JP2006237625A - Heat treatment device, method for manufacturing semiconductor device and method for manufacturing substrate - Google Patents

Heat treatment device, method for manufacturing semiconductor device and method for manufacturing substrate Download PDF

Info

Publication number
JP2006237625A
JP2006237625A JP2006082075A JP2006082075A JP2006237625A JP 2006237625 A JP2006237625 A JP 2006237625A JP 2006082075 A JP2006082075 A JP 2006082075A JP 2006082075 A JP2006082075 A JP 2006082075A JP 2006237625 A JP2006237625 A JP 2006237625A
Authority
JP
Japan
Prior art keywords
substrate
support portion
support
heat treatment
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082075A
Other languages
Japanese (ja)
Other versions
JP4611229B2 (en
Inventor
Naoto Nakamura
直人 中村
Tomoharu Shimada
智晴 島田
Sadao Nakajima
定夫 中嶋
Iwao Nakamura
巌 中村
Kenichi Ishiguro
謙一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006082075A priority Critical patent/JP4611229B2/en
Publication of JP2006237625A publication Critical patent/JP2006237625A/en
Application granted granted Critical
Publication of JP4611229B2 publication Critical patent/JP4611229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment device, a method for manufacturing a semiconductor device and a method for manufacturing a substrate, in which the high-quality semiconductor device can be manufactured by reducing a slip dislocation defect occurring in the substrate during heat treatment. <P>SOLUTION: The heat treatment device 10 has a reactor 40 which processes the substrate 68, and a substrate support 30 which supports the substrate 68 within the reactor 40. The substrate support 30 has a supporting part 58 which is in contact with the substrate 68 and a mounting part 66 which mounts the supporting part 58, and a fitting groove 74 fitted with the supporting part 58 is formed in the mounting part 66. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウェハやガラス基板等を熱処理するための熱処理装置、半導体装置の製造方法及び半導体ウェハやガラス基板の製造方法に関する。   The present invention relates to a heat treatment apparatus for heat treating a semiconductor wafer, a glass substrate or the like, a method for manufacturing a semiconductor device, and a method for manufacturing a semiconductor wafer or a glass substrate.

例えば縦型熱処理炉を用いて、複数のシリコンウェハ等の基板を熱処理する場合、炭化珪素製の基板支持体(ボート)が用いられている。この基板支持体には、例えば3点で基板を支持する支持溝が設けられている。   For example, when a substrate such as a plurality of silicon wafers is heat-treated using a vertical heat treatment furnace, a silicon carbide substrate support (boat) is used. The substrate support is provided with support grooves for supporting the substrate at, for example, three points.

この場合、1000°C程度以上の温度で熱処理すると、支持溝付近で、基板にスリップ転位欠陥が発生し、これがスリップラインになるという問題があった。スリップラインが発生すると、基板の平坦度が劣化する。これらのため、LSI製造工程における重要な工程の一つであるリソグラフィ工程で、マスク合わせずれ(焦点ずれ又は変形によるマスク合わせずれ)が生じ、所望パターンを有するLSIの製造が困難であるという問題が発生していた。   In this case, when the heat treatment is performed at a temperature of about 1000 ° C. or more, slip dislocation defects are generated in the substrate in the vicinity of the support groove, which causes a slip line. When a slip line occurs, the flatness of the substrate deteriorates. For these reasons, there is a problem in that it is difficult to manufacture an LSI having a desired pattern due to mask misalignment (focal misalignment or mask misalignment due to deformation) in a lithography process, which is one of important processes in the LSI manufacturing process. It has occurred.

このような問題を解決する手段として、支持溝にまずダミーウェハを載置し、このダミーウェハの上に処理すべき基板を載置する技術が知られている(特許文献1参照)。これは、従来の3点支持からダミーウェハによる面支持に変えることにより、処理すべき基板の自重応力集中を抑え、基板の反り発生を防止し、スリップ転位欠陥が発生するのを防止しようとするものである。   As means for solving such a problem, a technique is known in which a dummy wafer is first placed in a support groove, and a substrate to be processed is placed on the dummy wafer (see Patent Document 1). This is to change the conventional three-point support to the surface support by the dummy wafer, thereby suppressing the concentration of the self-weight stress of the substrate to be processed, preventing the warpage of the substrate, and preventing the occurrence of slip dislocation defects. It is.

また、この種の基板支持体の一つとして、Si−SiC等のボート基材に、基材中からの不純物汚染を防止するため、CVD−SiC被膜を形成することが知られている(特許文献2参照)。この公知例によれば、CVD−SiC被膜の厚さは、30μm〜100μmである。即ち、被膜の厚さが30μmより小さいと、ボート基材から不純物が被膜表面に拡散して、被膜が不純物の拡散を防止するというCVD被膜の目的を達成できず、被膜の厚さが100μmを超えると、ボート基材のエッジ部にCVDが集中して堆積する肉盛り状態になり、この状態でボート(基板支持体)を使用すると、バリが形成されてパーティクル汚染の原因になるとしている。
また、他の従来例として、Si含浸焼結SiC材、黒鉛などの基材に対してCVD法
によりSiC膜を形成し、耐熱性、耐衝撃性、耐酸化性、耐食性を改善したものが知られている(特許文献3参照)。この公知例によれば、SiC膜の厚さは、20μm〜200μmが好ましく、20μm未満では、SiC膜自体が消耗を受けるため寿命が短くなるおそれがあり、200μmを超えると、SiC膜が剥離し易くなるとしている。
As one of this type of substrate support, it is known to form a CVD-SiC film on a boat base material such as Si-SiC in order to prevent impurity contamination from the base material (patent) Reference 2). According to this known example, the thickness of the CVD-SiC film is 30 μm to 100 μm. That is, if the thickness of the coating is smaller than 30 μm, impurities cannot be diffused from the boat base material to the coating surface, and the purpose of the CVD coating can be prevented. If it exceeds, it will be in the buildup state where CVD concentrates and accumulates on the edge part of a boat base material, and when a boat (substrate support body) is used in this state, it is said that a burr | flash will be formed and it will cause particle contamination.
As another conventional example, a SiC film is formed by CVD on a substrate such as a Si-impregnated sintered SiC material or graphite to improve heat resistance, impact resistance, oxidation resistance, and corrosion resistance. (See Patent Document 3). According to this known example, the thickness of the SiC film is preferably 20 μm to 200 μm. If the thickness is less than 20 μm, the life of the SiC film itself is likely to be consumed, and if it exceeds 200 μm, the SiC film peels off. It will be easier.

また、さらに他の従来例として、SiC製の治具(ボート等)の表面にCVD−SiCコーティングを施し、その表面にSiO2膜を形成したものが知られている(特許文献4参照)。この公知例によれば、SiCコーティングは、基材表面の均一性を確保するために行い、SiC膜の厚さは、100μmとすることが実施例として示されている。また、SiO2膜は、ClF3によるドライクリーニング時に基材の減肉を防止するために形成し、その厚さは100Å〜100μmが望ましいとしている。
また、さらに他の従来例として、Si−SiC製の支持体の表面にCVD−SiCを100μm程度被膜することが知られている(特許文献5参照)。
Further, as another conventional example, there is known one in which a surface of a SiC jig (boat or the like) is subjected to CVD-SiC coating and an SiO2 film is formed on the surface (see Patent Document 4). According to this known example, the SiC coating is performed to ensure the uniformity of the surface of the substrate, and the thickness of the SiC film is set to 100 μm as an example. In addition, the SiO2 film is formed in order to prevent thinning of the substrate during dry cleaning with ClF3, and the thickness is desirably 100 to 100 [mu] m.
As still another conventional example, it is known that a surface of a Si-SiC support is coated with CVD-SiC by about 100 μm (see Patent Document 5).

特開2000−223495号公報JP 2000-223495 A 特開2000−164522号公報JP 2000-164522 A 特開2002−274983号公報Japanese Patent Laid-Open No. 2002-249483 特開平10−242254号公報Japanese Patent Laid-Open No. 10-242254 特開平10−321543号公報Japanese Patent Laid-Open No. 10-321543

しかしながら、本発明者による実験結果によれば、ダミーウェハ上に基板を載置する上記従来例は、3点支持によるものと比較して改善されてはいるものの、スリップラインが発生し、スリップ転位欠陥発生防止という点では不十分であった。   However, according to the experimental results by the present inventors, the above-mentioned conventional example in which the substrate is placed on the dummy wafer is improved as compared with the three-point support, but slip lines are generated and slip dislocation defects occur. It was insufficient in terms of prevention.

この原因は、ダミーウェハが基板と同様に例えば700μmというように薄いため、炭化珪素からなる基板支持体との間に発生する熱膨張の差やその他の応力により変形し、このダミーウェハの変形により基板にスリップ転位欠陥を生じさせるためと考えられる。   This is because the dummy wafer is as thin as 700 μm, for example, like the substrate, and is deformed by a difference in thermal expansion and other stresses generated with the substrate support made of silicon carbide. This is considered to cause slip dislocation defects.

また、本願の発明者らが実験した結果、基板支持体の支持部の基板載置面にコーティングする材料や膜の厚さによっては、その膜の熱膨張率等のためにスリップが発生することがあることを発見した。   In addition, as a result of experiments by the inventors of the present application, depending on the material to be coated on the substrate mounting surface of the support portion of the substrate support and the thickness of the film, slip may occur due to the coefficient of thermal expansion of the film. Found that there is.

そこで、本発明は、熱処理中に発生する基板のスリップ転位欠陥発生を少なくし、高品質な半導体装置を製造することができる熱処理装置、半導体装置の製造方法及び基板の製造方法を提供することを目的としている。   Accordingly, the present invention provides a heat treatment apparatus, a semiconductor device manufacturing method, and a substrate manufacturing method capable of manufacturing a high-quality semiconductor device by reducing the occurrence of slip dislocation defects in the substrate generated during the heat treatment. It is aimed.

上記課題を解決するため、本発明の第1の特徴とするところは、基板を処理する反応炉と、前記反応炉内で基板を支持する基板支持体とを有し、前記基板支持体は、前記基板と接触する支持部と、この支持部を載置する載置部とを有し、この載置部には前記支持部が嵌合する溝が形成されている熱処理装置にある。支持部の厚さは基板の厚さよりも厚く、10mm以下、例えば3mm〜6mmであることが好ましく、さらに好ましくは4〜5mmがよい。また、支持部の厚さを基板の厚さと比較すると、支持部の厚さは、少なくとも基板の厚さの2倍以上であることが好ましい。
基板支持体は、本体部から平行に載置部が多数延びるボートとして構成することができる。本体部は、例えば炭化珪素から構成することができる。また、支持部は、円柱状、楕円柱状、多角柱状等、一端面に基板を載置できる形状であればよい。この支持部は、本体部の載置部の厚さよりも厚いことが好ましい。
In order to solve the above-mentioned problem, the first feature of the present invention includes a reaction furnace for treating a substrate, and a substrate support for supporting the substrate in the reaction furnace. The heat treatment apparatus includes a support portion that comes into contact with the substrate and a placement portion on which the support portion is placed, and the placement portion has a groove in which the support portion is fitted. The thickness of the support portion is larger than the thickness of the substrate, and is preferably 10 mm or less, for example, 3 mm to 6 mm, and more preferably 4 to 5 mm. Further, when the thickness of the support portion is compared with the thickness of the substrate, the thickness of the support portion is preferably at least twice the thickness of the substrate.
The substrate support can be configured as a boat in which a large number of mounting portions extend in parallel from the main body. The main body can be made of, for example, silicon carbide. Moreover, the support part should just be a shape which can mount a board | substrate on one end surface, such as cylindrical shape, elliptical column shape, polygonal column shape. This support part is preferably thicker than the thickness of the mounting part of the main body part.

