JP2006242034A - Laser ignition device for internal combustion engine - Google Patents

Laser ignition device for internal combustion engine Download PDF

Info

Publication number
JP2006242034A
JP2006242034A JP2005056267A JP2005056267A JP2006242034A JP 2006242034 A JP2006242034 A JP 2006242034A JP 2005056267 A JP2005056267 A JP 2005056267A JP 2005056267 A JP2005056267 A JP 2005056267A JP 2006242034 A JP2006242034 A JP 2006242034A
Authority
JP
Japan
Prior art keywords
laser
ignition
combustion chamber
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005056267A
Other languages
Japanese (ja)
Other versions
JP4415269B2 (en
Inventor
Takashi Mizobuchi
剛史 溝渕
Taishin Tani
谷  泰臣
Norio Yamamoto
則夫 山本
Kimitaka Saito
公孝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2005056267A priority Critical patent/JP4415269B2/en
Publication of JP2006242034A publication Critical patent/JP2006242034A/en
Application granted granted Critical
Publication of JP4415269B2 publication Critical patent/JP4415269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser ignition device for an internal combustion engine preventing knocking, reducing NOx and coping with operation conditions of stratified combustion and swirl gas flow. <P>SOLUTION: The laser ignition device is provided with a plurality of laser irradiating means 33a-33d arranged in a combustion chamber 15 of the internal combustion engine, irradiating laser to air fuel mixture and igniting the same, a first map storing ignitable positions in the combustion chamber, position change means 35, 37 changing focus position of laser of a plurality of the laser irradiating means based on the first map, and a timing control means 42 controlling irradiation timing of laser of a plurality of the laser irradiating means based on a second map storing ignition timing of ignition position. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は内燃機関のレーザ点火装置、特に複数のレーザ光照射手段の焦点位置が変更可能なものに関する。   The present invention relates to a laser ignition device for an internal combustion engine, and more particularly, to a device capable of changing the focal position of a plurality of laser light irradiation means.

車両のエンジンなどの内燃機関において、レーザ光で燃焼室内の可燃混合気(混合気)に点火するレーザ点火装置が知られている。即ち、燃料噴射弁により供給された燃料は燃焼室で空気と混合され、燃焼室に混合気が形成されている。燃焼室の混合気をピストンにより圧縮した後、レーザ点火装置のレーザ発振器から照射されレンズにより集光したレーザ光で混合気に点火する。点火により混合気は爆発及び膨張し、その熱エネルギが動力として利用される。   2. Description of the Related Art In an internal combustion engine such as a vehicle engine, a laser ignition device that ignites a combustible air-fuel mixture (air mixture) in a combustion chamber with a laser beam is known. That is, the fuel supplied by the fuel injection valve is mixed with air in the combustion chamber, and an air-fuel mixture is formed in the combustion chamber. After the air-fuel mixture in the combustion chamber is compressed by the piston, the air-fuel mixture is ignited by the laser light emitted from the laser oscillator of the laser ignition device and condensed by the lens. The air-fuel mixture explodes and expands by ignition, and its thermal energy is used as power.

レーザ点火装置による点火直前において、燃焼室に燃料の割合が多いリッチ領域及び燃料の割合が少ないリーン領域が偏在している場合がある。この場合、リッチ領域とリーン領域とで燃焼速度が異なり、燃焼速度が遅い領域(リーン領域)でノッキングが発生する虞がある。ノッキングの発生は、エンジンの出力を低下させる。また、内燃機関の熱効率を向上させるためには、混合気の燃焼速度を向上させること、例えば複数の点火手段を同時に駆動することが望ましい。しかし、燃焼速度を急激に向上させると熱が発生し、燃焼ガスの温度上昇によりNOxの発生量が増加し、排気エミッションが悪化する。   Immediately before ignition by the laser ignition device, there are cases where a rich region with a high fuel ratio and a lean region with a low fuel ratio are unevenly distributed in the combustion chamber. In this case, the combustion speed is different between the rich area and the lean area, and knocking may occur in an area where the combustion speed is low (lean area). The occurrence of knocking reduces the engine output. In order to improve the thermal efficiency of the internal combustion engine, it is desirable to improve the combustion speed of the air-fuel mixture, for example, to drive a plurality of ignition means simultaneously. However, if the combustion rate is rapidly increased, heat is generated, the amount of NOx generated increases due to the temperature rise of the combustion gas, and exhaust emission deteriorates.

こうした問題に対処するため、従来から種々の技術が開発されている。従来の点火装置(特許文献1参照)では、レーザ光発振器で混合気に点火した後の火炎の伝播挙動を観察している。即ち、燃焼室の周辺領域に配置したファイバで火炎伝播挙動を観察し、その結果に応じてレーザ光発振器による点火位置を調整し、火炎が燃焼室内に均等に伝播するようにしている。これにより燃焼室の各領域での温度差が小さくなり、ノッキングの発生が防止される。   Various techniques have been developed in the past to deal with such problems. In a conventional ignition device (see Patent Document 1), the propagation behavior of a flame after igniting an air-fuel mixture with a laser light oscillator is observed. That is, the flame propagation behavior is observed with a fiber arranged in the peripheral region of the combustion chamber, and the ignition position by the laser light oscillator is adjusted according to the result, so that the flame propagates evenly into the combustion chamber. This reduces the temperature difference in each region of the combustion chamber and prevents knocking.

また、従来の点火時期制御装置(特許文献2参照)では、燃焼室に配置した複数の点火プラグの点火時期をずらせている。即ち、燃焼室の中心領域及び周辺領域に複数の点火プラグを設置し、周辺領域の点火プラグを先に、中心領域の点火プラグを後に点火している。このようにすれば、燃焼期間を長くすることなく急激な熱の発生が回避され、NOxの発生が低減される。
特開平5−33755号公報 特開平6−323230号公報
Moreover, in the conventional ignition timing control apparatus (refer patent document 2), the ignition timing of the several ignition plug arrange | positioned in a combustion chamber is shifted. That is, a plurality of spark plugs are installed in the central region and the peripheral region of the combustion chamber, and the spark plugs in the peripheral region are ignited first, and the spark plugs in the central region are ignited later. In this way, rapid heat generation is avoided without lengthening the combustion period, and NOx generation is reduced.
JP-A-5-33755 JP-A-6-323230

上記第1従来例及び第2従来例には以下の点で改良の余地がある。まず、第1従来例では、燃焼室の中心部の一つの点火手段で一カ所から混合気を加熱すると燃焼温度が急激に上昇し易く、NOxが発生し、排気エミッションの改善を図ることは難しい。また、第2従来例では、燃焼室の周辺部に配置された複数の点火プラグの位置が固定されている。そのため、例えば成層燃焼(燃焼室の中心部に混合気を集中させ、周辺部が着火不可領域までリーンとなる)での運転条件では、リーンな周辺部で点火プラグが失火する虞がある。また、燃焼室の周辺部において円周方向にスワールによる気流を発生させた場合、スワール気流の強度によっては周辺部の点火手段が失火する虞がある。   The first conventional example and the second conventional example have room for improvement in the following points. First, in the first conventional example, when the air-fuel mixture is heated from one place with one ignition means at the center of the combustion chamber, the combustion temperature is likely to rise rapidly, NOx is generated, and it is difficult to improve exhaust emission. . In the second conventional example, the positions of a plurality of spark plugs arranged in the periphery of the combustion chamber are fixed. For this reason, for example, under operating conditions in stratified combustion (the air-fuel mixture is concentrated in the center of the combustion chamber and the periphery is lean to the non-ignitionable region), there is a risk that the ignition plug may misfire in the lean periphery. In addition, when a swirl air flow is generated in the circumferential direction in the peripheral portion of the combustion chamber, there is a risk that the ignition means in the peripheral portion may misfire depending on the strength of the swirl air flow.

