JP2006237512A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006237512A
JP2006237512A JP2005053703A JP2005053703A JP2006237512A JP 2006237512 A JP2006237512 A JP 2006237512A JP 2005053703 A JP2005053703 A JP 2005053703A JP 2005053703 A JP2005053703 A JP 2005053703A JP 2006237512 A JP2006237512 A JP 2006237512A
Authority
JP
Japan
Prior art keywords
insulating film
dielectric constant
film
gate
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005053703A
Other languages
Japanese (ja)
Inventor
Tamashiro Ono
瑞城 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005053703A priority Critical patent/JP2006237512A/en
Publication of JP2006237512A publication Critical patent/JP2006237512A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To particularly improve the controllability of a gate electrode to a channel region in the vicinity of a source, and to enhance the current driving capacity of an element in a Schottky type field-effect transistor. <P>SOLUTION: A thickness in the geometric meaning of a gate insulating film can be made thinner than a semiconductor device formed only of a material having a high dielectric constant, by laminating a film having the dielectric constant different from the gate insulating film. The deterioration of the controllability of the gate electrode can be inhibited to the potential of the channel region in the vicinity of the source region particularly, resulting from a leakage to the outside from the side face of the gate insulating film of an electric-force line emitted from the gate electrode. The electric-force line emitted from the gate electrode can be collected in the channel region in the vicinity of the source region by the bending of the electric-force line on the interface of a substance having the different dielectric constant, by forming a gate side-wall insulating film 12 composed of the material having the high dielectric constant. A Schottky barrier formed between the source region and the channel region is thinned, and the resistance of the Schottky barrier is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ショットキー型電界効果トランジスターに関する。   The present invention relates to a Schottky field effect transistor.

図25は従来のショットキー型電界効果トランジスターの断面図である。ここではNチャネル電界効果トランジスターを例に取って示す。図25に示すように、従来の電界効果トランジスターは、半導体基板1上にトレンチ素子分離法に依り素子分離領域2が形成されている。半導体基板1内には、B(硼素)イオン注入に依りNチャネル領域3が形成されている。Nチャネル領域3上には酸化シリコンより高い誘電率を有する金属酸化物等の絶縁膜によりゲート絶縁膜4が形成されており、ゲート絶縁膜4上には、スパッタ法に依り厚さ100 nmの高融点金属が堆積されゲート電極5が形成されている。また、ゲート電極5を挟む様にシリサイド層の形成に依りソース・ドレイン領域6が形成されている。なお、この図に於いては層間絶縁膜や配線等は省略してある。   FIG. 25 is a cross-sectional view of a conventional Schottky field effect transistor. Here, an N channel field effect transistor is taken as an example. As shown in FIG. 25, in a conventional field effect transistor, an element isolation region 2 is formed on a semiconductor substrate 1 by a trench element isolation method. An N channel region 3 is formed in the semiconductor substrate 1 by B (boron) ion implantation. A gate insulating film 4 is formed on the N channel region 3 by an insulating film such as a metal oxide having a dielectric constant higher than that of silicon oxide. A thickness of 100 nm is formed on the gate insulating film 4 by sputtering. A refractory metal is deposited to form the gate electrode 5. A source / drain region 6 is formed by forming a silicide layer so as to sandwich the gate electrode 5. In this figure, interlayer insulating films, wirings, etc. are omitted.

上記ショットキー型電界効果トランジスターの基本構成に対する具体例としては、例えば、ゲート絶縁膜4の箇所にHfO2膜を、ゲート電極5にTaN/HfN積層膜を適用した半導体装置が以下非特許文献1のFig.2に示されている。ちなみにTaN/HfN積層膜はゲート絶縁膜の近傍をHfNで形成する事に依るしきい値電圧の調節と、その上にTaN層を設ける事に依るゲートの抵抗の低減とを目的としており、本願とは手段及び目的が異なる。
S.Zhu et al.Solid-State Electronics 48(2004)p.1987-p.1992
As a specific example of the basic configuration of the Schottky field effect transistor, for example, a semiconductor device in which an HfO 2 film is applied to the gate insulating film 4 and a TaN / HfN laminated film is applied to the gate electrode 5 is described below. This is shown in Fig.2. Incidentally, the TaN / HfN multilayer film has the purpose of adjusting the threshold voltage by forming the vicinity of the gate insulating film with HfN, and reducing the gate resistance by providing the TaN layer on top of it. The means and purpose are different.
S.Zhu et al. Solid-State Electronics 48 (2004) p.1987-p.1992

上述した従来の電界効果トランジスターに於いては素子の動作速度を速める事を目的として、ゲート電極は抵抗を減らす為に高融点金属で形成されており、ゲート絶縁膜は電流駆動力を増す為ないしチャネル領域の電位に対するゲート電極の制御性を向上させる為と、厚く形成する事に依りゲート電流を抑制する為に、金属酸化物等の酸化シリコンより誘電率の高い材料すなわち高誘電体材料で形成されている。チャネル領域とゲート電極との間の容量結合の強さは絶縁膜の幾何学的な意味での膜厚と酸化シリコンの誘電率(3.9)との積をその膜の誘電率で割った「酸化膜換算膜厚」で決まるので、絶縁膜を高誘電体材料で形成すると、チャネル領域の電位に対するゲート電極の制御性を保ちつつゲート絶縁膜を厚く形成する事が可能となる。   In the above-described conventional field effect transistor, the gate electrode is formed of a refractory metal in order to reduce the resistance for the purpose of increasing the operation speed of the element, and the gate insulating film does not increase the current driving force. In order to improve the controllability of the gate electrode with respect to the potential of the channel region and to suppress the gate current by forming it thickly, it is made of a material having a higher dielectric constant than silicon oxide such as metal oxide, that is, a high dielectric material. Has been. The strength of capacitive coupling between the channel region and the gate electrode is determined by dividing the product of the dielectric film thickness and the dielectric constant of silicon oxide (3.9) by the dielectric constant of the film. When the insulating film is formed of a high dielectric material, the gate insulating film can be formed thick while maintaining the controllability of the gate electrode with respect to the potential of the channel region.

ところが、ゲート電圧に対するドレイン電流の依存性のシミュレーション結果を図26に示す様に、ゲート絶縁膜の酸化膜換算膜厚を一定に保ってゲート絶縁膜の誘電率を高める事は電流値の減少を引き起こしてしまい、高電流駆動力化の妨げとなっている。なお、このシミュレーションはチャネル長35 nm、ゲート絶縁膜の酸化膜換算膜厚1 nm、の素子のドレイン電圧(VD) = 1 Vに於けるドレイン電流の単位幅(1ミクロン)あたりの値である。ゲート絶縁膜の誘電率を3.9、10、20と増大させるのに伴ってドレイン電流が減少している事が判る。 However, as shown in FIG. 26 showing the simulation result of the dependence of the drain current on the gate voltage, increasing the dielectric constant of the gate insulating film while keeping the equivalent oxide thickness of the gate insulating film constant reduces the current value. This has hindered high current driving capability. This simulation is based on the value per unit width (1 micron) of the drain current when the channel length is 35 nm and the equivalent oxide thickness of the gate insulating film is 1 nm, and the drain voltage (V D ) is 1 V. is there. It can be seen that the drain current decreases as the dielectric constant of the gate insulating film increases to 3.9, 10, and 20.

ゲート絶縁膜の誘電率を増大させる事に伴うドレイン電流の減少は次の二つの理由に依る。一つは、ゲート絶縁膜の酸化膜換算膜厚を一定に保って誘電率を高めた事に依りゲート絶縁膜の幾何学的な意味での膜厚が厚くなり、その結果としてゲート電極から出た電気力線がゲート絶縁膜の側面から外へと漏れてしまい、チャネル領域に届く電気力線が減少する事である。なおここではn型の電界効果トランジスターを例に取って説明したので電気力線が「ゲート電極から出る」と言う言い回しを用いたが、p型の電界効果トランジスターの場合等の様にゲート電極の電位がチャネル領域より低い場合には電気力線は「ゲート電極に向かう」事になる。しかしこの場合をも含めて「ゲート電極から出た電気力線」と言う言い回しを本明細書中では使う事にする。もう一つは、ゲート絶縁膜を貫く電気力線に依るソース領域とチャネル領域との間の容量結合が、ゲート絶縁膜の誘電率を高める事に伴って強まり、この事に依って、ソース領域近傍のチャネル領域の電位がソース領域の電位に近づけられる為にソース領域とチャネル領域との間に形成されるショットキー障壁が厚くなり、その結果としてショットキー障壁の抵抗が増す事である。これらの現象はいずれも通常のpn接合のソース・ドレイン領域を持つ電界効果トランジスターに於いても存在するが、ショットキー型電界効果トランジスターに於いてはソース領域とチャネル領域との間に形成されるショットキー障壁の抵抗が電流の決定に重要である為に、これらの現象の影響が殊に顕著に現れる。これらの事に依り、ゲート絶縁膜の誘電率を高める事は高駆動力化の障害となっていた。   The decrease in the drain current accompanying the increase in the dielectric constant of the gate insulating film is due to the following two reasons. One is that the gate insulating film has a geometrical thickness that increases as the dielectric constant is increased by keeping the equivalent oxide thickness of the gate insulating film constant. The electric lines of force leak from the side surface of the gate insulating film to the outside, and the electric lines of force reaching the channel region are reduced. In this example, an n-type field effect transistor has been described as an example, so the term “electric field lines come out of the gate electrode” is used. However, as in the case of a p-type field effect transistor, the gate electrode When the potential is lower than the channel region, the electric lines of force are “toward the gate electrode”. However, the phrase “electric field lines coming out of the gate electrode” including this case is used in this specification. The other is that the capacitive coupling between the source region and the channel region due to the electric lines of force penetrating the gate insulating film is strengthened as the dielectric constant of the gate insulating film is increased. Since the potential of the nearby channel region is brought close to the potential of the source region, the Schottky barrier formed between the source region and the channel region becomes thick, and as a result, the Schottky barrier resistance increases. Both of these phenomena exist even in a field effect transistor having a source / drain region of a normal pn junction, but in a Schottky field effect transistor, it is formed between a source region and a channel region. Since the Schottky barrier resistance is important in determining the current, the effects of these phenomena are particularly pronounced. Therefore, increasing the dielectric constant of the gate insulating film has been an obstacle to high driving force.

また、図25に示した従来の電界効果トランジスター及び非特許文献のFig.2に於いてはゲート電極に側壁が形成されていない。その為、ソース・ドレイン領域を形成する為のシリサイド化を行う際に、ソース・ドレイン領域とゲート電極とが短絡してしまういわゆるブリッジングを引き起こしてしまうと言う問題も存在していた。ブリッジングが起これば素子の正常な動作は不可能となるのでこれは致命的な問題である。   Further, in the conventional field effect transistor shown in FIG. 25 and FIG. 2 of the non-patent document, the side wall is not formed on the gate electrode. For this reason, when silicidation for forming the source / drain regions is performed, there is a problem of causing so-called bridging in which the source / drain regions and the gate electrode are short-circuited. This is a fatal problem because normal operation of the device becomes impossible if bridging occurs.

この問題の一つの解決策としてゲート電極に側壁を設ける事が考えられるが、その様にすると側壁の無い場合と比較してソース・ドレイン領域は、側壁の幅の分だけチャネル中央より離れた位置に形成されるので、ゲート電極とソース・ドレイン領域との重なりが無くなり、オフセットが形成されてしまう。オフセットが形成されると、ゲート電圧に対するドレイン電流の依存性のシミュレーション結果を図27に示す様に電流値が減少し、この事もまた高電流駆動力化の妨げとなってしまう。なお、このシミュレーションはチャネル長35 nm、ゲート絶縁膜は厚さ1 nmの酸化シリコン(誘電率 = 3.9)、の素子のドレイン電圧(VD) = 1 Vに於けるドレイン電流の単位幅(1ミクロン)あたりの値である。ソース・ドレイン領域とゲート電極との重なり長が0 nmの場合と2 nmの場合とは殆ど相違が無いが、2 nmのオフセットがある場合にはドレイン電流値が大幅に減少している事が判る。このドレイン電流の減少は次の理由に依る。オフセットが生ずると殊にソース・ドレイン領域近傍のチャネル領域の電位に対するゲート電極の制御性が低くなる為にソース領域とチャネル領域との間に形成されるショットキー障壁が厚くなり、その結果としてショットキー障壁の抵抗が増してしまう。この現象は通常のpn接合のソース・ドレイン領域を持つ電界効果トランジスターに於いても存在するが、ショットキー型電界効果トランジスターに於いてはソース領域とチャネル領域との間に形成されるショットキー障壁の抵抗が電流の決定に重要である為に、この現象の影響が殊に顕著に現れる。ソース・ドレイン領域とゲート電極との間のブリッジングを防ぐ為にはゲート側壁絶縁膜を設ける事以外に、ゲート絶縁膜に高誘電体材料を用いてゲート絶縁膜の幾何学的な意味での厚さを厚く形成し、ソース・ドレイン領域とゲート電極とを遠ざける事に依っても可能である。しかし、ゲート絶縁膜に高誘電体材料を用いて厚く形成する事には図26に関して上に述べた様な問題点が在る。これらの現象が、素子の高速動作を実現する事の障害となっていた。   One possible solution to this problem is to provide a side wall on the gate electrode. In this case, the source / drain region is located farther from the center of the channel by the width of the side wall than when there is no side wall. Therefore, there is no overlap between the gate electrode and the source / drain region, and an offset is formed. When the offset is formed, the current value decreases as shown in the simulation result of the dependence of the drain current on the gate voltage as shown in FIG. 27, which also hinders the high current driving capability. In this simulation, the unit width of the drain current (1 micron) at the drain voltage (VD) = 1 V of the element of silicon oxide (dielectric constant = 3.9) with a channel length of 35 nm and a gate insulating film of 1 nm thickness. ) Value. There is almost no difference between the case where the overlap length of the source / drain region and the gate electrode is 0 nm and 2 nm, but when there is an offset of 2 nm, the drain current value is greatly reduced. I understand. This decrease in drain current is due to the following reason. When the offset occurs, the Schottky barrier formed between the source region and the channel region becomes thick because the controllability of the gate electrode with respect to the potential of the channel region in the vicinity of the source / drain region is lowered. The resistance of the key barrier increases. This phenomenon exists even in a field effect transistor having a source / drain region of a normal pn junction, but in a Schottky field effect transistor, a Schottky barrier is formed between the source region and the channel region. The effect of this phenomenon is particularly noticeable because the resistance of the current is important in determining the current. In order to prevent bridging between the source / drain regions and the gate electrode, in addition to providing a gate side wall insulating film, a high dielectric material is used for the gate insulating film in the geometrical meaning of the gate insulating film. It is also possible to increase the thickness and to keep the source / drain regions and the gate electrode away from each other. However, there is a problem as described above with reference to FIG. 26 in forming a thick gate insulating film using a high dielectric material. These phenomena are obstacles to realizing high-speed operation of the element.