本発明の第2の特徴とするところは、基板と接触する支持部と、この支持部を載置する載置部とを有し、この載置部には前記支持部が嵌合する溝が形成されるように構成される基板支持体により基板を支持する工程と、前記基板支持体により支持した基板を反応炉内に搬入する工程と、前記反応炉内で前記基板支持体により支持した基板を処理する工程と、前記基板支持体により支持した処理後の基板を反応炉より搬出する工程とを有する基板の製造方法にある。   The second feature of the present invention is that it has a support portion that comes into contact with the substrate and a placement portion on which the support portion is placed, and the placement portion has a groove into which the support portion is fitted. A step of supporting a substrate by a substrate support configured to be formed; a step of carrying a substrate supported by the substrate support into a reaction furnace; and a substrate supported by the substrate support in the reaction furnace And a step of carrying out the processed substrate supported by the substrate support from the reaction furnace.

本発明の第3の特徴とするところは、基板と接触する支持部と、この支持部を載置する載置部とを有し、この載置部には前記支持部が嵌合する溝が形成される基板支持体により基板を支持する工程と、前記基板支持体により支持した基板を処理する工程と、前記基板支持体により支持した処理後の基板を反応炉より搬出する工程とを有する半導体装置の製造方法。   The third feature of the present invention is that it has a support portion that comes into contact with the substrate and a placement portion on which the support portion is placed, and the placement portion has a groove into which the support portion is fitted. A semiconductor having a step of supporting a substrate by a substrate support to be formed, a step of processing a substrate supported by the substrate support, and a step of unloading the processed substrate supported by the substrate support from a reaction furnace Device manufacturing method.

次に本発明の実施形態を図面に基づいて説明する。
図1には、本発明の実施形態に係る熱処理装置10が示されている。この熱処理装置10は、例えば縦型であり、主要部が配置された筺体12を有する。この筺体12には、ポッドステージ14が接続されており、このポッドステージ14にポッド16が搬送される。ポッド16は、例えば25枚の基板が収納され、図示しない蓋が閉じられた状態でポッドステージ14にセットされる。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a heat treatment apparatus 10 according to an embodiment of the present invention. The heat treatment apparatus 10 is, for example, a vertical type and includes a casing 12 in which a main part is arranged. A pod stage 14 is connected to the housing 12, and the pod 16 is conveyed to the pod stage 14. The pod 16 stores, for example, 25 substrates, and is set on the pod stage 14 with a lid (not shown) closed.

筺体12内において、ポッドステージ14に対向する位置には、ポッド搬送装置18が配置されている。また、このポッド搬送装置18の近傍には、ポッド棚20、ポッドオープナ22及び基板枚数検知器24が配置されている。ポッド搬送装置18は、ポッドステージ14とポッド棚20とポッドオープナ22との間でポッド16を搬送する。ポッドオープナ22は、ポッド16の蓋を開けるものであり、この蓋が開けられたポッド16内の基板枚数が基板枚数検知器24により検知される。
さらに、筺体12内には、基板移載機26、ノッチアライナ28及び基板支持体30(ボート)が配置されている。基板移載機26は、例えば5枚の基板を取り出すことができるアーム32を有し、このアーム32を動かすことにより、ポッドオープナ22の位置に置かれたポッド、ノッチアライナ28及び基板支持体30間で基板を搬送する。ノッチアライナ28は、基板に形成されたノッチまたはオリフラを検出して基板のノッチまたはオリフラを一定の位置に揃えるものである。
In the housing 12, a pod transfer device 18 is disposed at a position facing the pod stage 14. Further, a pod shelf 20, a pod opener 22, and a substrate number detector 24 are arranged in the vicinity of the pod transfer device 18. The pod carrying device 18 carries the pod 16 among the pod stage 14, the pod shelf 20, and the pod opener 22. The pod opener 22 opens the lid of the pod 16, and the number of substrates in the pod 16 with the lid opened is detected by the substrate number detector 24.
Further, a substrate transfer machine 26, a notch aligner 28, and a substrate support 30 (boat) are disposed in the housing 12. The substrate transfer machine 26 has an arm 32 that can take out, for example, five substrates. By moving the arm 32, the pod placed at the position of the pod opener 22, the notch aligner 28, and the substrate support 30. Transport substrates between. The notch aligner 28 detects notches or orientation flats formed on the substrate and aligns the notches or orientation flats of the substrate at a certain position.

図2において、反応炉40が示されている。この反応炉40は、反応管42を有し、この反応管42内に基板支持体30が挿入される。反応管42の下方は、基板支持体30を挿入するために開放され、この開放部分はシールキャップ44により密閉されるようにしてある。また、反応管42の周囲は、均熱管46により覆われ、さらに均熱管46の周囲にヒータ48が配置されている。熱電対50は、反応管42と均熱管46との間に配置され、反応炉40内の温度をモニタできるようにしてある。そして、反応管42には、処理ガスを導入する導入管52と、処理ガスを排気する排気管54とが接続されている。   In FIG. 2, a reactor 40 is shown. The reaction furnace 40 has a reaction tube 42, and the substrate support 30 is inserted into the reaction tube 42. The lower part of the reaction tube 42 is opened to insert the substrate support 30, and this open part is sealed with a seal cap 44. The periphery of the reaction tube 42 is covered with a soaking tube 46, and a heater 48 is disposed around the soaking tube 46. The thermocouple 50 is disposed between the reaction tube 42 and the soaking tube 46 so that the temperature in the reaction furnace 40 can be monitored. The reaction tube 42 is connected to an introduction tube 52 for introducing a processing gas and an exhaust tube 54 for exhausting the processing gas.

次に上述したように構成された熱処理装置10の作用について説明する。
まず、ポッドステージ14に複数枚の基板を収容したポッド16がセットされると、ポッド搬送装置18によりポッド16をポッドステージ14からポッド棚20へ搬送し、このポッド棚20にストックする。次に、ポッド搬送装置18により、このポッド棚20にストックされたポッド16をポッドオープナ22に搬送してセットし、このポッドオープナ22によりポッド16の蓋を開き、基板枚数検知器24によりポッド16に収容されている基板の枚数を検知する。
Next, the operation of the heat treatment apparatus 10 configured as described above will be described.
First, when a pod 16 containing a plurality of substrates is set on the pod stage 14, the pod 16 is transferred from the pod stage 14 to the pod shelf 20 by the pod transfer device 18 and stocked on the pod shelf 20. Next, the pod 16 stocked on the pod shelf 20 is transported and set to the pod opener 22 by the pod transport device 18, the lid of the pod 16 is opened by the pod opener 22, and the pod 16 is detected by the substrate number detector 24. The number of substrates accommodated in the sensor is detected.

次に、基板移載機26により、ポッドオープナ22の位置にあるポッド16から基板を取り出し、ノッチアライナ28に移載する。このノッチアライナ28においては、基板を回転させながら、ノッチを検出し、検出した情報に基づいて複数枚の基板のノッチを同じ位置に整列させる。次に、基板移載機26により、ノッチアライナ28から基板を取り出し、基板支持体30に移載する。   Next, the substrate is transferred from the pod 16 at the position of the pod opener 22 by the substrate transfer machine 26 and transferred to the notch aligner 28. The notch aligner 28 detects notches while rotating the substrates, and aligns the notches of the plurality of substrates at the same position based on the detected information. Next, the substrate is transferred from the notch aligner 28 by the substrate transfer device 26 and transferred to the substrate support 30.

このようにして、1バッチ分の基板を基板支持体30に移載すると、例えば700°C程度の温度に設定された反応炉40内に複数枚の基板を装填した基板支持体30を装入し、シールキャップ44により反応管42内を密閉する。次に、炉内温度を熱処理温度まで昇温させて、導入管52から処理ガスを導入する。処理ガスには、窒素、アルゴン、水素、酸素等が含まれる。基板を熱処理する際、基板は例えば1000°C程度以上の温度に加熱される。なお、この間、熱電対50により反応管42内の温度をモニタしながら、予め設定された昇温、熱処理プログラムに従って基板の熱処理を実施する。   In this way, when one batch of substrates is transferred to the substrate support 30, for example, the substrate support 30 loaded with a plurality of substrates is loaded into the reaction furnace 40 set to a temperature of about 700 ° C. Then, the inside of the reaction tube 42 is sealed with the seal cap 44. Next, the furnace temperature is raised to the heat treatment temperature, and the processing gas is introduced from the introduction pipe 52. The processing gas includes nitrogen, argon, hydrogen, oxygen, and the like. When heat-treating the substrate, the substrate is heated to a temperature of about 1000 ° C. or more, for example. During this time, the substrate is heat-treated according to a preset temperature rise and heat treatment program while monitoring the temperature in the reaction tube 42 with the thermocouple 50.

基板の熱処理が終了すると、例えば炉内温度を700°C程度の温度に降温した後、基板支持体30を反応炉40からアンロードし、基板支持体30に支持された全ての基板が冷えるまで、基板支持体30を所定位置で待機させる。なお、炉内温度降温の際も、熱電対50により反応管42内の温度をモニタしながら、予め設定された降温プログラムに従って降温を実施する。次に、待機させた基板支持体30の基板が所定温度まで冷却されると、基板移載機26により、基板支持体30から基板を取り出し、ポッドオープナ22にセットされている空のポッド16に搬送して収容する。次に、ポッド搬送装置18により、基板が収容されたポッド16をポッド棚20に搬送し、さらにポッドステージ14に搬送して完了する。   When the heat treatment of the substrate is completed, for example, after the temperature in the furnace is lowered to a temperature of about 700 ° C., the substrate support 30 is unloaded from the reaction furnace 40 until all the substrates supported by the substrate support 30 are cooled. Then, the substrate support 30 is put on standby at a predetermined position. Even when the temperature in the furnace is lowered, the temperature is lowered according to a preset temperature drop program while monitoring the temperature in the reaction tube 42 by the thermocouple 50. Next, when the substrate of the substrate support 30 that has been put on standby is cooled to a predetermined temperature, the substrate transfer device 26 takes out the substrate from the substrate support 30 and puts it into the empty pod 16 set in the pod opener 22. Transport and store. Next, the pod carrying device 18 carries the pod 16 containing the substrate to the pod shelf 20 and further to the pod stage 14 to complete.

