩机有限公司 A kind of refrigeration compressor movement support construction
CN108194315A (en) * 2017-12-20 2018-06-22 加西贝拉压缩机有限公司 A kind of compressor movement support construction
CN108194315B (en) * 2017-12-20 2019-11-19 加西贝拉压缩机有限公司 A kind of compressor machine core support construction

Similar Documents

Publication Publication Date Title
JP2006250179A (en) Vibration isolator
JP5037493B2 (en) Anti-vibration support device
JP5208288B1 (en) Anti-vibration rubber for compressor and compressor using the same
JP4688067B2 (en) Fluid filled engine mount
EP2025968B1 (en) Vibration isolation device
US20020113351A1 (en) Vibration-damping device
JP5162035B2 (en) Electromagnetic actuator and fluid filled active vibration isolator using the same
JP3838316B2 (en) mount
JP2006283870A (en) Torque rod
US8151954B2 (en) Vibration damping apparatus
JP2002227921A (en) Vibration control equipment
JP4445600B2 (en) Vibration isolator
US20070221460A1 (en) Vibration damping device for internal combustion engine
JP3769731B2 (en) Flywheel
JP5916502B2 (en) Anti-vibration support structure
JP2008248898A (en) Cylindrical vibration damper
US20150145190A1 (en) Liquid sealed-in vibration damper
JPWO2019106892A1 (en) Composite vibration isolator and composite vibration isolator with metal spring using the same
JP5662795B2 (en) Cylindrical vibration isolator
JP3627527B2 (en) Cylindrical anti-vibration mount
JP2003090375A (en) Cylindrical vibration control device
JP2008002629A (en) Liquid-filled vibration damper
JP2008089133A (en) Vibration absorbing device
CN219013260U (en) Vibration reduction block and air conditioner
JP7408472B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Effective date: 20091113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316