本発明は上記事情に鑑みてなされたもので、ノッキングの発生を防止できNOxを低減でき、しかも運転条件が成層燃焼やスワール気流の場合にも対応できる、内燃機関のレーザ点火装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a laser ignition device for an internal combustion engine that can prevent occurrence of knocking, reduce NOx, and can cope with the case where the operation condition is stratified combustion or swirl airflow. With the goal.

(イ)本発明者は上記課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、複数のレーザ光照射手段を混合気の分布状態やエンジンの運転状態に応じて最適な位置及び時期で点火可能とすることを着想し、本発明を完成するに至った。第1発明のレーザ点火装置は、請求項1に記載したように、内燃機関の燃焼室内に配置され混合気にレーザ光を照射し点火する複数のレーザ光照射手段と、燃焼室内の点火可能な位置が記憶された第1マップと、第1マップに基づきレーザ光照射手段のレーザ光の焦点位置を変更する位置変更手段と、点火位置での点火時期が記憶された第2マップに基づきレーザ光照射手段のレーザ光の照射時期を制御する時期制御手段と、を備えている。   (B) As a result of extensive research and trial and error, the present inventor has conducted a plurality of laser light irradiation means at optimal positions and times according to the mixture distribution state and engine operating state. The present invention has been completed with the idea of enabling ignition. According to a first aspect of the present invention, there is provided a laser ignition device as set forth in claim 1, wherein a plurality of laser light irradiation means are disposed in a combustion chamber of an internal combustion engine for irradiating a mixture with laser light and ignited; Laser light based on the first map storing the position, position changing means for changing the focal position of the laser light irradiation means based on the first map, and the second map storing the ignition timing at the ignition position Timing control means for controlling the irradiation time of the laser light of the irradiation means.

第2発明のレーザ光点火装置は請求項2に記載したように、内燃機関の燃焼室内に配置され混合気にレーザ光を照射し点火する複数のレーザ光照射手段と、燃焼室内の混合気の分布を計測する計測手段と、計測手段の計測結果に基づきレーザ光照射手段のレーザ光の焦点位置を変更する位置変更手段と、点火位置での点火時期が記憶された第2マップに基づきレーザ光照射手段のレーザ光の照射時期を制御する時期制御手段と、を備えている。   According to a second aspect of the present invention, there is provided a laser light igniter according to a second aspect of the present invention, wherein a plurality of laser light irradiating means are disposed in a combustion chamber of an internal combustion engine for irradiating a mixture with laser light and ignited; Laser light based on a second map in which the measurement means for measuring the distribution, the position changing means for changing the focal position of the laser light of the laser light irradiation means based on the measurement result of the measurement means, and the ignition timing at the ignition position are stored. Timing control means for controlling the irradiation time of the laser light of the irradiation means.

(ロ)次に、本発明のレーザ点火装置の構成要素の種々の態様につき説明する。燃料の噴射場所は吸気管でも燃焼室でも良い。後者(筒内直接噴射式)では燃焼室内の位置によって混合気の濃度が異なることが多く、特に成層運転の場合はこの傾向が顕著になる。複数のレーザ光照射手段から照射されるレーザ光は、後述する変更手段により燃焼室の周辺部に二つ以上、中心部に一つ合焦されることが望ましい。なお、中心部に合焦されることは不可欠ではない。レーザ光照射手段は具体的にはレーザ光発振器から成る。   (B) Next, various aspects of the components of the laser ignition device of the present invention will be described. The fuel injection location may be an intake pipe or a combustion chamber. In the latter (in-cylinder direct injection type), the concentration of the air-fuel mixture often varies depending on the position in the combustion chamber, and this tendency is particularly noticeable in the stratified operation. It is desirable that two or more laser beams emitted from a plurality of laser beam irradiating means are focused on the periphery of the combustion chamber and one on the center by the changing means described later. It is not essential to focus on the center. Specifically, the laser beam irradiation means comprises a laser beam oscillator.

a.位置変更手段は燃焼室内において、第1マップ又は計測手段の計測結果に基づき、複数のレーザ照射手段のそれぞれが照射するレーザ光の焦点(点火)位置を変更する。位置の変更には、レーザ光の光軸上における変更と、レーザ光の光軸直角方向における変更との両方が含まれる。なお、最適な点火位置は時間の経過とともに変化する。第1マップは実験を通じて作成され、内燃機関の運転状態に応じて、燃焼室内の点火可能な位置を記憶している。点火位置は適正濃度よりもリッチ過ぎる位置でも良くないし、リーン過ぎる位置でも良くない。   a. The position changing means changes the focal point (ignition) position of the laser light emitted from each of the plurality of laser irradiation means based on the first map or the measurement result of the measurement means in the combustion chamber. The change in position includes both a change on the optical axis of the laser beam and a change in the direction perpendicular to the optical axis of the laser beam. Note that the optimal ignition position changes with time. The first map is created through an experiment, and memorizes positions in the combustion chamber that can be ignited according to the operating state of the internal combustion engine. The ignition position may not be a position that is too rich than the appropriate concentration, or a position that is too lean.

具体的には、燃焼室内の当量比が0.5から2.0となる領域が点火可能位置である。最適位置は当量比が0.8から1.2となる領域である。なお、「当量比」とは、混合気の実空燃比に対する混合気の理論空燃比であり、当量比が1となる位置における混合気は、理論空燃比の状態となる。当量比が1となる領域が最適位置となるが、そのような領域は非常に狭いため、ある程度の幅を持たせて、当量比を0.5〜2.0とした。   Specifically, the region where the equivalence ratio in the combustion chamber is 0.5 to 2.0 is the ignitable position. The optimum position is an area where the equivalence ratio is 0.8 to 1.2. The “equivalent ratio” is the stoichiometric air-fuel ratio of the air-fuel mixture with respect to the actual air-fuel ratio of the air-fuel mixture, and the air-fuel mixture at the position where the equivalence ratio is 1 is in the stoichiometric air-fuel ratio. A region where the equivalence ratio is 1 is the optimum position, but such a region is very narrow. Therefore, the equivalence ratio is set to 0.5 to 2.0 with a certain width.