次に上記基板支持体30について詳述する。
図3乃至図5において、基板支持体30は、本体部56と支持部58とから構成されている。本体部56は、例えば炭化珪素からなり、上部板60、下部板62、及び該上部板60と下部板62とを接続する支柱64を有する。また、この本体部56には、この支柱64から前述した基板移載機26側に延びる載置部66が多数平行に形成されている。
Next, the substrate support 30 will be described in detail.
3 to 5, the substrate support 30 is composed of a main body portion 56 and a support portion 58. The main body 56 is made of, for example, silicon carbide, and includes an upper plate 60, a lower plate 62, and a support column 64 that connects the upper plate 60 and the lower plate 62. The main body portion 56 is formed with a plurality of mounting portions 66 extending in parallel from the support column 64 toward the substrate transfer machine 26 described above.

支持部58はシリコン製の板状部材からなり、例えば基板68と同心円状の円柱状に形成され、この支持部58の下面が載置部66上面に接触して支持部58が載置部66上に載置され、支持部58の上面に基板68の下面が接触して基板68を載置支持する。   The support portion 58 is made of a silicon plate-like member, and is formed in, for example, a cylindrical shape concentric with the substrate 68. The lower surface of the support portion 58 contacts the upper surface of the placement portion 66, and the support portion 58 is placed on the placement portion 66. The lower surface of the substrate 68 is brought into contact with the upper surface of the support portion 58 to place and support the substrate 68.

支持部58の直径は、基板68の直径より小さく、即ち、支持部58の上面は、基板68の下面である平坦面の面積より小さな面積を有し、基板68は、該基板68の周縁を残して支持部58に支持されている。基板68は例えば直径が300mmであり、したがって、支持部58の直径は300mm未満であり、100mm〜250mm程度(基板外径の1/3〜5/6程度)が好ましい。
なお、支持部58の直径(面積)は、基板68の直径(面積)より大きくすることもできる。この場合は、支持部58の厚さをさらに厚くすることが好ましい。
The diameter of the support portion 58 is smaller than the diameter of the substrate 68, that is, the upper surface of the support portion 58 has an area smaller than the area of the flat surface which is the lower surface of the substrate 68, and the substrate 68 has a peripheral edge of the substrate 68. It remains and is supported by the support portion 58. The substrate 68 has a diameter of, for example, 300 mm, and therefore the support portion 58 has a diameter of less than 300 mm, preferably about 100 mm to 250 mm (about 1/3 to 5/6 of the substrate outer diameter).
Note that the diameter (area) of the support portion 58 may be larger than the diameter (area) of the substrate 68. In this case, it is preferable to further increase the thickness of the support portion 58.

また、この支持部58の円柱軸方向の厚さは、基板68の厚さよりも厚く形成されている。基板68の厚さは、例えば700μmであり、したがって、支持部58の厚さは、700μmを越えており、10mmまでは可能であり、少なくとも基板68の厚さの2倍以上、例えば3mm〜10mmが好ましく、更には3mm〜6mmが好ましく、更には4mm〜5mmが好ましい。また、この支持部58の厚さは、載置部66の厚さよりも厚くなっている。支持部58の厚さをこのような厚さとするのは、支持部58自体の剛性を増し、支持部58の熱処理時の変形を抑制するためである。
なお、熱処理時の変形を抑制することができるのであれば、必ずしもシリコン製の支持部58の厚さは、基板68の厚さよりも厚く形成する必要はない。
Further, the thickness of the support portion 58 in the cylindrical axis direction is formed to be thicker than the thickness of the substrate 68. The thickness of the substrate 68 is, for example, 700 μm. Therefore, the thickness of the support portion 58 exceeds 700 μm and can be up to 10 mm, and at least twice the thickness of the substrate 68, for example, 3 mm to 10 mm. Is preferable, 3 to 6 mm is more preferable, and 4 to 5 mm is more preferable. Further, the thickness of the support portion 58 is greater than the thickness of the placement portion 66. The reason why the thickness of the support portion 58 is set to such a thickness is to increase the rigidity of the support portion 58 itself and to suppress deformation of the support portion 58 during heat treatment.
If the deformation during the heat treatment can be suppressed, the thickness of the support portion 58 made of silicon does not necessarily have to be greater than the thickness of the substrate 68.

図6に示すように、支持部58に対応して載置部66に円形の嵌合溝74を形成し、この嵌合溝74に支持部58を嵌合させるようにしてもよい。支持部58の厚さを薄くすることなく維持したまま、支持部58と載置部66との合計の厚さを薄くすることができ、一度に処理する基板68の処理枚数を増やすことができる。また、嵌合溝74に支持部58を嵌合させることにより支持部58の位置を安定させることができる。この場合、支持部58と嵌合溝74との間には、熱膨張を考慮して若干の隙間を形成してもよい。   As shown in FIG. 6, a circular fitting groove 74 may be formed in the mounting portion 66 corresponding to the support portion 58, and the support portion 58 may be fitted into the fitting groove 74. The total thickness of the support portion 58 and the placement portion 66 can be reduced while maintaining the thickness of the support portion 58 without reducing the thickness, and the number of substrates 68 processed at one time can be increased. . Further, the position of the support portion 58 can be stabilized by fitting the support portion 58 into the fitting groove 74. In this case, a slight gap may be formed between the support portion 58 and the fitting groove 74 in consideration of thermal expansion.

また、図7に示すように、載置部66に開口66aを設け、支持部58の下面に、開口66aに嵌る凸部58aを設け、この支持部58の凸部58aを載置部66の開口66aに嵌め込むようにしてもよい。本発明では、このような形状のものも、板状部材に含めるものとする。なお、この場合も、支持部58の凸部58aと載置部66の開口66aとの間には、熱膨張を考慮して若干の隙間を形成するとよい。
なお、支持部58の形状は、この実施形態のように円柱状である必要はなく、楕円柱や多角柱として構成することもできる。また、支持部58は、載置部66に固定することもできる。
Further, as shown in FIG. 7, an opening 66 a is provided in the mounting portion 66, and a convex portion 58 a that fits into the opening 66 a is provided on the lower surface of the supporting portion 58, and the convex portion 58 a of the supporting portion 58 is connected to the mounting portion 66. You may make it fit in the opening 66a. In the present invention, such a shape is also included in the plate member. In this case as well, a slight gap may be formed between the convex portion 58a of the support portion 58 and the opening 66a of the placement portion 66 in consideration of thermal expansion.
In addition, the shape of the support part 58 does not need to be a column shape like this embodiment, and can also be comprised as an elliptical column or a polygonal column. Further, the support portion 58 can be fixed to the placement portion 66.

支持部58の基板68側の上面(基板載置面)には、接着防止層(コーティングされた膜)70が形成されている。この接着防止層70は、例えばシリコン表面を処理することにより、又はCVD(プラズマCVD又は熱CVD)等によりシリコン表面上に堆積(de
position)することにより形成した窒化珪素(Si)膜、炭化珪素(SiC)膜、酸化珪素(SiO)膜、ガラス状炭素、微結晶ダイヤモンド等、耐熱性及び耐磨耗性に優れた材料からなり、基板68の処理後の支持部58と基板68との接着を防止するようにしてある。接着防止層70を炭化珪素(SiC)製の膜とした場合、膜の厚さは、0.1μm〜50μmの範囲とすることが好ましい。炭化珪素製の膜70を厚くすると、シリコンと炭化珪素との熱膨張率の差により、シリコン製の支持部58が炭化珪素製の膜70に引っ張られて支持部全体の変形量が大きくなり、この大きな変形によって基板68にスリップが発生するおそれがある。これに対して炭化珪素製の膜70を上記のような厚さとすると、シリコン製の支持部58が炭化珪素製の膜70に引っ張られる量が少なくなり、支持部全体の変形量も少なくなる。即ち、炭化珪素製の膜70を薄くすると支持部58と膜70との熱膨張率の差による応力が低減し、支持部全体の変形量が少なくなり、支持部全体の熱膨張率も本来のシリコンの熱膨張率(基板68がシリコンの場合は略同等の熱膨張率)に近づき、スリップの発生を防止できるものである。
An adhesion preventing layer (coated film) 70 is formed on the upper surface (substrate mounting surface) of the support portion 58 on the substrate 68 side. The adhesion preventing layer 70 is deposited on the silicon surface by, for example, treating the silicon surface or by CVD (plasma CVD or thermal CVD).
silicon nitride (Si 3 N 4 ) film, silicon carbide (SiC) film, silicon oxide (SiO 2 ) film, glassy carbon, microcrystalline diamond, etc. formed by positioning), excellent in heat resistance and wear resistance The support portion 58 after the processing of the substrate 68 and the substrate 68 are prevented from being bonded. When the adhesion preventing layer 70 is a silicon carbide (SiC) film, the thickness of the film is preferably in the range of 0.1 μm to 50 μm. When the silicon carbide film 70 is thickened, due to the difference in thermal expansion coefficient between silicon and silicon carbide, the silicon support part 58 is pulled by the silicon carbide film 70, and the deformation amount of the entire support part increases. This large deformation may cause the substrate 68 to slip. On the other hand, when the thickness of the silicon carbide film 70 is as described above, the amount by which the silicon support portion 58 is pulled by the silicon carbide film 70 is reduced, and the deformation amount of the entire support portion is also reduced. That is, when the silicon carbide film 70 is thinned, the stress due to the difference in thermal expansion coefficient between the support portion 58 and the film 70 is reduced, the deformation amount of the entire support portion is reduced, and the thermal expansion coefficient of the entire support portion is also the original one. It approaches the thermal expansion coefficient of silicon (substantially the same thermal expansion coefficient when the substrate 68 is silicon), and can prevent slipping.

炭化珪素製の膜70の厚さを0.1μm未満とすると、炭化珪素の膜70が薄過ぎて消耗し、シリコン製の支持部58に炭化珪素を再コーティングする必要が生じ、同一の支持部58を繰り返し使用することができなくなる。この膜70の厚さを0.1μm以上とすれば、炭化珪素の膜70をシリコン製の支持部58に頻繁に再コーティングする必要がなくなり、同一の支持部58を繰り返し使用することができる。尚、炭化珪素製の膜70の厚さを1μm以上とすれば、更に膜が消耗しなくなり、同一の支持部58を繰り返し使用できる回数が一層増えるので好ましい。   If the thickness of the silicon carbide film 70 is less than 0.1 μm, the silicon carbide film 70 is too thin and consumed, and it becomes necessary to recoat silicon carbide on the silicon support portion 58, and the same support portion. 58 cannot be used repeatedly. If the thickness of the film 70 is 0.1 μm or more, it is not necessary to recoat the silicon carbide film 70 on the silicon support portion 58 frequently, and the same support portion 58 can be used repeatedly. It is preferable that the thickness of the silicon carbide film 70 is 1 μm or more because the film is not further consumed and the number of times the same support portion 58 can be used repeatedly increases.