本発明は、上記問題点を解決するために成されたもので、その目的はチャネル領域の電位に対するゲート電極の制御性を高めると共にソース・ドレイン領域とゲート電極との間のブリッジングを防止し、十分な高速動作の可能な高性能の微細半導体装置を提供する事にある。   The present invention has been made to solve the above problems, and its purpose is to improve the controllability of the gate electrode with respect to the potential of the channel region and to prevent bridging between the source / drain region and the gate electrode. An object of the present invention is to provide a high-performance fine semiconductor device capable of sufficiently high-speed operation.

上記目的を達成するために、本発明の半導体装置は、半導体層を有する半導体基板と、前記半導体層上に形成された第一の絶縁膜と、前記第一の絶縁膜上に形成され且つ前記第一の絶縁膜とは誘電率が異なる第二の絶縁膜と、前記第二の絶縁膜上に形成されたゲート電極と、前記ゲート電極を挟む様に前記半導体基板の表面部に形成された金属ないし金属珪化物よりなるソース領域およびドレイン領域と、を含む事を特徴とする。   In order to achieve the above object, a semiconductor device of the present invention includes a semiconductor substrate having a semiconductor layer, a first insulating film formed on the semiconductor layer, the first insulating film formed on the first insulating film, and the A second insulating film having a dielectric constant different from that of the first insulating film, a gate electrode formed on the second insulating film, and a surface portion of the semiconductor substrate so as to sandwich the gate electrode And a source region and a drain region made of metal or metal silicide.

本発明の半導体装置は、ショットキー型電界効果トランジスターであり、ゲート絶縁膜は異なる誘電率を持つ膜の積層である。その結果としてゲート絶縁膜を従来の酸化シリコンのみで形成した場合と比べるとゲート絶縁膜の幾何学的な意味の厚さを厚く形成する事が可能になる為に、チャネル領域の電位に対するゲート電極の制御性を高く保ちつつゲート絶縁膜を貫いて流れる電流を抑制する事が可能となる一方で、ゲート絶縁膜を誘電率の高い材料のみで形成した場合と比べるとゲート絶縁膜の幾何学的な意味の厚さを薄く形成する事が可能になる為に、ゲート電極から出た電気力線がゲート絶縁膜の側面から外へ漏れる事に起因する、殊にソース領域近傍のチャネル領域の電位に対するゲート電極の制御性の低下を抑制する事が可能となる。このゲート絶縁膜側面からの電気力線の漏れの問題は、ショットキー型電界効果トランジスターに於いては、ソース領域とチャネル領域との間に形成されるショットキー障壁が厚くなる事に起因する抵抗の増大を引き起こし、高電流駆動力実現の大きな妨げとなる。本発明の半導体装置に於いてはこの問題が抑制される。   The semiconductor device of the present invention is a Schottky field effect transistor, and the gate insulating film is a stack of films having different dielectric constants. As a result, the gate insulating film can be formed thicker in terms of the geometrical meaning compared to the conventional case where the gate insulating film is formed only from silicon oxide. It is possible to suppress the current flowing through the gate insulating film while maintaining high controllability of the gate insulating film. On the other hand, compared to the case where the gate insulating film is formed only of a material having a high dielectric constant, It is possible to reduce the thickness of the gate region, and the electric field lines from the gate electrode leak out from the side surface of the gate insulating film. It is possible to suppress a decrease in the controllability of the gate electrode. The problem of leakage of electric lines of force from the side surface of the gate insulating film is that resistance in a Schottky field effect transistor is due to the thick Schottky barrier formed between the source region and the channel region. Increase, which greatly hinders the realization of a high current driving force. This problem is suppressed in the semiconductor device of the present invention.

以下、本発明の詳細を図示の実施形態に沿って説明する。   Hereinafter, details of the present invention will be described with reference to the illustrated embodiments.

上記目的を達成する為に本発明は、ショットキー型電界効果トランジスターでゲート絶縁膜が異なる誘電率を持つ膜の積層よりなる素子と、その様な素子であり且つ積層をなすゲート絶縁膜の内で誘電率の低い方以上の誘電率のゲート側壁絶縁膜を持つ素子とを提供する。 In order to achieve the above object, the present invention relates to a Schottky field effect transistor composed of a stack of films having different dielectric constants in a gate insulating film, and a gate insulating film that is such a device and includes a stack. And a device having a gate sidewall insulating film having a dielectric constant higher than that of the lower dielectric constant.

本発明の電界効果トランジスターに於いては、ゲート絶縁膜が誘電率の高い材料と低い材料との積層になっているので、ゲート絶縁膜全体を従来通りに酸化シリコンで形成した場合と比べると幾何学的な意味の膜厚を厚く形成する事が可能となり、チャネル領域の電位に対するゲート電極の制御性を保ちつつゲートリーク電流を抑制する事が可能となる。また、ゲート絶縁膜全体を高誘電体材料で形成した場合と比べると幾何学的な意味の膜厚を薄く形成する事が可能となるので、上述した様なゲート電極から出た電気力線がゲート絶縁膜の側面から横へ漏れる効果は抑制される。従って高い電流駆動力が得られる。更に積層であるゲート絶縁膜の内で基板に近い方の膜の誘電率を基板から遠い方の膜の誘電率より低く設定すると、ゲート絶縁膜を横に貫く電気力線に依るソース領域とチャネル領域との容量結合は弱められるので、この容量結合が従来の酸化シリコンでゲート絶縁膜が形成されている場合と比べて大きい事に起因した、ソース領域とチャネル領域との間に形成されるショットキー障壁が厚くなる事に依る抵抗の増大及びその結果としての電流駆動力の減少が抑制される。ゲート絶縁膜が誘電率3.9の膜(例えば酸化シリコン)と誘電率20の膜(例えば二酸化ハフニウム膜)との積層であるとして、ゲート絶縁膜の全酸化膜換算膜厚を一定値1 nmに保って、各々の膜の厚さを変えた場合のドレイン電流のゲート絶縁膜の幾何学的な厚さに対する依存性のシミュレーション結果を図1に示す。このシミュレーション結果はチャネル長35 nm、ゲート絶縁膜の全酸化膜換算膜厚 = 1 nm、ゲート電極とソース・ドレイン領域との重なり長 = 2 nmの素子のドレイン電圧(VD) = ゲート電圧(VG) = 1 Vに於けるドレイン電流の単位幅(1ミクロン)あたりの値である。そして図中のCase1はゲート絶縁膜の基板に近い方の膜の誘電率が低く基板から遠い方の膜の誘電率が高い場合、Case2はゲート絶縁膜の基板に近い方の膜の誘電率が高く基板から遠い方の膜の誘電率が低い場合、Case3はゲート絶縁膜が誘電率 = 3.9の膜の単層である場合、Case4はゲート絶縁膜が誘電率 = 20の膜の単層である場合、の結果である。また、この図の横軸はゲート絶縁膜全体の幾何学的な意味での膜厚である。このシミュレーションに於いてはゲート絶縁膜の全酸化膜換算膜厚を一定に保って積層を成す各々の膜の厚さを変えているので、ゲート絶縁膜の幾何学的な意味の膜厚は様々な値となる。この図を見ると、ゲート絶縁膜を高誘電率材料膜の単層から積層膜にして幾何学的な意味の膜厚を薄くする事は電流駆動力の向上に効果的である事や、積層ゲート絶縁膜を成す膜の内で基板に近い方の膜を誘電率の低い材料で形成し、基板から遠い方の膜を誘電率の高い材料で形成する事は電流駆動力の向上に更に効果的である事が判る。 In the field effect transistor of the present invention, since the gate insulating film is a laminate of a material having a high dielectric constant and a low material, it is geometrical compared to the case where the entire gate insulating film is formed of silicon oxide as usual. It is possible to increase the thickness of the film in a scientific sense, and it is possible to suppress the gate leakage current while maintaining the controllability of the gate electrode with respect to the potential of the channel region. In addition, since it is possible to reduce the geometrically meaning film thickness compared to the case where the entire gate insulating film is formed of a high dielectric material, the electric lines of force from the gate electrode as described above are not generated. The effect of leaking from the side surface of the gate insulating film is suppressed. Therefore, a high current driving force can be obtained. Furthermore, if the dielectric constant of the film closer to the substrate in the laminated gate insulating film is set lower than the dielectric constant of the film far from the substrate, the source region and the channel depend on the lines of electric force penetrating the gate insulating film laterally. Since the capacitive coupling with the region is weakened, the shot formed between the source region and the channel region due to the fact that this capacitive coupling is larger than when the gate insulating film is formed of conventional silicon oxide. The increase in resistance and the resulting decrease in current driving force due to the thicker key barrier are suppressed. Assuming that the gate insulating film is a laminate of a film having a dielectric constant of 3.9 (e.g., silicon oxide) and a film having a dielectric constant of 20 (e.g., hafnium dioxide film), the total equivalent oxide thickness of the gate insulating film is maintained at a constant value of 1 nm. FIG. 1 shows a simulation result of the dependence of the drain current on the geometric thickness of the gate insulating film when the thickness of each film is changed. The simulation result shows that the channel length is 35 nm, the total oxide equivalent film thickness of the gate insulating film = 1 nm, the overlap length of the gate electrode and the source / drain region = 2 nm, the drain voltage (V D ) = gate voltage ( V G ) = A value per unit width (1 micron) of drain current at 1 V. In Case 1, the dielectric constant of the film closer to the substrate of the gate insulating film is low and the dielectric constant of the film far from the substrate is high. In Case 2, the dielectric constant of the film closer to the substrate of the gate insulating film is If the dielectric constant of the film that is high and far from the substrate is low, Case 3 is a single layer of a film with a dielectric constant = 3.9, and Case 4 is a single layer of a film with a dielectric constant = 20 If the result is. Further, the horizontal axis of this figure is the film thickness in the geometric sense of the entire gate insulating film. In this simulation, the total oxide equivalent film thickness of the gate insulating film is kept constant, and the thickness of each film in the stack is changed. Therefore, the geometrically meaning film thickness of the gate insulating film varies. Value. Looking at this figure, it is effective to improve the current driving force by reducing the gate thickness from a single layer of a high dielectric constant material film to a laminated film and reducing the geometric thickness. Of the films that form the gate insulating film, the film closer to the substrate is formed of a material having a low dielectric constant, and the film far from the substrate is formed of a material having a high dielectric constant. It turns out that it is the target.

次に、この様な積層ゲート絶縁膜構造に加えて高誘電体材料よりなるゲート側壁絶縁膜を設けた場合を考える。ゲート側壁絶縁膜を持つ二層の積層ゲート絶縁膜素子の、ドレイン電流値のシミュレーション結果を図2に示す。このシミュレーション結果はチャネル長35 nm、ゲート絶縁膜の全酸化膜換算膜厚 = 1 nm、ゲート側壁絶縁膜の厚さ = 10 nm、の素子のドレイン電圧(VD) = ゲート電圧(VG) = 1 Vに於けるドレイン電流の単位幅(1ミクロン)あたりの値であり、ゲート側壁絶縁膜を設けているのでゲート電極とソース・ドレイン領域との間には2 nmのオフセットがあるとしている。そして図中のCase5は積層ゲート絶縁膜の基板に近い方の膜の誘電率が3.9で基板から遠い方の膜の誘電率が20である場合、Case6は積層ゲート絶縁膜の基板に近い方の膜の誘電率が20で基板から遠い方の膜の誘電率が3.9である場合であって、ゲート側壁絶縁膜の誘電率 = 3.9の場合、ゲート側壁絶縁膜の誘電率 = 20の場合、についての条件は各々図中に記載された通りである。また、この図の横軸はゲート絶縁膜全体の幾何学的な意味での膜厚である。このシミュレーションに於いてはゲート絶縁膜の全酸化膜換算膜厚を一定に保って積層を成す各々の膜の厚さを変えているので、ゲート絶縁膜の幾何学的な意味の膜厚は様々な値となる。この図を見ると、ゲート絶縁膜の幾何学的な厚さが4 nm程度より薄い場合にはゲート側壁絶縁膜の誘電率を高める事で、基板に近い方のゲート絶縁膜の誘電率が基板から遠い方のゲート絶縁膜の誘電率より低い素子に於いては電流駆動力が高まる事、ゲート絶縁膜の幾何学的な厚さが3 nmないし3.5 nm程度より薄い場合にはゲート側壁絶縁膜の誘電率を高める事で、積層ゲート絶縁膜を成す各層の誘電率の大小に依らずに電流駆動力が高まる事、が判る。それ故、ゲート側壁絶縁膜の誘電率を高める事は電流駆動力の向上に効果的である事が判る。この事の理由は以下に記す様に、異なる誘電率を持つ物質の界面に於ける電気力線の屈折である。異なる誘電率を持つ物質の界面の極めて近傍に於ける電気力線の様子を図3に模式的に示す。静電気学で良く知られている様に、異なる誘電率を持つ物質の界面に於ける、電気力線(図中に矢印で示す)と界面(図中に実線で示す)の法線(図中に点線で示す)との為す角、より正確にはその点に於ける電気力線の接線と界面の法線との為す角、の正接(タンジェント)の比は両物質の誘電率の比に等しくなる。それ故、電気力線は、両物質の内で誘電率の低い方に於いては界面に垂直に近く、誘電率の高い方に於いては界面に平行に近く、界面と交わる事が判る。この事が本質である。 Next, a case where a gate sidewall insulating film made of a high dielectric material is provided in addition to such a laminated gate insulating film structure will be considered. FIG. 2 shows a simulation result of the drain current value of the two-layer laminated gate insulating film element having the gate sidewall insulating film. This simulation result shows that the device drain voltage (V D ) = gate voltage (V G ) with a channel length of 35 nm, gate oxide equivalent oxide thickness = 1 nm, gate sidewall insulation thickness = 10 nm = Value per unit width (1 micron) of drain current at 1 V, and it is assumed that there is an offset of 2 nm between the gate electrode and the source / drain region because the gate sidewall insulating film is provided . Case 5 in the figure shows that the dielectric constant of the film closer to the substrate of the laminated gate insulating film is 3.9 and the dielectric constant of the film far from the substrate is 20, and Case 6 is the one closer to the substrate of the laminated gate insulating film. When the dielectric constant of the film is 20 and the dielectric constant of the film far from the substrate is 3.9, and the dielectric constant of the gate sidewall insulating film = 3.9, the dielectric constant of the gate sidewall insulating film = 20 The conditions are as described in the figure. Further, the horizontal axis of this figure is the film thickness in the geometric sense of the entire gate insulating film. In this simulation, the total oxide equivalent film thickness of the gate insulating film is kept constant, and the thickness of each film in the stack is changed. Therefore, the geometrically meaning film thickness of the gate insulating film varies. Value. As shown in this figure, when the gate insulating film has a geometric thickness of less than about 4 nm, the dielectric constant of the gate insulating film closer to the substrate is increased by increasing the dielectric constant of the gate sidewall insulating film. In the device whose dielectric constant is lower than the dielectric constant of the gate insulating film far from the gate, the current driving force is increased, and when the gate insulating film is thinner than 3 nm to 3.5 nm, the gate sidewall insulating film It can be seen that by increasing the dielectric constant, the current driving force increases regardless of the dielectric constant of each layer constituting the laminated gate insulating film. Therefore, it can be seen that increasing the dielectric constant of the gate sidewall insulating film is effective in improving the current driving capability. The reason for this is the refraction of electric lines of force at the interface of materials with different dielectric constants, as described below. FIG. 3 schematically shows the state of lines of electric force in the very vicinity of the interface of substances having different dielectric constants. As is well known in electrostatics, normal lines (indicated by arrows in the figure) and normal lines (indicated by solid lines) at the interface of materials with different dielectric constants (in the figure) The ratio of the tangent of the angle between the tangent of the electric force line and the angle of the interface normal at that point is the ratio of the dielectric constant of both substances. Will be equal. Therefore, it can be seen that the electric lines of force are close to the interface perpendicular to the low dielectric constant of both materials, and parallel to the interface of the high dielectric constant, and intersect the interface. This is the essence.