また、燃焼室内に照射された濃度計測用レーザ光の強度に基づき混合気の濃度分布を計測しても良い。例えば、濃度計測用レーザ光の波長を燃料の吸収波長付近とすれば、燃焼室内の燃料の濃度に応じて濃度計測用レーザ光の強度が異なり、混合気の濃度分布を計測できる。位置変更手段は例えば集光レンズ及び駆動素子から成り、その個数はレーザ光照射手段の個数と同数である。   Further, the concentration distribution of the air-fuel mixture may be measured based on the intensity of the concentration measurement laser light irradiated into the combustion chamber. For example, if the concentration measurement laser light has a wavelength near the absorption wavelength of the fuel, the intensity of the concentration measurement laser light varies depending on the fuel concentration in the combustion chamber, and the concentration distribution of the air-fuel mixture can be measured. The position changing means includes, for example, a condenser lens and driving elements, and the number thereof is the same as the number of laser light irradiation means.

b.時期制御手段は、複数のレーザ照射手段のレーザ光によるそれぞれの点火位置における照射時期を決める。周辺部のレーザ光照射手段を先に、中心部のレーザ光照射手段を後に作動させることが望ましい。複数の周辺部のレーザ光照射手段は同時にレーザ光を照射しても良いし、異なる時期(タイミング)でレーザ光を照射しても良い。異なるタイミングとは複数の点火位置で順次点火すること、及びリッチ・リーン等に合わせて任意に点火することを含む。   b. The timing control means determines the irradiation timing at each ignition position by the laser beams of the plurality of laser irradiation means. It is desirable to operate the laser light irradiation means at the peripheral portion first and the laser light irradiation means at the central portion later. The plurality of peripheral laser beam irradiation means may irradiate the laser beam at the same time, or may irradiate the laser beam at different times (timing). The different timing includes sequential ignition at a plurality of ignition positions and arbitrary ignition according to rich / lean or the like.

中心部及び周辺部の複数のレーザ光照射手段の照射時期は、内燃機関の運転状態と点火位置での点火時期との関係が記憶された第2マップに基づき決めることができる。この第2マップは実験を通して作成したもので、エンジンの回転数、燃焼室内でのリッチ・リーン、成層燃焼及びスワール気流なども考慮して、上記点火可能位置での適当な点火時期を記憶している。   The irradiation timings of the plurality of laser beam irradiation means in the central portion and the peripheral portion can be determined based on the second map in which the relationship between the operating state of the internal combustion engine and the ignition timing at the ignition position is stored. This second map was created through experiments, and the appropriate ignition timing at the ignitable position is memorized in consideration of the engine speed, rich lean in the combustion chamber, stratified combustion and swirl airflow, etc. Yes.

第1発明のレーザ点火装置によれば、複数のレーザ光照射手段から第1マップ及び第2マップに基づき燃焼室内の最適位置に最適のタイミングでレーザ光を照射し混合気に点火するので、ノッキングの発生を防止できるとともにNOxを低減できる。第2発明のレーザ点火装置によれば、第1発明の効果に加えて、燃焼室内の混合気の分布の計測で正確にできるので、点火の位置及び時期がより正確になる。   According to the laser ignition device of the first invention, the mixture is ignited by irradiating the mixture with the laser beam at the optimum timing based on the first map and the second map from the plurality of laser beam irradiation means, so that knocking is performed. Can be prevented and NOx can be reduced. According to the laser ignition device of the second invention, in addition to the effect of the first invention, it is possible to accurately measure the distribution of the air-fuel mixture in the combustion chamber, so that the ignition position and timing become more accurate.

請求項3のレーザ点火装置によれば、第1マップはエンジンの運転状態に基づき作成しているので、点火位置の決定が正確である。請求項4のレーザ点火装置によれば、燃焼室の中心部に一つの点火位置を、周辺部に複数の点火位置を配置したので、燃焼室内の種々のリッチ領域及びリーン領域に対応できる。請求項5のレーザ点火装置によれば、周辺部の点火位置で先に混合気に点火し中心部の点火位置で後に点火するので、燃焼室全体の温度上昇が緩やかになる。   According to the laser ignition device of the third aspect, since the first map is created based on the operating state of the engine, the ignition position is accurately determined. According to the laser ignition device of the fourth aspect, since one ignition position is arranged in the central portion of the combustion chamber and a plurality of ignition positions are arranged in the peripheral portion, various rich regions and lean regions in the combustion chamber can be dealt with. According to the laser ignition device of the fifth aspect, since the air-fuel mixture is first ignited at the peripheral ignition position and then ignited later at the central ignition position, the temperature rise of the entire combustion chamber becomes moderate.

請求項6のレーザ点火装置によれば、周辺部の点火位置で先に混合気に点火し中心部の点火位置で後に点火するので、燃焼室全体の温度上昇が緩やかになる。また、周辺部の点火位置で異なる時期に混合気に点火するので、リッチ領域とリーン領域とが円周方向で偏在している場合や、スワール気流を付与した場合に好都合である。請求項7のレーザ点火装置によれば、第2マップは内燃機関の運転状態と点火位置での点火時期との関係で決定したので、最適位置で及び最適時期に混合気に点火できる。   According to the laser ignition device of the sixth aspect, since the air-fuel mixture is first ignited at the peripheral ignition position and then ignited later at the central ignition position, the temperature increase in the entire combustion chamber is moderated. In addition, since the air-fuel mixture is ignited at different timings at the peripheral ignition position, it is advantageous when the rich region and the lean region are unevenly distributed in the circumferential direction or when a swirl airflow is applied. According to the laser ignition device of the seventh aspect, since the second map is determined by the relationship between the operating state of the internal combustion engine and the ignition timing at the ignition position, the air-fuel mixture can be ignited at the optimal position and at the optimal timing.

以下、本発明のレーザ点火装置を自動車用筒内直接噴射式内燃機関に適用した最良の形態につき、図面を参照しつつ説明する。   The best mode in which the laser ignition device of the present invention is applied to an in-cylinder direct injection internal combustion engine for automobiles will be described below with reference to the drawings.

<第1の最良の形態>
(構成)
図1に筒内直接噴射式内燃機関(以下、「エンジン」という)を示す。このエンジンでは、シリンダブロック10のシリンダボア11にピストン13が摺動可能に滑合されている。シリンダブロック10をシリンダヘッド(不図示)が覆い、燃焼室15を区画している。シリンダヘッド10に吸気管21、排気管24、燃料噴射弁27及びレーザ光照射器30が取り付けられている。燃料噴射弁27は吸気弁22の近傍に配置され、レーザ光照射器30は吸気弁22と排気弁25との間に配置されている。
<First best mode>
(Constitution)
FIG. 1 shows an in-cylinder direct injection internal combustion engine (hereinafter referred to as “engine”). In this engine, a piston 13 is slidably engaged with a cylinder bore 11 of a cylinder block 10. A cylinder head (not shown) covers the cylinder block 10 and defines a combustion chamber 15. An intake pipe 21, an exhaust pipe 24, a fuel injection valve 27, and a laser beam irradiator 30 are attached to the cylinder head 10. The fuel injection valve 27 is disposed in the vicinity of the intake valve 22, and the laser beam irradiator 30 is disposed between the intake valve 22 and the exhaust valve 25.