炭化珪素製の膜70の厚さを50μmを超えるようにすると、炭化珪素製の膜70自体が割れやすくなり、この割れが原因で基板にスリップも発生しやすくなる。この膜70の厚さを50μm以下とすれば、膜70の割れが生じにくくなり、上述したようにシリコン製の支持部58と炭化珪素製の膜70との熱膨張率の差による応力も低減することから、支持部全体の変形が少なくなり、基板のスリップ発生を防止することができる。炭化珪素製の膜の厚さを15μm以下とすると基板のスリップが殆ど発生しなくなる。さらに炭化珪素製の膜70の厚さを0.1μm〜3μmとすると基板68のスリップは発生しなくなる。よって、炭化珪素製の膜70の厚さは、0.1μm〜50μmとするのがよく、より好ましくは0.1μm〜15μmがよく、さらに好ましくは0.1μm〜3μmがよい。   When the thickness of the silicon carbide film 70 exceeds 50 μm, the silicon carbide film 70 itself is easily cracked, and slippage is likely to occur in the substrate due to the crack. If the thickness of the film 70 is 50 μm or less, the film 70 is hardly cracked, and the stress due to the difference in thermal expansion coefficient between the silicon support portion 58 and the silicon carbide film 70 is reduced as described above. Therefore, the deformation of the entire support portion is reduced, and the occurrence of slippage of the substrate can be prevented. When the thickness of the silicon carbide film is 15 μm or less, almost no substrate slip occurs. Further, when the thickness of the silicon carbide film 70 is 0.1 μm to 3 μm, the substrate 68 does not slip. Therefore, the thickness of the silicon carbide film 70 is preferably 0.1 μm to 50 μm, more preferably 0.1 μm to 15 μm, and even more preferably 0.1 μm to 3 μm.

シリコン製の支持部58と炭化珪素製の膜70との厚さを両者の割合で示すと、炭化珪素製の膜70の厚さがシリコン製の支持部58の厚さの0.0025%〜1.25%とするのがよく、より好ましくは0.0025%〜0.38%がよく、さらに好ましくは0.0025%〜0.25%がよい。   When the thicknesses of the silicon support portion 58 and the silicon carbide film 70 are expressed as a ratio of both, the thickness of the silicon carbide film 70 is 0.0025% to the thickness of the silicon support portion 58. It should be 1.25%, more preferably 0.0025% to 0.38%, and still more preferably 0.0025% to 0.25%.

膜70は、炭化珪素以外に窒化珪素(Si)を同様にプラズマCVD又は熱CVDによりコーティングして形成することができる。窒化珪素製とした場合は、この膜70の厚さは0.1μm〜30μmとすることがよく、より好ましくは0.1μm〜5μmとするのがよい。 The film 70 can be formed by similarly coating silicon nitride (Si 3 N 4 ) other than silicon carbide by plasma CVD or thermal CVD. In the case of silicon nitride, the thickness of the film 70 is preferably 0.1 μm to 30 μm, more preferably 0.1 μm to 5 μm.

また、支持部58の上面周縁には、滑らかな面取りを施して凹部72が形成されている。この凹部72は、支持部58の周縁に基板68が接触して基板68に傷等が発生するのを防止する。   Further, a concave portion 72 is formed on the periphery of the upper surface of the support portion 58 by performing smooth chamfering. The recess 72 prevents the substrate 68 from coming into contact with the periphery of the support portion 58 and causing damage to the substrate 68.

なお、支持部58の全面に、接着防止層70を形成するのではなく、図8に示すように、支持部58の基板載置面の一部に、これらの材料からなるチップ76を載せて、このチップ76により基板68を支持するようにしてもよい。この場合、チップ76は3個以上設けることが好ましい。   Instead of forming the adhesion preventing layer 70 on the entire surface of the support portion 58, a chip 76 made of these materials is placed on a part of the substrate mounting surface of the support portion 58 as shown in FIG. The substrate 68 may be supported by the chip 76. In this case, it is preferable to provide three or more chips 76.

また、図9に示すように、支持部58の周縁近傍に同心円状の溝78を形成し、基板68との接触面積を減らし、基板68が支持部58との接触により傷が発生する確率を減らすことができると共に、基板68がずれるのを防止することができる。   Further, as shown in FIG. 9, concentric grooves 78 are formed in the vicinity of the periphery of the support portion 58 to reduce the contact area with the substrate 68, and the probability that the substrate 68 is damaged due to the contact with the support portion 58 is increased. In addition to being able to reduce, it is possible to prevent the substrate 68 from being displaced.

上記実施形態においては、支持部58の厚さを前述のような基板68の厚さよりも厚い所定の厚さとしたので、支持部58の剛性を大きくすることができ、基板搬入時、昇温、降温時、熱処理時、基板搬出時等における温度変化に対する支持部58の変形を抑制することができる。これにより支持部58の変形に起因する基板68へのスリップ発生を防止することができる。また、支持部58の材質を基板68と同じ材質であるシリコン製、即ち、シリコン製の基板68と同じ熱膨張率や硬度を持つ材質としたので、温度変化に対する基板68と支持部58との熱膨張、熱収縮の差をなくすことができ、また、基板68と支持部58との接触点で応力が発生してもその応力を開放し易くなるので、基板68に傷が発生しにくくなる。これにより基板68と支持部58との熱膨張率の差や硬度の差に起因する基板68へのスリップ発生を防止することができる。   In the above-described embodiment, since the thickness of the support portion 58 is set to a predetermined thickness that is larger than the thickness of the substrate 68 as described above, the rigidity of the support portion 58 can be increased. It is possible to suppress the deformation of the support portion 58 with respect to a temperature change at the time of temperature reduction, heat treatment, substrate unloading, or the like. Thereby, it is possible to prevent the occurrence of slip to the substrate 68 due to the deformation of the support portion 58. Further, since the material of the support portion 58 is made of silicon, which is the same material as the substrate 68, that is, a material having the same thermal expansion coefficient and hardness as the silicon substrate 68, the substrate 68 and the support portion 58 with respect to temperature change The difference between thermal expansion and thermal contraction can be eliminated, and even if stress is generated at the contact point between the substrate 68 and the support portion 58, the stress is easily released, so that the substrate 68 is less likely to be damaged. . Thereby, it is possible to prevent the occurrence of slip to the substrate 68 due to a difference in thermal expansion coefficient and a difference in hardness between the substrate 68 and the support portion 58.

なお、上記実施形態及び実施例の説明では、支持部の直径(面積)が基板よりも小さい場合について説明したが、基板直径よりも支持部直径を大きくすることもできる。この場合は、支持部58の剛性を確保するため、支持部58の厚さをさらに厚くする必要がある。   In the description of the above embodiment and examples, the case where the diameter (area) of the support portion is smaller than that of the substrate has been described. In this case, it is necessary to further increase the thickness of the support portion 58 in order to ensure the rigidity of the support portion 58.

また、シリコン製の支持部58には、炭化珪素製の膜等の接着防止膜70がコーティングされているので、支持部58と基板68との熱による接着を防止することができる。膜70は、上述したように薄く形成されているので、支持部58と膜70との熱膨張率の差による応力を小さくすることができ、シリコン製の支持部58の熱膨張に支障を与えることがなく、膜70を含めた支持部全体を本来のシリコンが持つ熱膨張率と略同等に維持することができるものである。尚、膜70は支持部58の裏面や側面にもコーティングしてもよい。   Further, since the silicon support portion 58 is coated with the adhesion preventing film 70 such as a silicon carbide film, the heat adhesion between the support portion 58 and the substrate 68 can be prevented. Since the film 70 is thinly formed as described above, the stress due to the difference in thermal expansion coefficient between the support portion 58 and the film 70 can be reduced, and the thermal expansion of the silicon support portion 58 is hindered. In other words, the entire support portion including the film 70 can be maintained substantially equal to the thermal expansion coefficient of the original silicon. The film 70 may also be coated on the back surface or side surface of the support portion 58.

図10において、支持部58に関する種々の変形例が示されている。
前述した実施形態においては、支持部58の基板載置面にのみ膜70を形成したが、図10(a)に示すように、支持部58の全体、即ち、支持部58の表面(基板載置面)、側面及び裏面に膜70を形成してもよい。
また、図10(b)に示すように、支持部58の裏面を除いて、支持部58の表面(基板載置面)及び側面に膜70を形成することもできる。
また、膜70は一層に限られるものではなく、複数の層として形成してもよく、例えば図10(c)に示すように、第1の膜80の上に第2の膜82を形成することができる。第1の膜80は、例えば炭化珪素(SiC)、窒化珪素(Si)、多結晶シリコン(Poly−Si)、酸化珪素(SiO)、ガラス状炭素又は微結晶ダイヤモンドからなる。炭化珪素又は窒化珪素から構成する場合は、前述したように、プラズマCVD又は熱CVDにて形成することができる。また、第2の膜82は、熱処理時において第1の膜70よりも硬度が小さい材料、例えば酸化珪素(SiO)から構成することができる。
このように、最表面となる第2の膜82を熱処理時において第1の膜80よりも硬度が小さい材料とすることにより、高温熱処理時に基板68と支持部58との接触点で応力が発生した場合に応力を開放し易くなるので、基板68に傷を与えにくくなり、スリップが発生しにくくなる。特に最表面の膜70を、熱処理時において基板(Si)68より硬度が小さいSiOとした場合、熱処理時においては、高度の小さい方のSiOが壊れて応力を開放するので、硬度の大きい方の基板68に傷を発生させず、スリップを発生することがない。即ち、最表面を、熱処理時において他の膜より硬度が小さく、且つ基板よりも硬度が小さい材料とすることが更に好ましい。
In FIG. 10, various modifications regarding the support portion 58 are shown.
In the above-described embodiment, the film 70 is formed only on the substrate placement surface of the support portion 58. However, as shown in FIG. The film 70 may be formed on the mounting surface), the side surface, and the back surface.
Further, as shown in FIG. 10B, the film 70 can be formed on the front surface (substrate mounting surface) and side surfaces of the support portion 58 except for the back surface of the support portion 58.
The film 70 is not limited to a single layer, and may be formed as a plurality of layers. For example, as shown in FIG. 10C, the second film 82 is formed on the first film 80. be able to. The first film 80 is made of, for example, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), polycrystalline silicon (Poly-Si), silicon oxide (SiO 2 ), glassy carbon, or microcrystalline diamond. In the case of silicon carbide or silicon nitride, as described above, it can be formed by plasma CVD or thermal CVD. The second film 82 can be made of a material having a hardness lower than that of the first film 70 during heat treatment, for example, silicon oxide (SiO 2 ).
As described above, the second film 82 which is the outermost surface is made of a material whose hardness is smaller than that of the first film 80 during the heat treatment, so that stress is generated at the contact point between the substrate 68 and the support portion 58 during the high temperature heat treatment. In this case, the stress is easily released, so that the substrate 68 is hardly damaged and slipping is hardly generated. In particular, when the outermost film 70 is made of SiO 2 whose hardness is smaller than that of the substrate (Si) 68 at the time of heat treatment, the higher degree of SiO 2 breaks and releases the stress at the time of heat treatment, so that the hardness is high. No scratch is generated on the other substrate 68, and no slip is generated. That is, it is more preferable that the outermost surface is made of a material having a hardness lower than that of other films and a hardness lower than that of the substrate during heat treatment.