先ず積層ゲート絶縁膜の内で基板から遠い方の膜の誘電率が基板に近い方の膜の誘電率より低い場合を考える。ソース領域近傍の拡大図を模式的に図4に示す。上下のゲート絶縁膜の界面(図中に界面Aと記す)及び基板から遠い方のゲート絶縁膜とゲート側壁絶縁膜との界面(図中に界面Bと記す)とに於ける電気力線の屈折に依り、ゲート電極から出た電気力線はソース領域とチャネル領域との境界の近傍に集まる。この事はその領域とゲート電極との間に形成される容量結合が強まる事、すなわちソース近傍のチャネル領域の電位に対するゲート電極の制御性が高まる事を意味する。この事に依り、ソース領域とチャネル領域との間に形成されるショットキー障壁の厚さが薄くなる事で抵抗が下がり、その結果として電流駆動力が高まる。なお、ここでは基板に近い方のゲート絶縁膜の誘電率とゲート側壁絶縁膜の誘電率とはほぼ等しいとしてそれらの界面(図中に界面Cと記す)に於いては電気力線の屈折は無い様に描いたがこの事は本質ではない。両者の誘電率が異なっていてこの界面に於いても屈折が生じたとしても同様の効果が得られる。   First, consider the case where the dielectric constant of the film farther from the substrate in the stacked gate insulating film is lower than the dielectric constant of the film closer to the substrate. An enlarged view of the vicinity of the source region is schematically shown in FIG. Electric field lines at the interface between the upper and lower gate insulating films (denoted as interface A in the figure) and the interface between the gate insulating film and the gate sidewall insulating film far from the substrate (denoted as interface B in the figure) Depending on the refraction, the lines of electric force emitted from the gate electrode gather near the boundary between the source region and the channel region. This means that the capacitive coupling formed between the region and the gate electrode is strengthened, that is, the controllability of the gate electrode with respect to the potential of the channel region near the source is enhanced. As a result, the resistance decreases as the thickness of the Schottky barrier formed between the source region and the channel region decreases, and as a result, the current driving capability increases. Here, assuming that the dielectric constant of the gate insulating film closer to the substrate and the dielectric constant of the gate sidewall insulating film are substantially equal, the refraction of the electric field lines at their interface (denoted as interface C in the figure) is This is not the essence though I drew it as if it were not. Even if refraction occurs at the interface because the dielectric constants of the two are different, the same effect can be obtained.

次に積層ゲート絶縁膜の内で基板に近い方の膜の誘電率が基板から遠い方の膜の誘電率より低い場合を考える。ソース領域近傍の拡大図を模式的に図5に示す。上下のゲート絶縁膜の界面(図中に界面Aと記す)及び基板に近い方のゲート絶縁膜とゲート側壁絶縁膜との界面(図中に界面Bと記す)とに於ける電気力線の屈折に依り、ゲート電極から出た電気力線はソース領域とチャネル領域との境界の近傍に集まる。この事はその領域とゲート電極との間に形成される容量結合が強まる事、すなわちソース近傍のチャネル領域の電位に対するゲート電極の制御性が高まる事を意味する。この事に依り、ソース領域とチャネル領域との間に形成されるショットキー障壁の厚さが薄くなる事で抵抗が下がり、その結果として電流駆動力が高まる。なお、ここでは基板から遠い方のゲート絶縁膜の誘電率とゲート側壁絶縁膜の誘電率とはほぼ等しいとしてそれらの界面(図中に界面Cと記す)に於いては電気力線の屈折は無い様に描いたがこの事は本質ではない。両者の誘電率が異なっていてこの界面に於いても屈折が生じたとしても同様の効果が得られる。   Next, consider the case where the dielectric constant of the film closer to the substrate in the stacked gate insulating film is lower than the dielectric constant of the film far from the substrate. An enlarged view of the vicinity of the source region is schematically shown in FIG. Electric field lines at the interface between the upper and lower gate insulating films (denoted as interface A in the figure) and the interface between the gate insulating film and the gate sidewall insulating film closer to the substrate (denoted as interface B in the figure) Depending on the refraction, the lines of electric force emitted from the gate electrode gather near the boundary between the source region and the channel region. This means that the capacitive coupling formed between the region and the gate electrode is strengthened, that is, the controllability of the gate electrode with respect to the potential of the channel region near the source is enhanced. As a result, the resistance decreases as the thickness of the Schottky barrier formed between the source region and the channel region decreases, and as a result, the current driving capability increases. Here, assuming that the dielectric constant of the gate insulating film far from the substrate and the dielectric constant of the gate sidewall insulating film are substantially equal, the refraction of the electric field lines at their interface (denoted as interface C in the figure) is This is not the essence though I drew it as if it were not. Even if refraction occurs at the interface because the dielectric constants of the two are different, the same effect can be obtained.

これらの二つの場合に、ゲート側壁絶縁膜の誘電率を、積層ゲート絶縁膜をなすいずれの膜の誘電率よりも高く設定しておくと図4ないし図5の界面Cと記した界面に於いても電気力線はゲート側壁絶縁膜に入ると下向きに屈折し、また界面Bと記した界面に於ける屈折は著しくなるので、ゲート電極から出た電気力線は、ソース領域近傍のチャネル領域に更に有効に集められる事になる。従ってゲート側壁絶縁膜の誘電率を、積層ゲート絶縁膜をなすいずれの膜の誘電率よりも高く設定する事は好ましい。   In these two cases, if the dielectric constant of the gate sidewall insulating film is set higher than the dielectric constant of any of the films constituting the laminated gate insulating film, the interface indicated as interface C in FIGS. However, the electric lines of force are refracted downward when entering the gate side wall insulating film, and the refraction at the interface indicated as interface B becomes significant. Will be collected more effectively. Therefore, it is preferable to set the dielectric constant of the gate sidewall insulating film to be higher than the dielectric constant of any film constituting the laminated gate insulating film.

図2を見ると、ゲート絶縁膜の幾何学的な意味の膜厚が厚くなるとゲート側壁絶縁膜の誘電率が高い場合の方が電流は小さくなっている。この事の理由は次の事である。 図2に結果を示したシミュレーションに於いてはゲート絶縁膜の全酸化膜換算膜厚は一定としているので、ゲート絶縁膜の幾何学的な膜厚が厚いと言う事は、積層ゲート絶縁膜の内で誘電率の低い方の膜の厚さが極めて薄い事を意味する。図4ないし図5に於いては積層ゲート絶縁膜の二つの膜はほぼ同じ厚さに描いてあるが、両者の内の一方が極めて薄い場合には、電気力線の形に着目する限り、その薄い方の膜は存在しないのと同じ事になる。すなわちゲート絶縁膜が誘電率の高い方の膜のみよりなる単層ゲート絶縁膜の場合と同じになる。この場合には上に述べた電気力線が屈折に依りソース領域とチャネル領域との近傍に集められる効果は極めて弱くなる。その一方で、ゲート側壁絶縁膜の誘電率を高めると、ゲート側壁絶縁膜を貫く電気力線に依りソース領域とその近傍のチャネル領域との間に形成される容量結合(図6に模式的に示す)は強まる。この事は上に述べたゲート絶縁膜の誘電率を高める事の問題点と同様に、ソース領域近傍のチャネル領域の電位をソース領域の電位に近づける事を意味するので、それに依ってソース領域とチャネル領域との間に形成されるショットキー障壁を厚くし、その結果として電流駆動力を低下させる事になる。この事と上に述べた電気力線の絞られる効果が低減する事との結果として、ゲート絶縁膜の幾何学的な意味での膜厚が厚い場合にはゲート側壁絶縁膜の誘電率を高める事に依り電流駆動力が低下する。この様に積層ゲート絶縁膜の内で誘電率の低い方の膜が極端に薄い場合には、ゲート側壁絶縁膜の誘電率を高める事に依り電流駆動力は低下するが、それ以外の場合にはゲート側壁絶縁膜の誘電率を高くする事は電流駆動力の向上に繋がるので好ましい。   Referring to FIG. 2, as the gate insulating film has a larger geometric thickness, the current is smaller when the gate sidewall insulating film has a higher dielectric constant. The reason for this is as follows. In the simulation whose result is shown in FIG. 2, since the total equivalent oxide thickness of the gate insulating film is constant, the geometrical thickness of the gate insulating film is large. This means that the thickness of the lower dielectric constant film is extremely thin. In FIG. 4 to FIG. 5, the two layers of the laminated gate insulating film are drawn to substantially the same thickness, but when one of the two is extremely thin, as long as attention is paid to the shape of the lines of electric force, The thin film is the same as it does not exist. That is, the gate insulating film is the same as that of a single-layer gate insulating film made only of a film having a higher dielectric constant. In this case, the effect of collecting the electric lines of force described above in the vicinity of the source region and the channel region due to refraction becomes extremely weak. On the other hand, when the dielectric constant of the gate sidewall insulating film is increased, capacitive coupling formed between the source region and the channel region in the vicinity thereof by the lines of electric force penetrating the gate sidewall insulating film (schematically shown in FIG. 6). Show) is strengthened. This means that the potential of the channel region in the vicinity of the source region is brought close to the potential of the source region as well as the problem of increasing the dielectric constant of the gate insulating film described above. The Schottky barrier formed between the channel region and the channel region is made thick, and as a result, the current driving force is reduced. As a result of this and the effect of reducing the lines of electric force described above, the dielectric constant of the gate sidewall insulating film is increased when the gate insulating film is thick in the geometrical sense. As a result, the current driving force decreases. In this way, when the lower dielectric constant of the laminated gate insulating film is extremely thin, the current driving force is reduced by increasing the dielectric constant of the gate sidewall insulating film, but in other cases It is preferable to increase the dielectric constant of the gate sidewall insulating film because it leads to an improvement in current driving capability.