空気を吸い込む吸気管21の吸気口が吸気弁22により開閉され、燃焼ガス(排気ガス)を排気する排気管24の排気口が排気弁25により開閉される。燃料タンクに接続された燃料噴射弁27は燃料を直接燃焼15室に噴射する。レーザ光照射器30は、燃焼室15内の混合気にレーザ光を照射して点火する。   The intake port of the intake pipe 21 that sucks in air is opened and closed by the intake valve 22, and the exhaust port of the exhaust pipe 24 that exhausts combustion gas (exhaust gas) is opened and closed by the exhaust valve 25. A fuel injection valve 27 connected to the fuel tank directly injects fuel into the combustion 15 chamber. The laser beam irradiator 30 irradiates the gas mixture in the combustion chamber 15 with a laser beam and ignites it.

次に、図2に示すレーザ光照射器30は筒状のハウジング31内に、4つのレーザ光発生器33a,33b,33c及び33d、4つの集光レンズ35、4組の駆動素子37及び保護ガラス36が内蔵されている。ハウジング31は筒状の先端部(図1及び図2の下端部)32が燃焼室15内に突出するようにシリンダヘッドに固定されている。レーザ光発生器33aから33dは制御装置(不図示)により制御されレーザ光を発生する。凸レンズからなる集光レンズ35はハウジング31の先端部32に固定され、駆動素子37により独立して駆動され、各集光位置を変更できる。   Next, the laser beam irradiator 30 shown in FIG. 2 is provided in a cylindrical housing 31 with four laser beam generators 33a, 33b, 33c and 33d, four condensing lenses 35, four sets of driving elements 37 and protection. Glass 36 is built in. The housing 31 is fixed to the cylinder head such that a cylindrical tip portion (lower end portion in FIGS. 1 and 2) 32 protrudes into the combustion chamber 15. The laser light generators 33a to 33d are controlled by a control device (not shown) to generate laser light. A condensing lens 35 made of a convex lens is fixed to the distal end portion 32 of the housing 31 and is independently driven by a drive element 37 to change each condensing position.

ピエゾ素子等から成る駆動素子37は、集光レンズ35の一側及び他側にそれぞれ1つずつ配置されている。具体的には、駆動素子37の一端側が集光レンズ35に接し、他端側がハウジング31の一部に接しており、制御装置により制御される駆動素子37の駆動により集光レンズ35が移動する。集光レンズ35が移動すると、集光レンズ35により集光されたレーザ光の焦点位置が移動する。レーザ光照射器30と制御装置とが本発明のレーザ点火装置を構成する。   One drive element 37 composed of a piezo element or the like is disposed on each of one side and the other side of the condenser lens 35. Specifically, one end side of the drive element 37 is in contact with the condensing lens 35 and the other end side is in contact with a part of the housing 31, and the condensing lens 35 is moved by driving of the driving element 37 controlled by the control device. . When the condenser lens 35 moves, the focal position of the laser beam condensed by the condenser lens 35 moves. The laser beam irradiator 30 and the control device constitute the laser ignition device of the present invention.

(作用)
次に、レーザ点火装置の作動につき説明する。吸気管21から吸入される空気と、燃料噴射弁27から噴射される燃料とで混合気を形成した後、レーザ光照射器30からレーザ光を燃焼室15内に集光し、点火する。つまり、4つのレーザ光発生器33aから33d、4つの集光レンズ35及び4組の駆動素子37により、図3に示すように、4つの照射窓38から燃焼室15に4つの焦点位置(点火位置)a、b、c及びdを形成する。最適焦点位置は制御装置の第1マップにより決定され、この最適焦点位置にレーザ光の焦点位置が一致するように集光レンズ35が駆動素子37により駆動される。ここでは燃焼室15の中心部16a又はその近傍に1つの焦点位置aが配置され、周辺部16bに円周方向に離れて3つの焦点位置b、c及びdが配置されている。
(Function)
Next, the operation of the laser ignition device will be described. After an air-fuel mixture is formed by the air sucked from the intake pipe 21 and the fuel injected from the fuel injection valve 27, the laser light is condensed from the laser light irradiator 30 into the combustion chamber 15 and ignited. That is, as shown in FIG. 3, four laser light generators 33a to 33d, four condensing lenses 35 and four sets of drive elements 37 cause four focal positions (ignition points) from four irradiation windows 38 to the combustion chamber 15. Position) a, b, c and d are formed. The optimum focus position is determined by the first map of the control device, and the condensing lens 35 is driven by the drive element 37 so that the focus position of the laser beam coincides with the optimum focus position. Here, one focal position a is disposed at or near the center 16a of the combustion chamber 15, and three focal positions b, c, and d are disposed circumferentially away from the peripheral section 16b.

まず周辺部16bの点火位置b、c及びdで同時に混合気に点火し、所定時間経過後に中心部16aの点火位置aで混合気に点火する。点火により燃焼室15内の混合気が燃焼し、その熱エネルギによりピストン13が往復移動し、エンジンの出力軸であるクランクシャフト(不図示)が回転する。混合気が燃焼した後の排気ガスは排気管24から排出される。   First, the air-fuel mixture is ignited simultaneously at the ignition positions b, c, and d of the peripheral portion 16b, and the air-fuel mixture is ignited at the ignition position a of the central portion 16a after a predetermined time has elapsed. The air-fuel mixture in the combustion chamber 15 is combusted by ignition, the piston 13 is reciprocated by the thermal energy, and a crankshaft (not shown) that is an output shaft of the engine rotates. The exhaust gas after the air-fuel mixture burns is exhausted from the exhaust pipe 24.

(効果)
この最良の形態によれば、燃焼室15の外周部16bの三つの点火位置b、c及びdを第1マップにより最適位置に選択できる。また、外周部16bの点火位置b、c及びdで同時に点火した後中心部16aの点火位置aで点火しており、図4(b)に示すように火炎は燃焼室15の周辺部から中心方向に向かって進むため、時間が経過するほど火炎面積が低下する。その結果、燃焼期間が短縮され、熱発生率のピークを抑えることができる。即ち、熱発生率は図4(a)にiで示すように全体がなだらかになり、それによりノッキングの防止及びNOxの低減を両立させることができる。
(effect)
According to this best mode, the three ignition positions b, c, and d of the outer peripheral portion 16b of the combustion chamber 15 can be selected as the optimum positions by the first map. Further, after igniting simultaneously at the ignition positions b, c and d of the outer peripheral portion 16b, ignition is performed at the ignition position a of the central portion 16a, and the flame is centered from the peripheral portion of the combustion chamber 15 as shown in FIG. Since it progresses toward the direction, the flame area decreases as time elapses. As a result, the combustion period is shortened and the peak of the heat generation rate can be suppressed. That is, the heat generation rate becomes smooth as indicated by i in FIG. 4A, thereby making it possible to achieve both prevention of knocking and reduction of NOx.