また、最表面のSiOは非晶質(アモルファス)であることが好ましい。基板68と支持部58とは高温になれば、それらの接触点で融着するが、そのとき支持部58の基板68との接触点が結晶である場合、結晶部分は粘性流動しないので、熱膨張の差による応力を開放できず、最終的には基板68と支持部58とのどちらかにスリップが発生する。これに対して支持部58の基板68との接触点が非晶質である場合、その非晶質部分は粘性流動(粘性変形)するので、基板68と支持部58とが融着しても、接触点で発生した応力を開放することが可能となり、基板68に傷を発生させず、スリップ発生を防止することができる。 The outermost SiO 2 is preferably amorphous. When the temperature of the substrate 68 and the support portion 58 becomes high, the substrate 68 and the support portion 58 are fused at their contact points. At that time, if the contact point of the support portion 58 with the substrate 68 is a crystal, the crystal portion does not flow viscously. The stress due to the difference in expansion cannot be released, and eventually slip occurs in either the substrate 68 or the support portion 58. On the other hand, when the contact point of the support portion 58 with the substrate 68 is amorphous, the amorphous portion flows in a viscous flow (viscous deformation), so even if the substrate 68 and the support portion 58 are fused. The stress generated at the contact point can be released, the substrate 68 is not damaged, and the occurrence of slip can be prevented.

また、図10(d)に示すように、支持部58は、支持部58の基板載置面の周縁部分を残して切欠かれ、中心側で円形に形成された切欠部84と、周縁でリング状に形成された突部86とから構成され、この突部86の基板載置面及び側面に第1の膜80と第2の膜82を形成してもよい。これにより、基板68が接触する面積を少なくすることができる。   Further, as shown in FIG. 10 (d), the support portion 58 is notched leaving the peripheral portion of the substrate mounting surface of the support portion 58, and has a notch portion 84 formed in a circle on the center side, and a ring at the periphery. The first film 80 and the second film 82 may be formed on the substrate placement surface and the side surface of the protrusion 86. Thereby, the area which the board | substrate 68 contacts can be decreased.

なお、第2の膜82は、第1の膜80と同様にCVD等により形成することもできるが、後述するように、基板68を処理するときに自然に形成されるものであってもよい。     The second film 82 can be formed by CVD or the like, similar to the first film 80, but may be formed naturally when the substrate 68 is processed, as will be described later. .

[実施例1]
図11において、本発明に係る第1実施例が示されている。前述した実施形態と同様に例えば本体部が炭化珪素から構成された基板支持体30には、載置部66が支柱64から平行に突出形成されている。尚、支柱は複数本、例えば3〜4本設けられる。プレート(土台)88は、例えば炭化珪素(SiC)製の円柱状の板状部材からなり、該プレート88の下面周縁が載置部66に支持されている。支持部82は、シリコン(Si)製の円柱状の板状部材からなり、プレート88の上面に載置されている。該支持部82の上面には、例えば炭化珪素からなる接着防止層70が形成されている。この接着防止層70は0.1μm〜50μmとすることが好ましい。基板68は、この接着防止層70を介して支持部82に支持されている。
プレート88及び支持部82の厚さは、それぞれ基板68の厚さよりも厚いことが好ましいが、支持部82の厚さのみが基板68の厚さよりも厚くなるようにしてもよい。
[Example 1]
FIG. 11 shows a first embodiment according to the present invention. Similar to the above-described embodiment, for example, a mounting portion 66 is formed to protrude in parallel from the support column 64 on the substrate support 30 whose main body portion is made of silicon carbide. Note that a plurality of columns, for example, 3 to 4 columns, are provided. The plate (base) 88 is made of, for example, a cylindrical plate-like member made of silicon carbide (SiC), and the lower surface periphery of the plate 88 is supported by the mounting portion 66. The support portion 82 is made of a cylindrical plate-shaped member made of silicon (Si), and is placed on the upper surface of the plate 88. An adhesion preventing layer 70 made of, for example, silicon carbide is formed on the upper surface of the support portion 82. The adhesion preventing layer 70 is preferably 0.1 μm to 50 μm. The substrate 68 is supported by the support portion 82 via the adhesion preventing layer 70.
The thickness of the plate 88 and the support portion 82 is preferably thicker than the thickness of the substrate 68, respectively, but only the thickness of the support portion 82 may be thicker than the thickness of the substrate 68.

プレート88は、直径Φ308mm、厚さ3mmとした。支持部82は、直径Φ200mm、厚さ4mmとした。基板68は、直径Φ300mm、厚さ700μmのシリコンウエハである。炭化珪素からなる接着防止層70は0.1μm〜50μmとした。熱処理は、600°Cの温度に保持した反応炉内に基板支持体30に支持した基板68をロードし、基板ロード後、反応炉内を処理温度である1200°C、又は1350°Cまで昇温し、窒素(N2)ガスと酸素(O2)ガスを導入して反応炉内を処理温度に所定時間保持し、その後反応炉内温度を600°Cに降温して基板支持体30に支持された基板68をアンロードした。尚、基板68の昇温、降温速度は高温になる程、遅くなるよう多段階で昇温、降温するようにした。このように多段階で昇温、降温するのは(高温である程、昇温速度、降温速度を小さくするのは)高温で急激に温度を変化させると、基板面内で均一に温度が変化せず、スリップ発生の原因となるからである。熱処理時間は合計で13〜14時間程度とした。その結果、処理温度が、1200°Cの場合、1350°Cの場合のいずれの場合においても基板68にはスリップの発生は見られなかった。   The plate 88 had a diameter of Φ308 mm and a thickness of 3 mm. The support portion 82 has a diameter of 200 mm and a thickness of 4 mm. The substrate 68 is a silicon wafer having a diameter of 300 mm and a thickness of 700 μm. The adhesion preventing layer 70 made of silicon carbide was 0.1 μm to 50 μm. In the heat treatment, the substrate 68 supported by the substrate support 30 is loaded into a reaction furnace maintained at a temperature of 600 ° C., and after the substrate is loaded, the temperature in the reaction furnace is increased to 1200 ° C. or 1350 ° C., which is the processing temperature. Then, nitrogen (N 2) gas and oxygen (O 2) gas are introduced, the inside of the reaction furnace is maintained at the processing temperature for a predetermined time, and then the temperature in the reaction furnace is lowered to 600 ° C. and supported by the substrate support 30. The substrate 68 was unloaded. It should be noted that the temperature of the substrate 68 was raised and lowered in multiple stages so that the rate of temperature rise and fall became slower as the temperature increased. In this way, the temperature is increased and decreased in multiple stages (the higher the temperature, the lower the temperature increase rate and temperature decrease rate). If the temperature is changed rapidly at a high temperature, the temperature changes uniformly within the substrate surface. This is because it causes slippage. The heat treatment time was about 13 to 14 hours in total. As a result, no slip was observed on the substrate 68 in any case where the processing temperature was 1200 ° C. and 1350 ° C.

[実施例2]
図12において、本発明に係る第2実施例が示されている。前述した実施形態と同様に例えば本体部が炭化珪素から構成された基板支持体30には、載置部66が支柱64から平行に突出形成されている。尚、支柱64は複数本、例えば3本又は4本設けられる。プレート(土台)88は、例えば炭化珪素(SiC)製の円柱状の板状部材からなり、該プレート88の下面周縁が載置部66に支持されている。そして、このプレート88には、前述した円柱状の板状部材からなるシリコン(Si)製の支持部58が載置されている。さらに、支持部58の上面には、例えば炭化珪素からなる接着防止層70が形成されている。
[Example 2]
FIG. 12 shows a second embodiment according to the present invention. Similar to the above-described embodiment, for example, a mounting portion 66 is formed to protrude in parallel from the support column 64 on the substrate support 30 whose main body portion is made of silicon carbide. In addition, the support | pillar 64 is provided with two or more, for example, three or four. The plate (base) 88 is made of, for example, a cylindrical plate-like member made of silicon carbide (SiC), and the lower surface periphery of the plate 88 is supported by the mounting portion 66. The plate 88 is mounted with a support portion 58 made of silicon (Si) made of the columnar plate-shaped member described above. Further, an adhesion preventing layer 70 made of, for example, silicon carbide is formed on the upper surface of the support portion 58.

本体部が炭化珪素製の基板支持体30に厚さ2.5mm〜3mm、直径Φ308mmの炭化珪素製プレート88を支持し、その上に、厚さ4mm、直径Φ200mm、基板載置面に接着防止層としての炭化珪素膜70をコーティングしたシリコン製の支持部58を載せ、その上に厚さ700μm、直径Φ300mmのシリコンウェハである基板68を載置した。熱処理は、図12に示すように、600°Cの温度に保持した反応炉内に基板支持体30に支持した基板68をロードし、基板ロード後、反応炉内を処理温度である1350°Cまで昇温度速度を段階的に変えて昇温し、窒素(N)ガスと酸素(O)ガスを導入して反応炉内を処理温度に所定時間保持し、その後反応炉内温度を600°Cまで降温速度を段階的に変えて降温して基板支持体30に支持された基板68をアンロードした。基板68の昇温、降温速度は高温になる程、遅くなるようにした。即ち、室温から600°Cまでの昇温速度よりも、600°Cから1000°Cまでの昇温速度の方が遅く、600°Cから1000°Cまでの昇温速度よりも1000°Cから1200°Cまでの昇温速度の方が遅く、1000°Cから1200°Cまでの昇温速度よりも1200°Cから1350°Cまでの昇温速度の方が遅くなるようにした。また、逆に1350°Cから1200°Cまでの降温速度の方が、1200°Cから1000°Cまでの降温速度よりも遅く、1200°Cから1000°Cまでの降温速度の方が、1000°Cから600°Cまでの降温速度よりも遅く、1000°Cから600°Cまでの降温速度の方が、600°Cから室温までの降温速度よりも遅くなるようにした。このように多段階で昇温、降温するのは(高温である程、昇温速度、降温速度を小さくするのは)高温で急激に温度を変化させると、基板面内で均一に温度が変化せず、スリップ発生の原因となるからである。熱処理時間は合計で13〜14時間程度とした。その結果、炭化珪素製の膜70を0.1μm〜3μmとしたときは、基板68にはスリップは発生しなかった。膜70を15μm、50μmとしたときは、基板68にはスリップは殆ど発生しなかった。 The main body supports a silicon carbide plate 88 having a thickness of 2.5 mm to 3 mm and a diameter of Φ308 mm on a substrate support 30 made of silicon carbide, and has a thickness of 4 mm, a diameter of Φ200 mm, and prevents adhesion to the substrate mounting surface. A silicon support portion 58 coated with a silicon carbide film 70 as a layer was placed, and a substrate 68, which is a silicon wafer having a thickness of 700 μm and a diameter of 300 mm, was placed thereon. In the heat treatment, as shown in FIG. 12, the substrate 68 supported by the substrate support 30 is loaded into a reaction furnace maintained at a temperature of 600 ° C., and after loading the substrate, the inside of the reaction furnace is treated at a temperature of 1350 ° C. The temperature is raised at a stepwise temperature increase rate, and nitrogen (N 2 ) gas and oxygen (O 2 ) gas are introduced and the reaction furnace is maintained at the treatment temperature for a predetermined time. The substrate 68 supported by the substrate support 30 was unloaded by changing the temperature decrease rate in steps to 0 ° C. The temperature increase / decrease rate of the substrate 68 was made slower as the temperature increased. That is, the temperature increase rate from 600 ° C to 1000 ° C is slower than the temperature increase rate from room temperature to 600 ° C, and from 1000 ° C than the temperature increase rate from 600 ° C to 1000 ° C. The temperature rising rate from 1200 ° C was slower, and the temperature rising rate from 1200 ° C to 1350 ° C was slower than the temperature rising rate from 1000 ° C to 1200 ° C. Conversely, the temperature decrease rate from 1350 ° C to 1200 ° C is slower than the temperature decrease rate from 1200 ° C to 1000 ° C, and the temperature decrease rate from 1200 ° C to 1000 ° C is 1000 ° C. The temperature lowering rate from ° C to 600 ° C was slower, and the temperature lowering rate from 1000 ° C to 600 ° C was made slower than the temperature lowering rate from 600 ° C to room temperature. In this way, the temperature is increased and decreased in multiple stages (the higher the temperature, the lower the temperature increase rate and temperature decrease rate). If the temperature is changed rapidly at a high temperature, the temperature changes uniformly within the substrate surface. This is because it causes slippage. The heat treatment time was about 13 to 14 hours in total. As a result, when the silicon carbide film 70 was 0.1 μm to 3 μm, no slip occurred on the substrate 68. When the film 70 was 15 μm and 50 μm, almost no slip occurred on the substrate 68.