また、図2を見るとゲート側壁絶縁膜に高誘電体材料を用いた場合に、積層ゲート絶縁膜の内で基板に近い方の膜の誘電率が基板から遠い方の膜の誘電率より低い場合の方が、逆の場合より電流が大きい事が判る。この事の理由は次の通りである。積層ゲート絶縁膜の内で基板に近い方の膜の誘電率が基板から遠い方の膜の誘電率より低い場合(ソース領域の近傍に於ける電気力線を模式的に図5に示す)と誘電率の大小が逆の場合(ソース領域の近傍に於ける電気力線を模式的に図4に示す)とを比べると、ゲート端から少し離れたゲート電極下面から出た電気力線の形が異なっている。殊に積層ゲート絶縁膜中の上の膜に於ける電気力線を見ると、上に述べた電気力線の屈折に伴って、積層ゲート絶縁膜の内で基板に近い方の膜の誘電率が基板から遠い方の膜の誘電率より低い場合(図5)の方が、誘電率の大小が逆の場合(図4)より広い範囲の電気力線が収束しているのが分かる。この事に依り、積層ゲート絶縁膜の内で基板に近い方の膜の誘電率が基板から遠い方の膜の誘電率より低い場合(図5)の方が、誘電率の大小が逆の場合(図4)より、ソース領域近傍のチャネル領域に多くの電気力線が集まる事になる。それに依ってソース領域とチャネル領域との間に形成されるショットキー障壁は薄くなり、その結果として電流駆動力が向上される。以上に述べた様にゲート側壁絶縁膜の有無や誘電率に関わらず積層ゲート絶縁膜は、基板から遠い方の膜の誘電率が基板に近い方の膜の誘電率より高い事が好ましい。   In addition, as shown in FIG. 2, when a high dielectric material is used for the gate sidewall insulating film, the dielectric constant of the film closer to the substrate in the laminated gate insulating film is lower than the dielectric constant of the film far from the substrate. It can be seen that the current is larger in the case than in the reverse case. The reason for this is as follows. When the dielectric constant of the film closer to the substrate in the laminated gate insulating film is lower than the dielectric constant of the film far from the substrate (the electric lines of force in the vicinity of the source region are schematically shown in FIG. 5) Compared with the case where the dielectric constant is reversed (the electric lines of force in the vicinity of the source region are schematically shown in FIG. 4), the shape of the electric lines of force emerging from the lower surface of the gate electrode slightly away from the gate end. Is different. In particular, when looking at the electric lines of force in the upper film in the laminated gate insulating film, the dielectric constant of the film closer to the substrate in the laminated gate insulating film is accompanied by the refraction of the electric lines of force described above. When the dielectric constant is lower than the dielectric constant of the film far from the substrate (FIG. 5), it can be seen that the electric field lines in a wider range converge than when the dielectric constant is reversed (FIG. 4). Therefore, when the dielectric constant of the film closer to the substrate in the laminated gate insulating film is lower than the dielectric constant of the film far from the substrate (FIG. 5), the dielectric constant is reversed. As shown in FIG. 4, many electric lines of force gather in the channel region near the source region. Accordingly, the Schottky barrier formed between the source region and the channel region becomes thin, and as a result, the current driving capability is improved. As described above, regardless of the presence or absence of the gate sidewall insulating film and the dielectric constant, the laminated gate insulating film preferably has a higher dielectric constant for the film farther from the substrate than the dielectric constant for the film closer to the substrate.

なお、以上に述べた電気力線の屈折の議論に依り、電気力線がソース端近傍のチャネル領域上に集められる為には、ソース・ドレイン領域とチャネル領域との境界は、ゲート絶縁膜端よりチャネル中央から離れた位置に在る事が大切である。すなわち、ゲート側壁絶縁膜の一部はソース領域とドレイン領域との間の領域の上に存在する事が好ましい。また、ゲート絶縁膜とゲート側壁絶縁膜との界面(図4と図5との界面B)に於ける電気力線の屈折もまた、ソース近傍のチャネル領域への電気力線の収束に本質であるので、図7に模式的に構造を示す様にゲート絶縁膜はゲート電極の下に収まっていて、ゲート側壁絶縁膜はゲート絶縁膜の側面と接している方が、図8に模式的に構造を示す様にゲート絶縁膜がゲート側壁絶縁膜の下にも存在していて、ゲート側壁絶縁膜はゲート絶縁膜の上面と接しているより好ましい。但し図8に模式的に構造を示した様にゲート絶縁膜がゲート側壁絶縁膜の下にも存在している構造であっても、ゲート絶縁膜を積層にしておけば、全体を高誘電体材料で形成した場合と比較して幾何学的な意味のゲート絶縁膜厚を薄くする事ができるので、ゲート絶縁膜側面から電気力線の漏れる事は抑制され、電流駆動力の向上に繋がる。またこの場合も、ゲート絶縁膜を貫く電気力線に依るソース領域とチャネル領域との間に形成される容量結合の抑制に鑑みると、積層ゲート絶縁膜の内で基板から遠い方の膜の誘電率が、基板に近い方の膜の誘電率より高い事が好ましい。また、この様にゲート絶縁膜がゲート側壁絶縁膜の下にも存在している構造の場合には上に述べた電気力線がソース端近傍のチャネル領域に集められる効果は弱まるので、ソース・ドレイン領域とゲート電極との間にオフセットが存在する事は好ましくなく、両者の間に重なりが存在する方が好ましい。 Note that the boundary between the source / drain region and the channel region is at the edge of the gate insulating film in order for the electric force lines to be collected on the channel region near the source end according to the discussion of the refraction of the electric force lines described above. It is important to be located further away from the center of the channel. That is, it is preferable that a part of the gate sidewall insulating film exists on a region between the source region and the drain region. In addition, the refraction of the electric lines of force at the interface between the gate insulating film and the gate sidewall insulating film (interface B between FIGS. 4 and 5) is also essential to the convergence of the electric lines of force to the channel region near the source. Therefore, as schematically shown in FIG. 7, the gate insulating film is contained under the gate electrode, and the gate side wall insulating film is in contact with the side surface of the gate insulating film as schematically shown in FIG. As shown in the structure, the gate insulating film is also present under the gate sidewall insulating film, and the gate sidewall insulating film is more preferably in contact with the upper surface of the gate insulating film. However, even if the gate insulating film is also present under the gate sidewall insulating film as schematically shown in FIG. 8, if the gate insulating film is laminated, the entire structure is made of a high dielectric material. Since the gate insulating film thickness having a geometrical meaning can be reduced as compared with the case of using a material, leakage of electric lines of force from the side surface of the gate insulating film is suppressed, leading to improvement in current driving force. Also in this case, considering the suppression of the capacitive coupling formed between the source region and the channel region due to the electric field lines penetrating the gate insulating film, the dielectric of the film farthest from the substrate in the stacked gate insulating film The rate is preferably higher than the dielectric constant of the film closer to the substrate. In addition, when the gate insulating film is also present under the gate sidewall insulating film in this way, the effect of collecting the electric lines of force described above in the channel region near the source end is weakened. It is not preferable that an offset exists between the drain region and the gate electrode, and it is preferable that an overlap exists between the two.

以上説明した様に、本発明のショットキー型電界効果トランジスターに於いては、ゲート絶縁膜を誘電率の高い材料よりなる膜と、誘電率の低い材料よりなる膜との積層とする事に依りゲート絶縁膜が高誘電体材料の単層である場合と比べてゲート絶縁膜の幾何学的な厚さを薄くし、ゲート絶縁膜の側面からの電気力線の漏れを抑制する事、積層ゲート絶縁膜の内の基板に近い方の膜の誘電率を低く設定する事でソース領域とチャネル領域との間に形成される容量結合を抑制する事、誘電率の高いゲート側壁絶縁膜を設ける事で電気力線の屈折に依りソース領域近傍のチャネル領域上に、ゲート電極から出た電気力線を集めてその領域の電位に対するゲート電極の制御性を高める事、に依りソース領域とチャネル領域との間に形成されるショットキー障壁を薄くして抵抗を減らし、その結果として高い電流駆動能力が実現される。従って高速動作の可能な高性能の微細な素子が提供される。   As described above, in the Schottky field effect transistor of the present invention, the gate insulating film is formed by stacking a film made of a material having a high dielectric constant and a film made of a material having a low dielectric constant. Compared to the case where the gate insulating film is a single layer of a high dielectric material, the gate insulating film has a smaller geometric thickness and suppresses the leakage of electric lines of force from the side surface of the gate insulating film. By setting the dielectric constant of the insulating film closer to the substrate to a low value, the capacitive coupling formed between the source region and the channel region can be suppressed, and a gate sidewall insulating film having a high dielectric constant can be provided. Thus, by collecting the lines of electric force emitted from the gate electrode on the channel region in the vicinity of the source region by refraction of the electric field lines, and improving the controllability of the gate electrode with respect to the potential of the region, the source region and the channel region are Formed between Reduce the thinned by resistance hotkey barrier, high current driving capability is achieved as a result. Therefore, a high-performance fine element capable of high-speed operation is provided.

以下図面を用いて本発明の実施形態を詳細に説明する。尚、本発明は以下の実施形態に限定されるものではなく、種々変更して用いる事ができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various change can be used.

(実施形態1)
図9は本発明の電界効果トランジスターの断面図である。本実施形態ではNチャネル電界効果トランジスターを例に取って示す。不純物の導電型を逆にすればPャネル電界効果トランジスターの場合にもまったく同様であり、また光蝕刻法等の方法を用いて基板内の特定の領域にのみ不純物を注入する等の方法を用いれば相補型電界効果トランジスターの場合も全く同様の効果が得られる。
(Embodiment 1)
FIG. 9 is a cross-sectional view of the field effect transistor of the present invention. In this embodiment, an N-channel field effect transistor is taken as an example. If the conductivity type of the impurity is reversed, the same applies to the case of a P-channel field effect transistor, and a method such as injecting impurities only into a specific region in the substrate using a method such as photo-etching is used. In the case of a complementary field effect transistor, the same effect can be obtained.

この電界効果トランジスターは、ショットキー型電界効果トランジスターであり、ゲート絶縁膜9が酸化シリコンよりなる膜7と金属酸化物等の高誘電体材料よりなる膜8との積層である事に特徴が有る。ここでは金属酸化物等の高誘電体材料よりなる膜8としてHfO2(二酸化ハフニウム)膜を用いたが、Hf(ハフニウム)の異なる価数の酸化物ないしは、Zr(ジルコニウム)、Ti(チタン)、Sc(スカンジウム)、Y(イットリウム)、Ta(タンタル)、Al(アルミニウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、ないしはランタノイド系列の元素等の他の金属等の酸化物等ないしはこれらの元素を初めとする様々な元素を含むシリケート材料等、ないしはそれらに窒素をも含有させた絶縁膜等、他の高誘電体膜ないしはそれらの積層等の他の絶縁膜を用いてもよい。絶縁膜中に窒素が存在すると、特定の元素のみが結晶化して析出する事が抑制されるので好ましい。また、絶縁膜中に窒素が存在すると、ゲート電極として不純物を含有する半導体を用いる場合に不純物が基板中に拡散する事を抑制すると言う別の利点もあるので好ましい。 This field effect transistor is a Schottky field effect transistor, and is characterized in that the gate insulating film 9 is a laminate of a film 7 made of silicon oxide and a film 8 made of a high dielectric material such as a metal oxide. . Here, an HfO 2 (hafnium dioxide) film is used as the film 8 made of a high dielectric material such as a metal oxide. However, an oxide of different valence of Hf (hafnium) or Zr (zirconium), Ti (titanium) , Sc (scandium), Y (yttrium), Ta (tantalum), Al (aluminum), La (lanthanum), Ce (cerium), Pr (praseodymium), or oxides of other metals such as lanthanoid series elements Or other silicate materials containing various elements including these elements, or other high dielectric films such as insulating films containing nitrogen in them, or other insulating films such as laminates thereof. Also good. When nitrogen is present in the insulating film, it is preferable that only a specific element is crystallized and precipitated. In addition, the presence of nitrogen in the insulating film is preferable because it has another advantage of suppressing the diffusion of impurities into the substrate when a semiconductor containing impurities is used as the gate electrode.

この様にするとゲート絶縁膜を全て従来の酸化シリコンで形成した場合と比較して、同一の酸化膜換算膜厚の下でゲート絶縁膜の幾何学的な意味の膜厚を厚く形成する事が可能となる為にゲート絶縁膜を貫いて流れる電流が抑制される。また、この様にするとゲート絶縁膜を全て金属酸化物等の高誘電体材料で形成した場合と比較して、同一の酸化膜換算膜厚の下でゲート絶縁膜の幾何学的な意味の膜厚を薄く形成する事が可能となる為にゲート電極から出た電気力線がゲート絶縁膜の側面より外へ漏れ出して、チャネル領域の電位に対するゲート電極の制御性が低下する事が抑制される。また、この様にすると基板近傍のゲート絶縁膜は誘電率の低い材料で形成されているので、ソース領域とその近傍のチャネル領域との間に形成される容量結合を弱め、この容量結合に起因してソース領域とチャネル領域との間に形成されるショットキー障壁が厚くなる事が抑制され、その結果として抵抗が低減されて高い電流駆動力が実現される。   In this way, compared to the case where the gate insulating film is entirely formed of conventional silicon oxide, the gate insulating film can be formed to have a thicker geometric thickness under the same equivalent oxide thickness. In order to be possible, the current flowing through the gate insulating film is suppressed. Further, in this way, the gate insulating film has a geometrical meaning of the gate insulating film under the same equivalent oxide film thickness as compared with the case where the gate insulating film is entirely formed of a high dielectric material such as a metal oxide. Since it is possible to reduce the thickness, it is possible to prevent the electric lines of force from the gate electrode from leaking out of the side surface of the gate insulating film and reducing the controllability of the gate electrode with respect to the channel region potential. The In this case, the gate insulating film in the vicinity of the substrate is made of a material having a low dielectric constant, so that the capacitive coupling formed between the source region and the channel region in the vicinity thereof is weakened. Thus, the thick Schottky barrier formed between the source region and the channel region is suppressed, and as a result, the resistance is reduced and a high current driving force is realized.

またこの電界効果トランジスターは、半導体基板1上に例えばトレンチ素子分離法に依り素子分離領域2が形成されている。半導体基板1内には、例えばBイオン注入に依りNチャネル領域3が形成されている。Nチャネル領域3上には例えば酸化シリコン膜7と例えば二酸化ハフニウム膜8とに依り積層ゲート絶縁膜9が形成されており、積層ゲート絶縁膜9上には、例えば厚さ100 nmの例えば多結晶シリコンが堆積されゲート電極5が形成されている。また、ゲート電極5を挟む様に例えばシリサイド層の形成に依りソース・ドレイン領域6が形成されている。なお、この図に於いては層間絶縁膜や配線等は省略してある。   In the field effect transistor, an element isolation region 2 is formed on a semiconductor substrate 1 by, for example, a trench element isolation method. An N channel region 3 is formed in the semiconductor substrate 1 by, for example, B ion implantation. A laminated gate insulating film 9 is formed on the N channel region 3 by, for example, a silicon oxide film 7 and a hafnium dioxide film 8, for example. On the laminated gate insulating film 9, for example, a polycrystalline film having a thickness of 100 nm, for example. Silicon is deposited to form the gate electrode 5. Further, the source / drain regions 6 are formed so as to sandwich the gate electrode 5 by forming a silicide layer, for example. In this figure, interlayer insulating films, wirings, etc. are omitted.