これに対して、前記第1従来例では、点火プラグ等は燃焼室の中心部の一ヶ所において混合気に点火する。この場合、図4(c)に示すように燃焼室15の中心部より周辺部に火炎伝播が進むため、火炎面積は時間が経過するほど増大する。その結果、熱発生率は図4(a)にjで示すように一部分が急峻になる。   On the other hand, in the first conventional example, the spark plug or the like ignites the air-fuel mixture at one location in the center of the combustion chamber. In this case, as shown in FIG. 4C, flame propagation proceeds from the central portion of the combustion chamber 15 to the peripheral portion, so that the flame area increases as time elapses. As a result, the heat generation rate becomes partly steep as indicated by j in FIG.

<第2の最良の形態>
(構成)
第2の最良の形態は、第1の最良の形態と比較して、燃焼室15の周辺部16bでのレーザ光照射時期即ち混合気への点火時期をずらせている。以下、第1の最良の形態と共通部分は簡単に説明し、異なる構成を中心に説明する。
<Second best mode>
(Constitution)
In the second best mode, the laser beam irradiation timing at the peripheral portion 16b of the combustion chamber 15, that is, the ignition timing of the air-fuel mixture is shifted as compared with the first best mode. Hereinafter, the first best mode and common parts will be described briefly, and different configurations will be mainly described.

実際の燃焼室15内の混合気では、エンジンの回転数及び負荷により周辺部の円周方向で燃料の割合が多いリッチ領域と、燃料の割合が少ないリーン領域とが偏在している場合がある。この場合、周辺部16bの点火位置b、c及びdで同時に点火すると、リッチ・リーンの程度によっては各点火位置での燃焼速度にばらつきが生じ、熱効率低下を招いたり、燃焼速度の遅い領域ではノッキングが発生する虞がある。   In the actual air-fuel mixture in the combustion chamber 15, there are cases where a rich region where the fuel ratio is large and a lean region where the fuel ratio is small are unevenly distributed in the circumferential direction of the peripheral portion due to the engine speed and load. . In this case, if ignition is performed simultaneously at the ignition positions b, c, and d of the peripheral portion 16b, the combustion speed at each ignition position varies depending on the degree of rich / lean, resulting in a decrease in thermal efficiency or in a region where the combustion speed is slow. There is a risk of knocking.

また、図5に示す成層燃焼のように燃焼室15の中心部16aと周辺部16bとで混合気の濃度が異なり、しかも周辺部16bにリッチ領域とリーン領域とが偏在する場合がある。更に、図6に示すように、スワール等で燃焼室15内に強制的に周方向の気流を発生させた場合、中心部16aから周辺部16bに進むにつれて流速が速くなる。   Further, as in the stratified combustion shown in FIG. 5, the concentration of the air-fuel mixture is different between the central portion 16a and the peripheral portion 16b of the combustion chamber 15, and the rich region and the lean region are unevenly distributed in the peripheral portion 16b. Furthermore, as shown in FIG. 6, when a circumferential air flow is forcibly generated in the combustion chamber 15 by a swirl or the like, the flow velocity increases as the air travels from the central portion 16a to the peripheral portion 16b.

これらを考慮して、第2最良の形態では外周部16bの複数の点火位置での混合気への点火時期をずらせている。まず、図7を参照しつつ、レーザ光照射器30を制御する制御装置40を説明する。制御装置40は時期制御部42と、位置制御部45とを備えている。時期制御部42はエンジンの運転状態等に基づき点火時期を判断し、レーザ光発生器30からのレーザ光の発生時期を制御する。「運転状態」とは、エンジンの回転数や、成層運転モードのオン・オフ、油水温、噴射時期又はスワール弁開度や、エンジン負荷を判定するための吸気管の負圧又は吸入空気量又はスロットル開度である。   Considering these, in the second best mode, the ignition timing for the air-fuel mixture at the plurality of ignition positions of the outer peripheral portion 16b is shifted. First, the control device 40 for controlling the laser beam irradiator 30 will be described with reference to FIG. The control device 40 includes a timing control unit 42 and a position control unit 45. The timing control unit 42 determines the ignition timing based on the operating state of the engine and controls the generation timing of the laser beam from the laser beam generator 30. "Operating state" refers to engine speed, stratified operation mode on / off, oil / water temperature, injection timing or swirl valve opening, intake pipe negative pressure or intake air amount to determine engine load, The throttle opening.

位置制御部45は駆動素子37の駆動を制御するもので、エンジンの運転状態に関する情報を入力される情報入力部46、レーザ光の最適焦点位置に関する第1マップ及び最適時期に関する第2マップを記憶しているマップ記憶部47、レーザ光の最適焦点位置を決定する位置決定部48、及びレーザ光の焦点位置を移動させる移動制御部49から構成される。   The position control unit 45 controls driving of the drive element 37, and stores an information input unit 46 to which information related to the operating state of the engine is input, a first map related to the optimum focal position of the laser beam, and a second map related to the optimum time. A map storage unit 47, a position determining unit 48 for determining the optimum focal position of the laser beam, and a movement control unit 49 for moving the focal position of the laser beam.

マップ記憶部47に記憶された第1マップ及び第2マップについて詳述する。上述したように、エンジンの運転条件によって点火直前の燃焼室15内の混合気の状態は大きく異なり、運転条件によっては燃焼室15内にリーン領域やリッチ領域が発生する。そこで、予め実験等でエンジンの運転条件と混合気の濃度分布の関係を計測しておき、回転数に対する点火可能な位置及び時期をマップ化して第1マップ及び第2マップを作成し、マップ記憶部47に記憶しておく。例えば図8(a)に示すように混合気の当量比が異なると、燃焼速度が変化する。また、スワール弁等を用いて燃焼室15内にスワール流等の気流を強制的に発生させる場合、図8(b)に示すように、点火位置によっては火炎が吹き消えてしまう虞がある。そのため、スワール弁開度に対する点火可能な位置及び時期をマップ記憶部47に記憶しておく。   The first map and the second map stored in the map storage unit 47 will be described in detail. As described above, the state of the air-fuel mixture in the combustion chamber 15 immediately before ignition varies greatly depending on the operating condition of the engine, and a lean region or a rich region is generated in the combustion chamber 15 depending on the operating condition. Therefore, the relationship between the engine operating conditions and the air-fuel mixture concentration distribution is measured in advance by experiments or the like, and the first map and the second map are created by mapping the position and timing that can be ignited with respect to the rotational speed, and stored in the map. Stored in the unit 47. For example, as shown in FIG. 8A, if the equivalence ratio of the air-fuel mixture is different, the combustion rate changes. Further, when an air flow such as a swirl flow is forcibly generated in the combustion chamber 15 using a swirl valve or the like, the flame may blow out depending on the ignition position, as shown in FIG. Therefore, the map storage unit 47 stores the ignition position and timing relative to the swirl valve opening.