上記実施例を繰り返し行った結果、1回目の評価よりも、2回目以降の評価の方が、スリップは発生しにくくなることが分った。これは、1回目の評価におけるN、O雰囲気下での熱処理で支持部58上の膜70の表面に非晶質(アモルファス)状のSiO膜が形成されることが原因と考えられる。この非晶質状のSiO膜が支持部58の最表面に形成されることにより、支持部58の基板68と接触する部分の硬度が熱処理時においてSiC製の膜70やSi製の基板68より小さくなり、高温熱処理時において基板68と支持部58との接触点で応力が発生してもその応力を開放することができる。しかもSiOが非晶質であることから、高温熱処理時において基板68と支持部58とがそれらの接触点で融着しても、非晶質部分の粘性流動により融着した接触点で発生した応力を、非晶質SiOが粘性流動(粘性変形)することにより開放することができる。その結果、2回目以降の評価における高温熱処理時の基板68の傷発生を抑制することができるようになり、基板68へのスリップ発生を抑制できるようになったものと考えられる。
なお、本実施例においては、Si製の支持部58上面に設けたSiC製の膜70の表面に、アモルファス状のSiO膜が形成される場合について説明したが、Si製の支持部58の表面に、直接アモルファス状のSiOを設けるようにしてもよいのは勿論のことである。
As a result of repeating the above examples, it was found that slips are less likely to occur in the second and subsequent evaluations than in the first evaluation. This is considered due to the fact that an amorphous SiO 2 film is formed on the surface of the film 70 on the support portion 58 by the heat treatment in the N 2 and O 2 atmosphere in the first evaluation. . By forming this amorphous SiO 2 film on the outermost surface of the support portion 58, the hardness of the portion of the support portion 58 in contact with the substrate 68 has an SiC film 70 or Si substrate 68 at the time of heat treatment. Even if stress is generated at the contact point between the substrate 68 and the support portion 58 during the high-temperature heat treatment, the stress can be released. In addition, since SiO 2 is amorphous, even when the substrate 68 and the support 58 are fused at their contact points during high-temperature heat treatment, they are generated at the contact points fused by the viscous flow of the amorphous part. The released stress can be released by the amorphous SiO 2 viscous flow (viscous deformation). As a result, it is considered that the generation of scratches on the substrate 68 during the high-temperature heat treatment in the second and subsequent evaluations can be suppressed, and the occurrence of slip to the substrate 68 can be suppressed.
In this embodiment, the case where an amorphous SiO 2 film is formed on the surface of the SiC film 70 provided on the upper surface of the Si support portion 58 has been described. Of course, amorphous SiO 2 may be directly provided on the surface.

なお、上記実施形態及び実施例の説明にあっては、熱処理装置として、複数の基板を熱処理するバッチ式のものを用いたが、これに限定するものではなく、枚葉式のものであってもよい。   In the description of the above embodiment and examples, a batch-type apparatus for heat-treating a plurality of substrates was used as the heat treatment apparatus, but the present invention is not limited to this, and a single-wafer type is used. Also good.

本発明の熱処理装置は、基板の製造工程にも適用することができる。
SOI(Silicon On Insulator)ウエハの一種であるSIMOX(Separation by Implanted Oxygen)ウエハの製造工程の一工程に本発明の熱処理装置を適用する例について説明する。
The heat treatment apparatus of the present invention can also be applied to a substrate manufacturing process.
An example in which the heat treatment apparatus of the present invention is applied to one step of a manufacturing process of a SIMOX (Separation by Implanted Oxygen) wafer which is a kind of SOI (Silicon On Insulator) wafer will be described.

まずイオン注入装置等により単結晶シリコンウエハ内へ酸素イオンをイオン注入する。その後、酸素イオンが注入されたウエハを上記実施形態の熱処理装置を用いて、例えばAr、O雰囲気のもと、1300°C〜1400°C、例えば1350°C以上の高温でアニールする。これらの処理により、ウエハ内部にSiO2層が形成された(SiO層が埋め込まれた)SIMOXウエハが作製される。
また、SIMOXウエハの他,水素アニールウエハの製造工程の一工程に本発明の熱処理装置を適用することも可能である。この場合、ウエハを本発明の熱処理装置を用いて、水素雰囲気中で1200°C程度以上の高温でアニールすることとなる。これによりIC(集積回路)が作られるウエハ表面層の結晶欠陥を低減することができ、結晶の完全性を高めることができる。
First, oxygen ions are implanted into the single crystal silicon wafer by an ion implantation apparatus or the like. Thereafter, the wafer into which oxygen ions are implanted is annealed at a high temperature of 1300 ° C. to 1400 ° C., for example, 1350 ° C. or higher, for example, in an Ar, O 2 atmosphere using the heat treatment apparatus of the above embodiment. By these processes, a SIMOX wafer in which a SiO 2 layer is formed inside the wafer (a SiO 2 layer is embedded) is manufactured.
In addition to the SIMOX wafer, the heat treatment apparatus of the present invention can be applied to one step of the manufacturing process of the hydrogen anneal wafer. In this case, the wafer is annealed at a high temperature of about 1200 ° C. or higher in a hydrogen atmosphere using the heat treatment apparatus of the present invention. As a result, crystal defects in the wafer surface layer on which an IC (integrated circuit) is formed can be reduced, and crystal integrity can be improved.

また、この他、エピタキシャルウエハの製造工程の一工程に本発明の熱処理装置を適用することも可能である。
以上のような基板の製造工程の一工程として行う高温アニール処理を行う場合であっても、本発明の熱処理装置を用いることにより、基板のスリップの発生を防止することができる。
In addition, the heat treatment apparatus of the present invention can be applied to one step of the epitaxial wafer manufacturing process.
Even in the case of performing the high-temperature annealing process performed as one step of the substrate manufacturing process as described above, the occurrence of the substrate slip can be prevented by using the heat treatment apparatus of the present invention.

本発明の熱処理装置は、半導体装置の製造工程にも適用することも可能である。
特に、比較的高い温度で行う熱処理工程、例えば、ウェット酸化、ドライ酸化、水素燃焼酸化(パイロジェニック酸化)、HCl酸化等の熱酸化工程や、硼素(B)、リン(P)、砒素(As)、アンチモン(Sb)等の不純物(ドーパント)を半導体薄膜に拡散する熱拡散工程等に適用するのが好ましい。
The heat treatment apparatus of the present invention can also be applied to a semiconductor device manufacturing process.
In particular, a heat treatment process performed at a relatively high temperature, for example, a thermal oxidation process such as wet oxidation, dry oxidation, hydrogen combustion oxidation (pyrogenic oxidation), HCl oxidation, boron (B), phosphorus (P), arsenic (As ), An antimony (Sb) or other impurity (dopant) is preferably applied to a thermal diffusion process for diffusing the semiconductor thin film.

このような半導体デバイスの製造工程の一工程としての熱処理工程を行う場合においても、本発明の熱処理装置を用いることにより、スリップの発生を防止することができる。   Even in the case of performing a heat treatment step as one step of such a semiconductor device manufacturing step, the occurrence of slip can be prevented by using the heat treatment apparatus of the present invention.