次にこの電界効果トランジスターの製造方法について以下に説明する。   Next, a method for manufacturing this field effect transistor will be described below.

先ず図10に示す様に半導体基板1に例えばトレンチ素子分離法に依り素子分離領域2を形成する。続いてPウエル形成領域に例えばBイオンを100 keV、2.0×1012 cm-2で注入し、その後に例えば1050℃、30秒の熱工程を施す。続いてPウエル領域中に、所望のしきい値電圧を得る為に例えばBイオンを30 keV、1.0×1012 cm-2で注入し、Nチャネル3表面の濃度を調節する。 First, as shown in FIG. 10, an element isolation region 2 is formed in a semiconductor substrate 1 by, for example, a trench element isolation method. Subsequently, for example, B ions are implanted into the P well formation region at 100 keV and 2.0 × 10 12 cm −2 , and then a thermal process is performed at 1050 ° C. for 30 seconds, for example. Subsequently, in order to obtain a desired threshold voltage in the P well region, for example, B ions are implanted at 30 keV and 1.0 × 10 12 cm −2 to adjust the concentration of the N channel 3 surface.

次に図11に示す様に、例えば昇温状態の酸化雰囲気に半導体基板1を曝す事に依り、例えば厚さ1 nmの酸化シリコン膜10を形成する。   Next, as shown in FIG. 11, for example, the silicon oxide film 10 having a thickness of 1 nm, for example, is formed by exposing the semiconductor substrate 1 to an oxidizing atmosphere in a temperature-raised state.

次に図12に示す様に、例えばCVD法(化学的気相成長法)等の方法を用いる事に依り、酸化シリコン膜10の上に例えば厚さ5 nmのHfO2(二酸化ハフニウム)膜11を形成する。 Next, as shown in FIG. 12, for example, by using a method such as a CVD method (chemical vapor deposition method), an HfO 2 (hafnium dioxide) film 11 having a thickness of, for example, 5 nm is formed on the silicon oxide film 10. Form.

次に図13に示す様に、HfO2膜11の上に例えばCVD法に依り例えば厚さ100 nmの例えばP(リン)を含む多結晶シリコン膜を堆積し、例えばRIE法(反応性イオンエッチング法)等の異方性エッチングを施す事に依り多結晶シリコン膜を加工してゲート電極5を形成する。続いて例えばRIE法等の異方性エッチングを施す事に依りHfO2膜11及び酸化シリコン膜10を加工して積層ゲート絶縁膜9を形成する。 Next, as shown in FIG. 13, a polycrystalline silicon film containing, for example, P (phosphorus) having a thickness of, for example, 100 nm is deposited on the HfO 2 film 11 by, for example, CVD, for example, RIE (reactive ion etching). The gate electrode 5 is formed by processing the polycrystalline silicon film by performing anisotropic etching such as (method). Subsequently, the laminated gate insulating film 9 is formed by processing the HfO 2 film 11 and the silicon oxide film 10 by performing anisotropic etching such as RIE.

次に、例えばスパッタ法等の方法に依り例えばEr(エルビウム)を半導体基板1全面に堆積し、熱工程を加える事に依り半導体基板1の表面にエルビウム・シリサイドよりなるソース・ドレイン領域6を形成する。続いて例えば薬液に半導体基板1を浸漬する等の方法に依り未反応のエルビウムを除去する。以後は従来技術と同様に層間絶縁膜形成工程や配線工程等を経て図9に示す本発明の電界効果トランジスターを形成する。   Next, for example, Er (erbium) is deposited on the entire surface of the semiconductor substrate 1 by a method such as sputtering, and a source / drain region 6 made of erbium silicide is formed on the surface of the semiconductor substrate 1 by applying a thermal process. To do. Subsequently, unreacted erbium is removed by a method such as immersing the semiconductor substrate 1 in a chemical solution. Thereafter, the field effect transistor of the present invention shown in FIG. 9 is formed through an interlayer insulating film forming process, a wiring process, and the like as in the prior art.

本実施形態に於いてはN型電界効果トランジスターを例に取って示したが、不純物の導電型を逆にすればP型電界効果トランジスターの場合にも、そして光蝕刻法等の方法を用いて基板内の特定の領域にのみ不純物を導入すれば相補型電界効果トランジスターに対しても同様である。また、それらを一部として含む半導体装置にも用いる事ができる。   In the present embodiment, an N-type field effect transistor is shown as an example. However, if the conductivity type of the impurity is reversed, a P-type field effect transistor can be used, and a method such as a photo-etching method can be used. The same applies to complementary field effect transistors if impurities are introduced only into specific regions within the substrate. Further, it can be used for a semiconductor device including them as a part.

また、電界効果トランジスターの他に、バイポーラー型トランジスターや単一電子トランジスター等の他の能動素子、ないしは抵抗体やダイオードやインダクターやキャパシター等の受動素子、ないしは例えば強誘電体を用いた素子や磁性体を用いた素子をも含む半導体装置の一部として電界効果トランジスターを形成する場合にも用いる事ができる。OEIC(オプト・エレクトリカル・インテグレーテッド・サーキット)やMEMS(マイクロ・エレクトロ・メカニカル・システム)の一部として電界効果トランジスターを形成する場合もまた同様である。また、FIN型素子ないしパイゲート素子ないしトライゲート素子ないしゲート・オール・アラウンド素子ないし柱状構造の素子等にも同様に用いられ、同様の効果が得られる。   In addition to field effect transistors, other active elements such as bipolar transistors and single electron transistors, passive elements such as resistors, diodes, inductors and capacitors, or elements using, for example, ferroelectrics, magnetic elements, etc. It can also be used when a field effect transistor is formed as part of a semiconductor device including an element using a body. The same is true when field effect transistors are formed as part of OEIC (Optoelectric Integrated Circuit) or MEMS (Micro Electro Mechanical System). Further, it can be used in the same manner for a FIN type element, a pi gate element, a trigate element, a gate all-around element, a columnar structure element, and the like, and the same effect can be obtained.

また、本実施形態では通常の半導体基板上に形成されたいわゆるバルク素子を例に取って説明したが、SOI型素子、更にはチャネル領域の両側にゲート電極を持つダブル・ゲートSOI型素子等にも同様に用いられ、同様の効果が得られる。   In this embodiment, a so-called bulk element formed on a normal semiconductor substrate has been described as an example. However, an SOI type element, a double gate SOI type element having gate electrodes on both sides of a channel region, etc. Are used in the same manner, and the same effect can be obtained.

また、本実施形態では、N型半導体層を形成する為の不純物としてはPを、P型半導体層を形成する為の不純物としてはBを用いたが、N型ないしP型半導体層を形成する為の不純物として他のV族ないしIII族不純物を用いてもよい。また、不純物の導入はそれらを含む化合物の形で行ってもよい。   In this embodiment, P is used as an impurity for forming an N-type semiconductor layer, and B is used as an impurity for forming a P-type semiconductor layer. However, an N-type or P-type semiconductor layer is formed. Other group V or group III impurities may be used as impurities for this purpose. The introduction of impurities may be performed in the form of a compound containing them.

また、本実施形態では、チャネル領域への不純物の導入はイオン注入を用いて行ったが、イオン注入以外の例えば固相拡散や気相拡散等の方法を用いて行ってもよい。また、不純物を含有する半導体を堆積するないしは成長させる等の方法を用いてもよい。またゲート電極には不純物を含有する半導体を堆積する方法を用いたが、不純物の導入は例えばイオン注入や固相拡散や気相拡散等の方法を用いて行ってもよい。不純物を含有する半導体を堆積すれば、不純物を高濃度に導入する事が可能になりその結果として抵抗が低減されると言う利点がある。またイオン注入の方法を用いればN型素子とP型素子とを持つ相補型素子を形成する場合に工程が簡略になると言う利点がある。   In this embodiment, the introduction of impurities into the channel region is performed using ion implantation. However, for example, a method other than ion implantation such as solid phase diffusion or vapor phase diffusion may be used. Alternatively, a method of depositing or growing a semiconductor containing impurities may be used. Further, although a method of depositing a semiconductor containing an impurity is used for the gate electrode, the introduction of the impurity may be performed using a method such as ion implantation, solid phase diffusion, or vapor phase diffusion. If a semiconductor containing impurities is deposited, it is possible to introduce impurities at a high concentration, and as a result, there is an advantage that resistance is reduced. If the ion implantation method is used, there is an advantage that the process is simplified when a complementary element having an N-type element and a P-type element is formed.

また、本実施形態では、ソース・ドレイン領域を形成する為のシリサイド層の形成にはErを用いたが他の金属を用いてもよい。但し、N型電界効果トランジスターのソース・ドレイン領域のフェルミレベルは基板に用いる半導体の伝導帯下端に近い値である事が好ましく、この観点に鑑みるとシリコン基板を用いる場合にはErを用いるのが好ましい。また、P型電界効果トランジスターのソース・ドレイン領域のフェルミレベルは基板に用いる半導体の価電子帯上端に近い値である事が好ましく、この観点に鑑みるとシリコン基板を用いる場合にはPt(白金)を用いるのが好ましい。但し、N型とP型との双方の素子を含む相補型素子を形成する場合には、フェルミレベルが基板に用いる半導体の禁制帯中央近傍に在る材料をN型とP型との双方の用いると工程が簡略になると言う利点がある。この観点に鑑みると基板にシリコンを用いた相補型素子を形成する場合にはNi(ニッケル)ないしCo(コバルト)が好ましい。また、ソース・ドレイン領域はシリサイドではなく金属を用いて形成してもよい。その場合にはソース・ドレイン領域の抵抗が更に低減されると言う利点がある。但し、本実施形態に示した様にソース・ドレイン領域をシリサイドで形成すればソース・ドレイン領域をゲート電極ないし素子分離領域に対して自己整合的に形成する事が可能であるので工程が簡略になると言う利点がある。   In this embodiment, Er is used to form the silicide layer for forming the source / drain regions, but other metals may be used. However, the Fermi level of the source / drain region of the N-type field effect transistor is preferably a value close to the lower end of the conduction band of the semiconductor used for the substrate. In view of this point of view, it is preferable to use Er when using a silicon substrate. preferable. In addition, the Fermi level of the source / drain region of the P-type field effect transistor is preferably close to the upper end of the valence band of the semiconductor used for the substrate, and in view of this point of view, when using a silicon substrate, Pt (platinum) Is preferably used. However, in the case of forming complementary elements including both N-type and P-type elements, the material whose Fermi level is in the vicinity of the forbidden band center of the semiconductor used for the substrate is both N-type and P-type. When used, there is an advantage that the process is simplified. In view of this point of view, Ni (nickel) or Co (cobalt) is preferable when a complementary element using silicon is formed on the substrate. The source / drain regions may be formed using metal instead of silicide. In that case, there is an advantage that the resistance of the source / drain region is further reduced. However, if the source / drain regions are formed of silicide as shown in this embodiment, the source / drain regions can be formed in a self-aligned manner with respect to the gate electrode or the element isolation region, thereby simplifying the process. There is an advantage to say.

また、本実施形態では、ソース・ドレイン形成領域への不純物導入には言及していないが、ソース・ドレイン形成領域に不純物を導入してもよい。殊に、ソース・ドレイン形成領域にチャネル領域とは逆の導電型の不純物を高濃度に導入する事は、ソース・ドレイン領域とチャネル領域との間に形成されるショットキー障壁を薄くする事に依り抵抗を低下させるので好ましい。   In this embodiment, the introduction of impurities into the source / drain formation regions is not mentioned, but impurities may be introduced into the source / drain formation regions. In particular, introducing a high concentration of an impurity having a conductivity type opposite to that of the channel region into the source / drain formation region reduces the Schottky barrier formed between the source / drain region and the channel region. Therefore, it is preferable because the resistance is lowered.

また、本実施形態では、ソース・ドレイン領域の形成をゲート電極ないしゲート絶縁膜の加工の後に行っているが、これらの順序は本質ではなく、逆の順序で行ってもよい。但し、本実施形態の様にソース・ドレイン領域をシリサイド層で形成する場合には、ソース・ドレイン領域の形成をゲート電極ないしゲート絶縁膜の加工の後に行うとソース・ドレイン領域をゲート電極ないし素子分離領域に対して自己整合的に形成する事が可能であるので工程が簡略になると言う利点がある。   In this embodiment, the source / drain regions are formed after the processing of the gate electrode or the gate insulating film. However, the order is not essential, and the order may be reversed. However, when the source / drain region is formed of a silicide layer as in this embodiment, the source / drain region is formed after the gate electrode or gate insulating film is processed. Since it can be formed in a self-aligned manner with respect to the isolation region, there is an advantage that the process is simplified.

また、SOI素子を形成する場合のチャネル領域の不純物濃度は完全空乏型素子となる様に設定しても部分空乏型素子となる様に設定しても良い。完全空乏型素子となる様に設定するとチャネル領域の不純物濃度が低く抑えられるのでモビリティーが向上し、電流駆動能力が更に向上すると言う利点が得られるし、寄生バイポーラー効果が抑制されると言う別の利点も得られるので好ましい。   In addition, the impurity concentration of the channel region in forming the SOI element may be set to be a fully depleted element or a partially depleted element. Setting the device to be a fully depleted device reduces the impurity concentration in the channel region, which improves the mobility and further improves the current drive capability, and suppresses the parasitic bipolar effect. This is also preferable because the advantages of

また、本実施形態では、ゲート電極は多結晶シリコンを用いたが、単結晶シリコンや非晶質シリコン等の半導体、高融点金属ないしは必ずしも高融点とは限らない金属、金属を含む化合物等、ないしはそれらの積層等で形成してもよい。金属ないし金属を含む化合物でゲート電極を形成するとゲート抵抗が抑制されるので素子の高速動作が得られ、好ましい。また金属でゲートを形成すると酸化反応が進みにくいので、ゲート絶縁膜とゲート電極との界面の制御性が良いと言う利点も有る。また、ゲート電極の少なくとも一部に多結晶シリコン等の半導体を用いると仕事関数の制御が容易であるので素子のしきい値電圧の調節が容易になると言う別の利点がある。   In this embodiment, polycrystalline silicon is used for the gate electrode, but a semiconductor such as single crystal silicon or amorphous silicon, a refractory metal or a metal not necessarily having a high melting point, a compound containing a metal, or the like, or You may form by lamination | stacking etc. of those. When the gate electrode is formed of a metal or a compound containing a metal, gate resistance is suppressed, so that high-speed operation of the device can be obtained, which is preferable. In addition, when the gate is formed of a metal, the oxidation reaction does not proceed easily, so that there is an advantage that the controllability of the interface between the gate insulating film and the gate electrode is good. Further, when a semiconductor such as polycrystalline silicon is used for at least a part of the gate electrode, there is another advantage that the control of the threshold voltage of the element is facilitated because the work function can be easily controlled.