(作用)
次に、第2の最良の形態の作用を説明する。図9に示す制御フローチャートにおいて、まず、ステップS11で情報入力部46からエンジンの運転条件を読み込む。読込む運転条件は、例えば回転数や、成層運転モードのオン・オフや、スワール弁開度等である。次に、ステップS12でマップ記憶部47の第1マップを用いて、位置決定部48によりエンジンの運転条件によって点火可能な最適点火位置を算出する。次に、ステップS13で、移動制御部49によりレーザ光照射器30の駆動素子37により集光レンズ35の傾きを変更して焦点位置を変化させる。
(Function)
Next, the operation of the second best mode will be described. In the control flowchart shown in FIG. 9, first, engine operating conditions are read from the information input unit 46 in step S11. The operating conditions to be read are, for example, the rotational speed, stratified operation mode on / off, swirl valve opening, and the like. Next, in step S12, using the first map in the map storage unit 47, the position determination unit 48 calculates the optimum ignition position that can be ignited according to the engine operating conditions. Next, in step S <b> 13, the movement control unit 49 changes the focus position by changing the inclination of the condenser lens 35 by the driving element 37 of the laser beam irradiator 30.

続いて、ステップS14で、マップ記憶部47の第2マップにより複数のレーザ照射器30のそれぞれの点火位置での最適の点火時期を算出する。基本的には当量比が適正濃度よりもリッチ又はリーンである程、またスワール気流の流速が遅い程、点火時期を早くする。次に、ステップS15で時期制御部42により各レーザ光発生器33aから33dより最適焦点位置にレーザ光を照射する。   Subsequently, in step S14, the optimal ignition timing at each ignition position of the plurality of laser irradiators 30 is calculated from the second map of the map storage unit 47. Basically, the ignition ratio is advanced as the equivalence ratio is richer or leaner than the appropriate concentration, and as the flow rate of the swirl airflow is slower. Next, in step S15, the timing control unit 42 irradiates the laser beam from the laser beam generators 33a to 33d to the optimum focus position.

(効果)
第2の最良の形態によれば、エンジンの運転状態等に応じて、最適場所に最適時期にレーザ光を照射し、混合気に点火できる。例えば、図5に示す成層燃焼の場合は燃焼室15の外周部16bで先に点火し、中心部16aで後に点火し、しかも外周部16bの複数の点火位置の点火時期は必要に応じて時間差を設ける。
(effect)
According to the second best mode, the air-fuel mixture can be ignited by irradiating the optimum place with the laser light at the optimum time according to the operating state of the engine or the like. For example, in the case of stratified combustion shown in FIG. 5, the ignition is performed first at the outer peripheral portion 16b of the combustion chamber 15, and then ignited later at the central portion 16a. Is provided.

また、エンジンの回転数及び負荷により燃焼室15の周辺部16bで円周方向において、純正濃度領域、リッチ領域及びリーン領域が偏在しているときは、リッチ領域又はリーン領域を純正濃度領域よりも先に点火する。リッチ領域とリーン領域とでは、リーン領域を先に、リッチ領域を後に点火する。その結果、NOxの低減及びノッキングの防止が実現できる。   Further, when the genuine concentration region, the rich region, and the lean region are unevenly distributed in the circumferential direction at the peripheral portion 16b of the combustion chamber 15 due to the engine speed and the load, the rich region or the lean region is more than the genuine concentration region. Ignite first. In the rich region and the lean region, the lean region is ignited first and the rich region is lit later. As a result, NOx reduction and knocking prevention can be realized.

更に、図6に示すスワール気流を考慮して、点火時期を決めることもできる。即ち、燃焼室15の周辺部16bに内にスワール弁により強制的に付与したスワール流に点火した場合、火炎はスワール流に乗って広がる。そこで、周辺部16bの点火位置b、c及びdをスワール流と対向した順番(d→c→b)に点火する。   Furthermore, the ignition timing can be determined in consideration of the swirl airflow shown in FIG. That is, when the swirl flow forcibly applied to the peripheral portion 16b of the combustion chamber 15 by the swirl valve is ignited, the flame spreads along the swirl flow. Therefore, the ignition positions b, c, and d of the peripheral portion 16b are ignited in the order facing the swirl flow (d → c → b).

このように、燃焼室15の周辺部16bの三つの点火位置b、c及びdでの点火時期をずらせることにより、火炎の広がりが燃焼室内で偏ることもなく、常に安定した燃焼が得られるとともに、ノッキングの発生を抑制できる。その結果、第2従来例のような複数の点火プラグ等の固定点火位置では燃焼できない虞があるエンジンの運転条件でも確実に点火可能となり、熱効率向上及び排気エミッション改善の効果が得られる。   In this way, by shifting the ignition timing at the three ignition positions b, c, and d of the peripheral portion 16b of the combustion chamber 15, the flame spread is not biased in the combustion chamber, and stable combustion is always obtained. At the same time, the occurrence of knocking can be suppressed. As a result, it is possible to ignite reliably even under engine operating conditions where there is a possibility that combustion cannot be performed at a fixed ignition position such as a plurality of spark plugs as in the second conventional example, and the effect of improving thermal efficiency and exhaust emission can be obtained.

<第3の最良の形態>
以下に、各点火位置での混合気の濃度分布の計測方法が変形された第3の最良の形態を示す。上記第1及び第2の最良の形態では、予め実験等で計測した計測結果をマップ化していた。その代わりに、図10及び11に示した第3の最良の形態では、燃焼室15内の混合気の濃度分布を直接計測している。詳述すると、シリンダブロック10とシリンダヘッドとの間に燃焼室15の半径方向内向きに計測用レーザ照射器80が配置され、燃焼室15の上部においてレーザ光をシート状に照射する。レーザ光を受ける計測器82が直径方向でレーザ光照射器80に対向する部分に配置されている。
<Third best mode>
The third best mode in which the method for measuring the concentration distribution of the air-fuel mixture at each ignition position is modified will be described below. In the first and second best modes, the measurement results measured in advance by experiments or the like are mapped. Instead, in the third best mode shown in FIGS. 10 and 11, the concentration distribution of the air-fuel mixture in the combustion chamber 15 is directly measured. More specifically, a measurement laser irradiator 80 is disposed radially inward of the combustion chamber 15 between the cylinder block 10 and the cylinder head, and irradiates a laser beam in a sheet shape on the upper portion of the combustion chamber 15. A measuring instrument 82 that receives the laser beam is arranged at a portion facing the laser beam irradiator 80 in the diameter direction.

この変形例の制御フローチャートを図11に示す。ステップS21でエンジンの運転情報を取り込んだ後、ステップS22でレーザ光照射器80から計測用レーザ光を照射する。これに基づきステップS23で混合気の濃度分布を計算する。つまり、点火用レーザ光照射器30による混合気への点火時期の直前に、計測用レーザ光照射器80から燃料の吸収波長に近いレーザ光を燃焼室15にシート状に照射する。照射された計測用レーザ光は燃料により吸収されるため、計測器82での強度は燃料濃度に応じて変化する。   A control flowchart of this modification is shown in FIG. After capturing the engine operation information in step S21, measurement laser light is emitted from the laser light irradiator 80 in step S22. Based on this, the concentration distribution of the air-fuel mixture is calculated in step S23. That is, immediately before the ignition timing of the air-fuel mixture by the ignition laser beam irradiator 30, the laser beam near the absorption wavelength of the fuel is irradiated from the measurement laser beam irradiator 80 into the combustion chamber 15 in a sheet shape. Since the irradiated measurement laser beam is absorbed by the fuel, the intensity at the measuring instrument 82 changes according to the fuel concentration.