以上のように、本発明は、特許請求の範囲に記載した事項を特徴とするが、さらに次のような実施形態が含まれる。
(1)請求項1記載の熱処理装置において、前記支持部の厚さが少なくとも前記基板の厚さの2倍以上であることを特徴とする熱処理装置。
(2)請求項1記載の熱処理装置において、前記本体部は、前記支持部を載置する載置部を有し、前記支持部の厚さが前記載置部の厚さよりも厚いことを特徴とする熱処理装置。
(3)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面に、窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料が被覆されてなることを特徴とする熱処理装置。
(4)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面に、窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなるチップが一つ又は複数設けられてなることを特徴とする熱処理装置。
(5)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面に、凹部又は基板と同心円状の溝が形成されてなることを特徴とする熱処理装置。 (6)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面の周縁に、凹部又は基板と同心円状の溝が形成されてなることを特徴とする熱処理装置。
(7)請求項1記載の熱処理装置において、前記本体部は、前記支持部を載置する載置部を有し、この載置部に前記支持部が嵌合する嵌合溝が形成されていることを特徴とする熱処理装置。
(8)請求項1記載の熱処理装置において、前記本体部は、前記支持部を載置する載置部を有し、この載置部に開口又は溝が形成され、前記支持部には、前記開口または溝に嵌る凸部が設けられ、この支持部の凸部が前記開口又は溝に嵌合されていることを特徴とする熱処理装置。
(9)請求項1記載の熱処理装置において、前記支持部の基板載置面の面積は基板平坦面の面積よりも小さいことを特徴とする熱処理装置。
(10)請求項1記載の熱処理装置において、前記支持部は円柱状であり、前記支持部の直径が基板の直径よりも小さいことを特徴とする熱処理装置。
(11)請求項6記載の熱処理装置において、前記炭化珪素膜の膜圧はが支持部の厚さの0.0025%〜1.25%であることを特徴とする熱処理装置。
(12)請求項6記載の熱処理装置において、前記炭化珪素膜の膜圧が支持部の厚さの0.0025%〜0.38%であることを特徴とする熱処理装置。
(13)請求項6記載の熱処理装置において、前記炭化珪素膜の膜圧が支持部の厚さの0.0025%〜0.25%であることを特徴とする熱処理装置。
(14)請求項6記載の熱処理装置において、前記支持部の最上面には酸化珪素(SiO2)膜が形成されていることを特徴とする熱処理装置。
(15)請求項10記載の熱処理装置において、前記複数の膜は2種類の膜からなり、そのうち一つは炭化珪素(SiC)膜であり、最上面の膜は酸化珪素(SiO2)膜であることを特徴とする熱処理装置。
(16)請求項1記載の熱処理装置において、前記本体部の構成物は炭化珪素(SiC)であることを特徴とする熱処理装置。
(17)請求項1記載の熱処理装置において、前記基板支持体は、複数枚の基板を略水平状態で隙間をもって複数段に支持されてなるように構成されてなることを特徴とする熱処理装置。
(18)請求項1記載の熱処理装置において、熱処理は1000°C以上の温度で行うことを特徴とする熱処理装置。
(19)請求項1記載の熱処理装置において、熱処理は、1350°C以上の温度で行うことを特徴とする熱処理装置。
(20)処理室内に基板を搬入する工程と、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(21)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(22)処理室内に基板を搬入する工程と、基板が載置される基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前期処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
(23)処理室内に基板を搬入する工程と、基板が載置される基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前期処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
(24)処理室内に基板を搬入する工程と、基板が載置される基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前期処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(25)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
(26)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されたシリコン製の支
持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
(27)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(28)処理室内に基板を搬入する工程と、基板が載置される基板載置面にコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
(29)処理室内に基板を搬入する工程と、基板が載置される基板載置面にコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
(30)処理室内に基板を搬入する工程と、基板が載置される基板載置面にコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
As described above, the present invention is characterized by the matters described in the claims, and further includes the following embodiments.
(1) The heat treatment apparatus according to claim 1, wherein the thickness of the support portion is at least twice the thickness of the substrate.
(2) The heat treatment apparatus according to claim 1, wherein the main body portion has a placement portion on which the support portion is placed, and the thickness of the support portion is larger than the thickness of the placement portion. Heat treatment equipment.
(3) In the heat treatment apparatus according to claim 1, the support portion is formed on a substrate mounting surface on which the substrate is mounted, with silicon nitride (Si 3 N 4 ), silicon carbide (SiC), silicon oxide (SiO 2 ). ), A glassy carbon, or a microcrystalline diamond, one or a plurality of materials are coated.
(4) In the heat treatment apparatus according to claim 1, the support portion has silicon nitride (Si 3 N 4 ), silicon carbide (SiC), silicon oxide (SiO 2 ) on a substrate mounting surface on which the substrate is mounted. ), One or a plurality of chips made of one or a plurality of materials such as glassy carbon and microcrystalline diamond.
(5) The heat treatment apparatus according to claim 1, wherein the support portion is formed with a recess or a groove concentric with the substrate on a substrate placement surface on which the substrate is placed. . (6) The heat treatment apparatus according to claim 1, wherein the support portion is formed with a recess or a concentric groove with the substrate at a peripheral edge of the substrate placement surface on which the substrate is placed. Heat treatment equipment.
(7) In the heat treatment apparatus according to claim 1, the main body portion has a placement portion on which the support portion is placed, and a fitting groove into which the support portion is fitted is formed on the placement portion. A heat treatment apparatus characterized by comprising:
(8) In the heat treatment apparatus according to claim 1, the main body portion includes a placement portion on which the support portion is placed, and an opening or a groove is formed in the placement portion, A heat treatment apparatus, wherein a convex portion that fits into the opening or the groove is provided, and the convex portion of the support portion is fitted into the opening or the groove.
(9) The heat treatment apparatus according to claim 1, wherein the area of the substrate mounting surface of the support portion is smaller than the area of the flat substrate surface.
(10) The heat treatment apparatus according to claim 1, wherein the support portion is cylindrical, and the diameter of the support portion is smaller than the diameter of the substrate.
(11) The heat treatment apparatus according to claim 6, wherein the film pressure of the silicon carbide film is 0.0025% to 1.25% of the thickness of the support portion.
(12) The heat treatment apparatus according to claim 6, wherein a film pressure of the silicon carbide film is 0.0025% to 0.38% of a thickness of the support portion.
(13) The heat treatment apparatus according to claim 6, wherein a film pressure of the silicon carbide film is 0.0025% to 0.25% of a thickness of the support portion.
(14) The heat treatment apparatus according to claim 6, wherein a silicon oxide (SiO2) film is formed on the uppermost surface of the support portion.
(15) In the heat treatment apparatus according to claim 10, the plurality of films include two kinds of films, one of which is a silicon carbide (SiC) film, and the uppermost film is a silicon oxide (SiO2) film. The heat processing apparatus characterized by the above-mentioned.
(16) The heat treatment apparatus according to claim 1, wherein the constituent of the main body is silicon carbide (SiC).
(17) The heat treatment apparatus according to claim 1, wherein the substrate support is configured to support a plurality of substrates in a plurality of stages with a gap in a substantially horizontal state.
(18) The heat treatment apparatus according to claim 1, wherein the heat treatment is performed at a temperature of 1000 ° C. or higher.
(19) The heat treatment apparatus according to claim 1, wherein the heat treatment is performed at a temperature of 1350 ° C. or higher.
(20) A step of carrying the substrate into the processing chamber, a step of supporting the substrate by a support portion made of a silicon plate-like member thicker than the thickness of the substrate, and the substrate in the processing chamber by the support portion. A substrate processing method comprising a step of heat-treating in a supported state and a step of unloading the substrate from the processing chamber.
(21) Any one of silicon carbide (SiC), silicon oxide (SiO 2 ), glassy carbon, and microcrystalline diamond on the substrate loading surface on which the substrate is placed, and a step of carrying the substrate into the processing chamber Or a step of supporting the substrate by a silicon support portion coated with a film made of a plurality of materials, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and the processing of the substrate. And a step of unloading from the chamber.
(22) A step of carrying the substrate into the processing chamber, and a plurality of different films are stacked on the substrate mounting surface on which the substrate is mounted, and the hardness of the outermost film among the plurality of films is the smallest at the heat treatment temperature. Or a step of supporting the substrate by a silicon support portion whose outermost film is amorphous, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and And a step of unloading the substrate from the previous process chamber.
(23) A step of carrying the substrate into the processing chamber, and a plurality of different films are stacked on the substrate mounting surface on which the substrate is mounted, and the hardness of the outermost film among the plurality of films is the smallest at the heat treatment temperature Or a step of supporting the substrate by a silicon support portion whose outermost film is amorphous, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and And a step of unloading from the previous process chamber.
(24) A step of carrying the substrate into the processing chamber, and a plurality of different films are stacked on the substrate mounting surface on which the substrate is mounted, and the hardness of the outermost film among the plurality of films is the smallest at the heat treatment temperature Or a step of supporting the substrate by a silicon support portion whose outermost film is amorphous, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and And a step of unloading from the previous process chamber.
(25) A step of carrying the substrate into the processing chamber, and silicon having a silicon carbide (SiC) film formed on the substrate mounting surface on which the substrate is mounted, and further a silicon oxide (SiO 2 ) film formed on the outermost surface A step of supporting the substrate by a support portion made of metal, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and a step of unloading the substrate from the processing chamber. A method for manufacturing a substrate.
(26) A step of carrying the substrate into the processing chamber, and silicon having a silicon carbide (SiC) film formed on the substrate mounting surface on which the substrate is mounted, and a silicon oxide (SiO 2 ) film formed on the outermost surface A step of supporting the substrate by a support portion made of metal, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and a step of unloading the substrate from the processing chamber. A method for manufacturing a semiconductor device.
(27) A step of carrying the substrate into the processing chamber, and silicon having a silicon carbide (SiC) film formed on the substrate mounting surface on which the substrate is mounted, and further a silicon oxide (SiO 2 ) film formed on the outermost surface A step of supporting the substrate by a support portion made of metal, a step of heat-treating the substrate in a state of being supported by the support portion in the processing chamber, and a step of unloading the substrate from the processing chamber. A substrate processing method.
(28) A step of carrying the substrate into the processing chamber, and a coating film is formed on the substrate mounting surface on which the substrate is mounted, and the hardness of the coating film is smaller than the hardness of the substrate at the time of heat treatment at the heat treatment temperature, Or a step of supporting the substrate by a support portion made of silicon whose coating film is amorphous, a step of heat-treating the substrate in the processing chamber while being supported by the support portion, and the substrate from the processing chamber And a step of unloading the substrate.
(29) A step of carrying the substrate into the processing chamber, and a coating film is formed on the substrate mounting surface on which the substrate is mounted, and the hardness of the coating film is smaller than the hardness of the substrate at the time of heat treatment at the heat treatment temperature, Or a step of supporting the substrate by a support portion made of silicon whose coating film is amorphous, a step of heat-treating the substrate in the processing chamber while being supported by the support portion, and the substrate from the processing chamber And a step of carrying out the semiconductor device.
(30) A step of carrying the substrate into the processing chamber, and a coating film is formed on the substrate mounting surface on which the substrate is mounted, and the hardness of the coating film is smaller than the hardness of the substrate during the heat treatment at the heat treatment temperature, Or a step of supporting the substrate by a support portion made of silicon whose coating film is amorphous, a step of heat-treating the substrate in the processing chamber while being supported by the support portion, and the substrate from the processing chamber And a step of unloading the substrate.

以上述べたように、本発明によれば、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持するようにしたので、基板にスリップ転位欠陥が生じるのを防止することができる。
また、本発明によれば、シリコン製の支持部に炭化珪素や窒化珪素膜や、酸化珪素等の接着防止層をコーティングしたので、基板にスリップが生じるのを防止することができると共に、熱処理後の基板と支持部との接着を防止することができる。また、支持部の基板載置面にコーティングした膜の硬度が、熱処理時において、熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質となるようにしたので、基板にスリップが生じるのを更に防止することができる。また、支持部の基板載置面に複数の膜をコーティングする場合、最表面の膜の硬度が熱処理時において最も小さいか、又は最表面の膜が非晶質となるようにしたので、この場合においても、基板にスリップが生じるのをさらに防止することができるものである。
As described above, according to the present invention, since the substrate is supported by the support portion composed of the plate member made of silicon thicker than the thickness of the substrate, it is possible to prevent the occurrence of slip dislocation defects in the substrate. can do.
Further, according to the present invention, since the silicon support portion is coated with an adhesion prevention layer such as silicon carbide, silicon nitride film, or silicon oxide, it is possible to prevent the substrate from slipping and after heat treatment. Adhesion between the substrate and the support portion can be prevented. In addition, since the hardness of the film coated on the substrate mounting surface of the support portion is smaller than the hardness of the substrate during the heat treatment or the coating film becomes amorphous during the heat treatment, the substrate has slip. It can be further prevented from occurring. In addition, when coating a plurality of films on the substrate mounting surface of the support part, the hardness of the outermost film is the smallest during heat treatment, or the outermost film is made amorphous, so in this case In this case, it is possible to further prevent the substrate from slipping.