また、本実施形態では、ゲート電極の上部は電極が露出する構造であるが、上部に例えば酸化シリコンや窒化シリコンや酸化窒化シリコン等の絶縁物を設けてもよい。殊にゲート電極が金属を含む材料で形成されている場合等、製造工程の途中でゲート電極を保護する必要が在る場合等はゲート電極の上部に酸化シリコンや窒化シリコンや酸化窒化シリコン等の保護材料を設ける事は大切である。   In this embodiment, the upper portion of the gate electrode has a structure in which the electrode is exposed, but an insulator such as silicon oxide, silicon nitride, or silicon oxynitride may be provided on the upper portion. Especially when it is necessary to protect the gate electrode during the manufacturing process, such as when the gate electrode is formed of a material containing metal, silicon oxide, silicon nitride, silicon oxynitride, etc. It is important to provide protective materials.

また、本実施形態では、ゲート電極の形成はゲート電極材料を堆積した後に異方性エッチングを施すと言う方法で形成しているが、例えばダマシンプロセス等のような埋め込み等の方法を用いてゲート電極を形成してもよい。ゲート電極の形成に先立ってソース・ドレイン領域を形成する場合には、ダマシンプロセスを用いるとソース・ドレイン領域とゲート電極とが自己整合的に形成されるので好ましい。   In this embodiment, the gate electrode is formed by a method in which anisotropic etching is performed after the gate electrode material is deposited. However, the gate electrode is formed by using a method such as embedding such as a damascene process. An electrode may be formed. In the case where the source / drain regions are formed prior to the formation of the gate electrode, it is preferable to use a damascene process because the source / drain regions and the gate electrode are formed in a self-aligned manner.

また、本実施形態では、素子を流れる電流の主方向に測ったゲート電極の長さは、ゲート電極の上部も下部も等しいが、この事は本質的ではない。例えばゲート電極の上部を測った長さの方が下部を測った長さより長いアルファベットの「T」の字の様な形であってもよい。この場合にはゲート抵抗を低減する事ができると言う他の利点も得られる。   In this embodiment, the length of the gate electrode measured in the main direction of the current flowing through the element is the same for both the upper and lower portions of the gate electrode, but this is not essential. For example, the length of the upper portion of the gate electrode measured in the upper part of the gate electrode may be longer than the length measured in the lower portion of the letter “T”. In this case, there is another advantage that the gate resistance can be reduced.

また、本実施形態では、ゲート電極の上面は基板表面に平行な平面としたが、この事に必然性はなく、ゲート電極の上面が基板表面に対して傾斜している、ないしは上面が曲面である、ないしは上面が角を持つとしても同様の効果が得られる。
また、本実施形態では、積層ゲート絶縁膜の内で基板に近い方の膜は酸化シリコンとしたが、この事に必然性はなく、窒化シリコンないし酸化窒化シリコン等としても良い。但し、この膜を酸化シリコンで形成するとキャリアのモビリティーが向上するので電流駆動能力が更に向上すると言う利点がある。また、絶縁膜中や半導体基板との界面に存在する電荷や準位等が少ない事が望ましいので、この事に鑑みると半導体基板と接する膜には酸化シリコンを用いる事が好ましい。一方、ゲート電極に不純物を含有する半導体を用いた場合に於いてゲート電極中の不純物がチャネル領域に拡散する事を防ぐと言う観点から考えると、窒素の存在に依り不純物の拡散が抑制される事が知られているので窒化シリコンないし酸化窒化シリコンを用いる事が好ましい。またこれらの膜の形成方法は例えば昇温状態の酸素気体に曝すないしは堆積等の方法を用いる事に依り可能であるし、必ずしも昇温を伴わない励起状態の酸素気体に曝してもよい。昇温を伴わない励起状態の酸素気体に曝すと言う方法で形成すれば、チャネル領域中の不純物が拡散に依り濃度分布を変える事が抑制されるので好ましい。更に酸化窒化シリコンを用いる場合には、先ず酸化シリコン膜を形成し、その後に昇温状態ないし励起状態の窒素を含む気体に曝す事に依り絶縁膜中に窒素を導入してもよい。この場合に於いて昇温を伴わない励起状態の窒素気体に曝すと言う方法で形成すれば、チャネル領域中の不純物が拡散に依り濃度分布を変える事が抑制されるので好ましい。
In this embodiment, the upper surface of the gate electrode is a plane parallel to the substrate surface. However, this is not inevitable, and the upper surface of the gate electrode is inclined with respect to the substrate surface, or the upper surface is a curved surface. The same effect can be obtained even if the upper surface has corners.
In the present embodiment, the film closer to the substrate in the laminated gate insulating film is made of silicon oxide. However, this is not inevitable, and silicon nitride, silicon oxynitride, or the like may be used. However, when this film is formed of silicon oxide, the mobility of carriers is improved, so that there is an advantage that the current driving capability is further improved. In addition, since it is desirable that there are few charges, levels, and the like existing in the insulating film and at the interface with the semiconductor substrate, in view of this, it is preferable to use silicon oxide for the film in contact with the semiconductor substrate. On the other hand, from the viewpoint of preventing impurities in the gate electrode from diffusing into the channel region when a semiconductor containing impurities is used for the gate electrode, diffusion of impurities is suppressed by the presence of nitrogen. Since it is known, it is preferable to use silicon nitride or silicon oxynitride. Further, these films can be formed by, for example, exposing to a heated oxygen gas or using a method such as deposition, or may be exposed to an excited oxygen gas without necessarily raising the temperature. It is preferable to form it by a method in which it is exposed to an excited oxygen gas that is not accompanied by an increase in temperature, because the impurity in the channel region is suppressed from changing its concentration distribution due to diffusion. Further, in the case of using silicon oxynitride, nitrogen may be introduced into the insulating film by first forming a silicon oxide film and then exposing it to a gas containing nitrogen in a heated state or excited state. In this case, it is preferable to form it by a method of exposing to an excited nitrogen gas that is not accompanied by an increase in temperature, because impurities in the channel region can be prevented from changing the concentration distribution due to diffusion.

また、絶縁膜の形成方法はCVD法に限るものではなく、蒸着法ないしスパッタ法ないしエピタキシャル成長法等の他の方法を用いてもよい。また、絶縁膜として或る物質の酸化物を用いる等の場合には、まずその物質の膜を形成しておいてそれを酸化する等の方法を用いてもよい。なお、本発明の方法はゲート絶縁膜を誘電率の高い材料と低い材料との積層にする事で、誘電率の高い材料のみでゲート絶縁膜を形成した場合に比べてゲート絶縁膜の幾何学的な意味の膜厚を薄くする事に依り、ゲートから出た電気力線がゲート絶縁膜の側面から外へ漏れる事の防止を図っている。それ故、誘電率の高い膜は従来の素子のゲート絶縁膜に用いられていた酸化シリコンと比較して十分に誘電率の高い例えば金属酸化物等の材料を用いる場合に特にその効果が著しい。   Further, the method for forming the insulating film is not limited to the CVD method, and other methods such as a vapor deposition method, a sputtering method, and an epitaxial growth method may be used. When an oxide of a certain material is used as the insulating film, a method of first forming a film of the material and oxidizing it may be used. In the method of the present invention, the gate insulating film is formed by stacking a material having a high dielectric constant and a material having a low dielectric constant, so that the geometry of the gate insulating film is made as compared with the case where the gate insulating film is formed only from a material having a high dielectric constant. By reducing the thickness of the film, the electric lines of force from the gate are prevented from leaking out from the side surface of the gate insulating film. Therefore, the effect of the film having a high dielectric constant is particularly remarkable when a material such as a metal oxide having a sufficiently high dielectric constant is used as compared with silicon oxide used for the gate insulating film of the conventional device.

また、本実施形態では積層ゲート絶縁膜の内で半導体基板から遠い方の膜の誘電率が、半導体基板に近い方の膜の誘電率より高いとしたが、この大小関係は逆でもよい。但し、ゲート絶縁膜を貫く電気力線に依ってソース領域とチャネル領域との間に形成される容量結合を弱めると言う観点に鑑みると本実施形態の様に半導体基板から遠い方の膜の誘電率の方が高い事が好ましい。   In this embodiment, the dielectric constant of the film far from the semiconductor substrate in the stacked gate insulating film is higher than the dielectric constant of the film closer to the semiconductor substrate, but this magnitude relationship may be reversed. However, in view of the point of weakening the capacitive coupling formed between the source region and the channel region due to the lines of electric force penetrating the gate insulating film, the dielectric of the film farther from the semiconductor substrate as in this embodiment is used. A higher rate is preferred.

また、本実施形態ではゲート絶縁膜は二層の積層としたが、三層以上の積層となる様に形成してもよい。   In this embodiment, the gate insulating film is a two-layered stack, but may be formed to be a stack of three or more layers.

また、ゲート絶縁膜を形成する絶縁膜等の厚さは本実施形態の値に限るものではない。更に、ゲート絶縁膜は一様な厚さを持つとしたが、この事は本質的ではない。   Further, the thickness of the insulating film or the like forming the gate insulating film is not limited to the value of this embodiment. Further, although the gate insulating film has a uniform thickness, this is not essential.

また、本実施形態では、素子分離はトレンチ素子分離法を用いて行ったが、例えば局所酸化法やメサ型素子分離法等の他の方法を用いて素子分離を行ってもよい。   In this embodiment, the element isolation is performed using the trench element isolation method. However, the element isolation may be performed using another method such as a local oxidation method or a mesa element isolation method.

また、本実施形態では、ゲート電極形成後の後酸化には言及していないが、ゲート電極やゲート絶縁膜等の材料等に鑑みて可能であれば、後酸化工程を行ってもよい。また、必ずしも後酸化に限らず例えば薬液処理ないしは反応性の気体に曝す等の方法でゲート電極下端の角を丸める処理を行ってもよい。これらの工程が可能な場合にはそれに依りゲート電極下端角部の電場が緩和されるので好ましい。   In this embodiment, post-oxidation after the formation of the gate electrode is not mentioned, but a post-oxidation step may be performed if possible in view of materials such as the gate electrode and the gate insulating film. Further, the process is not necessarily limited to post-oxidation, and a process of rounding the corner of the lower end of the gate electrode may be performed by a method such as chemical treatment or exposure to a reactive gas. If these steps are possible, it is preferable because the electric field at the lower corner of the gate electrode is relaxed.

また、本実施形態では、層間絶縁膜には言及していないが、例えば低誘電率材料等の酸化シリコン以外の物質を層間絶縁膜に用いてもよい。層間絶縁膜の誘電率を低くすると素子の寄生容量が低減されるので素子の高速動作が得られると言う利点がある。   In the present embodiment, the interlayer insulating film is not mentioned, but a substance other than silicon oxide such as a low dielectric constant material may be used for the interlayer insulating film. If the dielectric constant of the interlayer insulating film is lowered, the parasitic capacitance of the element is reduced, so that there is an advantage that high-speed operation of the element can be obtained.

また、コンタクト孔に関しては言及していないが、自己整合コンタクトを形成する事も可能である。自己整合コンタクトを用いると素子の面積を低減する事ができるので、集積度の向上が図られ、好ましい。 Although no mention is made of contact holes, self-aligned contacts can be formed. The use of the self-aligned contact is preferable because the area of the element can be reduced, and the degree of integration can be improved.

また、本実施形態では、配線の為の金属層の形成には言及していないが、例えばCu(銅)等の金属を用いる事ができる。殊にCuは低効率が低いので好ましい。   In the present embodiment, the formation of a metal layer for wiring is not mentioned, but a metal such as Cu (copper) can be used. In particular, Cu is preferable because of its low efficiency.

なお、本実施形態ないし変形例に於いては単一のトランジスターのみの構造を示したが、ここに示した実施形態は単一のトランジスターの場合に限定されるものではなく、かつ同様の効果が得られる事は無論である。   In this embodiment or modification, the structure of only a single transistor is shown. However, the embodiment shown here is not limited to the case of a single transistor, and the same effect can be obtained. Of course, you can get it.

(実施形態2)
次に本発明の半導体装置の他の実施形態を説明する。
(Embodiment 2)
Next, another embodiment of the semiconductor device of the present invention will be described.

本実施形態の半導体装置を図14に示す。この電界効果トランジスターは、ショットキー型電界効果トランジスターであり、ゲート絶縁膜9が酸化シリコンよりなる膜7と金属酸化物等の高誘電率材料よりなる膜8との積層であり、金属酸化物等の高誘電率材料よりなるゲート側壁絶縁膜12を有する事に特徴が有る。この様にするとソース・ドレイン領域を形成する為のシリサイド化反応時にソース・ドレイン領域とゲート電極とが短絡するいわゆるブリッジングが防止されると言う利点がある。また、上に述べた様に電気力線の屈折に依ってゲート電極から出た電気力線がソース領域近傍のチャネル領域に集められ、その領域の電位に対するゲート電極の制御性が向上し、その為にソース領域とチャネル領域との間に形成されるショットキー障壁が薄くなって抵抗が減少し、その結果として高い電流駆動力が得られると言う利点がある。   The semiconductor device of this embodiment is shown in FIG. This field effect transistor is a Schottky field effect transistor, in which a gate insulating film 9 is a laminate of a film 7 made of silicon oxide and a film 8 made of a high dielectric constant material such as a metal oxide. It is characterized by having a gate sidewall insulating film 12 made of a high dielectric constant material. This has the advantage that so-called bridging in which the source / drain regions and the gate electrode are short-circuited during the silicidation reaction for forming the source / drain regions is prevented. In addition, as described above, the electric field lines emitted from the gate electrode due to the refraction of the electric field lines are collected in the channel region near the source region, and the controllability of the gate electrode with respect to the potential of the region is improved. Therefore, there is an advantage that a Schottky barrier formed between the source region and the channel region is thinned to reduce the resistance, and as a result, a high current driving force can be obtained.