次に、ステップS24で駆動素子37を制御して集光レンズ35焦点位置即ち点火位置を変更する。最後に、ステップS25でマップに基づき各点火位置での点火時期を算出する。つまり、濃度分布を計測器82に取り込み、その結果に基づき点火に最適な燃料濃度の位置及び時期を見出して、点火する。この第3の最良の形態によれば、燃焼室15内の濃度分布を実測しているので、点火位置及び点火時期の判断がより的確になる。また、予め第1マップ及び第2マップを作成する必要がないので、その分手間が省ける。   Next, in step S24, the drive element 37 is controlled to change the focal position of the condenser lens 35, that is, the ignition position. Finally, in step S25, ignition timing at each ignition position is calculated based on the map. That is, the concentration distribution is taken into the measuring device 82, and the position and timing of the optimum fuel concentration for ignition are found based on the result, and ignition is performed. According to the third best mode, since the concentration distribution in the combustion chamber 15 is measured, the determination of the ignition position and the ignition timing becomes more accurate. In addition, since it is not necessary to create the first map and the second map in advance, it is possible to save labor.

<変形例>
上記第1から第3の最良の形態は以下のような変形が可能である。例えば、燃焼室15の周辺部16bのみで点火し、中心部16aでは点火しない場合もある。この場合、点火位置の個数は2から8の範囲で変更できる。また、燃焼室15の周辺部16b及び中心部16aで点火する場合、周辺部16bの点火位置の個数は2、4、5・・に変更でき、中心部の点火位置の個数は2、3・・に変更できる。更に、図12に示すように、燃焼室15の外周部16bに4つの点火位置mを配置し、半径方向中間部16cに3つの点火位置nを配置して、二重(同心円)状にしても良い。
<Modification>
The first to third best modes can be modified as follows. For example, there are cases where ignition is performed only at the peripheral portion 16b of the combustion chamber 15 and not at the central portion 16a. In this case, the number of ignition positions can be changed in the range of 2 to 8. Further, when ignition is performed at the peripheral portion 16b and the central portion 16a of the combustion chamber 15, the number of ignition positions of the peripheral portion 16b can be changed to 2, 4, 5,. Can be changed to Further, as shown in FIG. 12, four ignition positions m are arranged on the outer peripheral portion 16b of the combustion chamber 15, and three ignition positions n are arranged on the radial intermediate portion 16c, thereby forming a double (concentric circle) shape. Also good.

なお、何れの場合も、点火位置の個数と同数のレーザ発振器を配置したり、又は点火位置と個数よりも少ないレーザ発振器のレーザ光を、光学系で点火位置と同数のレーザ光に分岐させても良い。   In either case, the same number of laser oscillators as the number of ignition positions are arranged, or the laser beams of the laser oscillators less than the number of ignition positions and the number are split into the same number of laser lights as the ignition positions by the optical system. Also good.

第1の最良の形態の全体説明図である。It is a whole explanatory view of the first best mode. (a)は第1の最良の形態のレーザ光照射器の要部縦断面図、(b)は同じく斜視図である。(A) is a principal part longitudinal cross-sectional view of the laser beam irradiator of the 1st best form, (b) is a perspective view similarly. 第1の最良の形態のレーザ光照射器による点火位置の説明図である。It is explanatory drawing of the ignition position by the laser beam irradiator of the 1st best form. (a)は第1の最良の形態及び従来例における時間と発熱量との関係を示すグラフ、(b)は第1の最良の形態における火炎の伝播の説明図、(c)は従来例における火炎の伝播の説明図である。(A) is a graph showing the relationship between time and calorific value in the first best mode and the conventional example, (b) is an explanatory diagram of flame propagation in the first best mode, and (c) is in the conventional example. It is explanatory drawing of propagation of a flame. 第2の最良の形態における成層燃焼の説明図である。It is explanatory drawing of the stratified combustion in the 2nd best form. 第2の最良の形態におけるスワール気流の説明図である。It is explanatory drawing of the swirl airflow in the 2nd best form. 第2の最良の形態の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the 2nd best form. (a)は第2の最良の形態における当量比と燃焼温度との関係を示すグラフ、(b)は気流の流速と燃焼温度との関係を示すグラフである。(A) is a graph which shows the relationship between the equivalence ratio in the 2nd best form, and combustion temperature, (b) is a graph which shows the relationship between the flow velocity of airflow, and combustion temperature. 第2の最良の形態の作用を説明するフローチャートである。It is a flowchart explaining the effect | action of a 2nd best form. 第3最良の形態の全体説明図である。It is whole explanatory drawing of the 3rd best form. 第3の最良の形態の作用を説明するフローチャートである。It is a flowchart explaining the effect | action of the 3rd best form. 変形例における点火位置の説明図である。It is explanatory drawing of the ignition position in a modification.

符号の説明Explanation of symbols

10:シリンダ 15:ピストン 16a:中心部
16b:周辺部 22:吸気弁 25:排気弁
30:レーザ光照射器 33aから33d:レーザ光発生器
45:集光レンズ 37:駆動素子 40:制御装置
42:時期制御部 45:位置制御部 47:マップ記憶部
DESCRIPTION OF SYMBOLS 10: Cylinder 15: Piston 16a: Center part 16b: Peripheral part 22: Intake valve 25: Exhaust valve 30: Laser beam irradiation device 33a to 33d: Laser beam generator 45: Condensing lens 37: Drive element 40: Control apparatus 42 : Time control unit 45: Position control unit 47: Map storage unit

Claims (7)