本発明は、熱処理中に発生する基板のスリップ転位欠陥発生を少なくし、高品質な半導体装置を製造することができる熱処理装置、半導体装置の製造方法及び基板の製造方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a heat treatment apparatus, a semiconductor device manufacturing method, and a substrate manufacturing method capable of manufacturing a high-quality semiconductor device by reducing the occurrence of slip dislocation defects in the substrate generated during the heat treatment.

本発明の実施形態に係る熱処理装置を示す斜視図である。It is a perspective view which shows the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた反応炉を示す断面図である。It is sectional drawing which shows the reaction furnace used for the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた基板支持体を示す断面図である。It is sectional drawing which shows the board | substrate support body used for the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた基板支持体の拡大断面図である。It is an expanded sectional view of the board | substrate support body used for the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた基板支持体の拡大平面図である。It is an enlarged plan view of a substrate support used for a heat treatment apparatus according to an embodiment of the present invention. 本発明の実施形態に係る熱処理装置に用いた基板支持体の第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the board | substrate support body used for the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた基板支持体の第2の変形例を示し、(a)は平面図、(b)は(a)のA−A線断面図である。The 2nd modification of the board | substrate support body used for the heat processing apparatus which concerns on embodiment of this invention is shown, (a) is a top view, (b) is the sectional view on the AA line of (a). 本発明の実施形態に係る熱処理装置に用いた基板支持体の第3の変形例を示し、(a)は平面図、(b)は(a)のB−B線断面図である。The 3rd modification of the board | substrate support body used for the heat processing apparatus which concerns on embodiment of this invention is shown, (a) is a top view, (b) is the BB sectional drawing of (a). 本発明の実施形態に係る熱処理装置に用いた基板支持体の第4の変形例を示す断面図である。It is sectional drawing which shows the 4th modification of the board | substrate support body used for the heat processing apparatus which concerns on embodiment of this invention. 支持部の種々の変形例を示す断面図である。It is sectional drawing which shows the various modifications of a support part. 本発明の他の実施形態に係る熱処理装置に用いた基板支持体を示す断面図である。It is sectional drawing which shows the board | substrate support body used for the heat processing apparatus which concerns on other embodiment of this invention. 本発明の実施例における基板処理時の温度変化を示す線図である。It is a diagram which shows the temperature change at the time of the board | substrate process in the Example of this invention.

符号の説明Explanation of symbols

10 熱処理装置
30 基板支持体
40 反応炉
58 支持部
66 載置部
58 基板
74 嵌合溝
DESCRIPTION OF SYMBOLS 10 Heat processing apparatus 30 Substrate support body 40 Reactor 58 Support part 66 Placement part 58 Substrate 74 Fitting groove

Claims (3)

基板を処理する反応炉と、
前記反応炉内で基板を支持する基板支持体とを有し、
前記基板支持体は、前記基板と接触する支持部と、この支持部を載置する載置部とを有し、この載置部には前記支持部が嵌合する溝が形成されていることを特徴とする熱処理装置。
A reactor for processing substrates;
A substrate support for supporting the substrate in the reactor,
The substrate support has a support portion that contacts the substrate and a placement portion on which the support portion is placed, and the placement portion has a groove into which the support portion is fitted. A heat treatment apparatus characterized by
基板と接触する支持部と、この支持部を載置する載置部とを有し、この載置部には前記支持部が嵌合する溝が形成されるように構成される基板支持体により基板を支持する工程と、
前記基板支持体により支持した基板を反応炉内に搬入する工程と、
前記反応炉内で前記基板支持体により支持した基板を処理する工程と、
前記基板支持体により支持した処理後の基板を反応炉より搬出する工程と、
を有することを特徴とする基板の製造方法。
A substrate support having a support portion that contacts the substrate and a placement portion on which the support portion is placed, and a groove in which the support portion is fitted is formed on the placement portion. A step of supporting the substrate;
Carrying the substrate supported by the substrate support into a reaction furnace;
Processing the substrate supported by the substrate support in the reactor;
A step of unloading the treated substrate supported by the substrate support from a reaction furnace;
A method for manufacturing a substrate, comprising:
基板と接触する支持部と、この支持部を載置する載置部とを有し、この載置部には前記支持部が嵌合する溝が形成される基板支持体により基板を支持する工程と、
前記基板支持体により支持した基板を処理する工程と、
前記基板支持体により支持した処理後の基板を反応炉より搬出する工程と、
を有することを特徴とする半導体装置の製造方法。
A step of supporting the substrate by a substrate support having a support portion in contact with the substrate and a placement portion on which the support portion is placed, and a groove in which the support portion is fitted is formed on the placement portion; When,
Processing the substrate supported by the substrate support;
A step of unloading the treated substrate supported by the substrate support from a reaction furnace;
A method for manufacturing a semiconductor device, comprising:
JP2006082075A 2002-09-27 2006-03-24 Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method Expired - Lifetime JP4611229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082075A JP4611229B2 (en) 2002-09-27 2006-03-24 Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002282231 2002-09-27
JP2003051244 2003-02-27
JP2003051243 2003-02-27
JP2006082075A JP4611229B2 (en) 2002-09-27 2006-03-24 Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004539559A Division JP4386837B2 (en) 2002-09-27 2003-09-26 Heat treatment apparatus, semiconductor device manufacturing method, and substrate manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009071177A Division JP2009200503A (en) 2002-09-27 2009-03-24 Thermal treatment method, method for manufacturing substrate, and method for manufacturing simox substrate

Publications (2)

Publication Number Publication Date
JP2006237625A true JP2006237625A (en) 2006-09-07
JP4611229B2 JP4611229B2 (en) 2011-01-12

Family

ID=37044852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082075A Expired - Lifetime JP4611229B2 (en) 2002-09-27 2006-03-24 Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4611229B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130695A (en) * 2006-11-17 2008-06-05 Bridgestone Corp Holder for heat treatment
JP2009200503A (en) * 2002-09-27 2009-09-03 Hitachi Kokusai Electric Inc Thermal treatment method, method for manufacturing substrate, and method for manufacturing simox substrate
JP2011176320A (en) * 2011-03-07 2011-09-08 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2019059639A (en) * 2017-09-26 2019-04-18 日立金属株式会社 Silicon nitride sintered substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161654A (en) * 1993-12-01 1995-06-23 Tokyo Electron Ltd Boat for heat treatment
JPH09260470A (en) * 1996-03-27 1997-10-03 Toshiba Corp Susceptor, heat treatment and heat treatment method
JPH10242254A (en) * 1997-02-21 1998-09-11 Ado Matsupu:Kk Jig for manufacture of semiconductor
JPH10242067A (en) * 1997-03-03 1998-09-11 Tokyo Electron Ltd Substrate supporting tool for heat treatment
JPH11340155A (en) * 1998-05-22 1999-12-10 Toshiba Ceramics Co Ltd Member for heat-treating semiconductor wafer and jig using the same
JP2001358086A (en) * 2000-06-16 2001-12-26 Sumitomo Metal Ind Ltd Thermal treatment method and device of wafer
JP2002231726A (en) * 2001-02-01 2002-08-16 Sumitomo Mitsubishi Silicon Corp Method of heat-treating silicon wafer
WO2004030073A1 (en) * 2002-09-27 2004-04-08 Hitachi Kokusai Electric Inc. Heat treatment system, process for fabricating semiconductor device and process for producing substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161654A (en) * 1993-12-01 1995-06-23 Tokyo Electron Ltd Boat for heat treatment
JPH09260470A (en) * 1996-03-27 1997-10-03 Toshiba Corp Susceptor, heat treatment and heat treatment method
JPH10242254A (en) * 1997-02-21 1998-09-11 Ado Matsupu:Kk Jig for manufacture of semiconductor
JPH10242067A (en) * 1997-03-03 1998-09-11 Tokyo Electron Ltd Substrate supporting tool for heat treatment
JPH11340155A (en) * 1998-05-22 1999-12-10 Toshiba Ceramics Co Ltd Member for heat-treating semiconductor wafer and jig using the same
JP2001358086A (en) * 2000-06-16 2001-12-26 Sumitomo Metal Ind Ltd Thermal treatment method and device of wafer
JP2002231726A (en) * 2001-02-01 2002-08-16 Sumitomo Mitsubishi Silicon Corp Method of heat-treating silicon wafer
WO2004030073A1 (en) * 2002-09-27 2004-04-08 Hitachi Kokusai Electric Inc. Heat treatment system, process for fabricating semiconductor device and process for producing substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200503A (en) * 2002-09-27 2009-09-03 Hitachi Kokusai Electric Inc Thermal treatment method, method for manufacturing substrate, and method for manufacturing simox substrate
JP2008130695A (en) * 2006-11-17 2008-06-05 Bridgestone Corp Holder for heat treatment
JP2011176320A (en) * 2011-03-07 2011-09-08 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2019059639A (en) * 2017-09-26 2019-04-18 日立金属株式会社 Silicon nitride sintered substrate
JP6992364B2 (en) 2017-09-26 2022-01-13 日立金属株式会社 Silicon nitride sintered substrate

Also Published As

Publication number Publication date
JP4611229B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4386837B2 (en) Heat treatment apparatus, semiconductor device manufacturing method, and substrate manufacturing method
JP4833074B2 (en) Heat treatment apparatus, heat treatment method, substrate manufacturing method, and semiconductor device manufacturing method
US7163393B2 (en) Heat treatment jig for semiconductor silicon substrate
JP5043826B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2010157755A (en) Substrate processing apparatus
JP4611229B2 (en) Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method
JP2007073865A (en) Heat treatment device
JP2003324106A (en) Heat-treatment apparatus, manufacturing method of semiconductor device, and manufacturing method of substrate
JP2005101161A (en) Supporting tool for heat treatment, heat treatment apparatus, heat treatment method, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2008078427A (en) Heat treatment apparatus
JP2006080294A (en) Method of manufacturing substrate
JP2004356355A (en) Heat treatment method, method of manufacturing substrate, method of manufacturing semiconductor device, and heat treatment apparatus
JP2006100303A (en) Substrate manufacturing method and heat treatment apparatus
JP2005086132A (en) Heat treating apparatus, manufacturing method of semiconductor device, manufacturing method of substrate, and treating method of substrate
JP2005203482A (en) Heat treatment apparatus
WO2004001835A1 (en) Heat treating equipment, and methods of manufacturing substrate and semiconductor device
JP2008078179A (en) Method of cleaning member
JP2009147383A (en) Heat treatment method
JP2004281669A (en) Heat treatment equipment
JP2004296492A (en) Thermal treatment equipment
JP5010884B2 (en) Substrate processing apparatus, substrate transport method, and semiconductor integrated circuit device manufacturing method
JP2005044891A (en) Heat treatment apparatus
JP2004281842A (en) Heat treatment equipment
JP2006080178A (en) Manufacturing method of substrate
JP2011176320A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term