またこの電界効果トランジスターは、半導体基板1上に例えばトレンチ素子分離法に依り素子分離領域2が形成されている。半導体基板1内には、例えばBイオン注入に依りNチャネル領域3が形成されている。Nチャネル領域3上には例えば酸化シリコン膜7と例えば二酸化ハフニウム膜8とに依り積膜ゲート絶縁膜9が形成されており、積層ゲート絶縁膜9上には、例えば厚さ100 nmの例えばW(タングステン)等の高融点金属が堆積されゲート電極5が形成されている。また、ゲート電極5を挟む様に例えば二酸化ハフニウムのゲート側壁絶縁膜12が形成され、ゲート側壁絶縁膜12を挟む様にシリサイド層の形成に依りソース・ドレイン領域6が形成されている。なお、この図に於いては層間絶縁膜や配線等は省略してある。   In the field effect transistor, an element isolation region 2 is formed on a semiconductor substrate 1 by, for example, a trench element isolation method. An N channel region 3 is formed in the semiconductor substrate 1 by, for example, B ion implantation. A stacked gate insulating film 9 is formed on the N channel region 3 by, for example, a silicon oxide film 7 and, for example, a hafnium dioxide film 8, and the laminated gate insulating film 9 has a thickness of, for example, 100 nm. A gate electrode 5 is formed by depositing a refractory metal such as (tungsten). Further, a gate sidewall insulating film 12 of, for example, hafnium dioxide is formed so as to sandwich the gate electrode 5, and a source / drain region 6 is formed by forming a silicide layer so as to sandwich the gate sidewall insulating film 12. In this figure, interlayer insulating films, wirings, etc. are omitted.

次にこの電界効果トランジスターの製造方法について以下に説明する。   Next, a method for manufacturing this field effect transistor will be described below.

実施形態1の図12に示す工程に引き続いて図15に示す様に、HfO2膜11の上に例えばCVD法に依り例えば厚さ100 nmの例えばW(タングステン)膜14を堆積し、続いてW膜14の上に例えばCVD法等の方法に依り例えば厚さ10 nmの例えば窒化シリコン膜13を堆積する。 For example, a W (tungsten) film 14 having a thickness of, for example, 100 nm is deposited on the HfO 2 film 11 by, eg, CVD, as shown in FIG. For example, a silicon nitride film 13 having a thickness of 10 nm, for example, is deposited on the W film 14 by a method such as CVD.

次に図16に示す様に、例えばRIE法等の異方性エッチングを施す事に依り窒化シリコン膜13とW膜14とを加工してゲート電極5を形成する。続いて例えばRIE法等の異方性エッチングを施す事に依りHfO2膜11及び酸化シリコン膜10を加工して積層ゲート絶縁膜9を形成する。 Next, as shown in FIG. 16, the silicon nitride film 13 and the W film 14 are processed to form the gate electrode 5 by performing anisotropic etching such as RIE. Subsequently, the laminated gate insulating film 9 is formed by processing the HfO 2 film 11 and the silicon oxide film 10 by performing anisotropic etching such as RIE.

次に図17に示す様に、例えばCVD法等の方法に依り例えば厚さ10 nmの例えばHfO2膜を堆積する。そして例えばRIE法等の異方性エッチングを施す事に依りHfO2膜を加工してゲート側壁絶縁膜12を形成する。 Next, as shown in FIG. 17, for example, an HfO 2 film having a thickness of 10 nm, for example, is deposited by a method such as CVD. Then, the gate sidewall insulating film 12 is formed by processing the HfO 2 film by performing anisotropic etching such as RIE.

次に、例えばスパッタ法等の方法に依り例えばErを半導体基板1全面に堆積し、熱工程を加える事に依り半導体基板1の表面にエルビウム・シリサイドよりなるソース・ドレイン領域6を形成する。続いて例えば薬液に半導体基板1を浸漬する等の方法に依り未反応のエルビウムを除去する。以後は従来技術と同様に層間絶縁膜形成工程や配線工程等を経て図14に示す本発明の電界効果トランジスターを形成する。   Next, for example, Er is deposited on the entire surface of the semiconductor substrate 1 by a method such as sputtering, and a source / drain region 6 made of erbium silicide is formed on the surface of the semiconductor substrate 1 by applying a thermal process. Subsequently, unreacted erbium is removed by a method such as immersing the semiconductor substrate 1 in a chemical solution. Thereafter, the field effect transistor of the present invention shown in FIG. 14 is formed through an interlayer insulating film forming process, a wiring process, and the like as in the prior art.

本実施形態に於いてはゲート側壁絶縁膜は、積層ゲート絶縁膜の内の誘電率の高い方の膜を形成する材料と同一の材料を用いて形成したが、この事は本質では無く異なる材料を用いてもよい。ただし、上に述べた電気力線の屈折の議論に鑑みると側壁を形成する材料の誘電率は、積層ゲート絶縁膜を形成する最も基板に近い膜と次に基板に近い膜との内で誘電率の低い方の材料の誘電率以上である必要があり、更に上に述べた様にそれら二層のいずれの誘電率よりも高い事が好ましい。またゲート側壁絶縁膜の厚さ等の具体的な値は本実施形態の値に限るものではない。   In the present embodiment, the gate sidewall insulating film is formed using the same material as that of the film having the higher dielectric constant of the laminated gate insulating film, but this is not essential and is a different material. May be used. However, in view of the above discussion of the refraction of the lines of electric force, the dielectric constant of the material forming the side wall is the dielectric constant between the film closest to the substrate and the film closest to the substrate that forms the stacked gate insulating film. The dielectric constant needs to be equal to or higher than the dielectric constant of the material having the lower rate, and as described above, it is preferably higher than the dielectric constant of any of these two layers. Further, specific values such as the thickness of the gate sidewall insulating film are not limited to the values in the present embodiment.

また、本実施形態に於いては積層ゲート絶縁膜の内で半導体基板から遠い方の膜の誘電率が、半導体基板に近い方の膜の誘電率より高いとしたが、この大小関係は逆でもよい。但し、上にも述べた様に電気力線の屈折に依り、ゲート電極から出た電気力線がソース領域近傍のチャネル領域に有効に集められると言う観点に鑑みると本実施形態の様に半導体基板から遠い方の膜の誘電率の方が高い事が好ましい。   In the present embodiment, the dielectric constant of the film farther from the semiconductor substrate in the stacked gate insulating film is higher than the dielectric constant of the film closer to the semiconductor substrate, but this magnitude relationship may be reversed. Good. However, as described above, in view of the fact that the lines of electric force emitted from the gate electrode are effectively collected in the channel region in the vicinity of the source region due to the refraction of the lines of electric force, the semiconductor as in this embodiment It is preferable that the dielectric constant of the film farther from the substrate is higher.

本実施形態に於いては、ソース・ドレイン領域形成の為のシリサイド工程時にゲート電極を保護する為にゲート電極上に形成する絶縁膜として窒化シリコンを用いたが、この材料は窒化シリコンに限るものでは無く他の材料を用いても良い。但し、シリサイド工程の前には基板に例えば希弗化水素酸処理等の処理を施して表面に形成されている自然酸化シリコン膜を除去する事が好ましい。この事に鑑みるとゲート電極の上に形成する膜には弗化水素酸との反応性の弱い例えば窒化シリコン等の材料を用いる事が好ましい。   In this embodiment, silicon nitride is used as an insulating film formed on the gate electrode in order to protect the gate electrode during the silicide process for forming the source / drain regions. However, this material is limited to silicon nitride. Instead, other materials may be used. However, it is preferable to remove the natural silicon oxide film formed on the surface by subjecting the substrate to a treatment such as dilute hydrofluoric acid treatment before the silicide process. In view of this, it is preferable to use a material such as silicon nitride having a low reactivity with hydrofluoric acid for the film formed on the gate electrode.

本実施形態に於いても実施形態1に記した様な種々の変形が可能であり、同様の効果が得られる。   In the present embodiment, various modifications as described in the first embodiment are possible, and similar effects can be obtained.

(実施形態3)
次に本発明の半導体装置の更に他の実施形態を説明する。
(Embodiment 3)
Next, still another embodiment of the semiconductor device of the present invention will be described.

本実施形態の半導体装置を図18に示す。この電界効果トランジスターは、ショットキー型電界効果トランジスターであり、ゲート絶縁膜9が酸化シリコンよりなる膜7と金属酸化物等の高誘電率材料よりなる膜8との積層であり、金属酸化物等の高誘電率材料よりなるゲート側壁絶縁膜12を有し、且つ積層ゲート絶縁膜の内で酸化シリコンよりなる膜7のゲート端部分に空隙15を有する事に特徴が有る。この様にするとソース・ドレイン領域を形成する為のシリサイド化反応時にソース・ドレイン領域とゲート電極とが短絡するいわゆるブリッジングが防止されると言う利点がある。また、上に述べた様に電気力線の屈折に依ってゲート電極から出た電気力線がソース領域近傍のチャネル領域に集められる際に、空隙は誘電率が極めて低いので更に有効に集められ、その領域の電位に対するゲート電極の制御性が更に向上し、その為にソース領域とチャネル領域との間に形成されるショットキー障壁が更に薄くなって抵抗が更に減少し、その結果として更に高い電流駆動力が得られると言う利点がある。なお、この図に於いては層間絶縁膜や配線等は省略してある。   The semiconductor device of this embodiment is shown in FIG. This field effect transistor is a Schottky field effect transistor, in which a gate insulating film 9 is a laminate of a film 7 made of silicon oxide and a film 8 made of a high dielectric constant material such as a metal oxide. It is characterized in that it has a gate sidewall insulating film 12 made of a high dielectric constant material and a gap 15 at the gate end portion of the film 7 made of silicon oxide in the laminated gate insulating film. This has the advantage that so-called bridging in which the source / drain regions and the gate electrode are short-circuited during the silicidation reaction for forming the source / drain regions is prevented. Further, as described above, when the electric force lines coming out from the gate electrode are collected in the channel region near the source region due to the refraction of the electric force lines, the voids are collected more effectively because the dielectric constant is extremely low. Further, the controllability of the gate electrode with respect to the potential of the region is further improved. For this reason, the Schottky barrier formed between the source region and the channel region is further thinned to further reduce the resistance, and as a result, the resistance is further increased. There is an advantage that current driving force can be obtained. In this figure, interlayer insulating films, wirings, etc. are omitted.

次にこの電界効果トランジスターの製造方法について以下に説明する。   Next, a method for manufacturing this field effect transistor will be described below.

実施形態2の図16に示す工程に引き続いて図19に示す様に、例えば薬液に浸漬する等の方法に依り、ゲート端近傍のみ前記酸化シリコン膜10を除去する。   Subsequent to the step shown in FIG. 16 of the second embodiment, as shown in FIG. 19, the silicon oxide film 10 is removed only in the vicinity of the gate end by a method such as immersion in a chemical solution.

以後は実施形態2の図17以降に示す工程と同様である。   The subsequent steps are the same as those shown in FIG.

本実施形態に於いては積層ゲート絶縁膜の内で半導体基板から遠い方の膜の誘電率が、半導体基板に近い方の膜の誘電率より高いとしたが、この大小関係は逆でもよく、その場合には図20に示す様に積層ゲート絶縁膜の内で半導体基板から遠い方の膜のゲート端近傍に空隙15が形成される。いずれであっても積層ゲート絶縁膜の内の半導体基板に最も近い膜と次に近い膜との内で誘電率の低い方の膜のゲート端近傍に空隙を設けると、上にも述べた様に、電気力線の屈折に依ってゲート電極から出た電気力線がソース領域近傍のチャネル領域に集められる際に、空隙は誘電率が極めて低いので更に有効に集められ、その領域の電位に対するゲート電極の制御性が更に向上し、その為にソース領域とチャネル領域との間に形成されるショットキー障壁が更に薄くなって抵抗が更に減少し、その結果として更に高い電流駆動力が得られると言う利点がある。   In the present embodiment, the dielectric constant of the film farther from the semiconductor substrate in the stacked gate insulating film is higher than the dielectric constant of the film closer to the semiconductor substrate, but this magnitude relationship may be reversed. In that case, as shown in FIG. 20, a gap 15 is formed in the vicinity of the gate end of the film far from the semiconductor substrate in the laminated gate insulating film. In any case, if a gap is provided in the vicinity of the gate end of the film having the lower dielectric constant among the film closest to the semiconductor substrate in the stacked gate insulating film and the film closest to the next, as described above, In addition, when the electric field lines coming out of the gate electrode are collected in the channel region near the source region due to the refraction of the electric field lines, the voids are collected more effectively because the dielectric constant is extremely low, and the potential relative to the potential of the region is reduced. The controllability of the gate electrode is further improved. For this reason, the Schottky barrier formed between the source region and the channel region is further thinned to further reduce the resistance. As a result, a higher current driving force can be obtained. There is an advantage to say.

本実施形態に於いても上記実施形態に記した様な種々の変形が可能であり、同様の効果が得られる。   Also in this embodiment, various modifications as described in the above embodiment are possible, and the same effect can be obtained.

(実施形態4)
次に本発明の半導体装置の更に他の実施形態を説明する。
(Embodiment 4)
Next, still another embodiment of the semiconductor device of the present invention will be described.

本実施形態の半導体装置を図21に示す。この電界効果トランジスターは、ショットキー型電界効果トランジスターであり、ゲート絶縁膜9が酸化シリコンよりなる膜7と金属酸化物等の高誘電率材料よりなる膜8との積層であり、金属酸化物等の高誘電率材料よりなるゲート側壁絶縁膜12を有し、且つ積層ゲート絶縁膜の内で酸化シリコンよりなる膜7はゲート側壁絶縁膜12の下まで延在している事に特徴が有る。この様にするとソース・ドレイン領域を形成する為のシリサイド化反応時にソース・ドレイン領域とゲート電極とが短絡するいわゆるブリッジングが防止されると言う利点がある。また、ゲート側壁絶縁膜を貫く電気力線に依りソース領域とチャネル領域との間に形成される容量結合が弱められる為に、ソース領域とチャネル領域との間に形成されるショットキー障壁が薄くなって抵抗が減少し、その結果として高い電流駆動力が得られると言う利点がある。なお、この図に於いては層間絶縁膜や配線等は省略してある。   The semiconductor device of this embodiment is shown in FIG. This field effect transistor is a Schottky field effect transistor, in which a gate insulating film 9 is a laminate of a film 7 made of silicon oxide and a film 8 made of a high dielectric constant material such as a metal oxide. The gate sidewall insulating film 12 made of a high dielectric constant material is included, and the film 7 made of silicon oxide in the laminated gate insulating film extends to the bottom of the gate sidewall insulating film 12. This has the advantage that so-called bridging in which the source / drain regions and the gate electrode are short-circuited during the silicidation reaction for forming the source / drain regions is prevented. In addition, since the capacitive coupling formed between the source region and the channel region is weakened by the electric lines of force penetrating the gate sidewall insulating film, the Schottky barrier formed between the source region and the channel region is thin. Thus, there is an advantage that the resistance is reduced, and as a result, a high current driving force can be obtained. In this figure, interlayer insulating films, wirings, etc. are omitted.

次にこの電界効果トランジスターの製造方法について以下に説明する。   Next, a method for manufacturing this field effect transistor will be described below.

実施形態2の図15に示す工程に引き続いて図22に示す様に、例えば例えばRIE法等の異方性エッチングを施す事に依り窒化シリコン膜13とW膜14とを加工してゲート電極5を形成する。続いて例えばRIE法等の異方性エッチングを施す事に依りHfO2膜11を加工する。 As shown in FIG. 22 following the step shown in FIG. 15 of the second embodiment, the silicon nitride film 13 and the W film 14 are processed by performing anisotropic etching such as RIE, for example, to process the gate electrode 5. Form. Subsequently, the HfO 2 film 11 is processed by performing anisotropic etching such as RIE.

次に図23に示す様に、例えばCVD法等の方法に依り例えば厚さ10 nmの例えばHfO2膜を堆積する。そして例えばRIE法等の異方性エッチングを施す事に依りHfO2膜を加工してゲート側壁絶縁膜12を形成する。 Next, as shown in FIG. 23, for example, an HfO 2 film having a thickness of 10 nm, for example, is deposited by a method such as CVD. Then, the gate sidewall insulating film 12 is formed by processing the HfO 2 film by performing anisotropic etching such as RIE.

次に図24に示す様に、例えばRIE法等の異方性エッチングを施す事に依り酸化シリコン膜10を加工して積層ゲート絶縁膜9を形成する。   Next, as shown in FIG. 24, the silicon oxide film 10 is processed by performing anisotropic etching such as RIE, for example, to form a laminated gate insulating film 9.

次に、例えばスパッタ法等の方法に依り例えばErを半導体基板1全面に堆積し、熱工程を加える事に依り半導体基板1の表面にエルビウム・シリサイドよりなるソース・ドレイン領域6を形成する。続いて例えば薬液に半導体基板1を浸漬する等の方法に依り未反応のエルビウムを除去する。以後は従来技術と同様に層間絶縁膜形成工程や配線工程等を経て図21に示す本発明の電界効果トランジスターを形成する。   Next, for example, Er is deposited on the entire surface of the semiconductor substrate 1 by a method such as sputtering, and a source / drain region 6 made of erbium silicide is formed on the surface of the semiconductor substrate 1 by applying a thermal process. Subsequently, unreacted erbium is removed by a method such as immersing the semiconductor substrate 1 in a chemical solution. Thereafter, the field effect transistor of the present invention shown in FIG. 21 is formed through an interlayer insulating film forming process, a wiring process, and the like as in the prior art.

本実施形態に於いても上記実施形態に記した様な種々の変形が可能であり、同様の効果が得られる。   Also in this embodiment, various modifications as described in the above embodiment are possible, and the same effect can be obtained.

本発明の半導体装置を説明する為の特性図Characteristics diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の特性図Characteristics diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の模式図Schematic diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の模式図Schematic diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の模式図Schematic diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の模式図Schematic diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の模式図Schematic diagram for explaining a semiconductor device of the present invention 本発明の半導体装置を説明する為の模式図Schematic diagram for explaining a semiconductor device of the present invention 本発明の実施形態1にかかる電界効果トランジスターの構造を説明する為の断面図Sectional drawing for demonstrating the structure of the field effect transistor concerning Embodiment 1 of this invention 本発明の実施形態1にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 1 of this invention. 本発明の実施形態1にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 1 of this invention. 本発明の実施形態1にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 1 of this invention. 本発明の実施形態1にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 1 of this invention. 本発明の実施形態2にかかる電界効果トランジスターの構造を説明する為の断面図Sectional drawing for demonstrating the structure of the field effect transistor concerning Embodiment 2 of this invention 本発明の実施形態2にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 2 of this invention. 本発明の実施形態2にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 2 of this invention. 本発明の実施形態2にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 2 of this invention. 本発明の実施形態3にかかる半導体装置を説明する為の断面図Sectional drawing for demonstrating the semiconductor device concerning Embodiment 3 of this invention. 本発明の実施形態3にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 3 of this invention. 本発明の実施形態3にかかる半導体装置の変形例を説明する為の断面図Sectional drawing for demonstrating the modification of the semiconductor device concerning Embodiment 3 of this invention. 本発明の実施形態4にかかる電界効果トランジスターの構造を説明する為の断面図Sectional drawing for demonstrating the structure of the field effect transistor concerning Embodiment 4 of this invention 本発明の実施形態4にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 4 of this invention. 本発明の実施形態4にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 4 of this invention. 本発明の実施形態4にかかる電界効果トランジスターの製造工程を説明する為の断面図Sectional drawing for demonstrating the manufacturing process of the field effect transistor concerning Embodiment 4 of this invention. 従来の電界効果トランジスターの断面図Cross-sectional view of a conventional field effect transistor 従来の電界効果トランジスターの問題点を説明する為の特性図Characteristics diagram for explaining the problems of conventional field effect transistors 従来の電界効果トランジスターの問題点を説明する為の特性図Characteristics diagram for explaining the problems of conventional field effect transistors

符号の説明Explanation of symbols

1…半導体基板
2…素子分離領域
3…チャネル領域
4…金属酸化物よりなるゲート絶縁膜
5…ゲート電極
6…ソース・ドレイン領域
7…酸化シリコン膜
8…金属酸化物膜
9…積層ゲート絶縁膜
10…酸化シリコン膜
11…二酸化ハフニウム膜
12…ゲート側壁絶縁膜
13…窒化シリコン膜
14…タングステン膜
15…空隙
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Element isolation region 3 ... Channel region 4 ... Gate insulating film 5 which consists of metal oxides ... Gate electrode 6 ... Source / drain region 7 ... Silicon oxide film 8 ... Metal oxide film 9 ... Laminated gate insulating film DESCRIPTION OF SYMBOLS 10 ... Silicon oxide film 11 ... Hafnium dioxide film 12 ... Gate side wall insulating film 13 ... Silicon nitride film 14 ... Tungsten film 15 ... Air gap

Claims (7)

半導体層を有する半導体基板と、前記半導体層上に形成された第一の絶縁膜と、前記第一の絶縁膜上に形成され且つ前記第一の絶縁膜とは誘電率が異なる第二の絶縁膜と、前記第二の絶縁膜上に形成されたゲート電極と、前記ゲート電極を挟む様に前記半導体基板の表面部に形成された金属ないし金属珪化物よりなるソース領域およびドレイン領域と、を含む事を特徴とする半導体装置。   A semiconductor substrate having a semiconductor layer, a first insulating film formed on the semiconductor layer, and a second insulating film formed on the first insulating film and having a dielectric constant different from that of the first insulating film A film, a gate electrode formed on the second insulating film, and a source region and a drain region made of metal or metal silicide formed on a surface portion of the semiconductor substrate so as to sandwich the gate electrode. A semiconductor device characterized by including. 前記第二の絶縁膜の誘電率が前記第一の絶縁膜の誘電率より高い事を特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a dielectric constant of the second insulating film is higher than a dielectric constant of the first insulating film. 前記ゲート電極の側壁に、前記第一の絶縁膜の誘電率と前記第二の絶縁膜の誘電率との低い方以上の誘電率を有するゲート側壁絶縁膜を備えた請求項1ないし2いずれかに記載の半導体装置。   The gate sidewall insulating film having a dielectric constant equal to or higher than a lower one of a dielectric constant of the first insulating film and a dielectric constant of the second insulating film on the sidewall of the gate electrode. A semiconductor device according to 1. 前記ゲート電極の側壁に、前記第一の絶縁膜の誘電率と前記第二の絶縁膜の誘電率とのいずれよりも高い誘電率を有するゲート側壁絶縁膜を備えた請求項1ないし2のいずれかに記載の半導体装置。   The gate sidewall insulating film having a dielectric constant higher than both of the dielectric constant of the first insulating film and the dielectric constant of the second insulating film is provided on the sidewall of the gate electrode. A semiconductor device according to claim 1. 前記ゲート側壁は、前記第一の絶縁膜と前記第二の絶縁膜とのいずれの側面とも接している事を特徴とする請求項3ないし4のいずれかに記載の半導体装置。   5. The semiconductor device according to claim 3, wherein the gate side wall is in contact with any side surface of the first insulating film and the second insulating film. 前記ゲート側壁絶縁膜の少なくとも一部は、前記ソース領域と前記ドレイン領域との間の領域上に存在する事を特徴とする請求項3ないし5のいずれかに記載の半導体装置。   6. The semiconductor device according to claim 3, wherein at least a part of the gate sidewall insulating film exists on a region between the source region and the drain region. 前記第一の絶縁膜と前記第二の絶縁膜との少なくとも一方が金属若しくは酸素を含む事を特徴とする請求項1ないし6のいずれかに記載の半導体装置。


7. The semiconductor device according to claim 1, wherein at least one of the first insulating film and the second insulating film contains a metal or oxygen.


JP2005053703A 2005-02-28 2005-02-28 Semiconductor device Pending JP2006237512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053703A JP2006237512A (en) 2005-02-28 2005-02-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053703A JP2006237512A (en) 2005-02-28 2005-02-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2006237512A true JP2006237512A (en) 2006-09-07

Family

ID=37044790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053703A Pending JP2006237512A (en) 2005-02-28 2005-02-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2006237512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716702B2 (en) 2010-10-22 2014-05-06 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137562A (en) * 1990-09-28 1992-05-12 Toshiba Corp Semiconductor device and its manufacture
JPH053206A (en) * 1990-08-29 1993-01-08 Toshiba Corp Offset gate transistor and manufacture thereof
JP2001274378A (en) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp Semiconductor device
JP2002094058A (en) * 2000-07-11 2002-03-29 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2003289139A (en) * 2002-03-27 2003-10-10 Toshiba Corp Field effect transistor
JP2003338507A (en) * 2002-05-22 2003-11-28 Renesas Technology Corp Mis type semiconductor device and method of manufacturing the same
JP2004140262A (en) * 2002-10-18 2004-05-13 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2004538650A (en) * 2001-08-10 2004-12-24 スピネカ セミコンダクター, インコーポレイテッド Transistor having high dielectric constant gate insulating layer, source and drain forming Schottky contact with substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053206A (en) * 1990-08-29 1993-01-08 Toshiba Corp Offset gate transistor and manufacture thereof
JPH04137562A (en) * 1990-09-28 1992-05-12 Toshiba Corp Semiconductor device and its manufacture
JP2001274378A (en) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp Semiconductor device
JP2002094058A (en) * 2000-07-11 2002-03-29 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2004538650A (en) * 2001-08-10 2004-12-24 スピネカ セミコンダクター, インコーポレイテッド Transistor having high dielectric constant gate insulating layer, source and drain forming Schottky contact with substrate
JP2003289139A (en) * 2002-03-27 2003-10-10 Toshiba Corp Field effect transistor
JP2003338507A (en) * 2002-05-22 2003-11-28 Renesas Technology Corp Mis type semiconductor device and method of manufacturing the same
JP2004140262A (en) * 2002-10-18 2004-05-13 Fujitsu Ltd Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716702B2 (en) 2010-10-22 2014-05-06 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US10943833B2 (en) Silicon and silicon germanium nanowire formation
US7479423B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4004040B2 (en) Semiconductor device
US7465998B2 (en) Semiconductor device
JP2007019177A (en) Semiconductor device
US11296078B2 (en) Semiconductor device
US9343372B1 (en) Metal stack for reduced gate resistance
US20130328136A1 (en) Structure and method for forming programmable high-k/metal gate memory device
TW200849483A (en) Semiconductor structure including gate electrode having laterally variable work function
TW201203515A (en) Thin-BOX metal backgate extremely thin SOI device
JP4237448B2 (en) Manufacturing method of semiconductor device
TWI496287B (en) Dual dielectric tri-gate field effect transistor
US20050051856A1 (en) Semiconductor device
JP2007294680A (en) Semiconductor element, semiconductor device, and their fabrication process
JP2002368225A (en) Semiconductor device and manufacturing method therefor
JP2013175596A (en) Semiconductor device and method of manufacturing the same
JP3658564B2 (en) Semiconductor device
JP2006237512A (en) Semiconductor device
US20070114618A1 (en) Semiconductor device and method of manufacturing the same
JP4217603B2 (en) Semiconductor device and manufacturing method thereof
JP2003289141A (en) Semiconductor device
US20230122250A1 (en) Field effect transistor with multiple hybrid fin structure and method
US20230060454A1 (en) Field effect transistor with fin isolation structure and method
US20240038901A1 (en) Field effect transistor with isolation structure and method
JP4951606B2 (en) Manufacturing method of MIS type semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20080111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02