内燃機関の燃焼室(15)内に配置され、混合気にレーザ光を照射し点火する複数のレーザ光照射手段(33aから33d)と、
前記燃焼室内の点火可能な位置が記憶された第1マップと、
前記第1マップに基づき、前記レーザ光照射手段のレーザ光の焦点位置を変更する位置変更手段(35,37)と、
前記点火位置での点火時期が記憶された第2マップに基づき、前記レーザ光照射手段のレーザ光の照射時期を制御する時期制御手段(42)と、
を備えていることを特徴とする内燃機関のレーザ点火装置。
A plurality of laser light irradiation means (33a to 33d) disposed in the combustion chamber (15) of the internal combustion engine, for irradiating and igniting the mixture with laser light;
A first map in which the ignitable positions in the combustion chamber are stored;
Position changing means (35, 37) for changing the focal position of the laser beam of the laser beam irradiation means based on the first map;
A timing control means (42) for controlling the laser light irradiation timing of the laser light irradiation means based on the second map in which the ignition timing at the ignition position is stored;
A laser ignition device for an internal combustion engine, comprising:
内燃機関の燃焼室(15)内に配置され、混合気にレーザ光を照射し点火する複数のレーザ光照射手段(33aから33d)と、
前記燃焼室内の混合気の濃度分布を計測する計測手段(80,82)と、
前記計測手段の計測結果に基づき、前記レーザ光照射手段のレーザ光の焦点位置を変更する位置変更手段(35,37)と、
前記点火位置での点火時期が記憶された第2マップに基づき、前記レーザ光照射手段のレーザ光の照射時期を制御する時期制御手段(42)と、
を備えていることを特徴とする内燃機関のレーザ点火装置。
A plurality of laser light irradiation means (33a to 33d) disposed in the combustion chamber (15) of the internal combustion engine, for irradiating and igniting the mixture with laser light;
Measuring means (80, 82) for measuring the concentration distribution of the air-fuel mixture in the combustion chamber;
Position changing means (35, 37) for changing the focal position of the laser light of the laser light irradiation means based on the measurement result of the measuring means;
A timing control means (42) for controlling the laser light irradiation timing of the laser light irradiation means based on the second map in which the ignition timing at the ignition position is stored;
A laser ignition device for an internal combustion engine, comprising:
前記第1マップは内燃機関の運転状態に応じて、燃焼室内の点火可能な位置を記憶している請求項1に記載のレーザ点火装置。   2. The laser ignition device according to claim 1, wherein the first map stores a position in the combustion chamber that can be ignited according to an operating state of the internal combustion engine. 前記位置変更手段は、燃焼室の中心部(16a)に一つの焦点位置を、周辺部(16b)に円周方向に離れた複数の焦点位置を形成する請求項1又は2に記載のレーザ点火装置。   3. The laser ignition according to claim 1, wherein the position changing means forms a single focal position in the central portion (16 a) of the combustion chamber and a plurality of focal positions separated in the circumferential direction in the peripheral portion (16 b). apparatus. 前記時期制御手段は、周辺部の複数の前記レーザ光照射手段のレーザ光を同時に照射させ、その後中心部の前記レーザ光照射手段のレーザ光を照射させる請求項4に記載の内燃機関のレーザ点火装置。   5. The laser ignition of the internal combustion engine according to claim 4, wherein the timing control unit simultaneously irradiates a laser beam from a plurality of the laser beam irradiation units in a peripheral portion and thereafter irradiates a laser beam from the laser beam irradiation unit in a central portion. apparatus. 前記時期制御手段は、周辺部の複数の前記レーザ光照射手段のレーザ光を異なるタイミングで照射させ、その後中心部の前記レーザ光照射手段のレーザ光を照射させる請求項4に記載の内燃機関のレーザ点火装置。   5. The internal combustion engine according to claim 4, wherein the timing control unit irradiates the laser beams of the plurality of laser beam irradiation units in the peripheral portion at different timings, and thereafter irradiates the laser beams of the laser beam irradiation unit in the central portion. Laser ignition device. 前記第2マップは、前記内燃機関の運転状態と前記点火位置での点火時期との関係が記憶されている請求項5又は6に記載の内燃機関のレーザ点火装置。   The laser ignition device for an internal combustion engine according to claim 5 or 6, wherein the second map stores a relationship between an operating state of the internal combustion engine and an ignition timing at the ignition position.
JP2005056267A 2005-03-01 2005-03-01 Laser ignition device for internal combustion engine Expired - Fee Related JP4415269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056267A JP4415269B2 (en) 2005-03-01 2005-03-01 Laser ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056267A JP4415269B2 (en) 2005-03-01 2005-03-01 Laser ignition device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006242034A true JP2006242034A (en) 2006-09-14
JP4415269B2 JP4415269B2 (en) 2010-02-17

Family

ID=37048695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056267A Expired - Fee Related JP4415269B2 (en) 2005-03-01 2005-03-01 Laser ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4415269B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072810A1 (en) * 2007-12-20 2009-06-24 GE Jenbacher GmbH & Co. OHG Laser-ignition unit
JP2010138888A (en) * 2008-12-15 2010-06-24 Mitsubishi Motors Corp Engine combustion control device
GB2471371A (en) * 2009-06-22 2010-12-29 Gen Electric Laser ignition system and method for internal combustion engine
US8322320B2 (en) 2008-03-17 2012-12-04 Wieslaw Oledzki Laser ignition device for combustion engine
JP2014173574A (en) * 2013-03-12 2014-09-22 Osaka Gas Co Ltd Multi-point ignition engine
RU2531473C1 (en) * 2013-07-17 2014-10-20 Николай Борисович Болотин Internal combustion engine and method of internal combustion engine operation
RU2649720C1 (en) * 2017-01-10 2018-04-04 Николай Борисович Болотин Laser spark plug

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072810A1 (en) * 2007-12-20 2009-06-24 GE Jenbacher GmbH & Co. OHG Laser-ignition unit
US8146554B2 (en) 2007-12-20 2012-04-03 Ge Jenbacher Gmbh & Co Ohg Laser ignition apparatus
US8322320B2 (en) 2008-03-17 2012-12-04 Wieslaw Oledzki Laser ignition device for combustion engine
JP2010138888A (en) * 2008-12-15 2010-06-24 Mitsubishi Motors Corp Engine combustion control device
GB2471371A (en) * 2009-06-22 2010-12-29 Gen Electric Laser ignition system and method for internal combustion engine
US8127732B2 (en) 2009-06-22 2012-03-06 General Electric Company Laser ignition system and method for internal combustion engine
GB2471371B (en) * 2009-06-22 2012-08-29 Gen Electric Laser ignition system and method for internal combustion engine
JP2014173574A (en) * 2013-03-12 2014-09-22 Osaka Gas Co Ltd Multi-point ignition engine
RU2531473C1 (en) * 2013-07-17 2014-10-20 Николай Борисович Болотин Internal combustion engine and method of internal combustion engine operation
RU2649720C1 (en) * 2017-01-10 2018-04-04 Николай Борисович Болотин Laser spark plug

Also Published As

Publication number Publication date
JP4415269B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4415269B2 (en) Laser ignition device for internal combustion engine
JP4374495B2 (en) Internal combustion engine
RU2566665C2 (en) Higher efficiency of laser ignition system
US20090133655A1 (en) Laser ignition system
JP2016053333A (en) Internal combustion engine
JP2006242039A (en) Laser ignition device for internal combustion engine
JP2006220091A (en) Laser-ignited engine
JP2011058890A (en) Combustion chamber observation apparatus
JP2006316715A (en) Sub-chamber type internal combustion engine
JP4294603B2 (en) Laser ignition device for internal combustion engine
JP4911325B2 (en) Engine combustion control device
JP4731952B2 (en) Laser ignition device and method
JP4419788B2 (en) Laser ignition device for internal combustion engine
JP6804373B2 (en) engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP2004360539A (en) Direct cylinder injection internal combustion engine
JP2011256722A (en) Laser ignition device
JP6768585B2 (en) engine
JP2006104972A (en) Laser ignition type engine having introducing glass body cleaning device and its operation method
JPH01193081A (en) Ignition auxiliary device for internal combustion engine
JP2006226193A (en) Catalyst warm-up device for internal combustion engine
JP4354301B2 (en) Laser ignition engine with two kinds of target members
JP4877751B2 (en) Laser ignition device
JP2005042591A (en) Multiple pulse laser radiating laser igniting engine and method of operating the engine
JP2006275042A (en) Laser ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees